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ABSTRACT 

Nitric Oxide (NO) is a radical produced by endothelial NO synthase (eNOS), which is regulated by 

shear stress in vascular endothelia. In humans, shear stress levels in Schlemm's Canal (SC) are 

calculated to be comparable to that of arteries, particularly at elevated intraocular pressure 

(IOP), a risk factor for glaucoma. To test if NO is part of an IOP regulatory loop, we investigated 

the relationship between NO and shear stress in SC cells. Cells were seeded into lbidi flow 

chambers and assayed for effects of continuous shear on cell alignment and NO production. 

Human umbilical vascular endothelial cells (HUVECS) were used as a positive control. Like 

HUVECS, SC cells aligned with the direction of flow. NO synthesis in both cell types doubled with 

an increase in shear from 0.1 to 10.0 dynes/cm2, suggesting that shear regulates NO production 

in SC cells and consequently may play a role in IOP regulation. 
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1 INTRODUCTION 

Glaucoma is the second leading cause of blindness in the world, according to the World Health 

Organization 1. In the United States alone, it is estimated that over 2.5 million people have 

glaucoma, and over 120,000 are blind because of glaucoma 1• This accounts for approximately 

9% to 12% of all cases of blindness 1. Glaucoma refers to a family of eye diseases in which 

damage to the optic nerve results in permanent loss of vision. Types of glaucoma include 

primary open-angle glaucoma, normal-tension glaucoma, closed-angle glaucoma, congenital 

glaucoma and secondary glaucoma. 

Primary open-angle glaucoma (POAG) is by far the most common form of glaucoma, accounting 

for more than 75% of total. This form of glaucoma occurs when aqueous humor drainage 

through the conventional outflow pathway (consisting of the Trabecular Meshwork and 

Schlemm's canal) is impaired at the molecular/cellular level and not simply via obstruction, 

although the mechanism is still unknown 2• 3 • Resistance to drainage of aqueous humor results 

in an increase in intraocular pressure (IOP), which in turn often results in damage to optic nerve 

fibers at the level of the lamina cribrosa region of the optic nerve. A patient will usually not 

notice any changes in their vision in the beginning stages of POAG. However, as more and more 

ganglion cell fibers are lost over time a patient will notice blind spots (scotomas), typically in the 

periphery of their vision. As more of the nerve fibers die, these spots become larger until 

blindness results across the entire visual field. 

Glaucoma can affect anyone of any age, ethnic race or gender. The elderly and Africans, 

however, are at a higher risk 1. Currently glaucoma has no cure, and once vision is lost, it cannot 

be regained. Medication (such as timolol or latanoprost 4) and/or surgery are targeted at 
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lowering IOP and have been shown effective at halting or slowing further vision loss 5• IOP can 

be lowered by inhibiting the secretion of aqueous humor into the eye or by enhancing aqueous 

humor drainage from the eye. Unfortunately, approximately 10% of people with glaucoma and 

who receive proper medical treatment still experience blindness 1; and far more continue to 

slowly lose vision because their IOP cannot be lowered enough. 
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2 BACKGROUND 

2.0 The Eye and the Conventional Outflow Pathway 
In the eye, a clear, colorless, fluid called aqueous humor is secreted into the eye via the ciliary 

epithelium in the posterior chamber of the eye, between the iris root and pars plana, the edge 

of the retina 6• The aqueous humor flows through the pupil and into the anterior portion of the 

eye and nourishes the avascular tissues of the eye (lens, cornea and trabecular meshwork) 

before draining out of the eye 7• 

There are two pathways in which aqueous humor is drained from the eye: the primary outflow 

pathway, or the conventional outflow pathway, which is responsible for up to 90% of the 

aqueous humor drainage 8; and the secondary pathway, the uveoscleral pathway. The 

conventional pathway consists of the trabecular meshwork and Schlemm's Canal, a circular 

vessel that is located between the cornea and ciliary muscle. The conventional outflow pathway 

is pressure sensitive, and resistance to aqueous humor outflow is generated deep into the 

conventional outflow pathway, where the TM and inner wall of SC interact 6' 9• Despite this 

route being the main path for aqueous humor outflow and the site of diseased tissue 

responsible for elevated IOP in glaucoma, there are currently no effective medical treatments 

that target the conventional pathway to improve eye facility. 

