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Abstract

Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain

unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water

dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-

rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-

variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste

deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-

surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations

between gossan oxidative reaction-front propagation and the molecular speciation of iron and

sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in

semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical

and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy

(XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in

the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and

100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was

observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous

sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial

samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to

2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering

products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with

an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite

and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest

pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp

geochemical speciation gradients in close proximity to the tailings surface have important
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implications for plant colonization, as well as mobility and bioavailability of co-associated toxic

metal(loid)s.
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1. INTRODUCTION

Mine tailings, the fine-grained, uneconomical byproducts of ore processing (crushing,

grinding, milling, and chemical leaching; Lottermoser, 2011) comprise the world’s largest

industrial waste stream (Hudson-Edwards et al., 2011). Mine waste deposition at the Earth’s

surface represents a massive annual production of fresh parent material for incipient soil

formation whose rate is of similar magnitude to the naturally-occurring fresh rock reveal rate

and the top soil loss rate (ca. 21 Gt/yr; Wilkinson and McElroy, 2007; Lottermosser, 2010).

1.1. Weathering of sulfide tailings

Tailings weathering begins with the oxidative dissolution of pyrite-rich wastes and the

release of sulfate (SO4
2−), metals (Fe2+), and protons (H+) to solution (Nordstrom and

Alpers, 1999). Production of Fe2+ and H+ further promotes surface reaction and dissolution

of pyrite and gangue (e.g., carbonate and silicate) minerals, and affects the geochemical

(meta)stability of potential secondary phases (Blowes and Jambor, 1990; Blowes et al.,

2003). Secondary phases may initially include Fe(II) and Fe(II/III) sulfates such as

melanterite [FeSO4], copiapite [FeIIFe4
III(SO4)6(OH)2•22H2O], and coquimbite [Fe2SO4)3],

followed by ferric and mixed valent (hydr)oxides such as ferrihydrite [5Fe2O3•9H2O],

goethite [α-FeO(OH)], magnetite [Fe3O4], green rust [Fe4
II Fe2

III (OH)12SO4 ·nH2O],

schwertmannite [Fe8O8(OH)6(SO4) •10H2O], and jarosite [KFe3(SO4)2(OH)6], listed in

order of increasing stability with decreasing pH (Bigham et al., 1996; Bigham and

Nordstrom, 2000; Jambor et al., 2000). Several studies have examined the gossan oxidative

reaction front of sulfide tailings as a function of depth (Bigham et al., 1990; Blowes and

Jambor, 1990; Dold and Fontboté, 2001; Dill et al., 2002; Jamieson et al., 2005; Romero et

al., 2007; Schuwirth et al., 2007; Courtin-Nomade et al., 2009; Hayes et al., 2009; Jamieson,

2011; Hayes et al., 2012). In these studies, examination of the weathering profile as a

function of depth lends insight into the sequence and stability of secondary phases in the

weathering series.

Few studies, however, have examined tailings weathering profiles in arid and semi-arid

environments. Low water through-flux and episodic wet-dry cycles in arid environments are

expected to promote the persistence of (i) acidity and sulfate that would be leached with acid

mine drainage (AMD) at higher pore volume hydrologic flux, and (ii) near-surface

accumulation of minerals that would be soluble at higher relative humidity (Hudson-

Edwards et al., 1999). The few studies that have specifically examined mine tailings in

(semi-)arid regions suggest that the weathering trajectory and (meta)stability of secondary

species in these environments varies from the better studied humid environments (Wray,
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1998; Hudson-Edwards et al., 1999; Dold and Fontboté, 2001; Navarro et al., 2004; Hayes et

al., 2009).

1.2 Quantification of solid-phase speciation and element lability across the weathering
front

X-ray absorption near-edge structure (XANES) spectroscopy probes the bound-state

electronic transitions of the absorbing atom and has been widely applied to quantify the

oxidation state and coordination chemistry for both Fe and S in porous media (Myneni,

2002; Wetherall et al., 2008; Couture et al., 2010). Sulfur XANES (or S NEXAFS) enables

quantification of sulfide and sulfate components in a mixture because the absorption peaks

are spaced by ~12 eV across the −2 to +6 oxidation states (Fleet, 2005). Several excellent

reviews on the application of S XANES to mineralogy and geochemistry represent the

diversity of spectral structures deriving from distinct reference materials, many of which are

directly relevant to metalliferous mine tailings (Myneni, 2000; Fleet, 2005). Sulfur XANES

has been used to examine the S speciation of organic moieties in soils (e.g., Morra et al.,

1997; Prietzel et al., 2003; Prietzel et al., 2009), sulfate species in aerosols (Takahashi et al.,

2006), and S oxidation state in sediments (Neuhausler et al., 2003; Bostick et al., 2005), but

it has not been extensively applied to study S speciation in mine tailings (Solis-Dominguez

et al., 2012).

The first-derivative Fe XANES spectra of iron bearing phases have sufficiently unique

spectral structure to differentiate between Fe containing mineral groups, e.g. phyllosilicates,

carbonates, sulfides, oxides, sulfates, etc. (Waychunas et al., 1983; Combes et al., 1989;

Zhao et al., 1994; Manceau and Gates, 1997; O’Day et al., 2004). This information can be

used to identify Fe species and monitor temporal and spatial redox changes in field and

laboratory samples (Bajt et al., 1994; Zaw et al., 2002; Schmid et al., 2003; O’Day et al.,

2004; Wilke et al., 2005; Root et al., 2007; Fittschen et al., 2008; Karlsson et al., 2008;

Marcus et al., 2008; Mitsunobu et al., 2008; Root et al., 2009).

