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Abstract

Standard practice in reclamation of mine tailings is the emplacement of a 15 to 90 cm soil/gravel/

rock cap which is then hydro-seeded. In this study we investigate compost-assisted direct planting 

phytostabilization technology as an alternative to standard cap and plant practices. In 

phytostabilization the goal is to establish a vegetative cap using native plants that stabilize metals 

in the root zone with little to no shoot accumulation. The study site is a barren 62-hectare tailings 

pile characterized by extremely acidic pH as well as lead, arsenic, and zinc each exceeding 2000 g 

kg−1. The study objective is to evaluate whether successful greenhouse phytostabilization results 

are scalable to the field. In May 2010, a 0.27 hectare study area was established on the Iron King 

Mine and Humboldt Smelter Superfund (IKMHSS) site with six irrigated treatments; tailings 

amended with 10, 15, or 20% (w/w) compost seeded with a mix of native plants (buffalo 
grass,arizona fescue, quailbush, mesquite, and catclaw acacia) and controls including composted 

(15 and 20%) unseeded treatments and an uncomposted unseeded treatment. Canopy cover 

ranging from 21 to 61% developed after 41 months in the compost-amended planted treatments, a 

canopy cover similar to that found in the surrounding region. No plants grew on unamended 

tailings. Neutrophilic heterotrophic bacterial counts were 1.5 to 4 orders of magnitude higher after 

41 months in planted versus unamended control plots. Shoot tissue accumulation of various 

metal(loids) was at or below Domestic Animal Toxicity Limits, with some plant specific 

exceptions in treatments receiving less compost. Parameters including % canopy cover, 

neutrophilic heterotrophic bacteria counts, and shoot uptake of metal(loids) are promising criteria 

to use in evaluating reclamation success. In summary, compost amendment and seeding, guided by 

preliminary greenhouse studies, allowed plant establishment and sustained growth over four years 

demonstrating feasibility for this phytostabilization technology.
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1.0 Introduction

Mine tailings are the main product remaining after ore beneficiation and, if left unreclaimed, 

can contribute to particulate dispersion into the surrounding environment (Csavina et al., 

2011; Mendez and Maier, 2008; Root et al., 2015). In legacy sites, mine tailings particulates 

often have associated metal(loid) contaminants because extraction technologies 50 – 100 

years ago were not as efficient as those used in modern mining operations. Human health 

risks arising from dispersion of metal(loid)-containing particulates from legacy sites can 

result from various routes of exposure including inhalation of particles transported by wind 

and ingestion of contaminated soil (particularly for children) or food due to the deposition of 

wind- or water-borne particles onto soil or garden vegetables (Csavina et al., 2011; Henry et 

al., 2013; Mendez and Maier, 2008; Ramirez-Andreotta et al., 2013).

The US Environmental Protection Agency (EPA) has estimated that remediation costs for 

National Priority List (NPL) hardrock mining sites will exceed US $7.8 billion for 63 NPL 

sites inventoried in 2004 with an additional US $16.5 billion needed for future sites using 

current technologies (Lovingood et al., 2004). The most commonly used technologies are 

based on constructing an inert or biological cap over the mine tailings (ITRC, 2009). The 

goal is to have germination and establishment of a vegetative cap followed by plant 

succession eventually leading to a stable vegetative community on the site. However, such 

capping strategies can be very expensive (Kempton et al., 2010).

An alternative technology to capping is is phytostabilization, which is the use of a vegetation 

cover planted directly into the tailings that acts to immobilize metals in the rhizosphere and 

to reduce above ground wind and water erosion processes (Mendez and Maier, 2008; 

USAEC, 2014). However, direct planting alone is not feasible for many legacy sites because 

acidic conditions and high metal(loid) content prevent plant germination and growth. A 

further complication is the need for drought-tolerant plant species which are generally 

adapted to the alkaline conditions found in most arid environments (Saslis-Lagoudakis et al., 

2015). Therefore the phytostabilization process often must be “assisted” through the 

addition of amendments that may include compost, biosolids, lime, and/or fertilizers (Brown 
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et al., 2004; Clemente et al., 2012; Conesa et al., 2007; Lee et al., 2014; Li and Huang, 2015; 

Madejón et al., 2010; Santibañez et al., 2012). The vegetative cap created by assisted 

phytostabilization should result in the phyto-catalyzed stabilization of inorganic 

contaminants in the root zone driven by organic matter, plant root exudates and the 

associated rhizosphere microbial community (Mendez and Maier, 2008; Santibañez et al., 

2012). Further, there should be limited above ground biomass accumulation of metal(loid)s 

to prevent the movement of contaminants into the surrounding ecosystem and food chain 

through grazing or plant death and decay (Henry et al., 2013; Mendez and Maier, 2008; 

Pérez-de-Mora et al., 2011).

There are few reported field studies that have evaluated the feasibility of assisted 

phytostabilization of mine tailings in semi-arid environments (Brown et al., 2009; Clemente 

et al., 2012; Cordova et al., 2011; Pardo et al., 2014; Santibañez et al., 2012). The goal of 

this study was to determine whether assisted phytostabilization could be successfully 

implemented at the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site which 

has mine tailings that are characterized by extreme acidity and high levels of arsenic, lead, 

and zinc (Root et al., 2015). We specifically wanted to determine whether successful results 

from greenhouse trials (Solís-Dominguez et al., 2012) could be scaled to the field. The 

parameters evaluated in the field trial included percent canopy cover, plant shoot tissue 

metal(loid) uptake, neutrophilic heterotrophic bacterial counts (NHC), pH, total carbon 

(TC), total organic carbon (TOC), total nitrogen (TN), electrical conductivity (EC). These 

parameters were used to assess progress in transitioning the original mine tailings ecosystem 

to include soil properties more characteristic of a plant-sustaining matrix.