2.1 Sclemm's canal 
Schlemm's Canal is the first venous vessel that aqueous humor enters as it leaves the eye. The 

canal is made up of a monolayer of vascular-derived endothelial cells 7' io, 11 and functions by 

collecting the aqueous humor from the anterior chamber of the eye and then delivering it into 

the systemic circulation via the anterior ciliary veins. 
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The endothelial lining of Schlemm's Canal can be divided into an "inner" and "outer'' wall. The 

"inner'' wall is a layer of endothelia that sits on a discontinuous basal lamina and is exposed to a 

basal to apical pressure gradient resulting in distension. The "outer'' wall is a layer of endothelia 

that sits on a continuous basal lamina situated atop sclera, similar to other endothelia 7• SC cells 

generally align in the direction of the length of the canal, turning in the direction of collector 

channels 7• Shear through the canal, however, is a likely modulator for this cell alignment 7• 

It has been experimentally indicated that the Trabecular Meshwork and/or the inner wall of 

Schlemm's Canal are the primary sites of outflow resistance in a normal human eye 6• 

lntraocular pressure (IOP) is dependent on the episcleral venous pressure (inside SC), Pv; the 

resistance generated by TM and SC cells, R; uveoscleral flow, Fu; and the rate of aqueous humor 

formation, Faq 6: 

/OP= Pv + (Faq -Fu)* R (Equation 1) 

Previous work has derived the relationship between IOP and the shear on Schlemm's Canal cells 

(see Appendix- Shear Stress on Schlemm's Canal) 7• When the IOP is high and the Schlemm's 

Canal has a small diameter, shear stress levels have been calculated to increase in Schlemm's 

Canal 7• Interestingly, these calculated shear levels are comparable to the shear values that 

large coronary arteries receive (namely 2-20 dynes/cm2) 127• A key signaling molecule under 

conditions of high shear in endothelial cells is Nitric Oxide. 

2.2 Nitric Oxide 
Nitric Oxide (NO) is a free radical that is generated by the conversion of L-Arginine to L-Citrulline 

by one of three NO synthases (NOS): nNOS (found primarily in neuronal tissues, but also in 

skeletal muscles), iNOS (found primarily in immune-activated macrophage cell lines, but also 



cardiac myocytes and vascular smooth muscle cells) and eNOS (found primarily in endothelial 

cells, but also in myocytes and blood platelets) 4, 13• 
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NO, once produced, performs functions through the activation of soluble guanylyl cyclase (sGC) 

enzyme which results in the formation of cyclic GMP (cGMP) 14, or by the modulation of 

transcription 15• NO is a gas that is soluble in tissues and freely diffusible across cell membranes. 

It functions intracellularly as a second messenger that responds to plasma membrane receptor 

activation, and extracellularly as a paracrine factor that relays information between various cells 

16• NO, therefore, has a plethora of functions including decreasing platelet aggregation and 

neutrophil adhesion 17; regulating the assembly and disassembly of intercellular junctions which 

affects endothelial permeability 18; and muscle relaxation, resulting in vasodilation 15• Because 

of its function, abnormal NO concentrations have been implicated in several diseases, such as 

hypertension, heart failure and hypercholesterolemia 19• 

Interestingly, NO deficiency has been related to several eye diseases, including glaucoma 16' 20• In 

particular, abnormalities in NO production appear with higher frequency in patients with 

primary open-angle glaucoma. To support this, several NO donating compounds have been 

found to increase conventional outflow facility and decrease IOP in transgenic mice, rabbits, 

pigs, dogs, monkeys and humans 4• 6• 8• 9• 20• 21• In contrast, perfusion of human eyes with NOS 

inhibitors resulted in a decrease in the facility of outflow22• Even direct topical or intracameral 

application of NO agonists, have likewise been reported to alter outflow facility 23-25• 

Comparing the ciliary muscle and the outflow pathway between anterior segments of healthy 

individuals and anterior segments of individuals with a history of POAG, it was found that the 

anterior longitudinal ciliary muscle, the TM and the SC showed a marked reduction of NO 



production in POAG individuals as indicated by NADPH-diaphorase, an NO-indicator marker 24. 

This suggests that NO production is somehow impaired in POAG individuals. 
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Both cell types in the human conventional outflow pathway (the SC and the TM), along with the 

ciliary muscle, have been shown to generate NO by using a variety of indicators. This includes 

the NO indicator marker, NADPH-diaphorase, a direct biochemical assay and 

immunocytochemical localization of NO synthase isoforms 26• This study found that primarily 

eNOS was present in these postmortem human eyes 26• 

2.3 Production of Nitric Oxide 
The three NOS enzymes are NADPH, calcium/calmodulin-dependent enzymes 27• Several ocular 

components, such as the trabecular meshwork and Schlemm's canal, have been shown to 

express constitutive NOS 26; although there is some debate on whether the endothelial NOS 

(eNOS) or the inducible NOS (iNOS) is the main NOS enzyme implicated in the maintenance of 

vascular tone and for NO generation 22• 26• Rats, after all, have been demonstrated to express a 

little iNOS activity in the cranial ganglia and the choroid, the vascular layer of the eye 28• It has 

been shown, however, that there is an enrichment of eNOS in the human outflow system and in 

the ciliary muscle 26• Interestingly, a variant in the promoter region of the eNOS gene was seen 

in a number of patients with familial POAG 27, suggesting another link between eNOS and 

glaucoma. Therefore, eNOS is the most likely regulator of NO production within the outflow 

pathway and thus may be an important factor in the regulation of IOP, which if impaired can 

lead to glaucoma. 

