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ABSTRACT 

 

The North American monsoon (NAM) is responsible for summer severe weather 

in the Southwest U.S. and northwest Mexico and its associated rainfall contributes the 

highest percentage of yearly precipitation to this region. Short-term convection-allowing 

model forecasts have shown difficultly in replicating the diurnal cycle of NAM 

convective precipitation. Generally, convection initiating over the Sierra Madre 

Occidental (SMO) mountain range in the early afternoon may later organize into 

mesoscale convective systems (MCSs) that propagate west towards the lower elevations 

and Gulf of California (GOC). MCSs account for the greatest proportion of all NAM-

related precipitation. In my dissertation, I investigate the performance of daily short-term 

WRF hindcasts on moisture and precipitation with and without the assimilation of 

precipitable water vapor (PWV) measurements from Global Positioning System (GPS) 

ground receivers in the NAM GPS Transect Experiment 2013. 

In Chapter 2.1, I investigate the overall performance of daily hindcasts during the 

2013 monsoon season without data assimilation. The 2.5-km convection-allowing 

hindcasts consistently display a moist bias in their initial conditions compared to GPS-

PWV observations; this leads to diurnal convection beginning 3-6 hours earlier than 

observations. Because the precipitation forecast skill varies with the proximity of an 

inverted trough (IV), I compare the days when an IV is present (“strongly forced”) to 

days when an IV is not present (“weakly forced”). I find that strongly forced days display 

higher precipitation forecast skill than weakly forced days especially in the slopes of the 

northern SMO west of the crest that is associated with MCSs. In a case study spanning 8-

9 July 2013, when nearly identical MCSs evolved over northern Sonora on consecutive 

days, the MCS is poorly simulated on the first day (weakly forced) when the IV is east of 

the SMO while a salient MCS is simulated on the second day (strongly forced) when that 

IV is over the SMO. I find a greater ensemble-based sensitivity to the initial specification 

of PWV for the weakly forced day when compared to the strongly forced day. Therefore, 

GPS-PWV data assimilation has the potential to benefit weakly forced days the most. 

In Chapter 2.2, for the weakly forced day (8 July 2013), I explore the impact of 

ensemble data assimilation of GPS-PWV observations to the model fields and the 
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hindcast simulation of an MCS that occurred 9-15 hours after forecast initialization. I find 

that GPS-PWV DA improves location and intensity of the MCS. For all experiments, the 

GPS-PWV DA reduces the PWV root-mean-square-error to within the GPS-PWV 

observation error of 1-2 mm at initialization and reduces the initial wet bias. Although 

there is a short “memory” of these adjustments in that the PWV RMSE across the sites 

rises quickly and approaches the RMSE of the non-DA experiment after 2 hours, this is 

due to advective effects near the GOC in that the adjustments move quickly away or 

toward the sites. Assimilating GPS-PWV observations lowers the moisture (water vapor 

mixing ratio) error in the lower atmosphere to where is it within the instrument error 

aboard the radiosonde. From my sensitivity analyses, I conclude that increasing the 

covariance localization cutoff radius improves the MCS when adjusting all state variables 

but degrades it when adjusting only thermodynamic variables. Also, I recommend 

assimilating a mean hourly observation (“superobbing”) rather than individual 5-min 

observations as it allows for more stable adjustments. Lastly, I note that having a 12-h 

spin-up improves the MCS simulation because the initial conditions have a chance to 

make their way to the convection-allowing grid before GPS-PWV DA adjusts the MCS 

towards the observation.  

In a region of complex terrain that suffers from unreliable observations and poor 

convective forecasts during the NAM, I have shown utility from GPS-PWV observations 

in a) the diagnosis of wet model bias, b) the improvement of the initial conditions via 

convection-allowing ensemble data assimilation, and c) the improvement of MCS 

simulation. The results of this dissertation point to a need for more observations in the 

vertical and a deeper understanding of sensitivities of atmospheric variables to one 

another, such as what can be gained with with a network of ground-based lidars that 

continuously monitor the boundary layer. 
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND OF THE NORTH AMERICAN MONSOON (NAM) 

 

Beginning in July and lasting through September, the North American monsoon 

(NAM), with increased moisture and instability, is associated with an influx of 

convective precipitation to northwest Mexico and the adjacent southwest U.S. Relative to 

annual precipitation, the NAM provides 60-80% in northwestern Mexico and 40% in the 

southwest United States (Douglas et al. 1993; Adams and Comrie 1997). Severe weather 

from the NAM is one of this binational region’s principal natural hazards. During “burst” 

periods when organized convection is more favored (e.g., Carleton 1986, Douglas et al. 

1993; Adams and Comrie 1997), mesoscale convective systems (MCSs) are the dominant 

mechanism for severe weather (McCollum et al. 1995; Lang et al. 2007; Newman and 

Johnson 2012; Rowe et al. 2012). 

   

1.2 DIURNAL CYCLE OF NAM CONVECTION AND THE MCS 

 

Convective development in the NAM is linked to the diurnal cycle of heating of 

complex terrain and associated mountain-valley circulations (e.g., Diem and Brown 

2003) in both the southwest U.S. (Raymond and Wilkening 1980; Damiani et al. 2008) 

and northwest Mexico (Gochis et al. 2007; Lang et al. 2007; Nesbitt et al. 2008). 

Convection begins as air-mass type thunderstorms that form over the Sierra Madre 

Occidental (SMO), a prominent northwest-southeast-oriented mountain range in 

northwest Mexico, in the early to mid-afternoon (Janowiak et al. 2007). Then, depending 

on the synoptic environment, these storms may organize into an MCS that propagates off 

the SMO in the direction of the upper-level steering flow that is usually westward toward 

lower elevations and the Gulf of California (GOC). Convective propagation occurs 

through successive outflow boundaries from the cold pools of leading convective lines 

that mechanically lift moist and unstable air thus initiating new convection (Corfidi 

2003). MCSs can be sustained into the early morning of the following day (Lang et al. 

2007; Rotunno et al. 1988) with MCS-related precipitation approaching the GOC about 
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12 hours later than the time of maximum daytime convection in the SMO to the east 

(Johnson et al. 2007; Lang et al. 2007; Zuidema et al. 2007; Nesbitt et al. 2008). MCSs 

account for the majority of the rainfall west of the SMO (Castro et al. 2007; Newman and 

Johnson 2012) in the NAM core region (a rectangle bounded by 24°-30° N and 112°-

106° W) (Higgins et al. 2006). 

 

1.3 INGREDIENTS FOR NAM CONVECTION 

 

In order for NAM convection to occur, atmospheric instability and moisture are 

necessary (Johnson et al. 2007; Becker and Berbery 2008; Adams and Souza 2009) that 

are characterized by convective available potential energy (CAPE; Moncrieff and Miller 

1976) and precipitable water vapor (PWV; Moore et al. 2015) metrics, respectively. For 

convection to organize and propagate into an MCS, from a synoptic perspective, some 

vertical wind shear is also necessary. The presence of a transient upper tropospheric 

inverted trough (IV; Pytlak et al. 2005) facilitates convective organization (resembling an 

MCS) by increasing instability and dynamical forcing (Douglas and Englehart 2007; 

Bieda et al. 2009; Finch and Johnson 2010; Castro et al. 2007; Newman and Johnson 

2012; Lahmers et al. 2016) and enhancing mid-level flow and vertical wind shear (Finch 

and Johnson 2010) during NAM “burst” periods (Carleton 1986; Carleton et al. 1990; 

Adams and Souza 2009). In fact, easterly vertical wind shear is associated with one of the 

leading modes of NAM precipitation (Seastrand et al. 2014).  