2. Materials and methods

2.1 Site description

The IKMHSS was active from the late 1800s until 1969 producing gold, silver, copper, lead, 

and zinc, leaving behind a mine tailings pile comprising approximately 62 hectares adjacent 

to the town of Dewey-Humboldt, Arizona (North 34°31′57″, West 112°15′9″) (USEPA, 

2010)(Fig. 1). The top of the mine tailings pile is at an elevation of 1464 m and the surface 

of the site is an orange gossan zone that is vulnerable to erosion (Hayes et al., 2014; USEPA, 

2010). The surficial tailings are characterized by low pH and nutrient content and elevated 

concentrations of a range of metal(loids) including arsenic, lead, copper, cadmium, 

chromium, and zinc as well as pyrite (Tables 1 – 3). In contrast, the surrounding area is a 

Chaparral biome influenced by three ephemeral waterways with Balon gravelly sandy clay 
loam (BgD) as the predominant soil type. Vegetation in the area is dominated by rubber 

rabbitbrush (Ericameria nauseosa), shrub live oak (Quercus turbinella), and broom 

snakeweed (Gutierrezia sarothrae) among other plants. White willow (Salix spp), Arizona 

walnut (Juglans major), and cottonwood (Populus fremontii) are present in riparian areas 

(USEPA, 2009).

2.2 Site preparation

In May 2010, a compost-assisted phytostabilization trial was established on a 0.27 hectare 

area on the IKMHSS mine tailings. The six treatments tested (with four replicates each) 
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were: (1) unamended control; (2) 10% compost - seeded with buffalo grass and mesquite; (3 

& 4) 15% and 20% compost - unseeded; (5 & 6) 15% and 20% compost seeded with a 

mixture of six native plants. All treatments were laid out in a randomized block design with 

the exception of the controls which were located at the far corners of the study area (Fig. 1, 

controls are labeled with the number 1). This was done to prevent contamination of the 

control plots with compost during site preparation and tilling of compost into the subsurface.

A tractor was used to rip and till the site to a depth of about 38 cm and divided into 24 

experimental plots (9.6 m × 15 m per plot) each bermed to about 50 cm to prevent cross 

contamination between treatments. A dairy manure-green waste compost from Arizona 

Dairy Compost LLC (Anthem, AZ) was weighed using a truck scale and added to each plot 

according to treatment: the 10% compost treatment received 228 t ha−1; 15% compost 

treatments received 342 t ha−1; and 20% compost treatments received 456 t ha−1. The 

compost was tilled into each plot to a depth of 15 cm.

Plots were then seeded according to treatment based on preliminary greenhouse results 

(Solís-Dominguez et al., 2012). The six native desert plants used in this study and their 

seeding rates were: grasses, 90 kg ha−1 buffalo grass (Buchloe dactyloides); 56 kg ha−1

arizona fescue (Festuca arizonica); shrubs, 56 kg ha−1 quail bush (Atriplex lentiformis), 11 

kg ha−1 mountain mahogany (Cercocarpus montanus); trees, 0.15 kg ha−1 mesquite 

(Prosopis juliflora), and 1 kg ha−1 catclaw acacia (Acacia greggi) (seed source: Desert 

Nursery, Phoenix, AZ). The 10% compost treatment, considered a suboptimal rate (Solís-

Dominguez et al., 2012), received only seeds from the two plants that grew most 

successfully in the greenhouse as measured by biomass production (buffalo grass and 

mesquite). The 15 and 20% compost treatments received a mixture of the six seeds, all of 

which grew in the greenhouse, to represent a range of plant canopy covers and rooting 

patterns (e.g. grasses, shrubs, and trees). Buffalo grass, arizona fescue, quail bush, and 

mountain mahogany were broadcast by hand and raked into the tailings. Straw was scattered 

over the plot surface at a rate of 6 t ha−1 and crimped 10 cm deep into the tailings surface to 

decreased compaction by irrigation, seeds predation by birds, dispersion by wind, and water 

evaporation from the substrate. Large seed species (mesquite and acacia) were soaked in 

water for 24 h and then planted by hand at a depth of 2.5 cm along seed lines that were 30.5 

cm apart alternating the two species. Seeds and straw were applied at night to avoid losses 

due to high daytime winds.

A sprinkler irrigation system was installed to supplement rainfall throughout the growing 

season (Table 4). Plots were irrigated every 7 to 10 d depending on the observed plant status 

and monitored weather conditions. Due to limited availability and reliability of the water 

source irrigation applications were limited to between 0.5 and 1.0 inches of water. During 

periods of appreciable rainfall irrigation was postponed. Irrigation was suspended when 

visual signs of winter senescence were observed. Irrigation was reinitiated the following 

spring once temperature below freezing had ceased and signs of spring growth were 

observed. A fence was built around the study area to avoid additional stress of wildlife 

grazing. In July 2010, an on-site wireless Vantage Pro™ 2 Plus weather station (Davis 

Instruments Corp, Hayward, CA) was placed in the center of the study area to monitor major 
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weather variables including air temperature, relative humidity, wind speed and direction, 

rainfall, and soil temperature.

