
AN AFFINE BASED HOMOMORPHIC ENCRYPTION SCHEME

An Undergraduate Research Scholars Thesis

by

KYLE LOYKA

Submitted to the Undergraduate Research Scholars program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Sunil Khatri

May 2017

Major: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/222806349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGMENTS .. 2

CHAPTER

I. INTRODUCTION .. 3

Previous Work ... 5
Importance .. 6

II. METHODS ... 7

ASCII Text Encoding ... 7
Affine Cipher .. 7
Encrypting Strings .. 9
Decrypting Strings .. 11
Encrypted String Search ... 12
Arithmetic ... 14

III. RESULTS ... 19

Strings – Varied 𝛼	 .. 19
Strings – Varied 𝛽	 .. 20
Strings – Varied 𝜌	 .. 21
Strings – Varied K	 .. 22
Integers – Varied number of operations on an encrypted integer 24
Integers – Varied 𝜌 ... 25
Integers – Varied number of digits in unencrypted number integer 25

IV. CONCLUSION .. 27

Future Development ... 27

REFERENCES ... 29

1

ABSTRACT

An Affine Based Homomorphic Encryption Scheme

Kyle Loyka

Department of Electrical and Computer Engineering
Texas A&M University

Research Advisor: Dr. Sunil Khatri
Department of Electrical and Computer Engineering

Texas A&M University

Standard encryption protocols do not allow for native searching or modification of data,

without decryption. In this scenario, whoever is performing the operations on this file must also

have the encryption key. Homomorphic encryption aims to solve this problem. Using

homomorphic encryption, an encrypted file could be searched or modified without having to

decrypt it, while still preserving the privacy of the file. This feature would allow users to

outsource their processing needs to third parties, while still retaining information secrecy. These

third parties would be able to perform operations on behalf of the user without attributing

meaning to the user’s input and output values.

The homomorphic encryption model proposed in this paper works with plain text files by

representing characters using the ASCII encoding scheme. These characters will be encrypted

using an affine cipher. This scheme supports string search and concatenation, and integer

addition and subtraction operations.

2

ACKNOWLEDGEMENTS

I would like to thank Dr. Sunil Khatri for his guidance in my research and in my career.

I would also like to thank my parents and brother for their support.

3

CHAPTER I

INTRODUCTION

With the rapid adoption of computers, the amount of information stored digitally is

continuously rising. Individuals and corporations have more incentive than ever to protect their

data. Encryption serves an important role in ensuring that only authorized users can access

certain data. Encryption allows users to obfuscate the content of their files by encrypting them

with a unique encryption key. Without access to the keys, the content of the user’s encrypted

files appears to be random and cannot be understood. Only with access to the unique encryption

keys can the files be decrypted and readable. Modern encryption protocols have limitations that

affect the ease to which encrypted files can be accessed or modified. This problem becomes

significant when considering the use of cloud storage. If a user (who has access to the encryption

key) wanted to modify their encrypted file that is stored in the cloud, they would have to

download their encrypted file, decrypt it, make modifications to the decrypted (unencrypted) file,

encrypt the modified file, and upload the encrypted modified file to the cloud. Figure 1 shows

this process visually. This process is inefficient, since most of the time and computation is spent

on downloading, decrypting, encrypting, and uploading. A disproportionate amount of time is

spent accomplishing the user’s task, which is to modify the data in unencrypted file.

Additionally, the number of steps in this process decreases its ease of use for the user. The

problem with modern encryption is that it is not fast or easy to modify the data in encrypted files

(assuming the user has access to the encryption keys). Homomorphic encryption aims to solve

this problem.

4

Figure 1. Modifying an encrypted file stored in the cloud using current encryption technologies. This process is inconvenient to
the user since they must download and decrypt each file that they wish to modify. The changed files must then be re-encrypted
and uploaded to the cloud.

Using homomorphic encryption, an encrypted file could have its contents modified

without decrypting the file. Figure 2 shows how a homomorphic encryption scheme could be

used to modify data stored in an encrypted file in the cloud.

Figure 2. A homomorphic encryption scheme with cloud computing. Modifications to a file are processed on the user’s computer,
encrypted, and sent to the cloud. Once in the cloud, the encrypted data can be modified. The cloud service cannot derive meaning
from any of the encrypted data. The cloud knows that a modification was made, but does not know the contents of the original or
modified files.

Using this scheme, the user can generate a query to send to the server. This query

contains an encrypted piece of data and instructions on what to do with it. For example, one of

5

the possible instructions could be to modify a file in the cloud based on the given encrypted

piece of data. Once the cloud receives this query, the modification operation can be performed

on an encrypted file using the given encrypted piece of data. The result of this operation would

produce a new encrypted file. When this file is decrypted, it would contain the unencrypted

version of the modifications that the user requested. It is important to note that since the file and

changes to the file were encrypted, no one except for the user would have access to the original

file, file changes, or modified files. This scheme provides an opaque interface through which the

cloud can operate on data at the request of the user, without deriving any meaning from the data

it handles.

Previous Work

In 1978, the researchers Rivest, Adleman, and Dertouzos published a concept paper

formalizing the idea of homomorphic encryption [7]. That same year, Rivest, Shamir, and

Adleman published the RSA encryption scheme specifications [8]. One of the incidental

properties of RSA was that it was partially homomorphic, with respect to multiplications [8, 10].

However, no other operations were homomorphic. Then, in 2009, Craig Gentry published his

thesis describing his design the first fully homomorphic encryption scheme [2, 3]. While it was

functional, the scheme was trillions of times slower than unencrypted operations [4, 9]. Since

then, companies such as IBM and Microsoft have developed their own homomorphic schemes,

which have made improvements on the time it takes to compute encrypted operations [5, 11].