Along with atmospheric instability and vertical wind shear, moisture is also 

necessary for NAM convection. In the southwest U.S., surges of low-level tropical 

moisture in the GOC northwestward (“gulf surges”; Douglas and Leal 2003; Rogers and 

Johnson 2007) are important for the development of convection (Hales 1972; Brenner 

1974; Fuller and Stensrud 2000; Higgins et al. 2004), although I find there is low 

correlation of gulf surges to convection in northwest Mexico because of high values in 

that locale that are nearly constant during the NAM (Moker et al. 2018). “Major” gulf 

surges are usually triggered by the passage of a low-pressure disturbance near the GOC 

mouth, such as a tropical cyclone (TC) or tropical easterly wave (TEW) (Fuller and 

Stensrud 2000; Douglas and Leal 2003; Higgins and Shi 2005), and traverse the entire 
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length of the GOC over a period of several days (Zehnder 2004, Serra et al 2016). 

Confined to the northern GOC, “minor” gulf surges, in contrast, are triggered by the 

convective outflow boundaries of decaying MCSs and last several hours (Fuller and 

Stensrud 2000; Lang et al. 2007). “Minor” gulf surges can also be indirectly caused by 

IVs because of their enhanced support of MCS development (Douglas and Leal 2003; 

Lang et al. 2007).  

 

1.4 MOTIVATION 

 

With my experience of working at the National Weather Service, my research 

interest lies on the manifold between research and operations in the world of short-term 

weather forecasting and analysis. The research conducted in my dissertation is motivated 

by operational forecast models poorly capturing the diurnal cycle of convection in the 

NAM as well as MCSs (discussed in Section 1.6) for the following documented reasons: 

1) grid-spacing too coarse to depict phenomena related to convection on the meso-γ-scale 

and 2) the lack of quality moisture observations in the high terrain of the SMO where 

convection initiates. Kursinski et al. (2008) showed that a 5% decrease or increase in 

initial PWV significantly changes the amount of convective precipitation over northwest 

Mexico therefore implying that NAM convective forecasts are sensitive to the initial 

specification of PWV. Past studies have shown the improvement of short-term forecasts 

of convection with ensemble methods (e.g., Torn 2010; Ancell et al. 2011; Suarez et al. 

2012; Meng and Zhang 2007). With the correction of the initial moisture specification in 

a convection-allowing forecast model (via ensemble data assimilation) from information 

from a novel in-situ GPS-PWV observational dataset that addresses the need for high 

temporal moisture observations in the SMO (discussed in Section 1.5), I seek to improve 

the accuracy of short-term forecasts of the location and timing of NAM-related 

convection for early warning of life and property. 

 

1.5 LACK OF RELIABLE OBSERVATIONS IN NORTHWEST MEXICO 
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The NAM Experiment (NAME) (Higgins et al. 2006) in 2004 advanced our 

knowledge of convective processes in the NAM core region (see Higgins and Gochis 

2007) and provided a valuable dataset for assessing model representation of NAM 

convection. However, a noted major weakness in the NAME observational network 

experimental design was the lack of measurements of both the diurnal cycle of the 

boundary layer and moisture fluxes at higher elevations away from the coast (Higgins 

and Gochis 2007), a critical region for NAM convective initiation. This lack of 

observational data strongly motivated the NAM GPS Transect Experiment 2013 

(hereafter, “Transect 2013”) (Adams et al. 2014; Serra et al. 2016) that included ten GPS 

meteorological stations in 3 transects that were installed in northwest Mexico. One of the 

transects were to capture the evolution of PWV during convection initiation in the SMO.  

It also motivated the North American Monsoon GPS Hydrometeorological Network 2017 

under Consortium for Arizona – Mexico Arid Environment (CAZMEX 2017) (Risanto et 

al. 2019), a field campaign in 2017 with 20 GPS-PWV stations. 

 

1.6 MODEL REPRESENTATION OF NAM CONVECTION 

 

The accuracy of numerical weather prediction (NWP) forecasts during the NAM 

depends on how well a given model forecast system can represent the physical processes 

that drive thunderstorm development and the key regional synoptic-scale features that 

facilitate convective organization. Meso-α-scale (100-1000 km) to meso-β-scale (10-100 

km)  operational models are inadequate to explicitly represent convection; they generally 

have a poor representation of the terrain-forced diurnal cycle of convection (e.g., Collier 

and Zhang 2007; Lee et al. 2007) for example occurring during the NAM as described in 

analyses of radar data (Lang et al. 2007; Nesbitt et al. 2008). Operational forecast models 

can easily resolve features at the meso-α-scale therefore representing features important 

to the NAM like the longwave atmospheric circulation pattern over western North 

America during the warm season (e.g., monsoon ridge positioning) and IVs. Regional 

models used at the meso-β-scale tend to overestimate monsoon precipitation in 

mountainous regions and underestimate precipitation associated with organized 

propagating convection (Castro et al. 2012; Bukovsky et al. 2013). For example, a 
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commonly used numerical atmospheric model, the Weather Research and Forecasting 

(WRF) model, was unable to simulate a MCS during an Intensive Observing Period 

(IOP) of NAME with a 10-km grid spacing (Cassell et al. 2015), consistent with other 

studies during NAME that attempt to simulate organized convection using different 

regional atmospheric models and/or model domain and parameterization configurations 

(Li et al. 2008; Newman and Johnson 2012). 

To explicitly represent (i.e., simulate precipitation directly from the model cloud 

microphysics scheme without cumulus parameterization) storm-scale structures like 

squall lines and outflow boundaries (e.g., Li et al. 2008), the use of convection-allowing 

atmospheric modeling at the meso-γ-scale (i.e., model grid spacing on the order of 1-4 

km) is necessary. MCSs cannot be resolved by larger-domain operational forecast models 

(Gutzler et al. 2009) since they are dependent upon antecedent meso-γ scale 

meteorological features that would not be resolved by the model. A convection-allowing 

grid is therefore required to reasonably represent NAM convection including MCSs (e.g., 

Cassell et al. 2015). 

As a result of poorly-understood processes involved with the initiation and growth 

of deep convection over complex terrain in the NAM core region, both operational and 

modeling studies using convection-allowing grids have difficulty simulating the timing 

and subsequent propagation of deep convection (e.g., Li et al. 2008; Castro et al. 2012; 

Pearson et al. 2014). For example, Janowiak et al. (2007) found that the peak of 

simulated diurnal precipitation in the NAM maximized 3-6 hours earlier than 

observations during NAME. I found a similar result of the 3-6-hour precipitation time lag 

in my first manuscript that characterizes the model performance of NAM convection in 

the 2013 season without the use of data assimilation (Moker et al. 2018). 