2.3 Sampling and analysis

To evaluate the immediate effect of compost in tailings, triplicate 100 g surface samples 

were troweled into plastic soil bags from each plot at a depth of 0–8 cm at the initiation of 

the study (May 2010). Samples for physical and chemical characterization were 

subsequently air-dried and sieved to a 2 mm mesh and stored at room temperature. The 

triplicate samples from each plot were combined to create a composite plot sample for each 

time point. Samples were analyzed for pH and EC from aqueous solutions of a 1:2 mass 

ratio of tailings in 18.2 MΩ deionized (Milli-Q, Barnstead) water reacted for 1 h. Twenty 

grams of the composite samples were finely ground according to McGee et al., (1999) and 

analyzed for TC, total inorganic carbon (TIC), TOC, and TN (Shimadzu TOC-VCSH 

analyzer with solid state module SSM-5000A, Columbia, MD). Detection limits were 

determined separately for each batch of samples collected in May and October. The range of 

detection limits for TC analysis was from 0.03 to 0.135 g kg−1 dry tailings, from 0.45 to 0.1 

g kg−1 for TIC, and from 0.0020 to 0.016 g kg−1 for TN. Total elemental analysis of 

compost and tailings was by ICP-MS (ELAN DRC-II, Perkin Elmer, Shelton, CT) and 

detailed in Hayes et al. (2014). Analyses were performed at the University of Arizona 

Laboratory for Emerging Contaminants (ALEC, http://www.alec.arizona.edu/). Plant 

available metal(loid)s in the tailings is operationally defined here as the sum of a two-step 

sequential extraction: 1) 18.2 MΩ lab pure water (Milli-Q) and 2) 1 M NaH2PO4 at 1:100 

solid to solution ratio (n=4) with detection after filtration (0.45 μm GHP, Acrodisc) as above 

by ICP-MS.

2.4 Canopy cover and changes in edaphic factors by assisted direct planting

Canopy cover and species composition were estimated on a yearly basis beginning in 

October 2010 using transect and quadrat sampling (Lutes et al., 2006; Swanson, 2006). 

Observations were made within a 1 m2 quadrat frame placed at 3 m increments along two 15 

m diagonal transects across each plot (Coulloudon, 1999; Elzinga et al., 1998). Four 

additional observations were made at random locations within the plot. At the same time, a 

second annual core was randomly collected from each plot using a 2″ soil probe (AMS Inc., 

American falls, ID) to a depth of 22 cm, the auger was carefully cleaned between samples. 

Sub-samples were collected from the auger to characterize depths of 8, 15, and 22 cm. These 

samples were treated as describe previously (e.g. sieved, dried, stored at 4°C) and analyzed 

for TC, TIC, TOC, and TN, pH and EC to evaluate changes in edaphic factors by assisted 

direct planting.

2.5 Neutrophilic heterotrophic bacteria

Triplicate 1 m cores were collected from each treatment plot on an annual basis during the 

spring/summer months (May–June) using a JMC ESP plus soil core sampling kit (Clements 

Associates Inc., Newton IA) with butyrate plastic liners (91.4 cm × 3.18 cm). Each liner was 

capped then sealed with vinyl tape at both ends to minimize post collection oxidation and 

immediately placed on ice for transport back to the laboratory. Cores were processed upon 

arrival at the lab by cutting and removing the top 0–20 cm of each core, with the remaining 
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71 cm stored at −4°C for subsequent analyses. Tailings from 0–20 cm were removed from 

the core liner sleeve and homogenized. A composite of each treatment plot was generated by 

combining 10 g of homogenized 0–20 cm tailings from each of the triplicates and analyzed 

immediately for Neutrophilic heterotrophic bacteria (NHC). The remaining sample was split 

and archived at −80°C and −20°C.

One gram of the composited core samples from the top 0–20 cm was placed in a tube 

containing 9.5 ml of sterile distilled water and vortexed for 2 min to determine NHC. Serial 

dilutions were performed and 0.1 ml from each was plated in triplicate on R2A agar (Bacton 

Dickenson and Company) with 200 mg L−1 of cyclohexamide (to suppress fungal growth). 

All plates were incubated for 5 days at 23°C and then enumerated. All NHC are reported as 

colony forming units (CFU) per gram dry weight of sample (Solís-Dominguez et al., 2012).

2.6 Metal(loid) uptake into plant tissue

Plant shoot tissue from the dominant plant species in each plot was collected in October of 

each year to assess uptake of metal(loid)s. Shoot tissue samples were washed with a 0.1% 

HCl solution and dried on a Blue M force air oven (Thermal Product Solutions, New 

Columbia, PA) at 65°C. Samples were ground in a Wiley Mill (Thomas Scientific, 

Swedesboro, NJ), passed through a 40-mesh (0.42 mm) screen, and microwave digested 

(MARS6, CEM Corp., Matthews, NC) using USEPA method 3052 for total element 

concentrations of As, Pb, Zn, Cd, Cu, and Ni (USEPA, 1996). Quality controls for the 

digestion included: sample duplication; digestion blank controls with: distilled water, HNO3, 

and hydrogen peroxide; and digestion of a Standard Reference Material NIST 1573a (tomato 

leaves) as an external quality control (Ramirez-Andreotta et al., 2013). Samples were 

analyzed at ALEC by ELAN DRC-II ICP-MS (Perkin Elmer, Shelton, CT) using at least one 

quality control solution from a second source, e.g., NIST 1643e Trace Metals in water.

