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Abstract

The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water 

interface was investigated over a wide pH range using batch sorption experiments, attenuated total 

reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine 

structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption 

results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits 

a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and 

arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite 

adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption 

decreases with further increases in pH. Results indicate that competitive adsorption between silicic 

acid and arsenate is negligible under the experimental conditions; whereas strong competitive 

adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, 

flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-

sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. 

Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH 

range probed by this study (pH 2.8 – 9.0). The ATR-FTIR data also reveal that silicic acid 

undergoes polymerization at the ferrihydrite surface under the environmentally-relevant 

concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode 

was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed 

that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with 

average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both 

mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by 

two As(III)-Fe bond distances of ~2.92–2.94 and 3.41–3.44 Å, respectively. The As-Fe bond 

distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, 

suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect 

on As-Fe bonding mechanisms.
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1. Introduction

Arsenic derived from natural or anthropogenic sources occurs widely in groundwater and 

surface water in many countries, posing a severe health threat to millions of people 

worldwide. It is a redox active element that occurs in the environment primarily in inorganic 

form and in one of two oxidation states - As(V) and As(III) - which together likely represent 

> 99% of total arsenic in soils, sediments and waters (Ryu et al., 2002). Arsenate generally

predominates in oxygenated waters, whereas arsenite can be prevalent in suboxic

groundwater. The latter is considered more mobile and more toxic in natural environments.

The aqueous environmental concentration of arsenic is governed largely by mineral-surface

interactions. Adsorption or coprecipitation with metal oxides, particularly Fe

(oxyhydr)oxides, is an important process controlling the fate and transport of arsenic in

natural aquatic systems due to their abundance in the environment and high affinity for

arsenic species. For this reason, hydrous ferric oxides, such as ferrihydrite, are routinely

used as adsorbents to remove arsenic from the aqueous phase during engineered water and

wastewater treatment (Mohan and Pittman, 2007).

The molecular-scale adsorption mechanisms of arsenate and arsenite on a range of natural 

and synthetic minerals (e.g., metal oxides, silicates) have been extensively investigated 

using macroscopic and spectroscopic techniques including synchrotron X-ray absorption and 

FTIR spectroscopies (Sun and Doner, 1996; Fendorf, et al., 1997; Raven et al., 1998; 

Goldberg and Johnston, 2001; Farquhar et al., 2002; Dixit and Hering, 2003). According to 

these studies, both arsenate and arsenite are strongly adsorbed on polyvalent metal 

(oxyhydr)oxide surfaces, forming predominantly inner-sphere surface complexes by ligand 

exchange reactions resulting in either monodentate or binuclear bidentate complexes 

depending on surface loading and solution chemistry. Only a few prior studies reported that 

arsenite forms both inner-sphere and outer-sphere surface complexes on ferric 

(oxyhydr)oxide surfaces (Goldberg and Johnston, 2001; Catalano et al., 2008).

It is well known that the presence of other naturally occurring anions in solution may 

compete for sorption sites on mineral surfaces and thereby affect the stability and mobility 

of adsorbed arsenic species. Previous research has indicated that individual anion species 

exhibit widely different affinities for mineral surface sites. For example, Goh and Lim 

(2005) reported that the capabilities of common anions to increase arsenic mobility in 

subsurface environments follow the order: phosphate > carbonate > sulfate ≈ chloride. 

Among these anions, phosphate is particularly effective at competing with arsenate for 

sorption sites due to their similarities in coordination geometry and geochemical behavior 

(Liu et al., 2001; Roberts et al., 2004; Goh and Lim, 2005; Impellitteri, 2005; Frau et al., 

2008).

Silicic acid, present dominantly as the neutral Si(OH)4
0
(aq) species at pH < 9, is one of the

principal inorganic ligands in soil and water systems, and it occurs at concentrations ranging 

from 5 – 35 mg L−1 (0.17 – 1.24 mM) in natural soils and surface waters (Iller, 1979). 

Adsorption of silicic acid on Fe (oxyhydr)oxides has been studied previously (Waltham and 

Eick, 2002; Doelsch et al., 2003; Luxton et al., 2006; Swedlund et al., 2009, 2010). Similar 

to other naturally occurring ligands such as phosphate and sulfate, silicic acid can adsorb 
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strongly onto Fe oxyhydroxide surfaces via bidentate, inner-sphere surface complexes 

(Swedlund et al., 2009, 2010), suggesting that silicic acid might have a significant role in 

arsenic mobilization in both natural and engineered environments via competitive sorption 

for mineral surface sites. In addition, silicic acid can undergo surface-induced 

polymerization at or below environmentally-relevant concentrations (i.e., < 1.0 mM) 

(Swedlund et al., 2009; 2010), thereby altering the surface properties of the underlying 

substrate (e.g., metal oxides). As a result, adsorption mechanisms of silicic acid on metal 

oxides and their effects on arsenic adsorption are likely to vary significantly across 

environmentally-relevant Si concentration ranges. Despite the fact that silicic acid is one of 

the major ligands in natural waters and is often present at concentrations >10 times higher 

than phosphate, silicic acid has been less studied than other common ligands for its effects 

on arsenic adsorption in natural systems. A few macroscopic studies suggested that silica 

significantly diminished the adsorption of arsenite to Fe oxyhydroxides, whereas it has a 

negligible effect on arsenate adsorption (Waltham and Eick, 2002; Luxton et al., 2006). 

However, several other studies have reported that both arsenate and arsenite removal by 

ferric hydroxides was substantially decreased by the presence of silica (Meng et al., 2000; 

Davis et al., 2001). We hypothesized that elucidation of molecular-scale competitive 

adsorption mechanisms would help to resolve the discrepancy in the literature and to 

accurately predict the effect of silica on the stability and mobility of arsenic in engineered 

water treatment systems using hydrous ferric oxide as an adsorbent, as well as in 

groundwater and vadose zone solutions.