Despite these improvements, these schemes are still billions of times slower than unencrypted

operations.

6

In our approach to homomorphic encryption, we rely on the affine cipher to provide

cryptographic security [6]. The strength of the affine cipher can be increased by extending the

input and output range and grouping data into packets to provide more entropy [12]. The goal of

our research is to adapt the affine cipher to be homomorphic, that is, to support string searches

and concentrations, and integer addition and subtractions.

Importance

The combination of homomorphic encryption and cloud data storage would provide

massive value to consumer and enterprise users [1]. Using homomorphic encryption, a user

could upload their files to Dropbox and make changes to these files in the cloud with total

information secrecy. Users could keep all their files stored in the cloud, where they could have

access or modify them from anywhere, and still protect the content of their files. This feature

may also be attractive to businesses who want to keep their data secure, but also want to

outsource their IT needs. A business using homomorphic encryption could keep sensitive

financial information stored in the cloud, reducing IT costs, while still preserving information

secrecy and the ease of access that employees are used to (with no special or added steps to

modify their data). Another possible benefit from homomorphic computing is the privacy of

internet searches (e.g. Google search). A user could encrypt their search query and receive a

result from Google. Through this process, Google would not know what the user searched for

and would not know what the search returned. However, the user, who has access to the

encryption key, can decrypt the search results and derive meaning from them. Users may find

benefit in this scheme since their searches remain private.

7

CHAPTER II

METHODS

This homomorphic encryption scheme is based on ASCII text encoding and the affine

cipher function. Together, they allow for the searching and concatenation of encrypted text files,

as well as addition and subtraction operations on encrypted integers. This approach treats strings

the same way as integers which makes encrypted string data indistinguishable from encrypted

integer data. These features will be expanded in the following sections.

ASCII Text Encoding

The ASCII text encoding scheme is a popular way to represent text characters on

computer systems. In this scheme, 256 text-characters are each represented by a unique number

code. For example, an ASCII encoded text document is stored as a file containing a sequence of

ASCII codes. When a user views the text document, each ASCII code is converted into its

corresponding character and displayed on the screen. Since there are 256 possible ASCII

characters/codes, and each is unique, every ASCII character can be stored in a unique 8-bit (1

byte) sequence.

Affine Cipher

The other part of this implementation includes the affine cipher, which is based on

modular arithmetic. Modular arithmetic is a type of math that deals with the remainders from the

division of numbers. Part of modular arithmetic, and a key feature in the affine cipher, is the

operation of modular reduction. This operation is denoted by using the mod symbol. The number

8

to the right of mod is known as the modulus. When performing modular reduction, the input (the

number to the left of mod) is divided by the modulus. The remainder of this division is the result

for the modular reduction operation. The principles of division show that the remainder, and

therefore the result of a modular reduction, can range from [0, modulus - 1], for a given modulus.

Any integer input can be modularly reduced, but its output will be bounded within this range.

The affine cipher is used to encrypt integer values, and in this implementation, will be

used to encrypt ASCII character integer representations. Equation 1 shows a generic affine

cipher encryption equation.

Equation 1 – Affine Cipher Encryption: 𝜀 = (𝛼 𝜆 + 𝛽) % 𝜌

This equation transforms the input, 𝜆, according to the values of 𝛼, 𝛽, and 𝜌. For this

scheme, the values of 𝛼, 𝛽, and 𝜌 are considered the encryption key. The integer input, 𝜆, is

multiplied by 𝛼 and then has 𝛽 added to it. This value is then modularly reduced by 𝜌. In the

affine equation, 𝜌 is the modulus since it appears to the right of the mod operator. The resulting

number represents the encrypted version of 𝜆, which is denoted by the term 𝜀. It is important to

note that for the affine cipher, gcd (𝛼, 𝜌) must equal 1. This is due to the properties of modular

reduction and to ensure that every input results in a unique output. If this condition is not met, it

is possible that the output may not be unique. The encrypted output can be decrypted by using

the inverse of Equation 1. Equation 2 shows the inverse of Equation 1. This inverse is also

known as the affine cipher decryption equation.

Equation 2 – Affine Cipher Decryption: 𝜆 = (𝛼-1(𝜀 – 𝛽)) % 𝜌

9

To decrypt, take the encrypted value, 𝜀, and subtract 𝛽. Then, multiply the result by the

modular-inverse of 𝛼, 𝛼-1 (by definition, the modular inverse, 𝛼-1, is the value which satisfies

the equation (𝛼 𝛼-1) ≡ 1 𝑚𝑜𝑑 𝜌). Finally, take this value and modularly reduce it by 𝜌. The result

will be equal to 𝜆.

From inspection, the affine cipher appears to be a linear equation. However, this is not

quite the case. The affine cipher would behave similarly to a linear equation if it weren’t for the

mod 𝜌. As discussed previously, the size of the modulus determines the number of unique

outputs. In this case, the mod 𝜌 operation limits the number of unique outputs to 𝜌 possible

values. Since the affine cipher is based on a linear equation, this means there can be only 𝜌

possible input values that each result in a unique output value. It is important to preserve

uniqueness in inputs and outputs. Otherwise, if two inputs gave the same output, there would be

no way to determine which input was intended. This effectively limits the number of unique

inputs and outputs of the affine cipher to 𝜌 possible values, ranging from [0, 𝜌 -1].

In our implementation, encrypted data is stored in a data structure that contains two

members: a list of integers (for representing encrypted data), and a counter (for counting the

number of arithmetic operations that were performed on the data). The steps for handling string

and integer data, as well as why this data structure is needed, will be described in the following

sections.