Selective sequential extraction (SSE) of solids enables the quantification of lability of solid-

phase bound elements across a range of aqueous geochemical conditions (Williams et al.,

1967; Tessier et al., 1979; Pickering, 1981; Dold and Fontboté, 2001, 2002; Dold, 2003b;

Hayes et al., 2009). Although clearly operational (technique-dependent), results from SSEs

are also quantitative and reproducible, with power to assess the changes in solid phase

aqueous reactivity, particularly when applied across a well-characterized gradient in

geochemistry, such as a reaction front. SSE is best utilized in conjunction with independent

confirmation of solid phase speciation by, e.g., x-ray absorption spectroscopy or x-ray

diffraction (Ruttenburg, 1992; La Force and Fendorf, 2000; Dold and Fontboté, 2002;

Caraballo et al., 2009; Hayes et al., 2009). Indeed, coupling SSEs with complementary

sample analysis methods is beneficial because of known potential artifacts including

variable dissolution of both target and non-target phases, unintended precipitation of

secondary phases, etc. (Kheboian and Bauer, 1987; Hayes et al., 2009).

The principal objective of the present study was to examine mineral transformation and

speciation of major redox active elements, Fe and S, across a gossan-type oxidative

weathering front of sulfide-ore derived mine tailings in a semi-arid environment. Tailings
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were collected from a U.S. Environmental Protection Agency (EPA) Superfund site at the

Iron King Mine and Humboldt Smelter Site (IKMHSS). The site was listed with the

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in

2008 due to elevated levels of Pb and As (3.1 and 2.2 g kg−1, respectively in surficial

tailings) and close proximity to residential communities. Geochemical interrogation of the

near surface (top two meters) of the tailings was conducted with the goals of improving our

basic understanding of oxidative sulfide weathering under semi-arid climate, facilitating

assessment of potential health risks associated with such weathering, and providing a basis

for remediation and prevention of off-site dispersion of metal-laden particles (Solis-

Dominguez et al., 2012; Ramirez et al., 2013a; Ramirez et al., 2013b). Samples in this study

were examined through the conjunctive use of wet chemical extractions and synchrotron-

based mineralogical (XRD) and molecular-scale (Fe and S XANES) methods. Elucidation of

dominant redox-active element behavior is key in addressing contaminant metal(loid)

behavior, the subject of a current companion study.

2. SITE DESCRIPTION

Between 1906 and 1915, the IKMHSS (Dewey-Humboldt, Arizona, USA) was subject to

mining of oxide ores of Au, Ag, and Cu (Creasey, 1952). Extraction began again during

World War I to exploit the underlying massive sulfide deposit for base metals including Cu,

Zn, and Pb and smaller amounts of precious metals Au and Ag (Fig. 1). During peak

operation in 1950, daily ore processing was approximately 1,000 metric tons (Creasey,

1952; Myrick, 2001; Rayle et al., 2008). The principal mineral sources for Cu, Zn, and Pb

were chalcopyrite (CuFeS2), sphalerite (ZnS), and galena (PbS). The massive sulfide deposit

was part of a mineral belt in steeply plunging echelon fine-grained veins of sulfides held

together by a gangue of ankerite, quartz, sericite, and residual chlorite in the pre-cambrian

metamorphosed andesitic tuffs that stretch tens of kilometers along the Bradshaw Mountain

range in central AZ (USA; Creasey, 1952). From 1906–1947, Iron King produced 16,800 t

Pb, 52,200 t Zn, 1800 t Cu, 105 t Ag, and 3390 kg Au from ca. 1 million metric tons of ore.

Until mine closure in 1969, wastes were hydraulically sluiced, without compaction, into a

small topographic depression covering approximately 620,000 m2 and piled to maximum of

about 30 m thick, based on historical topographic maps (Fig. 1). It is estimated that four

million cubic meters of tailings remain at the site.

During the half century since tailings deposition, mean annual precipitation and potential

evapotranspiration at the 1400 m elevation IKMHSS site were ca. 370 mm and 1470 mm,

respectively. The IKMHSS tailings contain metal(loid) contaminants (As, Pb, Zn) above

remediation limits and, meanwhile, tailings are subject to wind and water erosion into

adjacent landscape locations, thereby increasing the environmental health risk to

neighboring communities and ecosystems (Csavina et al., 2012; Ramierz et al., 2013a;

Ramierz et al., 2013b).
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3. MATERIALS AND METHODS

3.1 Field sampling, sample preservation, and reference material collection

The IKMHSS tailings weathering profile was collected by excavating a pit to ca. 1 m to

expose the redox boundary between oxic and sulfide-stable tailings. Samples were collected

and composited across the pit faces for discrete depth intervals on the basis of

morphological transitions (color, consistency, Fig 1B). A core extending to 2 m depth was

extracted adjacent to the excavated pit to acquire deeper tailings (Fig. 1C). Samples were

double bagged in sealed low O2 diffusion plastic bags and transported to the laboratory on

dry ice (−78°C). Pit and core samples were sub-sectioned in an anaerobic chamber (Coy,

MI) to obtain three representative splits from each depth increment. Splits were (i) analyzed

for moisture content and particle size; (ii) sieved (<2 mm), lyophilized at −80°C and 130

mbar prior to chemical analysis; or (iii) kept field moist, frozen, and in darkness prior to

sieving and grinding in preparation for XRD and XAS analysis. Petrographic analysis and

X-ray fluorescence maps were performed as described in the Electronic Annex (EA text,

Fig. 1). Isolated grains, termed “as-collected,” were visually distinguished and separated

based on color and texture (Tan, Red, and Blue; Fig. 2).