Therefore, the main objective of this study was to examine the effect of silicic acid on the 

extent and molecular mechanisms of both arsenate and arsenite adsorption to a model Fe(III) 

oxyhydroxide (ferrihydrite, Fe5HO8•4H2O). Ferrihydrite was chosen because it is 

commonly employed as an adsorbent for arsenic removal during drinking water treatment 

(Mohan and Pittman, 2007) and it is also one of the most common naturally occurring Fe 

oxyhydroxides that can precipitate from many types of ferriferous solutions at the Earth’s 

surface (Yu et al., 1999). This poorly crystalline mineral phase often has high specific 

surface area and reactive hydroxyl group site density, both of which make it a high affinity 

adsorbent for trace metal(loid) contaminants (Raven et al., 1998; Dixit and Hering, 2003). 

The in-situ molecular spectroscopic techniques of attenuated reflectance-Fourier transform 

infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) were 

combined with batch adsorption methods to elucidate the effect of silicic acid on arsenic 

adsorption mechanisms at ferrihydrite surfaces across a gradient in pH that is representative 

of natural waters. The results of the batch experiments and spectroscopic analyses were 

further analyzed using density functional theory (DFT) modeling to quantify the bond 

energies associated with the spectroscopic indications of surface speciation of As(III), As(V) 

and Si(OH)4 and their complexation modes at ferrihydrite surfaces.

2. Material and method

2.1 Materials

2.1.1 Arsenate and arsenite salts—Na2HAsO4•7H2O (≥ 98%) and NaAsO3 (≥ 99%), 

were purchased from Sigma-Aldrich Co. (St. Louis, MO) and used as received. Silicic acid 
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(Si(OH)4) solution was prepared following the methods of Iler (1979) by mixing 1 g silica 

(SiO2, 99.8%, Sigma-Aldrich) with 8.0 g of 50:50 (w/w) NaOH:H2O and 30 g of H2O on an 

end-over-end shaker (7 rpm) for 24 h. The solution was then diluted to 1 L with Barnstead 

Nanopure (NP) H2O (18.2 MΩ) to obtain 16.6 mM Si(OH)4 solution, which was further 

diluted to ~1.66 mM, with pH adjusted from ~11.5 to 8.0 by dropwise addition of 0.1 M HCl 

to depolymerize silica. Desired concentration of arsenate or arsenite solutions (i.e., 0.1 and 

1.0 mM) were freshly prepared before each experiment using NP water either in the absence 

or the presence of 1.0 mM Si(OH)4(aq).

2.1.2 Six-line ferrihydrite synthesis and characterization—Six-line ferrihydrite 

was synthesized using the method of Burleson and Penn (2006). Briefly, 250 mL of 0.48 M 

NaHCO3 (99.9%, Mallinckrodt) was added to an equal volume of 0.4 M Fe(NO3)3•9H2O 

(JB Baker, 98.8%) using a peristaltic pump during vigorous stirring over 120 min. Once the 

addition of NaHCO3 solution was complete, the suspension was microwave-annealed at 40 s 

intervals until it boiled to improve homogeneity of the nanoparticulate suspension. 

Immediately after heating, the suspension was plunged into an ice bath, brought to room 

temperature, and then transferred into dialysis tubing (Spectra/Por 7, 1000 MWCO) and 

dialyzed against NP water at 4 °C for 3 d, with dialysis water changed three times per day. A 

portion of the ferrihydrite colloidal suspension was freeze-dried and gently ground using an 

agate mortar and pestle for characterization, analysis and batch adsorption experiments. The 

remainder of the suspension was transferred to a polyethylene bottle and stored at 4 °C for 

spectroscopic studies. The ferrihydrite suspension was used within 3 weeks from synthesis 

in the experiments.

The X-ray diffraction (XRD) pattern of the synthetic material collected at Stanford 

Synchrotron Radiation Lightsource (SSRL) on beamline 11-3 shows 6 broad peaks, 

indicating its poor crystallinity (see Figure S1). Peak positions and intensities are in good 

agreement with the XRD pattern for 6-line ferrihydrite (Schwertmann and Cornell, 1991). 

Specific surface area was calculated in accordance with BET theory using N2 adsorption 

data obtained at 77 K on a Beckman Coulter SA 3100 Gas Adsorption Surface Area 

Analyzer (Beckman Coulter Inc., Fullerton, CA). The result indicated that the synthetic 6-L 

ferrihydrite had a specific surface area of 311 ± 1.2 m2 g−1.

2.2 Batch adsorption experiments

Batch As(V) adsorption envelopes were collected as a function of pH (3.0–10.0) in duplicate 

at 25 ºC with initial As concentrations of 0.1 and 1.0 mM with or without 1.0 mM 

Si(OH)4(aq). Solutions of 100 mM HCl or NaOH were used to adjust the suspension pH to 

achieve a final pH range of 3.0 – 10.0. For each replicate in the sorption experiment, 75 mg 

freeze-dried ferrihydrite were added to a 35 mL polyethylene centrifuge tube before 15 mL 

of arsenate (with or without Si(OH)4) solution were introduced. A separate set of 

experiments were conducted with Si alone (no As) for direct comparison. The final solid 

concentration of ferrihydrite in the reaction suspension was 5.0 g L−1. Suspensions were 

equilibrated on an end-over-end shaker (7 rpm) for 24 h. This period of time was sufficient 

to reach sorption equilibrium (no further uptake) based on preliminary experiments. The pH 

of each suspension was checked and adjusted every 1 h until it stabilized at target values 
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during the reaction. Adsorbent-free controls (no ferrihydrite) were reacted concurrently to 

monitor for unintended compound loss to vessel surfaces. At the end of batch sorption 

experiments, the equilibrium suspensions were centrifuged at 12,812 g and 25 °C for 30 

min. The supernatant was aspirated and filtered through a 0.2 μm nominal pore size syringe 

filter. An aliquot of the filtrate was acidified to pH < 2.0 with 1% trace metal grade HNO3 

and analyzed for total As, Si and Fe concentrations using a Perkin-Elmer Elan DRC II 

inductively coupled plasma-mass spectrometer (ICP-MS). The amount of adsorbed As(V) 

was calculated on the basis of loss from solution corrected for adsorbent free blank losses 

(undetectable). The wet pastes from centrifugation were immediately frozen prior to As 

speciation analysis using arsenic-XANES and EXAFS spectroscopy at Stanford Synchrotron 

Radiation Lightsource (SSRL).