2.7 Acid potential

The acid potential (AP) of tailings samples was determined based on the pyritic fraction of 

the tailings (Sobek, 1978). The pyrite fraction of the surface tailings was determined by 

Rietveld refinement of Synchrotron transmission powder x-ray diffraction (ST-XRD) as 

described previously (Hayes et al., 2014). While Rietveld XRD may not always detect minor 

phases (<5 wt %), pyrite has strong and unique reflections that could be fit to about 0.3 wt 

%. The pyrite fraction (% pyt) in the tailings was used to calculate the AP, where AP = % 

pyt × 16.7; as kg acid equivalents per metric ton tailings expressed in mass equivalents of 

CaCO3 neutralizing capacity of 2 moles CaCO3 (MW = 2 × 100.087) to 1 mole of FeS2 

(MW = 119.975) to kg CaCO3 equivalent per ton of material (Parker and Robertson, 1999). 

The range of AP for the tailings samples were 0 to 154 kg acid equivalents per ton tailings 

with an average of 48.0 kg acid equivalents per ton tailings for the non-control samples.

2.8 Statistical Analysis

Normality of the data were analyzed using goodness of fit test, and verified by using 

residual/predicted plots. When data were highly differing from normal distribution, they 

were log transformed. Significant differences over time for canopy cover, NHC, TOC, TN, 

pH and EC were detected by employing one-way ANOVA (p < 0.05) by treatment and 
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significant differences between means were determined by Tukey’s test (p < 0.05). 

Metal(loid) accumulation in shoot tissue data were square-root transformed to reduce the 

influence of outliers before performing a one-tail Paired t-Test (p < 0.05) to evaluate the 

increase of metal(loid) concentration in plant shoot tissue with time. In order to evaluate the 

effect of rate of compost with time in the accumulation of metal(loid)s in leaves, a 2-way 

Anova (p < 0.05) was performed. Principal Component Analysis (PCA) was used to 

compare changes in the treatments based on geochemical parameters evaluated in this study. 

In order to reduce influences from outliers and different scales data was square-root 

transformed before performing the PCA. All analyses were conducted using JMP®, Version 

11.0. (SAS Institute Inc., Cary, NC, 1989–2007).

3.0 Results

3.1 Tailings characteristics before and after compost amendment

The IKMHSS surface tailings have a loam texture, 34.7% sand, 44.8% silt, and 20.4% clay, 

and are comprised dominantly of quartz, albite, pyrite, gypsum, jarosite, plumbojarosite, and 

goethite or ferrihydrite (Solís-Dominguez et al., 2012). Selected properties including pH, 

EC, TC, TOC, TN, NHC, metal(loid), and pyrite content of the compost, the tailings (both 

unamended and compost-amended), and an off-site soil sample are provided in Tables 1–3.

3.2 Plant germination, growth, and canopy cover

The control treatment which was irrigated but did not receive either compost amendment or 

seeds remained barren of plants for the duration of this study. In contrast, all treatments 

receiving compost amendment and seeds showed germination and plant growth achieving a 

30 to 39% canopy cover within the first five months (Fig. 2). This was equivalent to the 

canopy cover measured in the off-site surrounding area (dashed line on Fig. 2). Canopy 

cover was subsequently measured yearly for three years and showed a trending but not 

significant decline in the 10% compost treatment, no significant change in the 15% compost 

treatment, and a significant increase to 61% canopy cover in the 20% compost treatment.

Treatments that received compost but no seeds showed less than 6% canopy cover after 5 

months but the canopy cover increased significantly over the subsequent three years 

reaching 21 and 36% in the 15 and 20% compost treatments, respectively. This was likely a 

result of seed deposition following blooming and seeding of quailbush from the neighboring 

seeded plots as well as from volunteer species from off-site. Quailbush plants in these plots 

were visually much larger and more spatially separated than those in the composted seeded 

plots (Fig. 3).

Germination and growth of the six plant types tested varied considerably in this field trial. 

Despite showing success in greenhouse studies, three of the six seed types applied (mountain 

mahogany, mesquite, and catclaw acacia) did not establish at the site. A fourth plant, 

Arizona fescue showed a small amount of growth in 2010 (5.8% of the plant composition for 

the 15% compost + seeds treatment and 2.2% for the 20% compost + seeds treatment). 

However, the percentage declined substantially by 2011 and the plant was not observed in 

2012 or beyond.
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For the 10% compost-amended treatment plots that received only buffalo grass and mesquite 

seeds, species composition was dominated by buffalo grass, ranging from 97.2% (2010) to 

84.2% (2013) with the remainder represented by annual weeds that were not in the original 

seed mix.

Quailbush dominated in the 15 and 20% compost-amended seeded treatments. In 2010, the 

average quailbush composition in the 15% and 20% seeded treatments was 78.5%, buffalo 

grass composition averaged 17.4% and the remainder was annual weeds. Between 2010 and 

2013, quailbush declined to an average of 47.8% while buffalo grass was maintained at 

25.2%, and there was an increase in annual weeds. Blooming and seeding of quailbush and 

buffalo grass first occurred in 2011 and was observed on a yearly basis thereafter.

3.3 Accumulation of metal(loid)s into plant shoot tissue

Plant shoot tissues collected from the dominant plants, quailbush and buffalo grass, in the 

10, 15, and 20% compost-amended and seeded treatments were analyzed for uptake of 

metal(loid)s. Results from the 2010 and 2013 samplings show that foliar accumulation 

generally did not exceed the Domestic Animal Toxicity Limits (DATL NRC, 2005) with 

some plant specific exceptions (Table 2). The exception for quailbush was that shoot tissue 

Zn levels were similar to or slightly higher than the DATL in the 15 and 20% compost 

treatments. For buffalo grass, shoot tissue As exceeded the DATL by 2-fold in the 10% 

compost-amended treatment after three years and Cu levels for all treatments were similar to 

the DATL.