Selected reference materials (ankerite, chlorite, gypsum, plumbojarosite, pyrite, and

melanterite) were collected from mineral source distributors, whereas others

(schwertmannite, 2-line ferrihydrite) were synthesized in accordance with published

methods (Bigham et al., 1990; Regenspurg and Peiffer, 2005; Schwertmann and Cornell,

2000) (see Table EA-1 for details). All reagents used were ACS grade or better. The

identities of all references were confirmed by XRD.

3.2 Physical Analyses

Wet and dry sediment color was determined using a Munsell soil color chart immediately

after collection and also after preservation by freeze-drying. Particle size distributions for

the < 2 mm size fractions were determined using a laser diffractometer (Beckman Coulter

LS 13 320) in the University of Arizona Center for Environmental Physics and Mineralogy

(Tucson, AZ) and quantified as clay (< 2 μm), silt (2–50 μm) and sand (50–2000 μm).

Gravimetric water content was determined by weighing the tailings before and after drying

at 105°C for > 24 h.

3.3 Chemical Analyses

3.3.1 pH and electrical conductivity—Tailings pH was determined for replicate

standardized slurries following reaction of 5.0 g of field moist tailings with 5.0 mL distilled

deionized (DDI, 18.3 MΩ cm) water at 25°C for 1 h in an end-over-end rotator (McLean,

1982). After centrifugation and removal of supernatant, the pH of the supernatant was

measured using a glass Ag-Ag electrode (Orion, epoxy semi-micro electrode) with two-

point calibration using standard buffer solutions and calibration checks at pH 4, 7 and 10.

3.3.2 Total metals—All tailings were analyzed for total elemental composition by

inductively coupled plasma- optical emission spectroscopy (ICP-OES) and inductively

coupled plasma- mass spectrometry (ICP-MS) following digestion or fusion. Copper, Zn,
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As, and Pb were measured by ICP-OES following total digestion (HF, HNO3, HClO4, HCl),

and all other elements reported by ICP-MS, following fusion with LiBO2 and Li2B4O7

(Activation Labs, Ontario CA). Certified reference materials were digested and analyzed

along with the tailings samples with an acceptance range of ± 10% of the certified value to

verify precision and accuracy in sample preparation and analysis.

3.3.3 Selective Sequential Extraction (SSE)—A composite of the top 25 cm of

tailings (material being used in remedial plant growth trials; Solis-Dominguez et al., 2012),

as well as samples generated from discrete depth increments were subjected to a replicated

six step SSE to quantify extractable solid phases, targeting soluble salts, adsorbed species,

and poorly-crystalline as well as crystalline sulfate and oxide minerals (see Table 1 and

detailed description in EA, modified after Dold (2003b and Neaman et al. (2004)). After

the reaction time, suspensions were centrifuged and decanted and the supernatant was

filtered (0.45 μm nylon membrane filters) and acidified for preservation before analysis by

ICP-MS. Between extraction steps, sediments were washed (washed with DDI water steps

1–4, and with HAc from 5–6), wash solution was analyzed for elemental composition with

ICP-MS, and the concentration added to the relevant step. Averages are reported from

extractions run in triplicate and compared to total concentrations from the ICP-MS/OES

total digestion of a split sample as described above. An additional replicate was sacrificed

and preserved after each step in the SSE for analysis by XRD and XAS.

3.4 Spectroscopic Analyses

3.4.1. X-ray Diffraction—For X-ray diffraction analysis, approximately 0.05 g of ground

and homogenized sediments were packed between two layers of matte finish tape (Scotch

Magic™) to obtain a uniform thin layer sample. XRD data were collected at the Stanford

Synchrotron Radiation Lightsource (SSRL) on beam line 11-3 operating at ~12735 eV (λ =

0.976 Å) in transmission mode with a focused spot size of 150 μm, using a 345 mm radius

Mar detector image plate with a resolution of 100 μm2 pixels, and calibrated to a LaB6

standard. Three scans were collected and summed for each sample. Laue pattern images

were integrated into diffractograms using the Area Diffraction Machine software (Lande et

al., 2007). The summed patterns were corrected for residual quartz saturation, systematic

displacement and converted to conventional Cu Kα wavelength. The background was

manually subtracted and the contributions of amorphous phase(s) to the diffractograms were

not included in the analysis. Quantitative phase analysis was performed using the Rietveld

module included in the X’Pert HighScore Plus software (PANalytical) as described

previously (Perdrial et al., 2011). All structural parameters for reference minerals were

obtained from the American Mineralogist Crystal Structure Database (AMCSD) and the

diffractograms were from the International Centre for Diffraction Data Powder Diffraction

File (ICDD PDF-2) database (Downs and Hall-Wallace, 2003; ICDD, 2005).

3.4.2 X-ray absorption spectroscopy

Sulfur XANES: Sulfur XANES spectra were collected on beam lines 6-2 and 4-3 at the

Stanford Synchrotron Radiation Lightsource (SSRL). All S XANES measurements were

conducted within a helium atmosphere using an electron yield (EY) detector (to assess

potential self-absorption and surface oxidation) or fluorescence detector (better S:N than
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EY), using a passivated implanted planar silicon (PIPS) detector. Energy calibration was

performed between each set of sample scans using the maximum of the first peak of sodium

thiosulfate, assigned to 2472.0 eV. Samples were prepared in a glove box (Coy, 95% N2,

5%H2 gas mix) by applying a thin layer (ca. 5 μm) of sample on sulfur-free Mylar tape with

a thin polypropylene cover to reduce oxidation. Samples were transported to the beam line

under anoxic conditions and placed directly into the He environment at room temperature.

Scans were collected over an energy range of 2445 to 2575 eV.