 

1.7 DATA ASSIMILATION RESEARCH TESTBED 

 

In my dissertation, I use the ensemble adjustment Kalman Filter (EAKF; 

Anderson 2001) within the Data Assimilation Research Testbed (DART; Anderson et al. 

2009), which is a community DA software that allows for the application of ensemble 

algorithms in operational forecasting.  
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 For an observed variable (e.g., PWV), weighted by the error characteristics of the 

ensemble representation of the observation and the instrument and representativeness of 

the observation itself, the EAKF first shifts the background (or “prior”) ensemble so it 

becomes the same mean as the analysis (or “posterior”) and then the ensemble linearly 

contracts around the analysis mean resulting in a standard deviation equal to that of the 

analysis. Once arriving at the posterior values of the model-equivalent observed 

variables, the increments of each component of the prior state vector are computed from 

the observation increments via linear regression with error covariance localization.  

 Anderson (2003) applies a “local least-squares” framework to the EAKF where 

each ensemble member at each model grid space is updated for each observation. To 

assimilate an GPS-PWV observation, I follow these steps derived from Anderson (2003) 

that are available in the EAKF within DART: 

1) Start with an ensemble of the background state of the atmosphere (prior). 

2) Get an ensemble sample of the GPS-PWV. Since GPS-PWV is not a WRF 

variable, I must use an observational operator on the state variable for each 

member 𝑖: 𝑃𝑊𝑉𝑖
𝑓

= ℎ(𝑥𝑖
𝑓

). The RHS is represented by a bilinear interpolation of 

the 4 closest model grids and then a summation of the water vapor (from the 

water vapor mixing ratio) in the column.  

3) Get the observation from the instrument 𝑃𝑊𝑉𝑜 and the observation error 

distribution (𝜎𝑜)2. 

4) Inflate the prior variances (𝜎𝑓)2 to maintain model spread because of the limited 

sample size and model error (Hamill et al. 2001; Anderson 2001; Whitaker and 

Hamill 2002). This can be done multiplicative (Anderson 2001) or additive 

(Hamill and Whitaker 2005), but the use of a relaxation can limit excessive 

ensemble spread in data-sparse regions caused by the previous two techniques 

(Zhang et al. 2004). In my dissertation, I use a newer technique that uses adaptive 

inflation that evolves in time and varies in space (Anderson 2009). 

5) Calculate the analysis ensemble mean of the model-equivalent GPS-PWV 

observation (𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅ ) (eq. 1) and then for each ensemble member 𝑖 compute the 

analysis model-equivalent GPS-PWV observation (𝑃𝑊𝑉𝑖
𝑎) (eq. 2) and 

observation increment ∆𝑃𝑊𝑉𝑖 (eq. 3). 
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 𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅ = (
1

1
(𝜎𝑓)2 +

1
(𝜎𝑜)2

) (
𝑃𝑊𝑉𝑓̅̅ ̅̅ ̅̅ ̅̅

(𝜎𝑓)2
+

𝑃𝑊𝑉𝑜

(𝜎𝑜)2
) (1) 

 𝑃𝑊𝑉𝑖
𝑎 = √

(𝜎𝑜)2

(𝜎𝑓)2 + (𝜎𝑜)2
(𝑃𝑊𝑉𝑖

𝑓
− 𝑃𝑊𝑉𝑓̅̅ ̅̅ ̅̅ ̅̅ ) + 𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅  (2) 

 ∆𝑃𝑊𝑉𝑖 = 𝑃𝑊𝑉𝑖
𝑎 − 𝑃𝑊𝑉𝑖

𝑓
 (3) 

6) Linearly regress the observation increments ∆𝑃𝑊𝑉𝑖 onto state variable increments 

∆𝑥𝑖 for each ensemble member (eq. 4) and add to the prior state ensemble sample 

𝑥𝑖
𝑓
 to get the analysis value for the state variable 𝑥𝑖

𝑎 (eq. 5). The state variable can 

be water mixing ratio or U wind, for example. 

 ∆𝑥𝑖 =
𝑐𝑜𝑣(𝑥𝑖

𝑓
, 𝑃𝑊𝑉𝑖

𝑓
)

𝑣𝑎𝑟(𝑃𝑊𝑉𝑖
𝑓

)
∆𝑃𝑊𝑉𝑖 (4) 

 𝑥𝑖
𝑎 = 𝑥𝑖

𝑓
+ ∆𝑥𝑖 (5) 

7) Continue until all observations are processed within a time window and state 

variables are updated to the analysis. In my case, I use GPS-PWV observations 

within 30 minutes of the observation time. Then, advance the ensemble members 

to the next time observations are available via the non-linear forward model 

(WRF-ARW).  

To limit filter divergence from spurious correlations far away from the observation 

(Houtekamer and Mitchell 2001; Hamill et al. 2001) which could render the EAKF 

useless, covariance localization must be applied. I use the Gaspari-Cohn (Gaspari and 

Cohn 1999) 3-D covariance localization function, which is based on a 5th order 

polynomial based on a cutoff distance relative to the GPS-PWV observation site location. 

Appendix C expands on this ensemble DA algorithm. 

 

1.8 OBJECTIVES 

 

I conducted two studies that make up the main structure of my dissertation. In the 

first study, I assess the baseline performance of the hindcasts (retrospective forecasts) 

from downscaled operational models, 32-km North American Mesoscale Model and the 
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0.25-degree Global Forecast System (GFS), to a convection-allowing grid during 

Transect 2013. This study is attached as Appendix A and is summarized in Chapter 2.1 

with the following objectives: 

1) Determine the current initialization error and handling of the representation of 

NAM convection (e.g., diurnal cycle and MCSs) in the short-term from 

operational forecast models downscaled onto a convection-allowing grid (WRF-

ARW). 

2) Determine the role of NAM-modulating features such as gulf surges, TEWs, and 

IVs in convective precipitation in the southwest US versus northwest Mexico.  

3) Determine the difference in forecast performance of convection on days when 

there is a transient upper-level feature (i.e., an IV) present that enhances upward 

vertical motion, instability, and wind shear to days when there is none. 

4) Determine the sensitivity of initial PWV to forecast moisture and precipitation. 

5) Determine the most appropriate satellite-derived precipitation dataset that is 

closest to “truth” in verifying NAM precipitation in complex terrain. 

 

In the second study, I investigate the utility of the assimilation of GPS-PWV 

observations into the initial fields and forecasts of a “weakly forced” day whose forecast 

rainfall and moisture fields were shown to have a high sensitivity to the initial 

specification of PWV in the western SMO foothills. This study is attached as Appendix B 

and summarized in Chapter 2.2 with the following objectives: 

1) Develop an algorithm to assimilate GPS-PWV observations from Transect 2013 

into the WRF-ARW initial model fields of short-range convective simulations. 

2) Determine the impact of GPS-PWV observations on the initial model fields and 

forecasts especially of the development of an MCS several hours after 

initialization. 