The amount of compost added had an impact on whether or not there was an increase in 

shoot tissue metal(loid) concentrations between 2010 and 2013. There was no increase in 

metal(loid) concentration for the elements examined in 20% compost-amended treatments, 

there was an increase in two metals, Zn and Ni, in the 15% compost-amended treatments, 

and there was an increase in four metal(loid)s, As, Pb, Zn, and Ni, in the 10% compost-

amended treatments.

3.4 Neutrophilic heterotrophic bacteria

Initial NHC in the unamended tailings were low, 1.43 × 102 CFU g−1 dry tailings, and did 

not change over the duration of the study (Fig. 4). Compost amendment caused an 

immediate 1 to 3 log increase in NHC to 2.08 × 103, 7.33 × 104, and 1.02 × 105 CFU g−1 dry 

tailings for the 10, 15, and 20% compost treatments, respectively. A further increase of 1 to 

2 logs occurred at 12 months across all composted treatments. Thereafter, NHC did not 

change significantly in any treatment except for the 20% compost unseeded treatment which 

showed a significant 1.5 log decline from 2011 to 2013. For comparison, NHC in two off-

site samples that were collected in May 2015 averaged 2.18 × 106 g−1 dry tailings, a value 

similar to the 15 and 20% compost amended treatments and slightly higher than the 10% 

compost amended treatment (dashed line, Fig. 4).

3.5. Changes in edaphic factors

Pyrite content was measured in 8 cm depth tailings immediately following compost addition 

in all treatments and controls to estimate acid potential in the tailings. Values for pyrite 
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content ranged from 1.0 to 4.5 wt% in samples with tailings, with the variability likely due 

to heterogeneous mixing of upper and lower layers of the tailings during the ripping and 

tilling process and dilution by compost addition (Table 3). Samples collected at 41 months 

showed a notable loss of pyrite in all treatments and the control, which was attributed to 

oxidation (depleted 33% to 89%, average 61.4%). The off-site sample and compost did not 

contain pyrite.

Due to potential acid production by pyrite oxidation, pH was measured in all treatments. The 

unamended control samples had an average pH of 2.5 ± 0.1 with no significant difference 

over time (0 to 41 months). Compost amendment immediately increased the tailings pH by 

3–5 log units (Table 1). A regression analysis comparing the increase in pH to the amount of 

compost added showed a significant positive relationship (R2 = 0.959, P < 0.205). 

Subsequent yearly measurements were made at three depths, 8, 15, and 22 cm corresponding 

to the well-mixed tailings-compost zone (8 cm), the interface between the well-mixed zone 

and unamended tailings (15 cm), and unamended deeper tailings (22 cm), respectively. In 

the well-mixed zone, the pH was maintained for the first 17 months in all treatments (Fig. 

5A). Thereafter, from 17 to 41 months, there was a trend of declining pH among all 

compost-amended treatments. This decline was significant in the 10 and 15% seeded 

treatments.

There was no time zero measurement of pH at the 15 cm interface between the well-mixed 

zone (15 cm) and unamended tailings (22 cm). However, there was a trending decline in pH 

between 17 and 41 months similar to that observed at 8 cm (Fig. 5B). The decline in pH was 

significant for the 15% seeded and unseeded treatments.

Likewise, there was no time zero measurement of pH at 22 cm which is below the layer of 

compost amendment. The average pH in this zone among all compost-amended treatments 

was 2.8 ± 0.4 with no significant difference among treatments for the 41 month duration of 

the study. This average is significantly higher than the unamended control (2.5 ± 0.1) likely 

because some organic matter leached down to 22 cm.

Total organic carbon was below detection limits in the unamended tailings (Table 1). At 8 

cm, compost addition immediately increased TOC levels to between 54 and 124 g kg−1 dry 

tailings (Fig. 6A). A linear regression analysis comparing TOC to the amount of compost 

added showed a significant positive relationship (R2 = 0.869, P < 0.004). Subsequent 

measurements of TOC in 2011, 2012, and 2013 showed a downward trend in most cases but 

values were not significantly different from the initial measurement (Fig. 6A). Despite this 

downward trend, the TOC values in all of the composted treatments were significantly 

higher than TOC values in off-site soils (Table 1, Fig. 6A, dashed line).

Total organic carbon at 15 cm (interface between well-mixed zone and unamended tailings) 

averaged 28.6 ± 7.6 g kg−1 dry tailings across all time points (17, 29, and 41 months) with 

no significant differences among treatments (data not shown). TOC at the 22 cm was below 

detection limits for all compost-amended treatments.

Total nitrogen was below detection limits in unamended tailings (Table 1). At 8 cm depth, 

compost addition immediately increased TN to 5.0 to 8.6 g kg−1 dry tailings with a 
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significant positive relationship between TN and the amount of compost added (R2 = 0.95, P 

= 0.001). In 2011, TN increased by 10 to 66% in the compost-amended treatments although 

this increase was only significant for the 15% compost + seeds treatment (Fig 6B). In the 

two following years, 2012 and 2013, TN levels returned to levels similar to those measured 

in 2010. Total nitrogen values in all of the composted treatments were significantly higher 

than TOC values in off-site soils (Table 1, Fig. 6B, dashed line).

Total nitrogen at the 15 cm interface between the well-mixed zone and the unamended zone 

averaged 3.2 ± 0.9 among all the composted treatments from 2011 to 2013 with little 

variation. Total nitrogen was below detection limits at the 22 cm for all samples tested.

Unamended tailings had an EC of 8.3 ± 0.7 ms cm−1 (Table 1). Compost addition 

immediately increased the tailings EC to 17 to 27 ms cm−1 and there was a significant 

positive relationship between the amount of compost added and EC (R2 = 0.87, P = 0.0067) 

(Fig. 6C). However, this increase was transient and measurements in subsequent years 

(2011, 2012, and 2013) showed a decline to an average of 4.2 ± 0.8 among the composted 

treatments which was significantly less than the EC in the unamended control treatments. 