All scans were processed (dead-time corrected, calibrated, and averaged) using the

SIXPACK software package (Webb, 2005). Data were normalized and fit using linear

combinations of reference minerals collected under similar conditions from 2465 to 2515

eV. The number of reference spectra in the final fits was determined based on PCA analysis

indicating that three components were adequate to reconstruct the dataset (not shown).

Reference spectra for final fits were selected from a library of ca. 30 references (Table

EA-1, Fig. EA-3) on the basis of visual inspection and statistical comparisons of iterative

fitting of different combinations of reference spectra. Plumbojarosite (representing jarosite-

group minerals), gypsum, and pyrite reference spectra consistently yielded the best fit

statistics and their presence in the tailings was confirmed by other methods including XRD

and Fe XANES. Errors are reported as χ2, a statistical indicator of fit goodness calculated

from the sum of squared error divided by the degrees of freedom in the fit.

Iron XANES: Iron K-edge XANES data were collected on SSRL beam lines 11-2 and 4-1

with beam energy of 300 mA, a 30-element Ge array detector on BL 11-2 and a 13-element

Ge array detector on BL 4-1, and a Si (220) phi= 90 double-crystal monochromator with 2

mm vertical beam slits. Energy was calibrated with an Fe metal foil, with the energy of the

inflection of the first-edge assigned to be 7112 eV. To limit beam damage, all data were

recorded at 7–15 K using an Oxford LHe cryostat. Samples were ground and homogenized

in an anaerobic chamber (Coy, MI), mounted field moist in Teflon plates, sealed with

Kapton tape, transferred to the beam line under anoxic conditions, and placed in the cryostat

He atmosphere. XAS data were acquired between 6860 and 7810 eV (k=13.5) using 0.35 eV

energy steps in the XANES region. Reference samples were collected in fluorescence and

transmission mode using the same procedures as for the tailings samples. Data collection

and analysis of Fe reference compounds are described in detail in O’Day et al. (2004).

All scans were energy calibrated, dead time corrected (fluorescence measurements only),

and averaged using the SIXPACK software package (Webb, 2005). Spectra were then

background subtracted and normalized to the edge-step with EXAFSPAK software package

(George and Pickering, 2000). The first derivative of normalized Fe XANES spectra were fit

using linear combinations in the DATIT module of EXAFSPAK, (fit range 7105–7150 eV).

Spectra were iteratively fit by trial-and-error with 1 to 4 components from a reference

library of ~30 spectra (model spectra in Fig. EA-4, Table EA-1). Fits were optimized by

allowing small energy shifts (<1.0 eV) while fitting the component describing most of the

spectral features and minimizing energy shifts in subsequent fit component parameters.

Goodness-of-fit is reported as a 99% confidence limit (three times the estimated standard

deviation) derived from the variance-covariance matrix in the DATFIT software (Pickering,

2001). The confidence limit is a measure of the precision of a varied parameter but not
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necessarily the accuracy of the fit, in that it does not account for appropriateness of

reference spectra, data quality, or differences in data collection (Pickering, 2001). Accuracy

of linear combination analysis was previously investigated by O’Day et al. (2004), where it

was shown that fits were within ±5% of the actual mole percentages using the edge region

7100 – 7150 eV; with a detection limit for minor constituents of ca. 5%. Additional Fe-

XANES analysis of SSE residuals is described in Electronic Annex (EA text and Fig. EA-5).

4. RESULTS

4.1 Physical and chemical characteristics

The deepest tailings sample collected (sample G, 180 cm) was apparently similar to the

material initially deposited at the site; it did not exhibit visual evidence of oxidative

transformation (Table 2, Fig. EA-1) and is characterized by a dark gray color and circum-

neutral pH (pH=7.3). All other tailings exhibit visual evidence of progressive oxidative

weathering, including lower pH (6.3 to 2.3) (Table 2). The most notable indicator of

changing redox conditions is the dramatic color change from dark yellowish brown to

greenish gray between samples D and E. The oxidized surface of the tailings profile (top ca.

25 cm), i.e., the gossan zone, had an orange color, acidic pH (pH=2.3), and higher clay

content relative the lower portion (> ca. 25 cm) of the profile (Table 2).

The mass concentrations of major elements Fe and S exhibit small variation with depth

(Table 2), suggesting that mineralogical changes may occur locally in the profile with little

translocation of Fe or S to depth or off site. However, to better constrain chemical depletion

or enrichment profiles for Fe and S across the reaction front, elemental analyses were

normalized to Ti, which was expected to be relatively immobile in the redox transition zone.

Enrichment (+τ) or depletion (−τ) of S and Fe are plotted as a function of depth relative to

the “parent material” (represented here by the 180 cm sample) through the reaction front

(top 60 cm) of the tailings profile using Eq. 1 (Brimhall and Dietrich, 1987):

[Eq. 1]

where τTi,j represents the chemical depletion (if negative) or enrichment (if positive) of

element j (Fe or S) with respect to Ti in the weathering zone (w) as measured relative to

parent material (p), and C represents solid phase mass concentration. The τTι values for S

and Fe show similar trends with moderate depletion in the oxic gossan zone, −0.35 for S and

−0.31 for Fe, and slight enrichment below the redox boundary (Fig. 2a).