As eNOS may be an important regulator of IOP, it is important to understand what regulates this 

enzyme's activity. eNOS activity and abundance has been shown to be regulated by shear stress 
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in vascular endothelia both in flow chambers with controlled shear stress conditions in vitro and 

in transgenic mice in vivo 29•31, This indicates that an increase in shear can lead to the up

regulation in eNOS and consequently an increase in the concentration of NO. The release of NO 

then results in an increase in outflow facility which reduces the IOP, consequently decreasing 

the shear being applied to the conventional outflow pathway. 

Because of this potential role of shear on regulating IOP, we investigated the relationship 

between Nitric Oxide and eNOS production, and shear stress in cultured human SC cells. Our 

central hypothesis is that shear stress in Schlemm's Canal functions as a modulator within an 

endogenous feedback loop. This loop detects the changes in IOP through effects on shear stress 

in SC as the canal lumen diameter decreases, in part, through NO signaling (Figure 1). For this 

work, we hypothesized that shear leads to an increase in eNOS and NO production in Schlemm's 

Canal cells, similarly to other endothelial cells. 
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Figure 1: Model of NO regulation of outflow 
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3 MATERIALS AND METHODS 

3.0 Shear Stress Experiments 
Shear Stress was applied to confluent cells with the use of an ibidi pump system which is 

capable of maintaining defined shear stress level across a surface of cells. SC cells were exposed 

to various shear levels for a set amount of time. The cells were then analyzed for NO production 

and eNOS expression. HUVECS were used as a positive control. Other controls include exposing 

the cells to shear with media supplemented with an NO donor (100 µM L-Arginine) and an eNOS 

inhibitor (100 µML-Name). 

3.0.0 HUVECS and SC Cell Culture 
The cells used in these experiments were HUVECS and SC cells. The medium used for HUVECS 

was Medium 199 (Gibco by Life Technologies, Grand Island, NY) supplemented with 15% 

Hyclone Fetal Bovine Serum or FBS (Thermo Scientific, South Logan, Utah), Penicillin 

Streptomycin Glutamine or PSG (100 U/ml, Gibco by Life Technologies, Grand Island, NY), 

heparin sodium salt (90 µg/ml, Sigma-Alrich, St. Louis, Mo) and Endothelial Mitogen (0.1 

mg/ml, Biomedical Technology, Inc, Stoughton, Ma). The medium used for SC cells was DMEM 

Low Glucose lX Medium (Gibco by Life Technologies, Grand Island, NY) supplemented with 15% 

FBS and PSG (100 U/mL). The other mediums used for experiments included both media's 

supplemented with 100 µM L-Arginine cell-culture tested (Sigma, St. Louis, Mo) and 100 µM Nw

Nitro-L-arginine methyl ester chloride or L-Name (Sigma, St. Louis, Mo). 

3.0.1 µ-Slide Preparation 
Cells were loaded onto µ-slides 1°·6 (ibidi, Munich, Germany) and allowed to set in an incubator 

at 37°C with 5.0% CO2. Slides were provided with an ibiTreat surface, a physical modification 

used to improve cell adhesion on the µ-slide 32 • This surface is comparable to standard cell 
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culture flasks and Petri dishes 32 . These µ-slides are capable of holding 150 µLin volume. They 

are 600 µm in height and an area of 2.5 cm 2• 

HUVECS were loaded onto µ-slides and allowed to settle for at least one to three days before 

being hooked up to the lbidi pump system for shear stress experiments. Schlemm's Canal 60.4 

cells were loaded onto µ-slides and allowed to settle for at least two before shear was applied. 

3.0.2 Ibidi Pump System Preparation 
The lbidi Pump System (ibidi, Munich, Germany) was set-up as per protocol 33• In a hood, the 

yellow/green type perfusion set (Shown in Figure 2, Specifications shown in Table 1) was 

attached to reservoirs and the reservoirs were placed into the holders on the fluidic unit (Figure 

3). A spare µ-slide, containing no cells, was connected to the perfusion set. The perfusion set 

and the reservoirs were rinsed in 70% ethanol three times, and then rinsed in Dulbecco's 

Phosphate Buffered Saline lx (DPBS) without Calcium Chloride or Magnesium Chloride (Gibco by 

Life Technologies, Grand Island, NY) three times, before being filled with medium. The branched 

tubes of the perfusion set were then set in the designated slots of the fluidic unit. Sterile 

Sartorius Minisart filters (0.2 µm pore size, Teflon, Sigma-Aldrich, St. Louis, Mo) were placed on 

top of the reservoirs and connected to the top air pressure tubes of the fluidic unit. 