The EC at the 15 cm interface between the well-mixed zone and the unamended tailings 

averaged 5.9 ± 1.5 ms cm−1 and at the 22 cm averaged 5.3 ± 1.4. The EC values in all 

treatments were significantly higher than those found in off-site soils (Table 1, Fig. 6C, 

dashed line)

3.6. Principal Component Analysis

A PCA bi-plot was generated to compare the measured soil quality parameters (pH, NHC, 

TOC, TN, EC) and % canopy cover to the six treatments tested over time (Fig. 7). The first 

two axes of the PCA together explained 81.0% of the total variation. The first axis explained 

60.7% of the total variation and was positively correlated with pH, NHC (as CFU), TOC, 

and TN and % canopy cover. The second axis, which explained 20.3% of the total variation, 

was positively correlated with EC. The position of a treatment along the length of a bi-plot 

arrow indicates the relationship between the treatment and the parameter measured.

The unamended control treatment samples were tightly clustered for all years and were 

negatively correlated to all parameters measured, except EC. The 2010 samples from the 

remaining five treatments, which were collected immediately after compost addition, 

clustered together and were positively correlated with EC, pH, TOC, and TN. In subsequent 

years (2011, 2012, and 2013), these five treatments remained clustered together with a 

positive correlation to pH, NHC, TOC, TN, and % canopy cover. But the samples from 

2011, 2012, and 2013 formed a separate cluster from the 2010 samples suggesting an 

influence of plants on these treatments. The composted treatments (all years sampled) were 

not tightly clustered in comparison to the unamended control treatment samples indicating 

that there was great heterogeneity in the field after the compost was mixed into the tailings.

4.0 DISCUSSION

The IKMHSS mine tailings studied are considered a “worst case scenario”, being highly 

acidic, and saline with elevated levels of metal(loid)s. The native tailings have not supported 
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plant growth for decades. In this 41-month field trial a single application of compost with 

supplemental irrigation has supported the establishment of a stable vegetative cover that is 

similar in density to the region surrounding the IKMHSS site. Key to the success of this 

technology was the combined impact of compost as a conditioner to improve soil quality 

parameters and to provide a source of organic matter and a microbial inoculum that acted to 

disrupt the established tailings ecosystem (Mendez et al., 2007; Solís-Dominguez et al., 

2012). Two previous greenhouse studies on IKMHSS tailings supported the design of this 

field trial. The first was a 60-day pot study which showed that NHC and pH increased in 

composted and planted treatments while bioavailability of metal(loids) decreased (Solís-

Dominguez et al., 2012). The second was a 1 year mesocosm study where metal 

solubilization and acidification was reduced in the presence of healthy plants in composted 

treatments (Valentín-Vargas et al., 2014).., Both studies showed that prior to the addition of 

compost, the IKMHSS tailings are dominated by a chemolithoautotrophic sulfur- and iron-

oxidizing community that supports an ecosystem characterized by extreme acidity. Compost 

addition disrupts the established IKMHSS ecosystem by providing an inoculum of nutrient 

cycling and plant growth promoting bacteria (Pérez-de-Mora et al., 2011; Shi et al., 2011) 

which, in the present study, increased initial NHC by 1 to 3 orders of magnitude depending 

on the amount of compost added. The NHC showed a further 10-fold increase after 12 

months, a “vegetation effect” (Berg and Steinberger, 2010), which was then maintained for 

the next two years (Fig. 4). Accompanying the increase in NHC, these previous studies also 

showed an associated decrease in iron oxidizers (1.6 × 104 MPN g−1) of up to 1.5 orders of 

magnitude (Solís-Dominguez et al., 2012). It has been suggested that the addition of organic 

carbon and the concomitant increase in pH from compost addition diminishes 

chemoautotrophic sulfur oxidizer activity (Johnson and Hallberg, 2008). Additionally, redox 

micro-environments can develop where decreased fO2 drives reducing conditions, which can 

alter the stable mineral phases in the rhizosphere. Reduced micro-environments effect the 

activity and partitioning of iron and sulfur between aqueous and solid phases, and can limit 

chemoautotrophic microbial activity, e.g. ferrous iron oxidation (Johnson and Hallberg, 

2008). This shift allows for development of carbon and nitrogen cycling activities associated 

with “healthy” soil processes and diversity in the soil microbial community (Epelde et al., 

2010; Mendez et al., 2007; Zornoza et al., 2015).

4.1 Translation of greenhouse results to the field

The IKMHSS field trial design was based on successful results from previous 60-day 

greenhouse pot studies (Solís-Dominguez et al., 2012). The greenhouse results scaled 

effectively to the field for several key parameters including the amount of compost required 

and the amount of metal(loid) accumulation into shoot tissues. The fact that important 

greenhouse results scaled effectively to the field suggests that greenhouse trials are a useful 

preliminary step for this technology. Mine tailings characteristics vary quite widely from site 

to site in terms of mineralogy, pH, and metal content. As such, preliminary greenhouse trials 

that can precisely determine the minimum amount of compost or other amendments 

necessary, as well as plants that can be successfully established, would likely enhance the 

successful implementation of this technology.
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We note, however, that individual plant success was one aspect that did not translate exactly 

from the greenhouse to the field. Some plants that showed promise in the greenhouse trials 

did not successfully grow in the field. Examining greenhouse results more carefully shows 

that four of the six plants tested (buffalo grass, mesquite, quailbush, and cataclaw acacia) 

produced higher amounts of biomass (up to 14 g pot−1) in greenhouse studies while 

mountain mahogany and arizona fescue produced much lower amounts of biomass (up to 1 g 

pot−1) (Solís-Dominguez et al., 2012). In contrast, in the field, only buffalo grass and 

quailbush produced biomass that was sustained over the 3.5 years studied. The difference 

between greenhouse and field results could be due to competition among the plant species 

occurring in the field. Competition was not tested in the greenhouse studies, rather plants 

were tested individually in separate pots. The difference could also be due to a need to 

optimize seeding rates in the field, something that should be tested in future studies. A final 

difference to consider is that short term climate controlled greenhouse trials do not account 

for the effect of on-site year round seasonal climatic effects on plant germination and growth 