4.2 Sequential selective extractions (SSE)

The results of the SSE from the top 25 cm composite sample (Table 3) reveal that water-

soluble (including efflorescent) salts released during the initial step represented a significant

mass fraction of Ca (35%) and a smaller proportion of total Mg (8%). A comparable mass

fraction of water soluble Mn (13%) indicates that a portion of the total Mn may be

precipitated as Mn(II) salts. The second step (NH4NO3), targeting exchangeable ions,

liberated most of the total Na (72%) and the second largest pool of Ca (30%). Elemental

mass fractions were low overall during the third (AAc) step (which should include any
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residual carbonates), the highest being for Fe (7%). Large pools of Fe (24%) were

solubilized during oxalate-promoted dissolution targeting poorly-crystalline Fe(III) and

Al(III) bearing solids (step 5). Most of the remaining Fe (41%) was removed during

dissolution targeting Fe(III) oxides/sulfates by citrate bicarbonate dithionite (CBD). This

reductive dissolution of more crystalline secondary Fe(III) [and Mn(IV)] solids released the

largest extractable fraction of K (17%, presumably from jarosite), and the second largest

fraction of Mn (10%). The AAO and CBD steps are both known to dissolve jarosite-group

minerals (Dold, 2003a). Overall, these results indicate the presence of a large mass fraction

of secondary Fe-bearing phases, as well as of soluble salts, in the top of portion of the

profile. Since none of the SSE steps target silicate or sulfide minerals, the large pool of

“residual” Fe (31%) was attributed dominantly to silicates and sulfides. Results of

synchrotron analyses on selected solid phase residual samples are discussed below.

An identical SSE was conducted on the full set of depth-resolved samples to assess trends in

iron fractionation and lability through the redox boundary (Fig. 2b). In the near surface 0–5

cm (sample A), the largest fraction of Fe (64%) is extracted in the CBD step, targeting

crystalline pedogenic ferric oxides/sulfoxides, e.g. jarosites. The second largest pool of Fe

(20%) was solubilized in the AAO step targeting poorly crystalline ferric (hydr)oxides, e.g

ferrihydrite. At 5–15 cm (sample B) the CBD-extractable fraction decreased to 38% and the

AAO-extractable fraction increased to 26%, and there was also a significant water

extractable fraction (5.3%). At 15–25 cm (sample C) the CBD extractable Fe was decreased

further (7.4%), while 25% of the total Fe was extractable in AAO. From 25 cm to the

deepest samples (180 cm) there was a small pool of AAc extractable Fe, targeting

carbonates (e.g. ankerite). Hence, there is a general increase in the ratio of CBD to AAO

extractable Fe moving up from the redox boundary to the surface that follows the trend of

decreasing pH. Small but significant mass fractions of AAO-extractable Fe persist below the

visually apparent (from color) redox boundary. On the basis of spectroscopic and diffraction

data presented below, we attribute this to dissolution of pyritic fine particulates and/or post-

sampling oxidation of pyrite and precipitation of AAO extractable ferric (oxyhydr)oxide

phases either during the SSE or during sample storage. Samples were kept frozen, isolated

from oxygen, and analyzed as soon as possible by X-ray techniques, and while all

spectroscopic techniques were carried out with great care to minimize post sampling

oxidation, the SSE scheme was conducted in the open laboratory and was not isolated from

molecular oxygen during the procedures.

Extractable S was released principally by the de-ionized water step, targeting soluble salts

e.g. efflorescent salts and gypsum (10–27% through the sample depths, not shown). A

smaller pool extracted by NH4NO3, targeting exchangeable ions, decreased with depth.

Little S was solubilized with the AAO extraction step, indicating that S was not occluded

into ferric (oxyhydr)oxides. Sulfur was not quantified in the CBD step due to high

background S from dithionite, but based on the Fe SSE the remaining S is attributable to

jarosite in the near surface and increasingly to pyrite with depth.
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4.3 Bulk mineralogy

Bragg reflections from XRD were refined to quantify several phases present in the tailings

(Fig. 3, Table 4), including quartz, feldspars, clays, sulfides, sulfates, and carbonates. In

respect to Fe and S weathering, pyrite, present in all samples, shows increasing depletion

toward the surface, where jarosite-group minerals (e.g., plumbojarosite, hydronium jarosite,

jarosite, and natrojarosite) and gypsum were found to accumulate (Fig. 3, Table 4).

Carbonate phases, identified only at > 25 cm depth, where pH > 6 (samples D–G), were

predominantly in the form of ankerite, with smaller quantities of siderite, whereas calcite

was detected only in the deepest sample G.

4.4 X-ray absorption spectroscopy

Despite relatively constant total mass concentrations of Fe and S with depth (Table 2), sulfur

XANES reveals a systematic depth-dependency in S-containing minerals that can be

quantified using linear combination fits to pyrite, gypsum, and jarosite-group (modeled

using plumbojarosite) references (Fig. 4, Table 5). Pyrite, present in all samples, increases in

mass fraction with depth (from 11 to 95% of the total S). Gypsum, while present in all

samples, has its maximum contribution to total S mass at intermediate depth (sample D) and

it decreases in prevalence both with increasing depth and toward the surface. The prevalence

of jarosites decreases with increasing depth from 68% of total S in sample A (0–5 cm) to

undetectable in sample D (25–35 cm) and below.

Iron XANES data likewise indicate coherent depth-dependent trends in iron sulfide,

carbonate, (oxyhydr)oxide, and (hydroxy)sulfate in the top meter of IKMHSS tailings (Fig.

5, Table 6). Consistent with the S XANES and XRD, the prevalence of pyrite decreased

from 71% at 180–183 cm to 2% at 0–5 cm. Ankerite was only detected in samples with pH

≥ 5.5 (sample D), with maximum relative abundance of 22% in sample F. The relative

abundance of ankerite is 12% in the deepest sample, consistent with its presence as a

secondary phase precipitating during initial post-depositional pyrite oxidation. Ferrihydrite

was detected in all surficial samples (samples A–E) with a maximum abundance in sample

B. Schwertmannite is detected only in sample C where the bulk pH is intermediate (pH =

3.7). Jarosite-group minerals are present in the surficial samples A and B with abundance

increasing toward the ground surface along with decreasing pH.