Encrypting Strings

By using the ASCII encoding scheme to represent text characters as integers, text

characters can be encrypted using the affine cipher. For each character in a text file, the

10

character’s ASCII number code would be inputted into the affine cipher. This results in an

encrypted number, which is then appended to a new encrypted file. Once the entire text file has

been traversed, this new encrypted file would represent the encrypted version of the original text

file. It should also be noted that instead of writing these outputs directly to a file, the encrypted

numbers may be stored in computer memory as a list of integers. The list datatype makes it very

simple to concatenate encrypted strings. To concatenate two encrypted strings, append the list of

one encrypted string onto the end of the other encrypted string. The resulting list represents the

encrypted version of the concatenation of the two strings.

Since there are 256 ASCII characters, there are only 256 possible inputs to the affine

cipher, and therefore the modulus, 𝜌, must equal 256. To increase the security of the encryption

scheme, the input and output range could be increased. By increasing 𝜌, the affine cipher would

then have a larger range of unique input and output values. To utilize the larger input space, the

number of characters encrypted at a time could be increased. Instead of encrypting one character

at a time (which results in 256 input values), a user could encrypt two characters at a time. By

encrypting two characters at a time, the input and output range grows to 2562 unique values

(individually, for both inputs and outputs). In general, when encrypting K characters at a time,

the affine cipher has 256K
unique input and output values (for each). This means that the

modulus, ρ, must be equal to 256K, where K, is the number of characters encrypted at a time.

Increasing the input and output ranges substantially increases the number of ways in which data

can be encrypted, thus making the scheme more secure.

To encrypt K characters at a time, first, K characters are read from the original (plain text)

file. Then for each of the K characters, their ASCII encodings are looked-up and converted to an

8-bit binary string. This results in K (8-bit) binary strings. These binary strings are then placed

11

and joined together based on the order in which their corresponding characters were read from

the plain text file. This results in a single 8*K bit binary string. This binary string is then cast

back to an integer, which is unique for this series of K ASCII characters. This number is then

encrypted using the affine cipher. Setting ρ=256K will guarantee unique outputs for every input.

The output of the affine cipher can then be saved in a list of integers or in a file. The next K

characters would be read from the plain text file, and this process would be repeated. In the case

where the plaintext is not fully divisible by K (the last few characters of a file may not fill an

entire K sized block), extra space characters will be appended to the end of the file so that a full

K sized block can be formed.

With K=1, our scheme is susceptible to frequency analysis attacks. An attacker could

analyze the frequency in which certain encrypted values occur within an encrypted file, and

correlate this to the frequency in which characters appear in the English language (or other

language). This gives the attacker useful information in determining the unencrypted meaning of

an encrypted value. By grouping K>1 characters together, the frequency analysis is more

ambiguous since there are more possible inputs and outputs. This does not fully mitigate the

threat, but does make the attack more difficult.

Decrypting Strings

The decryption process follows the reversed sequence of steps from the encryption

process. First, the encrypted value, 𝜀, is loaded from the encrypted file or encrypted list. It is

decrypted according to Equation 2. The resulting integer value is cast into an 8*K bit binary

string. This binary string is then split into K 8-bit blocks. Each 8-bits is cast into an ASCII value

and appended to a new unencrypted file (or list) based on the order in which they appeared in the

12

8*K bit binary string. The next index from the encrypted file is loaded and this process is

repeated. This process continues until every element in the encrypted file has been decrypted.

Encrypted String Search

This homomorphic implementation supports search operations on strings. To search for

text in an affine encrypted file, the user must encrypt the string they would like to search for (this

will be denoted as the query-string). It is important that the query-string must be encrypted using

the same parameters (K, 𝛼, 𝛽, and 𝜌 values) that were used to encrypt the file they would like to

search. The result of this encrypted query-string would be stored in memory as a list of integers.

Since the encrypted file is a list of integers, it is searched by trying to find a sub-list within it that

matches the list of the encrypted query-string. If the list of the encrypted query-string exists

within the encrypted file, then it is known that the query-string exists within the unencrypted file.

The location where the encrypted query-string’s sub-list starts (in the encrypted file) is then

returned to the user. This process is straightforward for the case of K = 1. In cases where K> 1,

the search process becomes more complex. As K, the number of characters grouped in one

encrypted block, increases, the possible ways in which a substring can be encrypted also

increases. See Figure 3 for an example of how many possible ways the string “HELLO” may be

encrypted with K=3.

Since the file was encrypted in K-character blocks, it is possible that the search query

exists but is offset by some amount of characters in the encrypted file. This means that there is a

possibility that the search string doesn’t fit perfectly into K-character chunks. In this case,

leading or trailing characters of the search string may be encrypted in blocks with other unknown

characters. To mitigate this issue, all possible offset combinations of the query-string are

13

generated. Then, for a possible query, the algorithm encrypts the blocks with known values (the

blocks with no stars in them) and stores their values in a list. If the list of known encrypted-block

values match within the encrypted file/list, the index location of the match (in the encrypted file)

is stored. If no match is found, the search moves on to the next possible query. If there are no

remaining queries, the search would fail, and the user would be notified that no matches were

found. If this first search did find a match, then the searching process continues. For the blocks

Figure 3. Variations in forming search queries. Assuming the string "HELLO" exists within an encrypted file, it is encrypted as
one of the three combinations above. To fully search the file, each of these search combinations must be utilized (or until a match
is found). Some of the search queries have character groupings in which one or more of the characters is unknown. Unknown
characters are represented with the star symbol. For these cases, the K-block must be brute-forced.

with a star, block combinations are generated where the star is replaced with every ASCII

character. In the case of two or more stars in one block, each star is varied independently. These

14

combinations are encrypted and compared to the index in the encrypted file (+/- some amount).