Batch adsorption for As(III) on 6-L ferrihydrite were performed as described above for 

As(V) but with the following modifications. Since previous studies reported that arsenite 

associated with Fe and Mn oxyhydroxides in aqueous systems can be oxidized to arsenate 

by photolytically produced free radicals (Bednar et al., 2002), specific precautions were 

employed to prevent this reaction. All polyethylene centrifuge tubes containing sorbent 

suspensions were immediately flushed with N2 gas and sealed to prevent atmospheric 

exposure, and all were wrapped in aluminum foil to prevent photochemical oxidation during 

the adsorption experiments. The samples were equilibrated, centrifuged, and filtered as 

described above. Immediately after filtration, 100 μL of 0.15 M ethylenediaminetetraacetic 

acid (EDTA) solution was spiked into the filtrate as a preservative to stabilize As speciation 

(Bednar et al., 2002). An aliquot of the preserved filtrate was analyzed for total As, Si and 

Fe concentrations using ICP-MS within 24 h from the batch experiment. In addition, 

aqueous As speciation analysis was performed to confirm the efficacy of the preservation 

techniques using an HPLC equipped with an anion exchange column to separate the arsenic 

species prior to on-line injection to ICP-MS. Prior to the speciation analysis, the preserved 

filtrate was diluted with 50 mM (NH4)2CO3 (HPLC mobile phase). Wet pastes were kept 

frozen before As solid-state speciation analysis using As-XANES and EXAFS spectroscopy 

at the Stanford Synchrotron Radiation Lightsource (SSRL).

2.3 Flow-through ATR-FTIR spectroscopy experiments

In-situ ATR-FTIR spectroscopy is a surface-sensitive technique that can be used to 

interrogate molecular-scale interactions that occur at the adsorbent-solution interface. ATR-

FTIR spectra were obtained using a Magna-IR 560 Nicolet spectrometer (Madison, WI) 

equipped with purge gas generator and a deuterated triglycine sulfate (DTGS) detector. 

Although arsenite does not exhibit distinct bands in the mid-IR spectral range (4000 – 600 

cm−1) at pH < 9.0 (Goldberg and Johnston, 2001), competitive adsorption between arsenate 

and silicic acid was nonetheless susceptible to probing with ATR-FTIR spectroscopy. A 45° 

trapezoidal germanium (Ge) internal reflection element (IRE) (56 × 10 × 3 mm) was 

employed within a flow-through ATR cell (Pike Technologies). The Ge IRE in the flow cell 

was coated with a thin layer of 6-L ferrihydrite by evenly depositing 500 μL nanoparticulate 

ferrihydrite suspension on the IRE surface. After drying overnight under vacuum, the coated 

Ge IRE was placed on a horizontal ATR sample stage inside the spectrometer. A new 

coating was prepared for each experiment, and spectra of dry films were collected to 
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determine the consistency of coating. The ATR cell was connected to a reaction vessel 

containing 1 L of either single metalloid (As or Si) solution or dual metalloid (As and Si) 

solution, continuously stirred with a magnetic bar. A peristaltic pump was used to deliver 

the solution from the reaction vessel through the flow cell at a constant flow rate of 0.5 mL 

min−1. The ATR-FTIR adsorption experiments were conducted only at the higher arsenic 

and silica concentration (i.e., 1 mM) due to the high detection limit of the ATR-FTIR 

technique.

All spectra were acquired at room temperature with 4.0 cm−1 resolution with 400 scans over 

the spectral range of 4000 – 600 cm−1 using the autogain function and aperture set at 100. 

For each experiment, background solution (i.e., 1 mM NaCl) was first pumped through the 

ATR cell, allowing the ferrihydrite coating to equilibrate at a given pH. The final 

background spectrum was collected when no further changes in the spectra were observed. 

Then, 1.0 mM arsenic solution in the absence or presence of 1.0 mM Si(OH)4 was injected 

into the cell to initiate the adsorption experiment. Spectra were collected as a function of pH 

(3.0 – 10.0) and reaction time at 15 min intervals until adsorption equilibrium was reached 

as indicated by no furthers changes between successive spectra. The pH of the solution in 

the reaction vessel was monitored throughout the measurement, and adjusted as necessary 

by addition of 10 mM NaOH or HCl. A final sample spectrum was obtained by subtracting 

the appropriate background spectrum (e.g., 1.0 mM NaCl, 1.0 mM Si(OH)4) from the 

sample spectrum. All data collection and spectral processing, including background 

subtraction and baseline correction, were performed using the OMNIC program (Thermo 

Nicolet, Co.).

2.4 Extended X-ray absorption fine structure spectroscopy measurements

Wet paste samples from batch adsorption experiments were transported frozen to SSRL and 

prepared for interrogation in an inert atmosphere (N2 glove box). Briefly, 100–200 mg of the 

wet paste sample were loaded in a Teflon sample holder, sealed with Kapton tape, and kept 

in the glove box until data collection. Arsenic K-edge EXAFS spectra were collected for 

samples with an initial As concentration of 1.0 mM in the absence or presence of 1.0 mM Si 

at pH 3.0, 6.0, and 9.0 for arsenite and 3.0 and 9.0 for arsenate, respectively. Spectra were 

collected at SSRL beamline 4-1 or 11-2 using a Si (220) monochromator crystal with 

samples held in a liquid He cryostat using both fluorescence and transmission mode for a 

minimum of five scans for each sample. The two beamlines 4-1 and 11-2 have 13-element 

and 30-element Ge fluorescence detectors, respectively.