Detrital iron-bearing silicates, represented in the reference set by ripidolite (CCa-2), an Fe

rich chlorite-group, 2:1 layer-type clay, with Fe (FeIII/FeII = 1.15; O’Day et al., 2004) in

octahedral coordination, was present in all samples, with a relative abundance that generally

increased with depth. The chlorite spectrum obtained from CCa-2 contains several distinct

features that are unique among the reference minerals and was essential to obtaining good

reconstructions of sample spectra, as-collected grains, and SSE solid phase residual

materials.

Analysis of the XANES spectra of SSE solid residuals from the surface composite sample

(0–25 cm) revealed little change in the Fe mineralogy through the NaH2PO4 extraction

(steps 1–3) (Table 6). However, the AAO step effectively removed ferrihydrite and possibly

some poorly-crystalline jarosite, whereas the CBD extraction removed the crystalline iron
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(hydroxy)sulfates. After the CBD step, the Fe spectrum was fit very well to 63% pyrite and

36% chlorite, the latter being difficult to recognize without Fe XANES analysis of the SSE

residuals (EA text and Fig. EA-5). The Fe XANES of as-collected grains isolated by color

revealed discrete Fe phases and assemblages that were used to improve the XANES fits of

the pit samples. The Fe XANES of the as-collected grains showed jarosite-group minerals

and ferrihydrite dominated the signal for the “Tan” sample, schwertmannite and ferrihydrite

dominated the “Red” sample, and ankerite, pyrite, and chlorite dominated the “Blue” sample

(Table 6, Fig. EA-2).

5. DISCUSSION

The results of this study indicate that when subjected to the low water through-flux

associated with semi-arid climatic forcing, weathering of sulfidic mine tailings can result in

a steep reaction front in close (< 2 m) proximity to the ground surface. According to mass

concentration and mass balance considerations (Table 2, Fig. 2a), most of the original Fe

and S deposited as pyritic tailings remains in place across the gossan oxidation front.

However, element fractionation patterns (e.g., Fig. 2a–b, Table 3), mineralogical results

(Fig. 3, Table 4) and XANES data (Fig. 4–5) indicate near complete species transformations

within the top half meter after 50 years of incongruent dissolution in situ. The shallowness

of the reaction front is reflected in a return to ‘parent’ composition within 2 meters of depth.

5.1 Mineral weathering trajectory

At near 2 m depth, the mineral assemblage containing sulfide, carbonate, and phyllosilicate

(sample G) is likely the same as that initially deposited, as there is little evidence of post-

depositional oxidation. In this shallow weathering profile, pyrite, the dominant sulfide

mineral, was detected in all samples but became significantly depleted in surficial layers

(Fig. 3, Table 4). Agreement between Fe and S XANES fit results for pyrite quantification

using these two methods is demonstrated in Figure 6 by close agreement of the data (solid

line, r2= 0.944) with the stoichiometric ratio Fe:2S expected for pyrite (dashed line). Slight

overestimation by S XANES is consistent with the presence of smaller quantities of

nonpyrite sulfide minerals in the tailings, particularly ZnS and PbS, which were not included

in the linear combination fits, and hence are not differentiated from the “pyrite” fraction

assigned by S XANES.

Carbonate minerals, ankerite and siderite, were detected in small quantities at depth

(samples D–G) by Q-XRD, Fe XANES and FT-IR (not shown). The assertion that the

buffering capacity of these carbonate mineral fractions is consumed early in oxidative

tailings diagenesis (Jambor et al., 2000) is supported in our data sets by (i) the sharply

decreasing pH values (to below < 4) with distance from the redox boundary, (ii) progressive

depletion of total carbonates detected in samples G to D, and (iii) the apparent dissolution

below detection of carbonates in tailings collected from shallow depths (< 25 cm).

Important solid-phase products of sulfide weathering under semi-arid climatic forcing

include gypsum that was observed at all depths using S XANES (5–60%, with a maximum

in sample D; Fig. 4, Table 5). The presence of gypsum in the deeper sulfide zone is likely

due to lime-induced sulfide weathering during the initial milling process (Fig. 4, Table 5).
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The increase in its prevalence in the oxidized portion of the reaction front reflects not only

greater degree of sulfur oxidation, but also insufficient water through-flux to remove from

the profile soluble products of gypsum dissolution.

The diffuse redox boundary between sulfidic and oxidic tailings represents the penetration

depth of reactive O2 diffusion and/or advection (via wetting front propagation) into the

tailings. Prior studies demonstrate the rate of oxidation of sulfide-rich mine waste depends

on the availability of H2O, temperature, Eh, O2, Fe3+
(aq), and particle size (e.g. Jambor et

al., 2000; Blowes et al., 2003; Cai et al., 2009; Abrahams, 2012). The most obvious

indication of the redox boundary in the IKMHSS tailings is the color change and the deepest

occurrence of secondary Fe (hydr)oxides (sample E). The appearance of ferrihydrite at 38

cm depth (sample E; Fig. 5, Table 6), with a notable absence of jarosites and

schwertmannite until 25 cm depth (sample C; Fig. 5, Table 6), suggests that ferrihydrite is

the first metastable iron solid phase to form upon pyrite oxidation. Previous studies have

reported the ubiquitous presence of ferrihydrite particularly in Fe- and S-rich mine-wastes at

pH > 5.5–5.8 (Bigham et al., 1996; Williams et al., 2002). In an Eh-pH model of the

IKMHSS tailings (Figure 7), we plot a range of log Ksp values for ferrihydrite (e.g. log Ksp

= 3.0 to 5.66; Delany and Lundeen, 1990; Majzlan et al., 2004), and suppress

thermodynamically-stable hematite, goethite, and magnetite to highlight the metastable iron

phases observed. Evidently, the observation of ferrihydrite in samples E-A demonstrates its

persistence far outside of its predicted stability field, down to pH= 2.6.