3) From an engineering perspective and physical considerations, investigate the 

impact of increasing covariance localization radius, localizing the type of WRF 

state variable to adjust in the algorithm, spinning up the model, doubling the 

number of ensemble members, and assimilating a mean observation (i.e., “super-

obbing”) instead of individually. 
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CHAPTER 2: PRESENT STUDY 

 

2.1 CONVECTIVE-PERMITTING HINDCAST SIMULATIONS DURING THE NORTH 

AMERICAN MONSOON GPS TRANSECT EXPERIMENT 2013: ESTABLISHING 

BASELINE MODEL PERFORMANCE WITHOUT DATA ASSIMILATION 

 

In this study, in days coinciding with the deployment of the GPS-PWV stations in 

northwest Mexico during Transect 2013 (from 26 Jun through 12 Sep 2013), I run 24-h 

convection-allowing WRF-ARW hindcasts (retrospective forecasts) in two deterministic 

simulations, WRF-GFS and WRF-NAM, which are downscaled from the operational 

Global Forecast System model and North American Mesoscale model, respectively. I 

initialize the runs at 12z with periodic updates to the lateral boundary conditions every 6 

h. The Rapid Refresh (RAP) model is used to initialize the soil moisture and temperature 

because it has a finer spatial resolution compared to the other operational models. 

I find a consistent moist bias in the initial specification of PWV relative to the 

GPS-PWV observations with WRF-NAM having the higher bias. The high moisture bias 

in the initialization of the simulations leads to relatively high moisture biases in the 

western slopes of the northern SMO prior to 0000 UTC leading to convection beginning 

along the SMO 3-6 hours early in the diurnal cycle relative to TRMM precipitation. This 

time shift error in representing the diurnal cycle of convection is consistent with previous 

studies. The high PWV biases decrease with time within the diurnal cycle. 

Gulf surges did not have noticeable impact the development of MCSs and related 

convection in northwest Mexico. No TEWs or TCs directly impacted the NAM. 

I classify days based on the presence of an IV; days when an IV located in the 

NAM core region is “strongly forced” while all other days with appreciable rainfall are 

“weakly forced”. I find that strongly forced days display higher modeled precipitation 

forecast skill than weakly forced days on the slopes of the northern SMO away from the 

crest especially towards the west. 

A case study spanning 8-9 July 2013 illustrates consecutive days when nearly 

identical MCSs evolve over northern Sonora. The MCS is poorly simulated on the 

weakly forced day (8 July 2013) when an IV is east of the SMO (near Big Bend, TX), but 
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a salient MCS is simulated on the strongly forced day (9 July 2013) when an IV is further 

west over the central SMO in the core NAM region. 

There is greater ensemble-based sensitivity of the initial specification of PWV to 

forecast moisture and precipitation in the weakly forced day relative to the strongly 

forced day. For weakly-forced days, one could conclude that a more accurate 

specification of local moisture conditions from the assimilation of GPS-PWV 

observations would have a greater impact on the model simulation of organized MCS-

type convection.  

  

2.2 UTILITY OF GPS-DERIVED PWV MEASUREMENTS IN CONSTRAINING 

HIGH-RESOLUTION WRF FORECASTS OVER THE NORTH AMERICAN 

MONSOON REGION 

 

In this study, I investigate the utility of assimilating GPS-PWV observations from 

the Transect 2013 sites into WRF-ARW and its impact on simulating the MCS that 

reached peak intensity at 2300-0200 LT on 8-9 Jul 2013. This was the weakly forced day 

in the case study in Chapter 2.1 (Moker et al. 2018) that was shown high sensitivity of 

forecast rainfall and moisture to initial PWV specification in the western SMO foothills. I 

use the ensemble adjustment Kalman filter (EAKF) in the Data Assimilation Research 

Testbed (DART) software with a 6-hour spin-up, 6.5 1-hour DA cycles and 20 ensemble 

members. I used a Gaspari-Cohn covariance localization cutoff of 0.07 radians for each 

observation, which equates to a horizontal-equivalent distance of ~450 km and vertical-

equivalent distance of 3.5 km. With this cutoff, the mean function value of 0.5 across all 

sites produces a contour with an area of ~150,000 km2, a magnitude that is the similar to 

the cloud shield of an MCS at maximum intensity (Maddox 1980). The correlation of 

PWV to moisture in the vertical from soundings in the NAM region have the highest 

values ~3.5 km from the surface. 

A 24-h deterministic forecast is initialized from the ensemble-mean analysis in 

what is referred to as the assim experiment. In addition to the assim experiment, the other 

control experiments are a deterministic forecast initialized at 12z (cold_start experiment) 

and a 12-h ensemble spin-up with a deterministic forecast initialized by the ensemble 
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mean (no_assim experiment). From an engineering standpoint, I also investigate the 

sensitivity of different localizations lengths and adjusted variable localization among 

other impacts on the initial condition and simulated MCS 9-15 hours after forecast 

initialization time. 

Assimilating GPS-PWV observations improves the simulation of the MCS. I use 

the definition from Maddox (1980) of an MCS that has the following criteria: 

1) A cloud shield colder than -32 °C that has an area of at least 100,000 km2. 

2) An interior cloud shield colder than -52 °C that has an area of at least 50,000 

km2. 

3) The cloud shield has an eccentricity of at least 0.7 at the time of maximum 

extent. 

4) The size conditions in 1 and 2 must persist for at least 6 hours. 

Because I found that the simulated MCSs were much warmer than the observed, 

we evaluate hindcast performance by using the percentage of area < -32 °C of the 

simulated cloud shield that matches the < -32 °C region of the observed MCS cloud 

shield at the times the MCS criteria above are met. I use the model state at 6z Jul 9 to 

assess the MCS as it is the time when the model MCS is at the end of its peak intensity 

and the observed MCS is at the beginning of its peak intensity. First, compared to a 

hindcast beginning at 0500 LT (cold_start experiment) (34% during observed maximum 

intensity [at, e.g., 2300 LT]), there is improved simulation of the MCS when the hindcast 

initializes 12 h earlier (42% for ensemble spin-up [no_assim experiment] and 37% for 

deterministic spin-up [warm_start experiment]) because, as a first order, the meso-γ-scale 

flow has time to establish in the convection-allowing grid. Then, the assimilation of GPS-

PWV observations (assim experiment) nudges the location and broadens the coverage of 

the MCS towards the observation for further improvement of the simulated MCS (50%). 

The DA algorithm reduces the PWV RMSE from 3 mm at the beginning of the 

DA cycling period to 0.25-1 mm at the final analysis for all experiments across the GPS-

PWV sites. This falls within the GPS observation error of 1-2 mm. There is a short 

memory for these adjustments in that the PWV RMSE rises quickly becoming in line 

with the non-DA experiments by hour 2. Advection of the moisture adjustments, 
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specifically near the GOC, can explain the short “memory”. The adjustments indeed have 

an impact on MCS formation 6+ hours later. 