XAS data reduction and analyses were performed using SIXPACK software package 

(Webb, 2006) and EXAFSPAK (George and Pickering, 2000) as described elsewhere (Root 

et al., 2007). Briefly, fluorescence and transmission X-ray absorption spectra (EXAFS and 

XANES) were averaged using the SIXPACK software package and background subtracted 

and normalized to unity using the average post edge oscillation with PROCESS in 

EXAFSPAK. Isolation of backscattering contributions was accomplished by fitting a cubic 

spline function to the absorption envelope. The isolated function was then transformed from 

units of eV to Å−1 to produce the EXAFS function (χ[k]), where k (Å−1) is the photoelectron 

wave vector, which was then weighted by k3 and fit by non-linear least-squares methods on 
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individual atomic shells in k-space using the entire k-range in the fit with the OPT program 

in EXAFSPAK (George and Pickering, 2000) (see O’Day et al., 2004a,b). Theoretical 

phase-shift and amplitude functions were calculated with the program FEFF (Rehr, 1993) 

using atomic clusters taken from the crystal structures of known As(III) and As(V) 

compounds with geometries similar to those expected in the unknown samples; specifically, 

angelellite for As(V) and schneiderhohnite for As(III). Multiple scattering from As(V)-O 

tetrahedra was considered in the As(V) fits and was shown to improve the fit (Beaulieu and 

Savage, 2005; Ona-Nguema et al., 2005). Multiple scattering was not significant for As(III) 

because of static disorder in the ligating oxygen shell. Based on empirical fits to known 

arsenic and iron reference compounds, estimated errors were R ± 0.01 Å, N or σ2 ± 15% for 

the first coordination shell, and R ± 0.02Å, N or σ2 ± 30% for atoms beyond the first shell 

(see O’Day et al., 2004a,b). The oxidation state of arsenic was determined with XANES by 

fitting the normalized edge jump using linear least-squares combinations of reference 

compound spectra with the computer packages DATFIT (George and Pickering, 2000). 

Energy was allowed to vary in fits to account for small differences in energy calibration 

between samples and references. Shifts in energy of greater than 0.85 eV were rejected as 

spurious, which were well below the difference in edge peak position (>3 eV) between 

arsenite (11871 eV) and arsenate (11875 eV).

2.5 Molecular modeling of surface complexation

Density functional theory (DFT) is a quantum mechanical modeling method that has 

previously been employed to describe arsenic adsorption on ferric hydroxides (Zhang et al., 

2005). DFT simulations were performed to determine the binding energies for As(V), 

As(III) and Si(OH)4 species to ferric hydroxides. Ferric hydroxides were simulated using 

clusters similar to those used in several previous studies (Sherman and Randall, 2003; Zhang 

et al., 2005; Kubicki et al., 2007). As illustrated in Figure S2 (see supporting information), 

the clusters consisted of two Fe atoms in octahedral coordination with 10 O atoms, with the 

general formula Fe2O3(H2O)7. Clusters with different numbers of hydrogen atoms were also 

used in order to simulate binding sites with positive or negative charges. The speciation of 

the surface binding sites as a function of pH is shown in Figure S3.

DFT calculations were performed using the DMol3 (Delley, 1990; 2000) package in the 

Accelrys Materials Studio modeling suite (Accelrys Corp., San Diego, CA ) on a personal 

computer. All calculations used double-numeric with polarization (DNP) basis sets (Delley, 

1996), the gradient corrected VWN-BP functional for exchange and correlation, and 

included all electrons with unrestricted spins. Implicit solvation was incorporated into all 

aqueous phase simulations using the COSMO-ibs (Delley, 2006) solvation model. As 

recommended by previous investigators, the simulations also included one explicit water 

molecule in order to allow for hydrogen bonding and better outlying charge correction for 

negatively charged species (Kelly et al., 2006).

The geometry of the binding sites was optimized without any geometry constraints. In order 

to simulate the binding sites being part of a larger ferric hydroxide structure, simulations that 

included bound arsenic species employed geometry constraints that fixed the positions of 

oxygen atoms that were not part of the binding reaction. This was necessary in order to 
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avoid gross distortions of the dioctahedral geometry seen in previous investigations 

performed using similar ferric hydroxide clusters (Kubicki et al., 2007). Frequency 

calculations were performed on structures without geometry constraints in order to 

determine zero-point vibration energies and thermal corrections.

Gibbs free energy changes for complexation of As(V), As(III) and Si(OH)4 with the binding 

site were calculated using published literature values for the dissolved species and DFT 

calculated values for the complexes and binding sites. Standard Gibbs energies of formation 

(ΔGf
0) for the binding sites and arsenic complexes were determined from the DFT

calculated formation energies (ΔGf
DFT) by adjusting the vacuum scale to the standard

thermodynamic and electrochemical scales. For uncharged structures, the ΔGf
DFT values

were converted to ΔGf
0 by subtracting ΔGf

DFT energies calculated for the elements in their

natural state at 25° and 1 atm. Energies for charged structures were also adjusted to the 

electrochemical scale by adding 99.6 kcal/mol for the standard hydrogen electrode (SHE) 

reaction ( ) to the ΔGf
DFT for all species with a −1 charge and subtracting  for

all species with a +1 charge.

Based on previous research investigating similar systems, the ΔGf
0 values calculated for the

binding sites and surface complexes may be expected to be accurate to within ±5 kcal mol−1

(Paul et al., 2006; Zhu et al., 2009). However, errors in calculating standard Gibbs free 

energies of reaction (ΔGr
0) may be smaller, since bias in the calculations would largely

cancel because only differences in energy between similar structures are used to calculate 

these values. The standard Gibbs free energies of formation used in all calculations and the 

stoichiometry and Gibbs free energy changes for the binding reactions for As(V), As(III) 

and Si are listed in Tables S1–S4 in the supporting information. Given the ±5 kcal mol−1

errors, using the ΔGf
0 to model competitive binding will not be as accurate as conventional

surface complexation modeling where robust surface complexation constants have been 

developed.