When water activity is assumed to equal one, iron (oxyhydr)oxide and (hydroxy)sulfate

minerals are predicted to transform to goethite, a transformation generally thought to take

months to years (Bigham et al., 1990; Murad and Rojik, 2005). Bigham (1996) reported the

complete transformation of synthetic schwertmannite to goethite in 543 days. Interestingly,

we see no evidence of such transformations in the IKMHSS tailings. The absence of XRD

detectable crystalline goethite or hematite indicates that the transformation kinetics of

ferrihydrite are retarded in this sulfate-rich, semi-arid environment. It is noteworthy,

therefore, that no goethite or hematite has been detected at this site and metastable minerals

appear to have persisted through ca. 50 years of weathering. Indeed, ferrihydrite persists at

this site under much lower pH conditions than has previously been reported (e.g., pH=4.5–5;

Murad and Rojik, 2005).

Melanterite and schwertmannite were observed to occur exclusively in sample C (pH 3.7),

signaling a metastable transition in the reaction front between ferrihydrite and jarosite.

Melanterite was detected by XRD but not Fe XANES, likely because of the heterogeneity of

the natural samples. Schwertmannite is metastable at lower pH conditions than ferrihydrite

(Fig. 7), and is most stable at pH 3–4 (Bigham et al., 1996). However, prior studies have

reported the presence of schwertmannite in systems with pH 2.5 to 6.5 (Winland et al., 1991;

Bigham et al., 1996; Murad and Rojik, 2005).

Jarosite-group minerals, along with ferrihydrite, were detected in samples A–B by XRD and

XANES (both Fe and S) and account for the principle secondary iron phases present at the

tailings surface. Jarosites are most stable at low pH (< 2.8) conditions (Bigham et al., 1990;
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Bigham and Nordstrom, 2000; Murad and Rojik, 2005) and can contain a variety of cations,

including protons, H3O+, Na+, NH4
+, and Pb2+ (Jambor et al., 2000).

Low water through-flux in (semi-)arid environments are expected to influence the rate and

trajectory of mineral transformations and the formation and persistence of secondary phases

(Jambor et al., 2000; Dill et al., 2002; Dill et al., 2012). Previous studies have reported the

transformation of primary silicates, carbonates, and sulfides to secondary (oxyhydr)oxides

and sulfate minerals under a range of climatic forcings (e.g., Hudson-Edwards et al., 1996;

Murad and Rojik, 2005). Our results are generally consistent with previously reported

results; we observe in the near-surface of the tailings profile (at the sub-meter scale) the

incongruent weathering trajectory: pyrite, silicate minerals, and carbonates→ ferrihydrite

and gypsum → schwertmannite → jarosite-group minerals.

However, the mineralogical sequence observed at this site emphasizes the apparent

persistence of metastable minerals, such as ferrihydrite and schwertmannite, at times under

conditions far from their predicted equilibrium stability. The apparent persistence of these

metastable phases may be largely due to (i) the retention against downward leaching of

sulfate in tailings pore waters, since this inhibits the transformation of ferrihydrite to more

crystalline phases (Majzlan and Myneni, 2005) and (ii) low relative humidity in semi-arid

tailings (Majzlan, 2010). Hence, unlike mine tailings weathering processes in more humid

environments, tailings diagenesis at IKHMSS is strongly controlled by low water activity

and the fact that sulfate is not translocated to depth and out of the oxidative reaction front, a

direct result of a semi-arid climate that imposes low pore volume through-flux.

5.2 Depth of reaction front

Clearest indication of the redox boundary in the IKMHSS tailings is the deepest occurrence

of secondary Fe (hydr)oxides (35–38 cm) since this presents a distinctly orange color and

dramatic change in mineralogy. However, evidence of oxidation in deeper samples is

reflected in a decrease in pH and smaller percentage of calcite in sample F relative to sample

G, suggesting that penetration of oxygen to a depth of at least 55 cm may have resulted in

the dissolution of calcite and the precipitation of small amounts of secondary carbonates,

ankerite and siderite, not found in the materials upon deposition (sample G).

Although there are few prior studies that report depth of reaction front and oxidation in mine

tailings, the IKMHSS tailings present a depth that is among the shallowest, particularly

given the relatively long duration (> 50 years) of weathering. The best comparisons are

perhaps porphyry Cu tailings piles in Chile (although those tailings had lower total sulfide

content at 1–6%) where oxidation was observed to a depth of 1.1 to 5 m depending on

weathering time (20–40 years) and climate (alpine to hyper-arid; Dold and Fontboté, 2001).

Reports from more temperate climates indicate a shallower penetration of O2 to a depth of

0.7 m in sulfide-rich tailings in Rhineland-Palatinate, Germany (Schuwirth et al., 2007) and

0.2–1.2 m in sub-humid Taxco tailings, located in south-central Mexico (Romero et al.,

2007). Shallower reaction front depths in some more humid climates have been related to

higher moisture content and sustained groundwater tables more proximal to the surface in

moist climates, since slower diffusion of O2 occurs in water relative to air (Morth and

Smith, 1996). Conversely, the shallow gossan front observed in the present study can be

Hayes et al. Page 13



attributed to low water leaching that confines the weathering zone to the near surface, where

it is potentially susceptible to erosive removal during extreme climatic events.