This index is chosen based on the index found in the known-block search. If the star block is the

beginning block of a query, then the index-1 is compared with all possible star block

combinations. If a match is found and there are no other star blocks to search, then the search

was successful and the user is notified of the encrypted-string’s location in the encrypted file. If

no match is found, then the program will attempt to search for the next possible query (if there is

one). If no more possible queries exist, then the search will notify the user of no match. If a

match is found and another star block needs to be searched, such as a trailing star block (see

Figure 3: Possible query #3), then all possible combinations for that block are generated. These

combinations are then encrypted and compared to the value stored at the encrypted file’s index

with an offset value based on the number of the known encrypted K-blocks. If a match is found,

then the user is notified of the encrypted string’s location in the encrypted file. If no match is

found, then the next possible search query is attempted. If no other possible queries are left to

attempt, then the user will be notified that the query-string was not found.

Arithmetic

One of the key principles of this encryption scheme is that integer data and string data are

treated the same way. To encrypt an integer, it is first cast into a string. The string can be padded

with leading “0” characters to increase its length, which, when encrypted, will obscure the

magnitude (number of digits) in the integer. These padded “0”’s do not affect the unencrypted

value of the object. The string is then encrypted using the same process as described the section

“Encrypting Strings”.

To support arithmetic, a special data structure is needed. As described previously, this

15

data structure contains two members: a list of numbers (representing the encrypted string) and

counter variable. This structure is used to represent both text data and number data. The counter

is necessary when decrypting data that are the results of encrypted addition or encrypted

subtraction. This is because, when adding affine encrypted values, the number of 𝛽 terms

increments with each addition. For subtraction, the number of 𝛽 values decreases with each

subtraction operation (there can be negative multiples of 𝛽 values). By keeping track of the

number of additions and subtractions, the extra 𝛽 values can be accounted for in the decryption

process. The counter is initially set to zero and is incremented for every addition and

decremented for every subtraction. The counter is also useful for interpreting the unencrypted

output.

Due to the way digits (“0”, “1”, “2”, ..., “9”) are encoded in ASCII, the value of an

integer can be determined by subtracting 48 from any ASCII encoded numeric character. For

example, since “1” is encoded as 49, the ASCI encoded value can have 48 subtracted from it to

determine that 49 represents (49-48=1), the integer 1. When adding or subtracting two ASCII

values, this ASCII offset value accumulates in the same way as 𝛽. When decrypting, the

accumulation of 48’s can be removed to reveal the integer result of addition or subtraction. If the

resulting integer is greater than nine, any digits in the tens, hundreds, thousands (etc.) places act

as carry values when interpreting the decrypted value. The maximum unencrypted representation

for each element is limited by 𝜌. Specifically, the highest value for each element

(that has been decrypted) is (ρ/2 -1), and the lowest is (– ρ/2). If the value of an element exceeds

(ρ/2 –1) then its value “rolls-over” into the negative interpretation. If the value of an element is

less than (– ρ/2), then it’s value “rolls-under” into the positive interpretation. This behavior is

based on the behavior of bitwise one’s compliment.

16

To add two encrypted objects, first the length of each list is compared. If the lengths do

not match, an addition cannot be performed. This means that if a user wanted to add “1” + “100”,

they would have to encrypt these values as “001” and “100” respectively so that their string

lengths matched. This is done due to constraints on the counter value and the decryption process.

If the lengths were not equal, it would be possible that during an operation, that some elements in

the list would have more 𝛽 accumulations than others. Requiring equal lengths ensures that for

each operation, each element in the list has the same number of 𝛽 values. Additionally, by

keeping operations restricted to lists of the same length, it is more difficult to discern the

magnitude of an encrypted number based solely on its length. For example, “0001” has zeros

padding the number, this obscures the magnitude of the number when observing the length of the

encrypted string. After both lists are verified to have the same length, the next step in the

addition process is to add the corresponding elements of each list. The results are stored in a new

list. The counters for each list are added together and incremented by one. The result of the list

and counter additions are stored in a new data structure. Figure 4 illustrates this process.

Subtraction works in a similar way as addition, except that the corresponding elements of each

list are subtracted and the counter values are subtracted and decremented by one.

Addition and subtraction are only supported for K=1 due to a limitation of the encryption

process and the ASCII encoding scheme. With K>1, K characters are grouped at a time, and their

bit representations are concatenated to form an 8*K bit binary string. The problem arises from

how the ASCII values for the characters “0” through “9” are represented. Take for example, how

ASCII “9” is encoded as 57. If you were to add the ASCII representation of “9”, 57, four times,

(57+57+57+57= 228), the resulting value can be represented in eight bits. But if the ASCII

representation of “9” was added five times (57+57+57+57+57 = 285), the resulting value would

17

Figure 4. Addition of two encrypted objects. The corresponding elements of each list are added together and stored in a new list.
The corresponding counter values are added together and incremented by one.

overflow in an 8-bit representation. In this case, when considering how each character’s bits are

concatenated with its neighbors’ bits, the overflown bit would get carried to the next character’s

allocation of bits. For subtraction, subtracting the ASCII value of “9” from the ASCII value of

“0” (48-57=-9) would result in the bits under-flowing, which also affects the bits of its

neighbors. This alters the integrity of the data in a way that is not recoverable. This issue also

occurs in the encrypted space (with encrypted integers), and cannot be mitigated without

sacrificing access to the encryption keys. If the cloud had access to the encryption keys, they

could know which 8-bit boundaries to watch for carries, and could make note to help in

decrypting and encoding the data. However, this sacrifices access to the encryption key, which

defeats the purpose of this homomorphic encryption scheme. This issue could also be mitigated

18

by casting ASCII values into 16 bits (which would leave an extra 8 bits for padding and

overflow), but ultimately, the number of operations would still be limited. K=1 works for

arithmetic since the character’s bits are not concatenated with anything else. Every element in

the list represents only one character value, and therefore all the bits in that element are known to

represent a single character. An overflow or underflow does not disrupt other encrypted

neighbors, since each element in the list is independent of the elements surrounding it. In the

case of overflow, the carry digit is appended to the front of the bit representation and the size of

the element container grows to contain it.