3. Results and discussion

3.1 Quantitative batch adsorption measurements

3.1.1 Silicic acid effects on arsenate adsorption to ferrihydrite—Adsorption of 

arsenate to ferrihydrite was measured as a function of initial arsenate concentration (0.1 and 

1.0 mM) and pH (3.0 to 11.0) for a 24 h reaction time. Arsenate shows strong affinity for 

ferrihydrite surfaces and adsorption exhibits no pH-dependence at pH < ~ 9.0 (Figure 1a), 

with nearly 100% removal from aqueous solution in the single ion system. At pH > 9, 

arsenate adsorption on ferrihydrite decreases consistently with increasing pH. This pH-

dependent adsorption of arsenate on Fe (oxyhydr)oxides has been well documented and can 

be partially explained by the pH-dependence of ferrihydrite surface charge (Figure S3) and 

arsenate aqueous speciation. Arsenic acid (H3AsO4) is a strong triprotic acid with pKa(1–3)

values of 2.20, 6.97, and 11.53 (Raven et al., 1998). At pH < point zero net proton charge 

(pHpznpc) of ferrihydrite (ca. pH 9, Figure S3) the mineral surface exhibits a net positive 

charge and a higher affinity for the negative changed oxyanion arsenate species (H2AsO4
−

or HAsO4
2−). However, with increasing pH, ferrihydrite surface hydroxyl groups undergo

progressive deprotonation, with the surface becoming net negatively charged at pH > 
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pHpznpc. This results in an electrostatic repulsive force between the two negatively charged 

species (HAsO4
2− and ≡Fe-O−). The pH-dependent adsorption trend is similar for the two

arsenate concentrations, except that the adsorption envelope decreases more steeply for 1.0 

mM relative to 0.1 mM initial arsenate concentration (Figure 1a). Despite like-charge 

repulsion, substantial adsorption persists at pH > pHpznpc of ferrihydrite, indicating that the 

adsorption of arsenate also involves non-electrostatic (specific) interaction. This observed 

pH-dependent adsorption of arsenate also agrees with the calculated Gibbs free energy 

changes for the arsenate binding reaction with model ferric hydroxide. As shown in Figure 

2, the Gibbs free energy (ΔGr
0) for arsenate binding reaction (binuclear bidentate complex

was chosen as a representative surface complexation in the modeling) remains constant at 

pH < 7.0. The large negative value of the ΔGr
0 suggests the binding reaction is

thermodynamically favorable under the pH conditions. At pH > 7.0, the Gibbs free energy of 

the reaction increases consistently with increasing pH, resulting in the decreased arsenate 

adsorption observed in the experimental data (Figure 1a).

The effect of Si(aq) on arsenate adsorption to ferrihydrite was examined in the dual metalloid 

systems containing 1.0 mM (28 mg L−1) Si. This concentration was chosen because it 

represents that of Si in arsenic contaminated groundwater (Mariner et al., 1996). The 

presence of Si exhibits negligible effect on arsenate adsorption across the entire pH range 

regardless of the initial arsenate concentration (Figure 1a). This result agrees with prior 

work that showed negligible Si effect on arsenate adsorption to Fe oxides (Waltham and 

Eick, 2002; Roberts et al., 2004), suggesting that Si and arsenate are possibly adsorbed to 

different surface sites. Adsorption of Si was also measured as a function of pH in the dual 

metalloid systems. Adsorption was observed to increase with increasing pH to a maximum 

at pH 7 – 9, after which sorption decreased slightly with further increase in pH (Figure 1c). 

The pH-dependent adsorption can also be explained by the aqueous speciation of Si and 

surface charge of ferrihydrite. The first dissociation constant (pKa1) of monomeric silicic 

acid is 9.8 (at 25 ºC), whereas the corresponding pKa for oligomeric silicic acid is in the 

range of 9.5–10.7 (Makrides et al., 1980), indicating that silicic acid is present as a neutral 

species throughout most of the pH range of this study. Thus, adsorption is favored at pH 

values close to the pznpc of ferrihydrite, where the electrostatic repulsive force between 

adsorbent and adsorbate (and hence the Gibbs free energy for the binding reaction, Figure 

2), are minimized. In addition, below the ferrihydrite pznpc, total Si uptake after 24 h was 

lower in the system containing higher arsenate concentration, suggesting that arsenate 

uptake diminishes Si adsorption to ferrihydrite surface (Figure 1c). The fact that arsenate 

can effectively displace silicic acid while silicic acid has negligible effects on arsenate 

adsorption can also be explained by the Gibbs free energies for the binding reactions of 

arsenate and silica on ferric hydroxide (Figure 2). Indeed, the greater extent of Si 

displacement occurs with decreasing pH where arsenate has much stronger binding energy 

than does silicic acid (Figures 1c & 2).

3.1.2 Silicic acid effects on arsenite adsorption to ferrihydrite—The results of 

batch adsorption of arsenite to ferrihydrite are shown in Figure 1b. Less than 5% of total 

arsenite was oxidized to arsenate during the experiments (data not shown), indicating that 

the preservation techniques were effective to minimize oxidation. The pH trend of arsenite 
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adsorption differs from arsenate (Figure 1b). Similar to Si, maximum arsenite adsorption to 

ferrihydrite occurs at pH close to the pznpc of ferrihydrite, as arsenious acid (H3AsO3) has 

similar pKa values to silicic acid (Raven et al., 1998). The trend is less distinct at lower As 

surface loading (i.e., 0.1 mM), presumably due to the presence of excess mineral surface 

sites (Figure 1b).

In contrast to the case for arsenate, arsenite is subject to diminished adsorption as a result of 

competition from silicic acid. Although the amount of adsorbed arsenite decreased slightly 

when Si was present (Figure 1b), this translated to a significant (several-fold, depending on 

pH) increase in aqueous arsenite concentration at equilibrium (Figure S4). Hence, the 

presence of aqueous Si, at representative environmental concentrations, can be expected to 

increase significantly arsenic mobility and bioavailability in natural sub-oxic environments, 

as also suggested in some prior studies (Roberts et al., 2004; Luxton et al., 2006). 