6. CONCLUSIONS

Whereas the production of acid mine drainage during water-tailings interaction is well

documented, the mineralogical and geochemical trends recorded in the residual solid-phase

weathering profile is less well known, particularly for arid systems. In this work, sulfide-ore

derived tailings were collected across a weathering profile 50 years following deposition to

assess how mineral transformation is coupled to major element (iron and sulfur) speciation

change during oxidative weathering under semi-arid climate. Sharp gradients in mineral

assemblage, iron and sulfur speciation, and element lability/fractionation were observed to

occur at shallow depths (< 1 m). Despite retention of both Fe and S in a system where

potential evapotranspiration significantly exceeds precipitation on an annual basis, five

decades of exposure to surficial conditions (O2 and H2O) has resulted in extensive mineral

weathering in the top 0.5 m, including the near complete depletion of sulfides in surficial

layers and the formation of a coherent trend in complex secondary mineral assemblage and

pH as a function of depth. Spatially-resolved sampling and analysis within the surface two

meters indicates the reaction trajectory pyrite, silicate minerals and carbonates→ ferrihydrite

and gypsum → schwertmannite → jarosite-group minerals. Low water through-flux limits

translocation of sulfate through the tailings profile and contributes to the persistence of

metastable ferrihydrite and schwertmannite. The resulting shallow reaction front creates a

gossan zone in the top 30 cm that is subject to potential off-site transport by wind and water

erosion, which has important implications for contaminant dispersion, the subject of a

companion study.
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Figure 1.
Map and cross-section of Iron King Superfund site (Dewy-Humbolt, AZ). A) Aerial view of

tailings pile (from Google Earth™), B) pit to 55 cm, C) cores to 185 cm, D) site map and E)

cross section of waste pile containing ca. 3.9 Mm3 of tailings.
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Figure 2.
(a) Chemical depletion/enrichment plot showing Ti normalized S (open) and Fe (closed)

mass concentrations in the weathering profile relative to parent material taken as 180 cm

sample (see Eq. 1), the dashed line and shaded regions represent the redox boundary. (b)

Sequential extraction results for iron as a function of depth with error bars representing

standard deviation of triplicate measurements (see online version for color coding).
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Figure 3.
X-ray diffraction data and fits. Synchrotron transmission XRD patterns (black lines)

converted to Cu Kα scale of IKMHSS pit samples at depths A–G and SSE samples, with

corresponding Rietveld models (gray lines). Lower diffractograms represent the simulated

patterns of selected phases used in the Rietveld models. Data are normalized to quartz. All

jarosite group minerals (e.g., plumbojarosite, hydronium jarosite, jarosite) are modeled here

using jarosite. Quantitative results are displayed in Table 4.
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Figure 4.
Sulfur XANES. The S oxidation state was directly probed with S K-edge XANES (fits

shown as dashed lines). Fits (range 2465–2515 eV) are tabulated in Table 5. Arrows indicate

subtle sulfate features that differentiate gypsum and (Pb)jarosite.
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Figure 5.
Iron XANES. A) IKMHSS normalized XANES from the shallow pit (0–55 cm) and deeper

core (to 180cm) from mine tailings (fits calculated from first-derivative fits shown in dashed

lines), B) IKMHSS first derivative sample spectra (fits shown in dashed lines), and C) Fe

first-derivative XANES of reference minerals used in XANES linear combination fits. The

Fe XANES show a gradual transition from ferric oxide to ferrous sulfide phases from the

surface to deep tailings.
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Figure 6.
Comparison of apparent pyrite concentration from linear combination fits to S XANES and

Fe XANES. Moles of pyrite per kg of tailings were calculated from the pyrite fractional fit

from Fe and S XANES spectra and the moles of Fe and S in the tailings respectively. The

solid line is the linear correlation (r2= 0.944), the dashed line is the Fe:2S line, accounting

for stoichiometry of FeS2. Error bars are from the calculated error estimates from the S and

Fe fits and not from replicate spectra. The pH is shown in circles for each associated sample.
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Figure 7.
Activity-activity diagrams, shown with the energetically favorable hematite and goethite

suppressed to illustrate the metastable Fe and S phases. The Eh-pH diagram shows Pb-

jarosite, schwertmannite and ferrihydrite as the meta-stable iron phases in oxic-

environments. The model was constrained by XANES and XRD, and elemental activities

are given in inset.
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Table 7

Identification of mineral and amorphous phases in the Iron King mine tailings.

Minerala Formulae Detectionb

quartz SiO2 XRD

plagioclase (Ca,Na)(Al,Si)4O8 XRD

illite K(Al,Mg,Fe)2(Si,Al)4O10[(OH)2(H2O)] XRD

chlorite (Mg,Al,Fe)6(Si,Al,Fe)4O10(OH)8 XRD, Fe XANES

kaolinite Al2Si2O5 (OH)4 XRD

pyrite FeS2 XRD, Fe XANES, S XANES

ankerite Ca(Fe,Mg,Mn)CO3 XRD, Fe XANES, FT-IRc

calcite CaCO3 XRD

gypsum CaSO4·2H2O XRD, S XANES

jarosite (K,H3O)Fe3(SO4)2(OH)6 XRD, Fe XANES, S XANES

melanterite FeSO4·7H2O XRD

siderite FeCO3 XRD

schwertmannite Fe8O8(OH)6(SO4) Fe XANES

ferrihydrite (Fe2O3*nH2O) Fe XANES

plumbo-jarosited (Pb)Fe6(SO4)4(OH)12 Fe XANES, XRD

a
initial gangue minerals and secondary phases (in italics);

b
positive identification by any method was sufficient evidence for the presence of the phase, acknowledging the error in each technique;

c
the carbonate phase was identified with FT-IR and with further investigation of Fe XANES and Q-XRD was confirmed to be ankerite.

d
Plumbo-jarosite was not differentiated from other jarosites.