Note that it would be possible to add two non-numeric ASCII characters together. A user

could encrypt “q” and encrypt “r” and tell the computer to add the two encrypted values. It

would yield a result that would be indistinguishable from an encrypted integer result. Of course,

when decrypting, the result would be garbage data. This is feature is beneficial though, because a

user could tell the cloud to add two encrypted integers together or two encrypted characters

together, but the cloud would not be able to tell between what was garbage and what was a

meaningful addition/subtraction operation, providing a level of obscurity.

19

CHAPTER III

RESULTS

In this section, the results of our homomorphic implementation will be discussed. The

code was written in the Python (2.7) programming language and tested on a system running

macOS 10.12 with a 2.7GHz Intel i7 processor and 16GB RAM. Data was collected for the

tables by running each test case ten times. The results for each case were then averaged and

consolidated into tables based on the parameters that were varied.

Strings – Varied 𝜶 

Table 1 shows the results of an experiment where the value of 𝛼 was varied and all other

parameters (K, 𝛽, and 𝜌) were held constant. These results demonstrate how varying 𝛼 has

negligible influence on the encryption scheme’s performance. Through significant variations in

𝛼, there was no significant changes to encryption time, decryption time, encrypted file size, or

encrypted search times. This behavior is expected since 𝛼 acts as a multiplier in the affine cipher,

but the cipher’s output is limited in range by the mod 𝜌 operation. The fixed 𝜌 constrains the

output values to a fixed range. Therefore, the output (encrypted) file size does not change. The

encrypted file size is larger than the unencrypted file size. This is due to the (fixed) value of 𝜌,

will be explained in the section “Strings – Varied 𝜌”.

20

Table 1: Strings – Varying 𝛼 with fixed (K, 𝛽, and 𝜌)

K 𝛼 𝛽 𝜌 Enc. Time
(ms)

Dec.
Time
(ms)

Unenc.
File
Sz.

(MB)

Enc.
File
Sz.

(MB)

Enc /
Unenc.

File
Sz.

Enc.
Search
Time
(ms)

Unenc.
Search
Time
(ms)

1 1 71041 2^64 3517.713 5055.423 1.24 9.91 7.99 607.731 24.864

1 3 71041 2^64 3532.508 4971.240 1.24 9.91 7.99 603.580 24.219

1 199 71041 2^64 3509.908 5021.792 1.24 9.91 7.99 608.542 24.670

1 71041 71041 2^64 3519.551 5030.228 1.24 9.91 7.99 607.196 24.338

1 230917123411231 71041 2^64 3539.511 5064.104 1.24 9.91 7.99 605.245 24.177

1 12302342342342341231 71041 2^64 3511.854 5092.807 1.24 9.91 7.99 606.697 24.744

Strings – Varied 𝜷 

Table 2 shows the results of an experiment where the value of 𝛽 was varied while

keeping all other parameters (K, 𝛼, and 𝜌) constant. These results demonstrate how variations in

𝛽 do not significantly affect the performance of the encryption scheme. This behavior is

expected since the affine cipher’s output range is limited by the mod 𝜌 operation, which limits

the range of output integers, and therefore limits the size of the file.

Table 2: Strings – Varying 𝛽 with fixed (K, 𝛼, and 𝜌)

K 𝛼 𝛽 𝜌
Enc.
Time
(ms)

Dec.
Time
(ms)

Unenc
File
Sz.

(MB)

Enc.
File
Sz.

(MB)

Enc. /
Unenc

File
Sz.

Enc.
Search
Time
(ms)

Unenc
Search
Time
(ms)

1 12302342342342341231 1 2^64 3517.713 5055.423 1.24 9.91 7.99 607.731 24.864

1 12302342342342341231 3 2^64 3532.508 4971.240 1.24 9.91 7.99 603.580 24.219

1 12302342342342341231 199 2^64 3509.908 5021.792 1.24 9.91 7.99 608.542 24.670

1 12302342342342341231 71041 2^64 3519.551 5030.228 1.24 9.91 7.99 607.196 24.338

1 12302342342342341231 230917123411231 2^64 3539.511 5064.104 1.24 9.91 7.99 605.245 24.177

1 12302342342342341231 12302342342342341231 2^64 3511.854 5092.807 1.24 9.91 7.99 606.697 24.744

21

Strings – Varied 𝝆 

Table 3 shows the results of an experiment where the value of 𝜌 was varied. As 𝜌

increased, the range of possible output values also increased. Since K=1, this meant that as 𝜌

increased, the size of the representation of a single character also increased. This affected the

encrypted file size. Since an ASCII character can be represented in 8-bits, the case where 𝜌=28

means that every output of the affine cipher could be represented in 8-bits. This is the same size

as an unencrypted ASCII value, therefore each encrypted value was the same size as an

unencrypted value. With this principle applied to every encrypted character, this meant that for

𝜌=28, the encrypted file size was the same as the unencrypted file size. The case where 𝜌=216

means that the encrypted character is now represented in 16 bits. Since K=1, this means that an

8-bit ASCII value was now represented in 16-bits. This results in the doubling of the size of each

character representation. This change propagates through the entire encrypted file, causing the

encrypted file size to be two times as large as the unencrypted file. In the case where 𝜌=232, each

ASCII character is encrypted and represented as 32-bits, which is four times as large as a

standard ASCII character representation. In this case, the encrypted file size was four times the

size of the unencrypted file. This pattern continued for all variations of 𝜌. Since K=1, each

element in the encrypted list represented one character, so the length of the list remained

constant. Search time is proportional to the length of the encrypted list, therefore search times for

encrypted files did not vary meaningfully.