Computer 

Drying Bottle 
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Connection 
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Figure 5: Positive Pressure lbidi Pump System Set-up 33 
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Incubator 

The shears applied to the HUVEC µ-slides were 0.1 and 10.0 dynes/cm2 (see Appendix - lbidi 

Pump Shear Stress Calculations) for 24 hours when cell alignment could be confirmed with 

phase contrast microscopy (Olympus IX70 Microscope and Olympus U-PMTVC Camera, Olympus 

America Inc, Center Valley, Pa). The shears applied to SC cell µ-slides were also 0.1 and 10.0 

dynes/cm2, however shear was applied for a minimum of 1 week before cell alignment could be 

confirmed with phase contrast microscopy. Both cell types were exposed to 10.0 dynes/cm2 

with both the 100 µM L-Arginine supplemented media and 100 µM L-Name supplemented 

media. 

As per protocol given by the company 34, when the shear exceeded 2.00 dynes/cm2 the cells 

needed to be adapted to low levels of shear, before being exposed to higher levels of shear. 

Therefore, the shear experiments for 10.0 dynes/cm2 began with the cells being exposed to 30 

minutes of 2.00 dynes/cm2, before increasing to 5.00 dynes/cm2 also for 30 minutes. After this 
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shear-conditioning section, the shear was increased to 10.0 dynes/cm2 for 24 hours for HUVECS 

and 1 week for SC cells. 

3.1 Nitric Oxide Detection 

3.1.0 NO Probe 
Originally, in order to detect Nitric Oxide, a NO probe was used: inNO-T-II NO measuring system 

along with an amiNO-700 model NO sensor and inoll software (Innovative Instruments, Inc, 

Tampa, Fl) borrowed from Dr Nicholas Delamere of the Department of Physiology at the 

University of Arizona. 

Before use, the NO probe needed to be calibrated through a protocol provided by the company. 

The sensor is first submerged in milliQ water for a minimum of 3-4 hours or overnight to 

polarize the probe. Then the probe is placed in a calibration solution of 18.0 ml of milliQ water 

and 2.0 ml of 1.0 M sulfuric acid and the probe is connected to the meter. A magnetic stir bar is 

used to keep the solution mixing. The sensor is fixed in place with a clamp. Once the sensor is 

reading a stable background current, the sensor is zeroed. 

Then 10.0 µl of 100 µM NaNO2 solution (Sodium Nitrite from Acros Organic in Thermo Fisher 

Scientific, NJ) is added to the calibration solution resulting in a SO nM NO solution. The sensor 

records the current in pA (Figure 6) that correlates to this concentration. Once the sensor 

reaches its peak and begins to decrease, 20 µl of the 100 µM NaNO2 solution is added for a final 

concentration of 100 nM NO. This peak is recorded and finally 40 µl of 100 µM NaNO2 solution 

is added for a concentration of 200 nM. 
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Figure 6: Calibration Curve obtained from NO Sensor with iNOII software plotting the current the sensor receives 
versus the time 

The Calibration equation is then obtained by plotting the current found by the software versus 

the concentration of Nitric Oxide. Microsoft Excel is then used to find the equation. 
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Figure 7: Calibration Curve plotting Current versus the NO concentration 
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The probe was placed in two locations within the ibidi Pump System in order to determine 

where the NO probe was most effective at reading the concentrations of NO while the cells 

were being exposed to shear rates. The first set-up involved the probe being set in the reservoir 

(Figure 8) and the second set-up involved setting the probe in a Luer Y-connector that was 

located in between the µ-slide and the perfusion set Luer connector (Figure 8). The probe was 

locked in place in the first set-up by being poked through the rubber fitting that holds the filter 

in place and keeps the system enclosed. To keep the filter attached to the reservoir, parafilm 

was wrapped around in order to ensure the filter did not detach from the reservoir in the course 

of the experiment. 

The probe is locked in place in the second set-up with a Luer lock cap with a hole to allow for the 

probe to fit through. Super glue and parafilm are used to fill in the gap between the Luer cap 

and the probe. The cap was then screwed onto the Y-connector allowing the sensor to be 

exposed to the media. In both conditions, the probes were exposed to the media overnight 

such that the probes stabilized. The NO program was started for approximately 10-15 minutes 

to show the baseline that the probe had reached, in the morning of the following day. Then the 

shear stress experiments were then started. 
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Figure 8: Locations where NO probe were placed (1) through the top of the reservoir (in between the filter and the 
black rubber and into the media in the reservoir (2) into a Y-connector that joins the perfusion set Luer connector 

and the µ-slide 

3.1.1 DAF-FM Diacetate Fluorescence 
A secondary Nitric Oxide Probe used was a OAF-FM Oiacetate (4-Amino-5-Methylamino-2',7'-

0ifluorofluorescein Oiacetate) probe (Life Technologies, Grand Island, NY). OAF-FM is a reagent 

that is used to detect and quantify low concentrations of NO and is essentially non-fluorescent 

until it reacts with NO to form benzotriazole, which is fluorescent. OAF-FM is excited by ~495 

nm light and emits at 515 nm. 