Interestingly, the effect appears to be more pronounced at low (pH < ~6.0) and high pH ends 

(pH > 9.0) (Figures 1b and S4). The equilibrium aqueous concentration of arsenite after 

adsorption increased as much as nine times at low pH and three times at high pH when Si 

was present (Figure S4). The pronounced effect at high pH can be explained by a decrease in 

the isoelectric point (IEP) of ferrihydrite upon adsorption of Si(OH)4. Prior studies have 

indicated that the adsorption of silicic acid to Fe oxyhydroxides decreases the IEP of the 

mineral sorbent, creating a stronger electrostatic repulsive force for adsorption of negatively 

charged oxyanions at pH above the IEP (Garman et al., 2004; Luxton et al., 2006). 

Mechanisms responsible for substantial reduction of arsenite adsorption at pH < 6.0 are 

more complex, and may involve multiple effects (e.g., ferrihydrite dissolution, surface site 

competition, surface-induced Si polymerization) that cannot be unambiguously determined 

from macroscopic batch adsorption results alone.

Adsorption of Si to ferrihydrite in the presence of arsenite exhibits similar pH-dependent 

trend to the system containing arsenate; adsorption increases with increasing pH to the 

sorption maximum and then decreases slightly with further increases in pH (Figure 1d), 

consistent with the Gibbs free energy changes for the binding reaction (Figure 2). The fact 

that lower Si adsorption (at pH < 6.0) was measured when arsenite was present at higher 

concentration can be attributed to surface site competition between the two neutral species 

H3AsO3
0
(aq) and Si(OH)4

0
(aq).

3.2 ATR-FTIR spectroscopy

The spectra of aqueous arsenate species collected on the Ge IRE (without ferrihydrite film) 

as a function of pH were used as a basis to determine the surface complexes formed between 

arsenate and ferrihydrite (Figure 3a). These spectra are in good agreement with prior studies 

(Myneni et al., 1998; Roddick-Lanzilotta et al., 2002; Goldberg and Johnston, 2002). 

Briefly, at pH 3.0 and 6.0 (pKa1 < pH < pKa2 of arsenic acid) (Raven et al., 1998), arsenate 

is partially deprotonated and the H2AsO4
−

(aq) species predominates, exhibiting a C2v

symmetry. The bands at 907 and 877 cm−1 correspond to the asymmetric and symmetric 

stretching of the two As-O− bonds, whereas the two bonds from As to protonated oxygens 

(As-OH) do not generate distinct IR bands in the spectral region (Figure 3a). With pH 

increase to 9.0 (pKa2 < pH < pKa3), arsenate dissociates its second proton, HAsO4
2−

(aq)
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predominates, and its symmetry changes from C2v to C3v (Figure 4). Consequently, the pH 9 

spectrum differs significantly from those at lower pH, and exhibits a broad band at 857 cm−1

corresponding to the asymmetric stretching of the As-O bonds, which is large and broad 

enough to also mask the symmetric stretching band.

The spectra of ferrihydrite-adsorbed arsenate species at the same pH values (3.0, 6.0 and 

9.0) are shown in Figure 3b. The shoulder band at ~ 830 cm−1 in spectra collected at pH 3.0 

and 6.0 is attributed to the stretching vibration of As-O coordinating to the Fe metal center 

(i.e, As-O-Fe bond), whereas the band at ca. 884 cm−1 results from non-surface-complexed 

As-O bonds of the adsorbed arsenate species (Goldberg and Johnston, 2002; Jia et al., 2007). 

The result is consistent with previous spectroscopic studies of arsenate adsorption on metal 

oxides, indicating the formation of bidentate binuclear inner-sphere complexes between 

arsenate and ferrihydrite surface hydroxyls (Goldberg and Johnston, 2002; Jia et al., 2007). 

With pH increasing to 9.0, the two stretching bands are shifted to lower wavenumber from 

884 and 830 to 860 to ~ 804 cm−1, respectively, indicting local changes in arsenate 

coordination chemistry, also consistent with prior work (Goldberg and Johnston, 2002; 

Roddick-Lanzilotta et al., 2002; Jia et al.; 2007). As indicated schematically (Figure 4), two 

possible binuclear bidentate complexes may form at ferrihydrite surfaces for arsenate 

species, distinguished on the basis of uncomplexed oxygen protonation state (protonated 

structure a or unprotonated structure b). We expect that arsenate forms adsorbed structure a 

at low pH where adsorbed arsenate is protonated, and structure b at higher pH where 

arsenate species are dissociated. Such structure changes are consistent with the pH-

dependent shifts in As-O stretching bands observed in the spectra upon adsorption to 

ferrihydrite.

Arsenate spectra show negligible changes in response to Si(OH)4(aq) introduction 

irrespective of pH; no detectable peak shifts or emergence of new peaks were observed 

(Figure 3b and 3c), suggesting that the complexation mode of adsorbed arsenate was not 

affected by Si adsorption. These results are consistent with the negligible effect of Si on 

arsenate surface excess as indicated by batch adsorption data (Figure 1a). ATR-FTIR data 

also indicate that silica is adsorbed predominantly as monomeric silicate via bidentate 

linkage in the first hour of the sorption reaction, as indicated by the band at 945 cm−1

(Figure 3d) (Swedlund et al., 2009; 2010), but that the spectra gradually change during the 

first 2 h of reaction time to exhibit a dominant band at ~1021 cm−1 with a shoulder at ~1103 

cm−1 (Figure 3d). These latter bands correspond to discrete oligomeric silicate and 

polymeric silicate species, respectively (Swedlund et al., 2009). Therefore, the ATR-FTIR 

data reveal that Si is mainly retained at the ferrihydrite surface via interfacial polymerization 

reaction that occurs at the equilibrium Si concentration of 1.0 mM maintained in the flow-

through system. It is important to note that the equilibrium Si(aq) concentration in the batch 

adsorption experiment was much lower than the initial concentration (i.e., 1.0 mM) because 

of ferrihydrite surface uptake from solution. Thus, surface-induced Si polymers observed in 

the ATR-FTIR results may not have been formed in the batch systems due to the relatively 

lower Si(aq) concentration.
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3.3 Arsenic X-ray absorption spectroscopy (XAS)