22

Table 3: Strings – Varying 𝜌 with fixed (K, 𝛼, and 𝛽)

K 𝛼 𝛽 𝜌
Enc.
Time
(ms)

Dec.
Time
(ms)

Unenc.
File
Sz.

(MB)

Enc.
File
Sz.

(MB)

Enc. /
Unenc.

File
Sz.

Enc.
Search
Time
(ms)

Unenc.
Search
Time
(ms)

1 12302342342342341231 71041 2^8 3567.828 5117.220 1.24 1.24 1.00 608.065 24.161

1 12302342342342341231 71041 2^16 3545.013 5121.104 1.24 2.48 2.00 608.289 25.328

1 12302342342342341231 71041 2^32 3635.781 5069.406 1.24 4.96 4.00 610.958 24.689

1 12302342342342341231 71041 2^64 3534.376 5084.582 1.24 9.91 7.99 612.763 24.496

1 12302342342342341231 71041 2^128 3437.900 5144.918 1.24 19.83 15.99 604.506 24.210

Strings – Varied K

Table 4 displays the results for an experiment where the value of K was varied. This table

shows how varying K influences encryption time, decryption time, file size, and search time. K is

the number of characters grouped in one encrypted element of the encrypted list. As K increased,

the time to encrypt and decrypt the file decreased. This is because less affine cipher calculations

must be performed as more characters are grouped together. From these results, it is shown that it

is faster to concatenate the bits of K characters and encrypt the block, rather than to encrypt each

character individually. For the first 8 trials in the table, 𝜌 was fixed at 264. This meant that each

element in the list was represented by a 64-bit number. With K=1, this meant that one character

was represented by a single 64-bit number. With K=2, this meant that two characters were

represented in a single 64-bit number. This process of increasing K continued until K=8, the

maximum K value for 𝜌=264. When K=8, and 𝜌=264, 8 ASCII characters where represented in 64

bits. This is a full usage of the 64 bits (8 characters * 8-bits), which resulted in an encrypted file

size that was equal to the unencrypted file size. As K increased (for a fixed 𝜌), the size of the

encrypted file decreased until it approached the size of the unencrypted file. In general, the most

spatially optimal configuration is when all the bits in an encrypted element are used to represent

23

ASCII characters. When all bits in the encrypted element are used to represent ASCII characters,

the encrypted file size is the same as the unencrypted file size. It can also be noted how when

K=8 and 𝜌=2128, the encrypted file size increased from the previous trial, this is because with a

128-bit representation, only 64-bits (8*(8-bit)) were utilized to store ASCII values. The search

time increased as K increased, this is due to the phenomenon shown in Figure 3, which is that as

K increases, there are more possible variations of the encryption of a substring that may exist

within the encrypted files. More of these combinations must be searched as K increases, which is

computationally intensive. For the cases where K=12 and K=16, the search timed-out after ten

seconds of searching. Three trials were also done using 𝜌 =2128 and K=8,12,16 to show that the

implementation does scale to arbitrary values, the trends of decreasing encryption/decryption

time, and search time continue, and that the principle of optimized spatial use still holds.

Table 4: Strings – Varying K and 𝜌 with fixed (𝛼 and 𝛽)

K 𝛼 𝛽 𝜌
Enc.
Time
(ms)

Dec.
Time
(ms)

Unenc.
File
Sz.

(MB)

Enc.
File
Sz.

(MB)

Enc. /
Unenc.
File Sz

Enc.
Search
Time
(ms)

Unenc.
Search
Time
(ms)

1 12302342342342341231 71041 2^64 3506.866 5088.674 1.24 9.91 7.99 697.752 29.519

2 12302342342342341231 71041 2^64 2343.175 3084.572 1.24 4.96 4.00 480.281 30.617

3 12302342342342341231 71041 2^64 1954.405 2403.911 1.24 3.30 2.66 572.623 30.883

4 12302342342342341231 71041 2^64 1764.176 2047.302 1.24 2.48 2.00 6173.163 30.037

5 12302342342342341231 71041 2^64 1611.689 1902.300 1.24 1.98 1.60 8029.314 31.242

6 12302342342342341231 71041 2^64 1538.749 1763.987 1.24 1.65 1.33 4234.235 31.251

7 12302342342342341231 71041 2^64 1482.355 1656.448 1.24 1.42 1.15 8047.905 31.070

8 12302342342342341231 71041 2^64 1450.028 1540.178 1.24 1.24 1.00 8019.927 30.207

8 12302342342342341231 71041 2^128 1420.536 1578.278 1.24 2.48 2.00 8019.803 30.544

12 12302342342342341231 71041 2^128 1346.238 1410.276 1.24 1.65 1.33
10000 +

(timeout) 30.435

16 12302342342342341231 71041 2^128 1307.981 1290.979 1.24 1.24 1.00
10000 +

(timeout) 30.325

24

Integers – Varied number of operations on an encrypted integer

Table 5 shows how as the number of encrypted integer operations influences the

performance of our encryption scheme. The number of operations performed did not have a

major impact on encryption or decryption times. However, as the number of operations

increased, the size of the encrypted file also increased. This is because as encrypted values are

repeatedly added or subtracted, the magnitude of the value increases (when subtracting, values

can go negative). As these magnitudes increase, more space is needed to store their values. In

this case, data size was measured by iterating through the encrypted array and summing the

minimum number of bytes it would take to store each element, this includes the counter variable.