CHIH was the only location that had an upper air site collocated with a GPS-

PWV site. Assimilating GPS-PWV reduces moisture error at and below ~700 hPa to 

within the instrument error on the radiosonde, but the information contained in ensemble-

based covariances were not able to recover the winds from statistical connections to the 

change in PWV. At MAZT, the adjustments to the atmospheric moisture profile were 

negligible as the closest GPS-PWV location was ~150 km away.  

Increasing the covariance localization cutoff when adjusting all variables 

(all_vars experiments) improves the simulated MCS (from 31% for 0.03 radians to ~50% 

for 0.07 and 0.10 radians). Increasing the covariance localization cutoff when adjusting 

only thermodynamic variables (no_winds experiments) slightly improves the simulated 

MCS from 0.03 radians (36%) to 0.07 radians (42%) but degrades the simulated MCS at 

0.10 radians (25%). Assimilating a mean hourly observation (super_ob experiment) 

instead of individual 5-min observation allows for smaller increments and more stability 

during the DA cycles. The resulting MCS is 42% matched which is similar to the 

no_assim experiment. 

This study has shown the need for vertical information as it is a source of 

uncertainty when assimilating an integrated quantity such as GPS-PWV. A field 

campaign with a network of lidars that can continuously observe atmospheric variables a 

few km from the ground can aid in assessing statistical connections of quantities of 

moisture and winds in three dimensions.  

 

  



 22 

REFERENCES 

 

 

Adams, D. K., and A. C. Comrie, 1997: The North American Monsoon. Bull. Am. 

Meteorol. Soc., 78, 2197–2213, doi:10.1175/1520-

0477(1997)078<2197:TNAM>2.0.CO;2. 

 

Adams, D. K. and E. P. Souza, 2009: CAPE and convective events over the southwest 

U.S. during the North American monsoon. Monthly Weather Review, 137, 83–98. 

 

Adams, D. K., C. Minjarez, Y. Serra, A. Quintanar, L. Alatorre, A. Granados, E. 

Vázquez, and J. Braun, 2014: Mexican GPS tracks convection from North 

American monsoon. Eos, Trans. Amer. Geophys. Union, 95, 61, 

doi:10.1002/2014EO070001. 

 

Ancell, B. C., C. F. Mass, and G. J. Hakim, 2011: Evaluation of Surface Analyses and 

Forecasts with a Multiscale Ensemble Kalman Filter in Regions of Complex 

Terrain. Mon. Weather Rev., 139, 2008–2024, doi:10.1175/2010mwr3612.1. 

 

Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: 

The data assimilation research testbed a community facility. Bull. Am. Meteorol. 

Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1. 

 

Anderson, J., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. 

Weather Rev., 129, 2884–2903, doi:10.1175/1520-

0493(2001)129<2884:AEAKFF>2.0.CO;2. 

http://journals.ametsoc.org/doi/abs/10.1175/1520-

0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2. 

 

Anderson, J., 2003: A Local Least Squares Framework for Ensemble Filtering. Mon. 

Weather Rev., 131, 634–642, doi:10.1175/1520-

0493(2003)131<0634:ALLSFF>2.0.CO;2. 

http://journals.ametsoc.org/doi/abs/10.1175/1520-

0493%282003%29131%3C0634%3AALLSFF%3E2.0.CO%3B2. 

 

Anderson, J., 2009: Spatially and temporally varying adaptive covariance inflation for 

ensemble filters. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 61 A, 72–83, 

doi:10.1111/j.1600-0870.2008.00361.x. 

 

Becker, E. J., and E. H. Berbery, 2008: The Diurnal Cycle of Precipitation over the North 

American Monsoon Region during the NAME 2004 Field Campaign. J. Climate, 

21,  

 

Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The 

relationship of transient upper-level troughs to variability of the North American 

monsoon system. J. Clim., 22, 4213–4227, doi:10.1175/2009JCLI2487.1. 

http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282003%29131%3C0634%3AALLSFF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282003%29131%3C0634%3AALLSFF%3E2.0.CO%3B2


 23 

 

Brenner, I. S., 1974: A Surge of Maritime Tropical Air-Gulf of California to the 

Southwestern United States. Mon. Wea. Rev., 102(5), 375–389, doi:10.1175/1520-

0493(1974)102<0375:ASOMTA>2.0.CO;2. 

 

Bukovsky, M., D. J. Gochis, and L. O. Mearns, 2013: Towards Assessing NARCCAP 

Regional Climate Model Credibility for the North American Monsoon: Current 

Climate Simulations. J. Climate, 26, 8802–8826. 

 

Carleton, A. M., 1986: Synoptic-dynamic character of “bursts” and “breaks” in the 

southwest U.S. summer precipitation singularity. J. Climatol., 6, 605–623. 

 

Carleton, A. M., D. A. Carpenter, and P. J. Weber, 1990: Mechanisms of interannual 

variability of the southwest United States summer rainfall maximum. J. Climate, 

3, 999–1015. 

 

Cassell W. W., C. L. Castro, T. M. Luong, and Q. Xiao, 2015: Simulating organized 

convection during the 2004 North American Monsoon Experiment and its 

sensitivity to the specification of initial conditions. Submitted to Monthly 

Weather Review. 

 

Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007: Investigation of the summer 

climate of the contiguous United States and Mexico using the Regional 

Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–

2002). J. Climate, 20, 89–110. 

 

Castro, C. L., H. I. Chang, F. Dominguez, C. Carrillo, J. K. Schemm, and H. M. H. 

Juang, 2012: Can a regional climate model improve the ability to forecast the 

North American monsoon? J. Clim., 25, 8212–8237, doi:10.1175/JCLI-D-11-

00441.1. 

 

Collier, J. C., and G. J. Zhang, 2007: Effects of increased horizontal resolution on 

simulation of the North American monsoon in the NCAR CAM3: An evaluation 

based on surface, satellite, and reanalysis data. J Climate, 20, 1843–1861, 

doi:10.1175/JCL14099.1. 

 

Corfidi S. F., 2003: Cold Pools and MCS Propagation: Forecasting the Motion of 

Downwind-Developing MCSs. Wea. Forecasting, 18, 997–1017. 

 

Damiani, R., and Coauthors, 2008: The cumulus, photogrammetric, in situ, and doppler 

observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 57–73. 

 

Diem J.E., and D.P. Brown, 2003: Anthropogenic impacts on summer precipitation in 

central Arizona, U.S.A., The Professional Geographer, 55, 343-355. 

 



 24 

Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. 

J. Clim., 6, 1665–1677, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2. 

 

Douglas, M. W., and J. C. Leal, 2003: Summertime Surges over the Gulf of California: 

Aspects of Their Climatology, Mean Structure, and Evolution from Radiosonde, 

NCEP Reanalysis, and Rainfall Data. Wea. and Forecasting, 18, 55–74, 

doi:10.1175/1520-0434(2003)018<0055:SSOTGO>2.0.CO;2. 

 

Douglas, A. V., and P. J. Englehart, 2007: A climatological perspective of transient 

synoptic features during NAME 2004.  J. Climate, 20, 1947-1954. 