A 5 mM stock solution of the OAF-FM diacetate(Molecular Weight= 496} was made with 0.4 ml 

high-quality anhydrous OMSO. 

As per the protocol provided by Life Technologies 35, once the cells prepared on the µ-slide and 

exposed to shear with the ibidi Pump System, the µ-slide was incubated with 50 µM of the OAF

FM diacetate for 45 minutes at 37°C. The cells were then washed with Oulbecco's Phosphate 



Buffered Saline lx (DPBS) without Calcium Chloride or Magnesium Chloride (Gibco by Life 

Technologies, Grand Island, NY) to remove the excess probe and replaced with fresh medium. 

The cells were then incubated at 37°C for an additional 15 minutes. 
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The fluorescence was imaged with a Nikon Eclipse TE2000-U Microscope (Nikon Instruments Inc, 

Melville, NY) attached to a Cooke SensiCam High Performance (Motion Engineering Company, 

Inc, Indianapolis, In). This equipment belongs to Dr. Pak Wong, Aerospace and Mechanical 

Engineering Department at the University of Arizona. Images were taken at 10x magnification 

with a 00 PH filter and a green light filter. 

Several pictures were taken across the entire µ-slide for a minimum of five final images per cell 

type per shear stress condition. Images were analyzed using Image J software with the Nikon 

microscope and SensiCam specific plug-in at 10x magnification. For each image the mean 

fluorescence of cells located throughout the picture was measured at 15 different points. These 

15 values were then averaged to get an overall fluorescence value. The same was done for 5 

different points of the background, the non-fluorescent portion of the figures located between 

cells. The background fluorescence average was then subtracted from the cell fluorescence 

average to get the relative fluorescence of the cells. All points measured for fluorescence was 

taken at random. 





4.1 Nitric Oxide Probe Analysis 

4.1.0 Comparison of two NO detection Methods 
The first step in using this NO probe was to determine which set-up was necessary for 

measuring the NO concentration with respect to shear stress being applied to HUVECs. The 

following calibration curve (Figure 10) was used in order to determine the NO concentration 

with respect to the shear. 
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Figure 10: Calibration Curve for NO probe set-up 1 and 2. Probe 1 was used for the first set-up in which the NO 
probe was placed in the reservoir. Probe 2 was the NO probe used in the second set-up, in which the NO probe 

was connected to the system via a Y-connector. 

The following five figures display the NO program of the experiment comparing the two 

potential NO probe set-ups for HUVECS set at 10.0 dynes/cm2 for 24 hours. The first set-up is 

indicated by the blue line and, as can be seen, there is no noticeable change in NO production 

over the course of the experiment. The second set-up is indicated by the red line and shows an 

increase in current after approximately 70 minutes of being exposed to shear. This increase 

then levels at ~14,000 pA (107.09 nM NO) above the initial starting current. The NO production 
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decreases after several hours until it decreases to a current of ~6,000 pA {60.69 nM NO) above 

the initial starting current. As only the second set-up showed a response, it was the set-up that 

was used for the NO detection experiments. 
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Figure 11: Comparing the response of the NO probe when probe is arranged in the First Set-Up (blue line) and in 
the Second Set-Up (red line). This figure shows the first 333 minutes of the experiment. The second set-up shows a 
relative increase in current around 70 minutes 
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Figure 12: NO probe readings from 333 minutes to 666 minutes. The current is beginning to decrease. 
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Figure 13: NO probe readings from 666 minutes to 1000 minutes 
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Figure 14: NO probe readings from 1000 minutes to 1333 minutes 
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Figure 15: NO probe readings from 1333 minutes to 1666 minutes 
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Once it was decided that the second set-up with the Y-connector would be used, the same 

procedure for setting up the second set-up was used for the future experiments. 

4.2 DAF-FM Fluorescence Analysis 

4.2.0 HUVECS and SC DAF-FM Figures 
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The fluorescent images captured for each of the four conditions in HUVECS and SC cells. Cells 

exposed to 0.1 dynes/cm2 have less fluorescence than that of cells exposed to 10.0 dynes/cm2• 

Exposure to L-Arginine conditions resulted in a noticeable increase in fluorescence while 

exposure to L-Name conditions resulted in a decrease in fluorescence in comparison to the L

Arginine conditions. 
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5 DISCUSSION 
With respect to cell alignment, SC cells behaved similarly to HUVECs in that the cells aligned 

with the applied shear flow. Likewise, SC cells produced more NO with an increase in shear 

flow. 