The encrypted and unencrypted operations time measures how long it took the program to

perform the number of operations for that trial.

Table 5: Integers – Varying number of operations with fixed (K, 𝛼, 𝛽, 𝜌, and # of encrypted digits)

Op. K 𝛼 𝛽 𝜌

Num.
of

Digits
in

Unenc.
Num.

Num.
of

Ops.

Enc.
Time
(ms)

Dec.
Time
(ms)

Enc. Op.
Time
(ms)

Unenc.
Op.

Time
(ms)

Enc. /
Unenc.

Op.
Time

Enc.
Sz.
(B)

Unenc.
Sz. (B)

Enc. /
Unenc.

Sz.

add 1 12302342342342341231 71041 2^32 1 2^1 0.015 0.028 0.015 0.002 7.600 5.00 1.00 5.00

add 1 12302342342342341231 71041 2^32 1 2^2 0.024 0.020 0.026 0.003 10.440 5.00 1.00 5.00

add 1 12302342342342341231 71041 2^32 1 2^8 0.017 0.017 1.178 0.048 24.540 7.00 2.00 3.50

add 1 12302342342342341231 71041 2^32 1 2^16 0.016 0.029 279.892 12.084 23.163 9.00 3.00 3.00

add 1 12302342342342341231 71041 2^32 1 2^20 0.026 0.028 4408.540 190.454 23.148 9.00 3.00 3.00

sub 1 12302342342342341231 71041 2^32 1 2^1 0.026 0.026 0.016 0.002 7.524 5.00 1.00 5.00

sub 1 12302342342342341231 71041 2^32 1 2^2 0.014 0.021 0.023 0.003 9.120 5.00 1.00 5.00

sub 1 12302342342342341231 71041 2^32 1 2^8 0.018 0.019 1.171 0.051 23.047 7.00 2.00 3.50

sub 1 12302342342342341231 71041 2^32 1 2^16 0.015 0.031 279.330 11.803 23.666 9.00 3.00 3.00

sub 1 12302342342342341231 71041 2^32 1 2^20 0.022 0.030 4449.754 195.439 22.768 9.00 3.00 3.00

25

Integers – Varied 𝜌

Table 6 shows the varying the 𝜌 value for encrypted numbers with an arbitrary number

operations performed on them. This shows how the encrypted integer file sizes behave like the

encrypted strings’ file sizes with varied 𝜌 values. Since 𝜌 limits the range of output values,

increasing 𝜌 increases the output range. This means that the magnitude of output values can be

larger, and therefore more space is needed to store each output value.

Table 6: Integers – Varying 𝜌 with fixed (K, 𝛼, 𝛽, # of ops, and # of encrypted digits)

Op. K 𝛼 𝛽 𝜌

Num.
of

Digits
in

Unenc.
Num.

Num.
of

Ops.

Enc.
Time
(ms)

Dec.
Time
(ms)

Enc. Op.
Time
(ms)

Unenc.
Op.

Time
(ms)

Enc. /
Unenc.

Op.
Time

Enc.
Sz.
(B)

Unenc.
Sz. (B)

Enc. /
Unenc.

Sz.

add 1 12302342342342341231 71041 2^8 1 2^20 0.015 0.029 4280.924 191.507 22.354 6.00 3.00 2.00

add 1 12302342342342341231 71041 2^16 1 2^20 0.025 0.029 4276.283 191.078 22.380 7.00 3.00 2.33

add 1 12302342342342341231 71041 2^32 1 2^20 0.024 0.029 4281.739 193.066 22.178 9.00 3.00 3.00

add 1 12302342342342341231 71041 2^64 1 2^20 0.027 0.030 4275.275 195.507 21.868 13.00 3.00 4.33

sub 1 12302342342342341231 71041 2^8 1 2^20 0.027 0.030 4327.357 193.945 22.312 6.00 3.00 2.00

sub 1 12302342342342341231 71041 2^16 1 2^20 0.027 0.029 4323.665 193.351 22.362 7.00 3.00 2.33

sub 1 12302342342342341231 71041 2^32 1 2^20 0.028 0.030 4302.107 194.888 22.075 9.00 3.00 3.00

sub 1 12302342342342341231 71041 2^64 1 2^20 0.029 0.033 4306.704 192.540 22.368 13.00 3.00 4.33

Integers – Varied number of digits in unencrypted number

Table 7 shows how varying the number of digits in the unencrypted number impacts the

scheme’s performance. To give an example of the varied testing parameter, the numbers “1”,

“2”, and “3” are all have a number-of-digits-value equal to one. The numbers “11”, “24”, and

“76” all have a number-of-digits-value equal to two. Also, this scheme counts front-padded zeros

as the number of digits in a number. So if a user wants to encrypt “1”, the number of digits

equals one. But if a user wants to encrypt “01”, then the number of digits equals two.

26

The results from this test show how encryption and decryption time increases as the

number of digits also increases. Since K=1, the number of digits equates to the number of affine

encryptions that occur. This means it takes longer to encrypt the entire number representation.

This also means that as the number of digits increases, the length of the encrypted list grows,

which increases the encrypted file size.

Table 7: Integers – Varying # of encrypted digits with fixed (K, 𝛼, 𝛽, # of ops, and 𝜌)

Op. K 𝛼 𝛽 𝜌

Num.
of

Digits
in

Unenc.
Num.