(e.g., large daily temperature variations, freezing autumn and winter temperatures, wind, 

daily and seasonal humidity changes, storms).

Aside from considerations of competition, the plants with better performance in the field 

(quailbush and buffalo grass) have two notable attributes that may have helped them survive. 

Buffalo grass is a C4 photosynthetic plant and quailbush is known for the ability to change 

from the C3 to C4 pathway in response to salinity and temperature (Srivastava et al., 2012; 

Zhu and Meinzer, 1999). Plants with C4 photosynthesis are common in hot and arid 

environments, with more efficient photosynthesis wherein they close their stomata to reduce 

evapotranspiration and water loss during the day (Zhu and Meinzer, 1999). Second, previous 

results have shown that buffalo grass and quailbush seedlings have the ability to alkalinize 

their environment and prevent acidification (Solís-Dominguez et al., 2012). The ability of 

quailbush to prevent acidification was also demonstrated in a 12-month mesocosm study 

(Valentín-Vargas et al., 2014). This ability may provide a competitive advantage which can 

be assessed with an easy screening test available (Solís-Dominguez et al., 2012).

4.2 Self-propagation and fertility island effects

Propagation of quailbush through blooming-seeding cycles and buffalo grass through stolon 

propagation were observed on a yearly basis in the composted and seeded plots beginning in 

2011. The ability to self-propagate resulted in the appearance of new quailbush and buffalo 

grass plants each year, often under the canopy of an established plant. In addition, the 

compost amendment combined with a robust vegetative cover maintained levels of TOC and 

TN over the period of this 41-month study that were substantially higher than in off-site 

soils. This in turn helped support of a variety of annual plants that were observed each year 

and that contributed to leaf litter development as the annuals went through senescence, 

death, and decay. One long-term goal of this project will be to determine whether plants can 

survive in the long-term, and if so, what type of ecological succession takes place. Escarré et 

al. (2011) and LeFebvre and Jacobs (2014) report that seeds from pioneer vegetation were 

better able to tolerate high concentrations of metal(loid)s and acidic pH. This is an 

interesting observation and seeds are being collected to determine whether pH or metal 

tolerance changes in subsequent generations.
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One surprising result from this study was the development of a robust plant cover in the 

composted but unseeded treatments over the 41 months of this study. The composted 

unseeded plots were established to separate the effect of compost alone and compost plus 

plants in the development of soil quality parameters during this field trial. However, even 

though care was taken to exclude seeds in unseeded plots, seeds from the planted plots either 

blew or were carried by birds or animals into the neighboring unplanted plots almost 

immediately following the initial seeding. In subsequent years seeds were further supplied to 

the unseeded plots by the yearly blooming and seeding cycles in the seeded plots. What is 

most interesting, particularly about the quailbush plants in the composted unseeded plots is 

that single plants developed a much more robust biomass than the plants in the composted 

seeded treatments (Fig. 3). These plants created fertility islands in the composted unseeded 

plots that resulted in the gradual increase in plant canopy cover over time (Alday et al., 

2014; Berg and Steinberger, 2010). This is an intriguing result that needs to be explored 

further. It suggests that in an extremely acidic site like the IKMHSS, while it may be 

necessary to provide compost over the entire area, it may not be necessary to seed the entire 

area which would result in a cost-savings. Further, in tailings that are not acidic, these results 

suggests that it would be worth exploring whether the use of spatially separated fertility 

islands (treated with compost and seeds) within a site would allow only a fraction of the site 

to be reclaimed with the expectation that the fertility islands would gradually spread out to 

encompass reclamation of the entire site (Alday et al., 2014; Santini and Fey, 2013).

4.3 The relationship between pyrite content and pH

Implementation of the field study at IKMHSS imposed an immediate disequilibrium in the 

tailings, which had been relatively undisturbed for ca. 50 years, in two ways: 1) through the 

addition of organic matter, seeds and irrigation, and 2) through the mixing of the top ca. 25 

cm layer which varied in pyrite content due to the propagation of the oxidation front. Earlier 

work has quantified this variation showing that the upper 15 cm layer of undisturbed tailings 

have a lower pyrite content (1.4 to 2 wt%) than tailings below 15 cm (> 10 wt%) (Hayes et 

al., 2014). Following these perturbations, all treatments as well as the unamended control 

showed a decrease in pyrite after 41 months suggesting that acid generation was occurring 

according to the equation:

Results indicate that the compost, and possibly plant root exudates, buffered acid generated 

by pyrite oxidation to a large extent. The 20% compost treatments buffered the pH most 

effectively with no significant decrease during the 41 months examined. The 20% compost 

seeded plot showed a pyrite oxidation from 3.5% to 0.4% from 2010 to 2013, 89% decrease 

in pyrite. While the 20% compost without seeds showed just 33% decrease in pyrite. This 

suggests a plant effect that needs to be further examined, but the effect of compost and 

plants could not be separated in this experiment. However, we have shown previously that 

the plants used in this study are capable of stabilizing pH through alkalinization of the 

rhizosphere (Solís-Dominguez et al., 2012). The lower compost applications (10% and 15%) 

showed significant decrease in pH as the proton consumption capacity of the compost was 
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consumed by acid generation from pyrite oxidation, with final pH of about 3 and 4, 

respectively. These results further suggest that a combination of lime and compost in tailings 

could prevent acidification of the tailings, and future experiments should include lime 

amendments (Chaney et al., 2014).