Arsenic K-edge XAS spectroscopy was used to complement the ATR-FTIR data in 

determining the local coordination and bonding mechanisms of arsenate and arsenite 

adsorbed to ferrihydrite. Figure 5 shows (a) the XANES, (b) κ3 weighted EXAFS, and (c) 

the corresponding Fourier transform (FT) results for the As(V)-adsorbed ferrihydrite 

samples. The structural parameters obtained from the non-linear least-squares fits of the 

EXAFS data are summarized in Table 1. The interatomic distance of the As-O shell (1.69 Å) 

and coordination number (CN) of 4 indicate that arsenate is present as AsO4 tetrahedra in all 

samples (Waychunas et al. 1993, Farquhar et al., 2002). In addition to the major As-O shell, 

the additional small peak at 3.03 Å is due to a multiple scattering path from As-O-O in 

arsenate tetrahedra. No As-Fe backscattering at <3 Å was detected, and the FT peak beyond 

the MS feature can be attributed to As-Fe bonding at 3.27 Å. This bonding distance is in 

good agreement with a bidentate binuclear As-Fe bond previously reported for As(V) 

adsorbed to Fe oxyhydroxides (Manceau, 1995; Fendorf et al., 1997; Sherman and Randall, 

2003; Arai et al., 2004; Beak et al., 2006; reviewed in Wang and Mulligan, 2008). Thus, the 

EXAFS results are consistent with the ATR-FTIR results, both suggesting that As(V) is 

predominantly adsorbed to ferrihydrite surfaces via bidentate binuclear, inner-sphere 

complexes. It should be mentioned that the spectroscopic data cannot rule out contributions 

to adsorption from outer-sphere complexation (i.e., electrostatic interaction) (Voegelin and 

Hug, 2003; Catalano et al., 2008). The differences detected by the ATR-FTIR spectroscopy 

between the low and high pH samples for arsenate adsorbed to ferrihydrite (Figure 3), 

presumably due to the presence of two types of bidentate binuclear complexes distinguished 

on the basis of protonation state (Figure 4), were not observed in the EXAFS data. The 

EXAFS spectra exhibit identical bond distance for the As-O bonds at pH 3.0 and 9.0 (Table 

1), suggesting that protonation has negligible effects on interatomic distance of the As-O 

bonds in the AsO4 tetrahedron as measured by EXAFS.

The EXAFS data also indicate that the presence of Si has negligible effects on As-Fe 

bonding mechanisms, which is consistent with the batch sorption and ATR-FTIR data. As 

indicated by the ATR-FTIR and EXAFS data, arsenate is bound to Fe-metal center via 

bidentate binuclear complexes. The determined CN for As-Fe bonds is close to the expected 

2 for 2C bidentate binuclear complex, ranging from (1.3 to 2.1). The backscattering 

amplitude of the second shell As-Fe is greater in the samples with Si (1.8–2.1) than those 

without Si (1.3–1.5). The presence of Si apparently increases the As-Fe CN (Table 1), 

suggesting that in the absence of Si, arsenate was not as positionally ordered on the 

ferrihydrite surface or arsenate occupied some outer-sphere sites that are not probed with 

EXAFS.

On the basis of the fit for arsenite adsorbed to ferrihydrite, the As(III)-O bond distance was 

calculated to be 1.77–1.78 Å (Figure 6 and Table 1). The bond distances and CN (~3.3–3.4) 

from this study agree with other XAS investigations, and are indicative of the AsO3 trigonal 

pyramidal structure (Waychunas et al., 1993; Farquhar et al., 2002). The bond distance, 

coordination geometry, and the absorption edge in the XANES spectra (Figure 6a) all 

suggest that oxidation of As(III) to As(V) did not occur during the reaction process, 

consistent with the results of the HPLC-ICP-MS arsenic speciation analysis. In addition to 
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the major As-O shell, two As-Fe bonds with respective interatomic distances of ~2.92–2.94 

Å and ~3.41–3.44 Å were observed in the FT spectra, suggesting the presence of mixed 

As(III) bonding environments on the ferrihydrite surface. The bond distances are in good 

agreement with other prior EXAFS studies, and are indicative of both bidentate 

mononuclear complexation (i.e., AsFe 2E, edge sharing) and bidentate binuclear 

complexation with corner-sharing between AsO3 pyramids and FeO6 octahedral (i.e., 

AsFe 2C, corner sharing), respectively (Farquhar et al., 2002; Ona-Nguema et al. 2005; Root 

et al., 2007). No detectable changes were observed in the EXAFS spectra with pH increase 

from ~3.0 to ~9.0, indicating that the As(III)-Fe bonding mechanisms were unaffected by 

pH. The As(III) spectra were fit best with 2 As-Fe backscattering paths corresponding to 2E 

and 2C coordination. The short 2E distance at 2.93±0.01 Å is distinctly observed, and the 

longer distance is best fit to 3.42±0.02 Å. Fitting a third backscattering monodentate 1V 

shell at >3.5 Å did not significantly improve nor degrade the fit, as measured in the χ2 value, 

and cannot be ruled out. However, the backscattering amplitude for AsFe in 2E and 2C 

coordination were similar, and about twice the amplitude of a 1V distance when it was 

included.

The EXAFS spectra show similar bond distances for As(III)-Fe bonds in both the presence 

and absence of Si (Table 1), suggesting that competitive adsorption of Si(OH)4(aq) has 

insignificant effects on As(III)-Fe bonding modes. However, it is noteworthy that the 

average CN for As-Fe bonds significantly increased for samples at pH ~3.0 and 9.0, 

coincident with the pH values that showed the greatest competitive effect of Si that resulted 

in desorption of arsenite at low and high pH in the batch adsorption results (Figure 1b). This 

may reflect retention of arsenite at ferrihydrite surface binding sites of more stable 

coordination and desorption at sites where inner-sphere coordination is less stable, the latter 

being more susceptible to arsenite dissociation because of silicic acid competition.