 

Finch, Z. O., and R. H. Johnson, 2010: Observational Analysis of an Upper-Level 

Inverted Trough during the North American Monsoon Experiment. Mon. Wea. 

Rev., 138, 3540-3555. 

 

Fuller, R. D., and D. J. Stensrud, 2000: The relationship between tropical easterly waves 

and surges over the Gulf of California during the North American Monsoon. Mon. 

Wea. Rev., 128, 2983–2989.  

 

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three 

dimensions. Q. J. R. Meteorol. Soc., 125, 723–757, doi:10.1256/smsqj.55416. 

 

Gochis, D. J., C. J. Watts, J. Garatuza-Payan, and J. Cesar-Rodriguez, 2007: Spatial and 

temporal patterns of precipitation intensity as observed by the NAME Event Rain 

gauge Network from 2002 to 2004. J. Clim., 20, 1734–1750, 

doi:10.1175/JCLI4092.1. 

 

Gutzler, D.S., L.N. Long, J. Schemm, S.B. Roy, M. Bosilovich, J.C. Collier, M. 

Kanamitsu, P. Kelly, D. Lawrence, M. Lee, R.L. Sánchez, B. Mapes, K. Mo, A. 

Nunes, E.A. Ritchie, J. Roads, S. Schubert, H. Wei, and G.J. Zhang, 2009: 

Simulations of the 2004 North American Monsoon: NAMAP2. J. Climate, 22, 

6716–6740, https://doi.org/10.1175/2009JCLI3138.1 

 

Hales, J., 1972: Surges of Maritime Tropical Air Northward Over Gulf of California. 

Mon. Wea. Rev., 100, 298–306, doi: 10.1175/1520-

0493(1972)100<0298:SOMTAN>2.3.CO;2. 

 

Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the Error due to Unresolved 

Scales in Ensemble Data Assimilation: A Comparison of Different Approaches. 

Mon. Weather Rev., 133, 3132–3147, doi:10.1175/MWR3020.1. 

https://doi.org/10.1175/MWR3020.1. 

 

Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-Dependent Filtering of 

Background Error Covariance Estimates in an Ensemble Kalman Filter. Mon. 

Weather Rev., 129, 2276–2790, doi:10.1080/00365519009091567. 

 

https://doi.org/10.1175/MWR3020.1


 25 

Higgins, R.W. and W. Shi, 2005: Relationships between Gulf of California Moisture 

Surges and Tropical Cyclones in the Eastern Pacific Basin. J. Climate, 18, 4601–

4620, https://doi.org/10.1175/JCLI3551.1 

 

Higgins, R., W. Shi, and C. Hain, 2004: Relationships between Gulf of California 

moisture surges and precipitation in the southwestern United States. J. Climate, 

17, 2983–2997. 

 

Higgins, W., and D. Gochis, 2007: Synthesis of Results from the North American 

Monsoon Experiment (NAME) Process Study. J. Clim., 20, 1601–1607, 

doi:10.1175/JCLI4081.1. 

 

Higgins, W., and Coauthors, 2006: The NAME 2004 field campaign and modeling 

strategy. Bull. Am. Meteorol. Soc., 87, 79–94, doi:10.1175/BAMS-87-1-79. 

 

Houtekamer, P. L., and H. L. Mitchell, 2001: A Sequential Ensemble Kalman Filter for 

Atmospheric Data Assimilation. Mon. Weather Rev., 129, 123–137, 

doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2. 

http://journals.ametsoc.org/doi/abs/10.1175/1520-

0493%282001%29129%3C0123%3AASEKFF%3E2.0.CO%3B2. 

 

Janowiak, J. E., V. J. Dagostaro, V. E. Kousky, and R. J. Joyce, 2007: An examination of 

precipitation in observations and model forecasts during NAME with emphasis on 

the diurnal cycle. J. Clim., 20, 1680–1692, doi:10.1175/JCLI4084.1. 

 

Johnson, R. H., P. E. Ciesielski, B. D. McNoldy, P. J. Rogers, and R. K. Taft, 2007: 

Multiscales variability of the flow during the North American Monsoon 

experiment. J. Clim., 20, 1628–1648, doi:10.1175/JCLI4087.1. 

 

Kursinski, E. R., D. K. Adams, and M. Leuthold, 2008: GPS observations of precipitable 

water and implications for the predictability of precipitation during the North 

American monsoon. CLIVAR Exchanges, No. 45, International CLIVAR Project 

Office, Southampton, United Kingdom, 14, 19–21. 

 

Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: 

Long-term changes in the climatology of transient inverted troughs over the North 

American monsoon region and their effects on precipitation. J. Climate, 29, 6027-

6064. 

 

Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. 

Cifelli, 2007: Radar-observed characteristics of precipitating systems during 

NAME 2004. J. Clim., 20, 1713–1733, doi:10.1175/JCLI4082.1. 

 

Lee, M.-I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM 

simulations of warm season diurnal cycle of precipitation over the United States 

and northern Mexico. J Climate, 20, 1862–1881, doi:10.1175/JCL14090.1. 

https://doi.org/10.1175/JCLI3551.1
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282001%29129%3C0123%3AASEKFF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282001%29129%3C0123%3AASEKFF%3E2.0.CO%3B2


 26 

 

Li, J., S. Sorooshian, W. Higgins, X. Gao, B. Imam, and K. Hsu, 2008: Influence of 

spatial resolution on diurnal variability during the north American monsoon. J. 

Clim., 21, 3967–3988, doi:10.1175/2008JCLI2022.1. 

 

Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 

1374–1387, doi:https://doi.org/10.1175/1520-

0477(1980)061<1374:MCC>2.0.CO;2. 

 

McCollum, D., R. Maddox, and K. Howard, 1995: Case study of a severe mesoscale 

convective system in central Arizona. Wea. Forecasting, 10, 643–665. 

 

Meng, Z., and F. Zhang, 2007: Tests of an Ensemble Kalman Filter for Mesoscale and 

Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments. Mon. 

Weather Rev., 135, 1403–1423, doi:10.1175/MWR3352.1. 

http://journals.ametsoc.org/doi/abs/10.1175/MWR3352.1. 

 

Moker, J. M., C. L. Castro, A. F. Arellano, Y. L. Serra, and D. K. Adams, 2018: 

Convective-permitting hindcast simulations during the North American Monsoon 

GPS Transect Experiment 2013: Establishing baseline model performance 

without data assimilation. J. Appl. Meteorol. Climatol., 57, 1683–1710, 

doi:10.1175/JAMC-D-17-0136.1. 

 

Moker, J. M., A. F. Arellano, C. L. Castro, Y. L. Serra, D. K. Adams, and C. B. Risanto, 

2019: Utility of GPS-derived PWV Measurements in Constraining High-

Resoluation WRF Forecasts Over the North American Monsoon Region. In 

preparation. 

 

Moore, A., I. Small, S. Gutman, Y. Bock, J. Dumas, P. Fang, J. Haase, M. Jackson, and J. 

Laber, 2015: National Weather Service Forecasters Use GPS Precipitable Water 

Vapor for Enhanced Situational Awareness during the Southern California 

Summer Monsoon. Bull. Amer. Meteor. Soc., 96, 1867–

1877, doi:10.1175/BAMS-D-14-00095.1.  