5.0 Cell Alignment 
For both HUVECS and SC cells, exposure to shear with the lbidi Pump System resulted in cells 

aligning in parallel with the direction flow as predicted. For HUVECS, full alignment across the 

cell took 24 hours. For SC cells, full alignment took at least one week. Previous experiments 

support this cell alignment within HUVECS once exposed to relatively high shear stresses (12 and 

15 dynes/cm2) for approximately 24 hours 34• 38• Likewise, Ethier, suggested a similar alignment 

as a result of shear stress in SC cells 7, though no cell culture experiments have been performed 

on cultured SC cells. Further experimentation is needed in order to verify cell viability, such as 

through a propidium iodide dye. This will allow us to better control for the number of cells with 

respect to the NO production. 

5.1 Expression of Nitric Oxide 

5.1.0 NO Probe 
The Nitric Oxide Probe is capable of measuring relative concentration of NO across the cells at a 

given point in time. Generally, these probes are used to measure the NO concentrations in 

static cultured cells. As shown in Figure 11-Figure 15, it was found that the second set-up was 

necessary in order to have any noticeable NO readings. The current, and consequently the NO 

concentration, is shown to increase around 70 minutes; around 10 minutes or so after the 

HUVECS were beginning to be exposed to the 10.0 dynes/cm2 of shear. 
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This second set-up is necessary potentially because NO degrades to nitrite within seconds 39 . 

When NO is exposed to superoxide, it degrades at a rate of 6. 7 x 109 M-1N119• Because of this 

degradation rate, it is possible that the NO degraded in the media before the nitric oxide could 

reach the sensor in the reservoir. The NO would have had to travel through the tubes which 

have a length of 50 cm (Table 1) for the first set-up in comparison to a distance of approximately 

2 cm in the second set-up. 

Once selecting the second set-up, with the NO probe being placed in the Y-connector, however, 

other problems arose. The main problem that arose was the sensitivity of the permeable 

membrane that covers the sensor. When exposed to the shear the membrane gradually 

degraded or cracked leading to a loss in sensor sensitivity. With this loss in sensitivity, the 

sensor began reading very large and very steady current (~360,000 pA) which would take a long 

time to decrease, if the reading decreased at all, even with being removed from the media. 

Working probes respond to every movement of the probe (Figure 18). The company was 

contacted to assist in making the membrane more robust, however even this new probe came 

to the same result though this sensor did take longer before it to became unresponsive to 

changes in the NO current. 
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Figure 18: Desensitized NO probe reading at ~360,000 pA 

It is possible to connect the probe to a side tube of some sort and only have the probe take 

measurements at selected intervals; however, this probe responds to movement and takes 

several hours to stabilize to the media. This makes it difficult to distinguish between the 

responses to the movement of the probe versus the responses to the Nitric Oxide in the 

solution. 

Though the probe would generally work for the first experiments (as shown in Figure 12) and 

show an increase in the NO concentration, by the second or even third experiment, the probe 

would be desensitized. Consequently, use of this NO probe was not the most efficient method 

for measuring NO. 

5.1.1 DAF-FM Diacetate Fluorescence 
The DAF-FM Diacetate Fluorescence probe is a molecular probe that is capable of crossing 

through the cell membrane. Upon incubation with this probe, cells fluoresce indicating a 

relative amount of Nitric Oxide in the cells. 
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Figure 17 shows that an increase in shear from 0.1 to 10.0 dynes/cm2 does result in an increase 

in the fluorescence in both cell types. An increase in fluorescence is also seen when a NO donor 

is added to the media, as expected of a positive control. A result similar to 0.1 dynes/cm2 was 

achieved when adding an eNOS inhibitor to the media in HUVECS though not in SC. In fact, the 

fluorescence was larger than even the fluorescence achieved in 10.0 dynes/cm2• A potential 

reason for this is that the L-Name eNOS inhibitor degraded over the course of the week, 

resulting in NO being expressed despite the original media conditions. It is possible that the NO 

was being produced by another Nitric Oxide synthase. 

Typically, the media is not replaced during the week in which SC are exposed to shear due to 

contamination issues, however because of this result, it may be necessary to replace the media 

with fresh media supplemented with L-Name. 

Other studies have also indicated that a shear stress dose dependently up-regulates NO 

synthesis in cultured endothelial cells 40' 41• This supports the DAF-FM fluorescence data 

received for HUVECS, in that an increase in shear resulted in an increase in fluorescence. In 

these experiments, however, NO was measured indirectly by measuring [3H] L-Citrulline 

formation 40 or cGMP production 41 . cGMP synthesis is stimulated by NO activating guanylate 

cyclase which is the enzyme that catalyzes cGMP synthesis. Therefore, we can only indirectly 

compare the amount of NO that was produced. 
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6 FUTURE WORK 
There are several more future experiments that are recommended in order to understand the 

effects that shear has on Schlemm's Canal. 