3.4 Quantum DFT calculations

The Gibbs free energy changes for the formation of mono- and bidentate surface complexes 

of As(V), As(III) and Si(OH)4 at the corner and edge sites of the ferric hydroxide cluster 

were calculated using DFT. The standard Gibbs energy change, the Gibbs energy change at 

pH 7 as well as the corresponding As-Fe bond distance are summarized in Table 2. The 

schematic diagram of each individual complex is also shown in Figure 10. In contrast to the 

molecular spectroscopic techniques (ATR-FTIR and EXAFS), the DFT model allows us to 

differentiate two monodentate surface coordinations (apical a1V vs. equatorial e1V) based on 

their Gibbs free energies of the binding reactions. Therefore, the DFT model was able to 

calculate the Gibbs free energies and As-Fe bond distances for four surface complexes. As 

shown in Table 2, the DFT model suggests that bidentate binuclear (corner sharing, 

AsVFe 2C) complex (Figure 7) is the most thermodynamically favorable binding for arsenate 

adsorption on ferric hydroxide, consistent with the results of the ATR-FTIR and EXAFS 

data. The calculated interatomic bond distance of the As(V)-Fe bond is very close to the 

bond distance from the EXAFS data.

The DFT model predicted that arsenite should form equatorial-vertex sharing monodentate 

(e1V) complexes on ferric hydroxide surface as suggested by the large negative Gibbs free 
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energies (Table 2 and Figure 10). While the preference of an arsenite-ferrihydrite 1V 

complex is not consistent with the EXAFS results, the AsFe e1V, 2C, and 2E complexes all 

have large negative values for ΔGr
0 that range from −25.3(2E) to −32.6(e1V). Including

the 1V backscattering path in the EXAFS did not improve the fit in the spectra; however, 

a 1V complex at the modeled distance of 3.32 Å could be masked by the other AsFe 

scattering paths. The calculated As(III) bond distances are substantially lower than bond 

distances observed by this and other EXAFS studies (Fendorf et al., 1997; Farquhar et al., 

2002; Ona-Nguema et al., 2005; Root et al., 2007).

In addition, the DFT model predicted that arsenate is predominantly adsorbed to the ferric 

hydroxide surface at the corner sites, while both the corner and edge sites play important 

roles in arsenite adsorption (Table 2). The edge site binding of Si(OH)4 is likely to compete 

with arsenite adsorption and have less effect on the corner binding of arsenate adsorption. 

This result provides a molecular-scale explanation for the greater susceptibility of arsenite, 

relative to arsenate, to desorb in the presence silicic acid (i.e., the locus of desorption being 

edge sites), and is in good agreement with the batch adsorption observations.

4. Conclusions

Conjunctive use of batch adsorption, ATR-FTIR and EXAFS spectroscopies, and DFT 

modeling enabled an improved understanding of As(V) and As(III) surface complexation at 

the ferrihydrite surface as affected by the competitive effects of silicic acid. The presence of 

dissolved silica at environmentally-relevant concentrations significantly decreased arsenite 

adsorption at low and high pH, whereas arsenate adsorption showed negligible response to 

elevated Si under the experimental conditions employed. This finding is inconsistent with a 

few previous batch sorption studies (Meng et al., 2000; Davis et al., 2001) which suggested 

that arsenate removal was substantially diminished by the presence of Si. This is most likely 

due to the concentration effect. The Si/As concentration ratio employed in this study is 

either 1 or 10, whereas the ratio is much higher (100–>1000) in those studies, resulting in 

desorption of arsenate from the sorbent surfaces. Indeed, Meng et al. (2000) reported that Si 

exhibits negligible effect on arsenate removal at low Si concentration, but significant impact 

at higher Si concentration. ATR-FTIR and EXAFS spectroscopies, as well as DFT 

calculations were internally consistent, with each showing the predominance of binuclear 

bidentate complexation for arsenate and both binuclear and mononuclear bidentate 

complexation for arsenite. Whereas ferrihydrite surface coordination of As(III) and As(V) 

species was unaffected by the presence versus absence of silicic acid, the greater 

susceptibility of arsenite (relative to arsenate) to desorption in the presence of dissolved Si is 

consistent with preferential, Si-induced, dissociation of arsenite at edge sites of ferrihydrite 

Fe octahedra.
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Figure 1. 
(a) Arsenate and (c) arsenite adsorption on 6-L ferrihydrite in the absence or presence of 1.0

mM silicic acid as a function of pH; silicic acid adsorption on 6-L ferrihydrite in the

presence of 0.1 or 1.0 mM arsenate (b) or arsenite (d) as a function of pH. The horizontal

dash line represents 100% sorption
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Figure 2. 
Gibbs free energy changes for the bidentate binding reactions of As(III), As(V) and 

Si(OsH)4 with ferric hydroxide as a function of pH.
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Figure 3. 
ATR-FTIR spectra of 1.0 mM arsenate (V) adsorbed to (a) Ge IRE, (b) ferrihydrite in the 

absence of Si, and (c) ferrihydrite in the presence of 1.0 mM Si, as a function of pH; and (d) 

ATR-FTIR spectra of 1.0 mM silicic acid adsorbed to ferrihydrite as a function of reaction 

time at 0, 30, 60, 120 min. The spectrum of aqueous Si(OH)4 was included for comparison.
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Figure 4. 
Schematic diagram of As(V)-ferrihydrite complexes.
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Figure 5. 
Arsenic K-edge XANES, EXAFS, and Fourier transforms (FTs) of As(V)-adsorbed 

ferrihydrite samples in the absence of Si at pH 3.0 (a1) and 9.0 (a2) and in the presence of Si 

at pH 3.0 (b1) and 9.0 (b2).
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Figure 6. 
Arsenic K-edge XANES, EXAFS, and Fourier transforms (FTs) of As(III)-adsorbed 

ferrihydrite samples in the absence of Si at pH 3.0 (a1), 6.0 (a2), and 9.0 (a3) and in the 

presence of Si at pH 3.0 (b1) 6.0 (b2), and 9.0 (b3).
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Figure 7. 
Surface complexes of As(V), As(III) and Si(OH)4 on ferric hydroxide. H = grey, O = red, Fe 

= blue, As(III) or As(V) = purple, Si = yellow.
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