 

Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical 

cumulonimbus and squall lines. Q. J. R. Meteorol. Soc., 102, 373–394, 

doi:10.1002/qj.49710243208. 

 

Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The Diurnal Cycle of Clouds and 

Precipitation along the Sierra Madre Occidental Observed during NAME-2004: 

Implications for Warm Season Precipitation Estimation in Complex Terrain. J. 

Hydrometeorol., 9, 728–743, doi:10.1175/2008JHM939.1. 

http://journals.ametsoc.org/doi/abs/10.1175/2008JHM939.1. 

 

Newman, A., and R. H. Johnson, 2012: Mechanisms for Precipitation Enhancement in a 

North American Monsoon Upper-Tropospheric Trough. J. Atmos. Sci., 69, 1775–

http://journals.ametsoc.org/doi/abs/10.1175/MWR3352.1
http://journals.ametsoc.org/doi/abs/10.1175/2008JHM939.1


 27 

1792, doi:10.1175/JAS-D-11-0223.1. 

http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0223.1. 

 

Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. 

Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the 

“grey zone.” Q. J. R. Meteorol. Soc., 140, 491–499, doi:10.1002/qj.2145. 

 

Pytlak, E., M. Goering, and A. Bennett, 2005: Upper tropospheric troughs and their 

interaction with the North American monsoon. 19th Conf. on Hydrology, San 

Diego, CA, Amer. Meteor. Soc., P2.3, 

https://ams.confex.com/ams/pdfpapers/85393.pdf. 

 

Raymond, D. J., and M. H. Wilkening, 1980: Mountain induced convection under fair 

weather conditions. J. Atmos. Sci., 37, 2693–2706. 

 

Rogers, P. J., and R. H. Johnson, 2007: Analysis of the 13–14 July Gulf Surge Event 

during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 135, 

3098–3117, doi:10.1175/MWR3450.1. 

 

Risanto, C. B., C. L. Castro, J. M. Moker, A F. Arellano, D. K. Adams, L. M. Fierro, C. 

M. Minjarez-Sosa, 2019: Evaluating Forecast Skill of Moisture from Convective-

Permitting WRF-ARW Model during 2017 North American Monsoon Season. In 

preparation. 

 

Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived 

squall lines. J. Atmos. Sci., 45, 463–485. 

 

Rowe, A. K., S. A. Rutledge, and T. J. Lang, 2012: Investigation of Microphysical 

Processes Occurring in Organized Convection during NAME. Mon. Wea. Rev., 

140, 2168–2187, doi:10.1175/MWR-D-11-00124.1. 

 

Seastrand, S., Y. Serra, C. Castro, and E. Ritchie, 2015: The dominant synoptic-scale 

modes of North American monsoon precipitation. Int. J. Climatol., 35, 2019–

2032, doi:10.1002/joc.4104. http://doi.wiley.com/10.1002/joc.4104. 

 

Serra, Y. L., D. K. Adams, C. Minjarez-Sosa, J. M. Moker, A. F. Arellano, C. L. Castro, 

A. I. Quintanar, L. Alatorre, A. Granados, G. Vazquez, K. Holub, and C. C. 

DeMets, 2016, 2016: The north American monsoon GPS transect experiment 

2013. Bull. Am. Meteorol. Soc., 97, 2103–2115, doi:10.1175/BAMS-D-14-

00250.1. 

 

Suarez, A., H. D. Reeves, D. Wheatley, and M. Coniglio, 2012: Comparison of Ensemble 

Kalman Filter–Based Forecasts to Traditional Ensemble and Deterministic 

Forecasts for a Case Study of Banded Snow. Weather Forecast., 27, 85–105, 

doi:10.1175/waf-d-11-00030.1. 

 

http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0223.1
https://ams.confex.com/ams/pdfpapers/85393.pdf
http://doi.wiley.com/10.1002/joc.4104


 28 

Torn, R. D., 2010: Performance of a Mesoscale Ensemble Kalman Filter (EnKF) during 

the NOAA High-Resolution Hurricane Test. Mon. Weather Rev., 138, 4375–4392, 

doi:10.1175/2010mwr3361.1. 

 

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed 

Observations. Mon. Weather Rev., 130, 1913–1924, doi:10.1175/1520-

0493(2002)130<1913:EDAWPO>2.0.CO;2. 

http://journals.ametsoc.org/doi/abs/10.1175/1520-

0493%282002%29130%3C1913%3AEDAWPO%3E2.0.CO%3B2. 

 

Zehnder, J. A., 2004: Dynamic mechanisms of the gulf surge. J Geophys Res-Atmos, 109, 

doi:10.1029/2004JD004616. 

 

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of Initial Estimate and Observation 

Availability on Convective-Scale Data Assimilation with an Ensemble Kalman 

Filter. Mon. Weather Rev., 132, 1238–1253, doi:10.1175/1520-

0493(2004)132<1238:IOIEAO>2.0.CO;2. https://doi.org/10.1175/1520-

0493(2004)132%3C1238:IOIEAO%3E2.0.CO. 

 

Zuidema, P., C. Fairall, L. M. Hartten, J. E. Hare, and D. Wolfe, 2007: On the air–sea 

interaction at the mouth of the Gulf of California. J. Climate, 20, 1649–1661. 

 

  

http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282002%29130%3C1913%3AEDAWPO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%282002%29130%3C1913%3AEDAWPO%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0493(2004)132%3C1238:IOIEAO%3E2.0.CO
https://doi.org/10.1175/1520-0493(2004)132%3C1238:IOIEAO%3E2.0.CO


 29 

APPENDIX A: CONVECTIVE-PERMITTING HINDCAST SIMULATIONS 

DURING THE NORTH AMERICAN MONSOON GPS TRANSECT 

EXPERIMENT 2013: ESTABLISHING BASELINE MODEL PERFORMANCE 

WITHOUT DATA ASSIMILATION 

 

(Published in Journal of Applied Meteorology and Climatology) 

 

 

James M. Moker Jr.1, Christopher L. Castro1, Yolande L. Serra2, Avelino Arellano Jr.1, 

and David K. Adams3 

 
1 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, 

Arizona 
2 Joint Institute for Study of Atmosphere and Ocean, University of Washington, Seattle, 

Washington 
3 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México 

(UNAM), México, D.F.  

 

 

 

 

 

 

 

 

Corresponding author address: James M. Moker Jr., Department of Hydrology and 

Atmospheric Sciences, Harshbarger Building, Room 214A, 133 E. James E. Rogers Way, 

Tucson, AZ 85721-0081  

E-mail: jmoker@email.arizona.edu 

 

 

 

 

 

 

 

 

 

Moker, J.M., C.L. Castro, A.F. Arellano, Y.L. Serra, and D.K. Adams, 2018: Convective-

Permitting Hindcast Simulations during the North American Monsoon GPS Transect 

Experiment 2013: Establishing Baseline Model Performance without Data Assimilation. 