5.0 Conclusions

This field trial demonstrates that direct planting using compost-assisted phytostabilization 

technology can be used to establish plants in a highly acidic metalliferous mine tailings and 

that greenhouse results can guide successful translation of this technology to the field. Direct 

planting as a remediation strategy for mine tailings is of interest because the more 

commonly used soil cap and plant technology requires larger amounts of resources to create 

the cap. Such resources can be difficult and costly to obtain, and in some instances, result in 

removal of vegetation and top soil from adjacent undisturbed areas. Finally, results suggest 

that easily measured soil quality parameters, such as pH, NHC, TOC, TN, and EC can 

provide information on the progression of the phytostabilization process and the transition of 

tailings materials into a substrate that can successfully support plant growth.
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Highlights

• Cap and plant is the current costly standard for mine tailings reclamation

• We assessed direct planting for remediation of acidic metalliferous mine

tailings

• 60-day greenhouse pot studies translated successfully to this 41-month field

trial

• A single compost application supported plant establishment and soil

development

• Direct planting with compost addition is a viable alternative technology for

treatment of mine tailings
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Figure 1. 
(A) An aerial view of the IKMHSS tailings. The black square delineates the study area. The

inset shows the location of the IKMHSS site (black diamond) in Yavapai County

(highlighted in red), AZ. (B) a map of the 24 plots (9.6 m × 15 m per plot) showing the

location of all treatments and replicates. Numbers indicate treatment: (1) unamended

control; (2) 10% compost – seeded with buffalo grass (BG) and mesquite (MQ); (3) 15%

compost – unseeded; (4) 20% compost – unseeded; (5) 15% compost – seeded; (6) 20%

compost –seeded.
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Figure 2. 
Effect of 10, 15, and 20% compost amendment on canopy cover (average + 1 standard 

deviation, n = 4) at 5, 17, 29, and 41 months No plants grew in the unamended tailings 

control. The dashed line denotes the average canopy cover in the immediate surrounding 

area (34°29′54.90″N; 112°15′15.18″W). A one-way ANOVA was performed for each 

treatment. Means identified with different letters are significantly different by year (p < 0.05; 

Post-Hoc Tukey-Kramer test, n = 4). C = compost, BG = buffalo grass, and MQ = Mesquite.
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Figure 3. 
A comparison of quailbush plants in the 20% compost seeded treatment (A) 2010; (B) 2012 

and the 20% compost unseeded treatment in (C) 2010; (D) 2012.
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Figure 4. 
Effect of treatment on NHC expressed as log CFU g−1 dry tailings (average ± 1 standard 

deviation in parentheses, n = 4). The dashed line denotes 6.84±0.2 as the average NHC in 

soil samples collected from two off-site areas (34°30′44.90″N; 112°15′38.37″W and 

34°30′49.48″N; 112°15′34.04″W). A one-way ANOVA was performed for each treatment. 

Means identified with different letters are significantly different by year (p < 0.05; Post-Hoc 

Tukey-Kramer test, n = 4). C = compost, BG = buffalo grass, and MQ = Mesquite.
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Figure 5. 
Effect of treatment on pH at (A) 8 cm (well-mixed phase) and (B) 15 cm (interface between 

the well-mixed phase and the unamended tailings). Values presented are the average ± 1 

standard deviation in parentheses, n = 4). The dashed line denotes the average pH in soil 

samples collected from two off-site areas (34°30′44.90″N; 112°15′38.37″W and 

34°30′49.48″N; 112°15′34.04″W). A one-way ANOVA was performed for each treatment. 

Means identified with different letters are significantly different by year (p < 0.05; Post-Hoc 

Tukey-Kramer test, n = 4). C = compost, BG = buffalo grass, and MQ = Mesquite.
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Figure 6. 
Effect of treatment on (A) TOC; (B) TN; and (C) EC at 8 cm (average ± 1 standard deviation 

in parentheses, n = 4). The dashed line denotes the average (A) TOC; (B) TN; and (C) EC in 

soil samples collected from two off-site areas (34°30′44.90″N; 112°15′38.37″W and 

34°30′49.48″N; 112°15′34.04″W). A one-way ANOVA was performed for each treatment. 

Means identified with different letters are significantly different by year (p < 0.05; Post-Hoc 

Tukey-Kramer test, n = 4). C = compost, BG = buffalo grass, and MQ = Mesquite.
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Figure 7. 
PCA comparing measured parameters (pH, NHC, TOC, TN, EC, and % canopy cover) in the 

six treatments over time. Arrows represent the relationship (direction and strength) of each 

measured parameter with the treatments. Please refer to the electronic version for 

clarification of colors.
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Table 4

Irrigation and rainfall at the IKMHSS field site from 2010 to 2013.

Time Period (months) Dates Irrigation applied (mm) Precipitation (mm) Total (mm)

5 5/2010 – 10/2010 378 238 626

12 11/2010 – 10/2011 365 261 626

12 11/2011 – 10/2012 322 401 724

12 11/2012 – 10/2013 387 83 470
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