First of all, more HUVEC experiments are required at the four conditions given in this work in 

order to determine statistical significance in more than one µ-slide per condition. This is 

particularly the case with the NO donor and the eNOS inhibitor conditions as preliminary 

experiments showed that no eNOS protein appeared in Western Blots, potentially due to there 

being too few cells on the µ-slides. 

It is possible that dose response curves comparing the concentration of L-Arginine or L-Name 

will be necessary in order to determine a concentration that will result in production of the 

enzyme eNOS. Or else, another method, besides Western Blot may be needed in order to 

detect eNOS. Another NOS inhibitor, for nNOS or iNOS, will also help us determine if eNOS is 

the enzyme responsible for maintaining the nitric oxide production in SC cells. 

Because the OAF-FM fluorescence is taken at different time points, the HUVECS at 24 hours and 

the SC at 1 week, it is difficult to directly compare the two cell types with respect to OAF-FM 

fluorescence. Therefore, applying the OAF-FM to the HUVECS and the SC at similar time points 

over the course of the week would allow us to more directly compare the two cell types, rather 

than comparing the two when the cells reach full cell alignment. 

Another method of detecting the amount of Nitric Oxide, as a secondary measure to the OAF

FM Fluorescent probe would also help to confirm the results we have been receiving. Ideally 

this detection method will be a more direct measurement of NO. A potential method to explore 



would be to use an assay to quantify the amount of nitrite (which is what NO is degraded to), 

with respect to the amount of media, at the various shears stresses. 

To improve the cells ability to remain attached to the µ-slide, other treatments on the µ-slide 

could be tried. This may also assist in speeding up the amount of time that SC cells need to 

incubate before shear can be applied. Regardless, other shear stresses are also going to be 

performed to better determine the range of NO production and eNOS expression with respect 

to shear. Potential shear stresses include 1.0, 5.0 and 15.0 dynes/cm2• 
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With this system now functional, there are a variety of other proteins besides eNOS that can be 

measured: VE-cadherin, Endothelin-1 and actin. VE-cadherin is a glycoprotein that mediates 

cell-cell adhesion and is calcium-dependent 42• It has come to be an indicator of endothelial 

cells. Endothelin-1 (ET-1) is another important modulator of vascular tone in the human 

ophthalmic artery is the vasoconstrictor 43• ET-1 produces the vasoconstriction of the anterior 

optic nerve vasculature and thus may contribute to the regulation of IOP and vessel tone 27• 44• 

Actin, is a cytoskeletal protein that assists in maintaining the structure of the cell. Staining for 

actin will allow us to confirm that the cells are aligned with each other. Another method for 

analyzing cell alignment would be through the use of light microscopy. 

It is unclear whether low shear stress or oscillatory shear stress is more important for the 

expression of eNOS 30• With the use of the lbidi Pump system, future experiments can explore 

the option of exposing cells to pulsatile shear flow and determine if there is a difference 

between oscillatory and continuous shear flow on cells. Therefore, with the use of a second 

fluidic unit, we can test the effects of pulsatile flow on both HUVECS and SC cells. 
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Once the HUVECS are fully tested for these proteins, etc., further normal human SC primary cell 

lines (two to three cell lines) would also be required to adequately compare the HUVEC results 

to the SC. Particular focus will need to be paid to the shear condition in which the media is 

supplemented with eNOS inhibitor as the DAF-FM fluorescence was higher than even the 10.0 

dynes/cm2 results. Once normal SC cells are fully characterized, they can be compared to 

glaucomatous SC cells lines. 

As Trabecular Meshwork cells are also a part of the conventional outflow pathway and are also 

known for producing NO, it would also be interesting to see what the effect of shear has on TM 

cells. Experiments have shown that, at the cellular level, Nitric Oxide relaxes TM cells and result 

in decreases in cell volume and increased in outflow facility 45• 

The increase in NO production in SC cells with an increase in shear suggests that shear in 

Schlemm's Canal, likewise, promotes the production of NO. With these suggested future 

experiments, we will be able to better determine if NO production is an important IOP 

regulatory factor that is somehow impaired in glaucoma patients. 
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7 CONCLUSIONS 
Human Schlemm's Canal cells respond to shear stress similarly to other vascular endothelial 

cells. When exposed to shear, SC cells align with flow over the course of a week and preliminary 

experiments have shown that an increase in shear, results in an increase in NO production as 

shown by a DAF-FM fluorescent probe. Further experiments are needed to determine if this 

applies to further cell lines and if a similar effect can be seen in the SC cell's expression of eNOS. 
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APPENDIX 

Shear Stress on Schlemm's Canal 7 

Shear stress on Schlemm's Canal was derived by Ethier's group 7 by treating Schlemm's Canal as 

having an elliptical cross section with a major and minor axes of a and b. It is assumed that this 

cross section is uniform and the wall is porous, allowing aqueous humor to seep in. The porous 

nature of this model also allows for the collector channels to be factored into the model. The 

flow rate in the SC, Q(x), is then defined by: 

dQ = IOP-p(x) 

dx Riw 
(Equation 2) 

Where p(x) is the local pressure within the SC, /OP is intraocular pressure (this value is assumed 

to be constant), and 1/R;w is the hydraulic conductivity of the trabecular meshwork and inner 

wall of the SC, per a unit length of the inner wall (this value is also assumed to be constant). The 

xis set to Oat the midway point between two collector channels and x is set to ±L for the 

location of the nearest collector channel. 