Num.
of

Ops.

Enc.
Time
(ms)

Dec.
Time
(ms)

Enc.
Op.

Time
(ms)

Unenc.
Op.

Time
(ms)

Enc. /
Unenc.

Op.
Time

Enc.
Sz.
(B)

Unenc.
Sz. (B)

Enc. /
Unenc.

Sz.

add 1 12302342342342341231 71041 2^32 1 2^20 0.017 0.033 4900.348 204.147 24.004 9.00 3.00 3.00

add 1 12302342342342341231 71041 2^32 2 2^20 0.031 0.037 5889.808 203.979 28.875 15.00 3.00 5.00

add 1 12302342342342341231 71041 2^32 3 2^20 0.036 0.046 6848.432 207.804 32.956 21.00 3.00 7.00

add 1 12302342342342341231 71041 2^32 4 2^20 0.038 0.048 7806.896 204.266 38.219 27.00 3.00 9.00

sub 1 12302342342342341231 71041 2^32 1 2^20 0.030 0.033 4908.887 205.043 23.941 9.00 3.00 3.00

sub 1 12302342342342341231 71041 2^32 2 2^20 0.032 0.037 5931.079 201.218 29.476 15.00 3.00 5.00

sub 1 12302342342342341231 71041 2^32 3 2^20 0.043 0.045 6773.765 201.137 33.677 21.00 3.00 7.00

sub 1 12302342342342341231 71041 2^32 4 2^20 0.040 0.048 7690.135 207.497 37.061 27.00 3.00 9.00

27

CHAPTER IV

CONCLUSION

In conclusion, the encryption scheme described here is homomorphic with respect to

string searches and concatenations, and integer addition and subtraction operations. It is based on

the ASCII text encoding and the affine cipher, with moderate improvements made to increase

security. The scheme treats string and integer data equally, to avoid leaking information as to

whether encrypted objects are of string or an integer types. The scheme does have some

drawbacks. Integer operations are limited to K=1, which is the lowest level of security.

Additionally, the scheme is susceptible to frequency analysis attacks. Due to the deterministic

nature of this encryption scheme, an attacker could analyze the frequency in which certain

encrypted values appear within an encrypted file. This frequency information could then be used

to infer the unencrypted value of the encrypted value.

Future Development

The string search feature is very inefficient for type K>1 encrypted strings. This method

could be improved by searching for known and fixed possible substrings of the search query. If a

possible match is found, instead of brute-forcing star-combinations, the encrypted elements

neighboring the matched query could be sent to the user to decrypt. Once decrypted, the user

could verify if the contents and compare to what they had searched. If the contents contain the

searched characters in the sequence that they were expecting, then the search would be

successful. If the contents did not match what was expected, then a different possible-query

would be searched.

28

This work could also be modified to support non-traditional encoding schemes and bit

lengths, which could help alleviate its deficiencies in arithmetic, allowing for variable K support

with integers. Work could also be done to derive a more secure affine cipher, possibly using the

quadratic formula in a way that it could support math operations and string searches.

Additionally, work could be done to support multiplication and division in the encrypted space.

29

REFERENCES

[1] Florentine, Sharon. "Cloud Adoption Soars, but Integration Challenges Remain." CIO. CIO,
05 Jan. 2016. Web. 09 Apr. 2017.

[2] Gentry, Craig. "A FULLY HOMOMORPHIC ENCRYPTION SCHEME." Thesis. Stanford

University, 2009. Web.

[3] Gentry, Craig. "Computing Arbitrary Functions of Encrypted Data." Communications of the

ACM 53.3 (2010): 97-105. ACM. Web. 23 Dec. 2016.

[4] Gentry, Craig, and Shai Halevi. "Implementing Gentry's Fully-Homomorphic Encryption

Scheme." (2011): 1-29. International Association for Cryptologic Research. Web. 24
Aug. 2016.

[5] Gilad-Bachrach, Ran, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
"CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and
Accuracy." Microsoft Research (2016): n. pag. 8 Feb. 2016. Web. 9 Apr. 2017.

[6] Kraft, James S., and Lawrence C. Washington. "Cryptographic Applications." An

Introduction to Number Theory with Cryptography. Boca Raton: CRC, 2014. 170-75.
Print.

[7] Rivest, Ronald L., Len Adleman, and Michael L. Dertouzos. "On Data Banks and Privacy

Homomorphisms." Ed. Richard A. DeMillo, David P. Dobkin, Anita K. Jones, and
Richard J. Lipton. Foundations of Secure Computation (1978): 165-79. Academic Press.
Web. 21 Jan. 2017.

[8] Rivest, Ronald L., Adi Shamir, and Leonard M. Adleman. "A Method for Obtaining Digital

Signatures and Public-key Cryptosystems." Communications of the ACM 21.2 (1978):
120-26. ACM Digital Library. Web. 21 Jan. 2017.

[9] Schneier, Bruce. "Homomorphic Encryption Breakthrough." Schneier on Security. N.p., 9
July 2009. Web. 09 Apr. 2017.

30

[10] Teske-Wilson, Edlyn. Homomorphic Cryptosystems. Ottawa: University of Waterloo, 27
June 2011. PDF.

[11] Thomson, Iain. "Microsoft Researchers Smash Homomorphic Encryption Speed Barrier."

The Register. N.p., 9 Feb. 2016. Web. 09 Apr. 2017.

[12] Wu, Yongfeng. "Improvement Research Based on Affine Encryption Algorithm." 2015 14th
International Symposium on Distributed Computing and Applications for Business
Engineering and Science (DCABES) (2015): n. pag. IEEE Xplore. Web. 22 Dec. 2016.