Pressure is related to shear stress by: 

dp Tw(x)C -=--
dx A 

(Equation 3) 

Where -rw is the wall shear stress, A is the cross sectional area of the SC and C is the perimeter of 

the cross section. 

The velocity profile is given by: 

U = 2Q(x) [1 - y2 - z2] 
A b2 a2 (Equation 4) 
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With the major axis, a, being along they-direction; and minor axis, b, being along the z-

direction. The wall shear stress, tw, varies with its position and its mean value is: 

(Equation 5) 

Here, Eis the elliptical integral of the second kind. Minimum and maximum shear stresses are 

given by: 

4µQ(x) 
T . =--w,min na2b (Equation 6) 

4µQ(x) 
T ---w,max - nab2 (Equation 7) 

With the boundary conditions of Q(x)=0 at x=0 and Q(x)=Ototai/(2N) at x=±L (Ototal is the total flow 

rate that enters the canal and N is the number of collector channels) we get: 

With 

Q(x) = Qtotal sinh (kx) 
2N sinh (kL) 

k2 = 4µ( 1+(afb)2) 

nab3 Rtw 

(Equation 8) 

(Equation 9) 



Ibidi Pump Shear Stress Calculations 
Shear stresses were calibrated by observing the flow rate going through the system. The 

computer then used the lbidi Pump System Program to calculate the shear with the following 

equation for the µ-Slide 1°·6: 

46 

[dynes; ] = 5 129ct>[ml/ . ] r cm2 . mm (Equation 10) 

Where 1 is the shear stress and cp is the flow rate. 

This equation was derived in an application note provided by the lbidi Company 46• The local 

flow velocity, v(x,y) was originally calculated by Cornish 47• The µ-slide channel was treated as a 

rectangular cross-section through which flow passes: 

( ) _ 1 dp {b2 x2 °" 00 (-1)n(zb2) (2)3 cosh[(2n+1)(~fl] [(2n+l)rrx]} (E t· ll) v x y - --- ----L... - - cos qua I0n 
' 71 dz 2 2 n-O (2rr+1)3 rr cosh[(2n+1)(;Z)] 2b 

The total flow, cp, was calculated through the channel with: 

cf> = _ .!. dp (! hb3 - 8b4 (~) 5 I 00- 1 tanh [(Zn+l)rrh]) (Equation 12) 
71 dz 3 rr n-O (2n+1) 5 2b 

Where 2h is the height ofthe channel in the y-axis direction, 2b is the width of the channel in 

the x-direction and the z-axis is the direction of the flow (Figure 19). The change in pressure 

along the channel is denoted by dp/dz. 



Figure 19: Schematic of Flow through a Rectangular Cross Section 46 

The change in pressure is eliminated with setting: 

Therefore 

= (i hb3 - 8b4 (~)s ~co_ 1 tanh [(2n+1)1rh]) 
q 3 1l L.n-O (2n+1) 5 2b 

dp <I> - = -11-
dz q 

Shear stress is then calculated by setting y = -h. 
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(Equation 13) 

(Equation 14) 

( ) 8v(x,y) 1 dp {Loo (-1rbn (2)3 sinh[(2n+1)(?)] [(2n+1)7lX]} (E t· 15) 
T x y - 71-- - -71-- - cos qua I0n 

' - 8y - 1/ dz n=O (2n+1)2 1l cosh[(2n+1)GZ)] 2b 

Eliminating dp/dz: 

r(x ) = - .!_{~co_ (-l)nbn (~)3 sinh[(2n+1)(?)] COS [(2n+l)nx]} = 
'Y 1] 1/ L-n-O (2n+1)2 n cosh[(2n+1)(;Z)] 2b 

! {Loo- (-1)nb1r (~)3 sinh[(2n+1)(?)] cos [(2n+l)nx]} (Equation 16) 
1] q n-O (2n+1)2 n cosh[(2n+1)(;Z)] 2b 

As cells typically attach to the bottom of the µ-slide channel: 

( = 0 = -h) = !{~co_ (-l)nbn (~)3 t h [(2n+l)nh]} 
T x 'y 1] q L-n-o (21r+1)2 n an 2b (Equation 17) 
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