J. Appl. Meteor. Climatol., 57, 1683–1710, https://doi.org/10.1175/JAMC-D-17-0136.1 

 

© American Meteorological Society. Used with permission. 

https://doi.org/10.1175/JAMC-D-17-0136.1


 30 

  

Abstract 

During the North American monsoon global positioning system (GPS) Transect 

Experiment 2013, daily convective-permitting WRF simulations are performed in 

northwestern Mexico and the southern Arizona border region using the operational 

Global Forecast System (GFS) and North American Mesoscale Forecast System (NAM) 

models as lateral boundary forcing and initial conditions. Compared to GPS precipitable 

water vapor (PWV), the WRF simulations display a consistent moist bias in the initial 

specification of PWV leading to convection beginning 3–6 h early. Given appreciable 

observed rainfall, days are classified as strongly and weakly forced based only on the 

presence of an inverted trough (IV); gulf surges did not noticeably impact the 

development of mesoscale convective systems (MCSs) and related convection in 

northwestern Mexico. Strongly forced days display higher modeled precipitation forecast 

skill than weakly forced days in the slopes of the northern Sierra Madre Occidental 

(SMO) away from the crest, especially toward the west where MCSs account for the 

greatest proportion of all monsoon-related precipitation. A case study spanning 8–10 July 

2013 illustrates two consecutive days when nearly identical MCSs evolved over northern 

Sonora. Although a salient MCS is simulated on the strongly forced day (9–10 July 2013) 

when an IV is approaching the core monsoon region, a simulated MCS is basically 

nonexistent on the weakly forced day (8–9 July 2013) when the IV is farther away. The 

greater sensitivity to the initial specification of PWV in the weakly forced day suggests 

that assimilation of GPS-derived PWV for these types of days may be of greatest value in 

improving model precipitation forecasts. 
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1. Introduction 

 Severe thunderstorms are one of the principal natural hazards in the southwestern 

United States and adjacent northwestern Mexico, occurring predominantly from July to 

mid-September and especially during “burst” periods when organized convection is more 

favored (e.g., Carleton 1986; Douglas et al. 1993; Adams and Comrie 1997). Monsoon 

thunderstorms can cause damage and hazards from blowing dust from strong outflows, 

flash flooding from torrential rainfall, and power outages from lightning strikes 

(McCollum et al. 1995; Gochis et al. 2007; Magirl et al. 2007; Griffiths et al. 2009). With 

respect to annual precipitation, convective precipitation related to the North American 

monsoon accounts for 60%–80% in northwestern Mexico and 40% in southwest United 

States (Douglas et al. 1993). The ability to quickly and accurately forecast the location 

and timing of monsoon thunderstorms is critical for the timely issuance of official 

watches and warnings in this binational region. 

 The accuracy of numerical weather prediction (NWP; acronyms used in this paper 

are listed in appendix B) forecasts during the monsoon depends on how well a given 

model forecast system can deterministically represent thunderstorm development and the 

key regional synoptic-scale features that facilitate convective organization. Thunderstorm 

development is strongly tied to the diurnal cycle of convection over complex terrain in 

both the southwestern United States (Raymond and Wilkening 1980; Damiani et al. 

2008) and northwestern Mexico (Gochis et al. 2007; Lang et al. 2007; Nesbitt et al. 2008) 

with mesoscale convective systems (MCSs) being the dominant mechanism for severe 

weather (McCollum et al. 1995; Lang et al. 2007; Newman and Johnson 2012; Rowe et 

al. 2012). Precipitation from MCSs approaches the Gulf of California (GoC) about 12 h 
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later than the time of maximum diurnal convection in the SMO to the east (Johnson et al. 

2007; Lang et al. 2007; Zuidema et al. 2007; Nesbitt et al. 2008). In the North American 

monsoon core region, defined as the region bounded by 24°–30°N and 112°–106°W 

(Higgins et al. 2006), MCSs account for the majority of the rainfall that falls west of the 

SMO (Castro et al. 2007; Newman and Johnson 2012). 

  A necessary condition for the development of monsoon convection is a favorable 

thermodynamic environment in terms of atmospheric instability and moisture (Johnson et 

al. 2007; Becker and Berbery 2008; Adams and Souza 2009). These criteria have been 

traditionally characterized by convective available potential energy (CAPE; Moncrieff 

and Miller 1976) and precipitable water vapor (PWV; Moore et al. 2015) metrics. 

However, during monsoon “burst” periods (Carleton 1986; Carleton et al. 1990; Adams 

and Souza 2009), transient upper-tropospheric inverted troughs (IVs; Pytlak et al. 2005) 

facilitate convective organization, likely through both increasing instability and 

dynamical forcing (Douglas and Englehart 2007; Bieda et al. 2009; Finch and Johnson 

2010). For example, Finch and Johnson (2010) argue that IVs modulate and intensify 

midlevel flow and shear leading to favorable conditions for convective organization in 

northwestern Mexico. From a climatological perspective, easterly vertical wind shear is 

also associated with one of the leading modes of monsoon precipitation (Seastrand et al. 

2015). Climatologically, IVs are associated with an increase in organized propagating 

(MCS-like) convection in the North American monsoon core region (Bieda et al. 2009; 

Lahmers et al. 2016). Assessing exactly how the presence or absence of IVs impacts 

model forecast skill is a major objective of this study. 

 Surges of low-level tropical moisture (generally below 600 hPa) up the GoC 
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(Douglas and Leal 2003; Rogers and Johnson 2007), hereinafter referred to as “gulf 

surges,” are also important for the development of convection in the southwest United 

States (Hales 1972; Brenner 1974; Fuller and Stensrud 2000; Higgins et al. 2004), 

although our study brings into question their relevance for low-level moisture south of 

this region in northwest Mexico. “Major” gulf surges are often triggered by the passage 

of a low-pressure disturbance near the mouth of the gulf such as a tropical cyclone (TC) 

or tropical easterly wave (TEW; Fuller and Stensrud 2000; Douglas and Leal 2003; 

Higgins and Shi 2005), and traverse the entire length of the gulf over a period of several 

days (Zehnder 2004; Serra et al. 2016). TCs can also make direct landfall into northwest 

Mexico and the southwest United States, although this typically occurs in October at the 

end of the monsoon season (Wood and Ritchie 2013). “Minor” gulf surges triggered by 

the convective outflow boundaries of decaying MCSs can last several hours and are 

confined to the northern GoC (Hales 1972; Fuller and Stensrud 2000; Lang et al. 2007). 

IVs can also be an indirect cause of minor gulf surges in their support of MCS 

development (Douglas and Leal 2003; Lang et al. 2007). 

 Operational forecast models typically resolve features at the meso-α scale (100–

1000 km) therefore representing features important to the monsoon like the longwave 

atmospheric circulation pattern over western North America during the warm season 

(e.g., monsoon ridge positioning) and transient synoptic features (e.g., IVs). However, to 

explicitly represent storm-scale structures like squall lines and outflow boundaries (e.g., 

Li et al. 2008), the use of convective-permitting atmospheric modeling at the meso-γ 

scale (i.e., model grid spacing on the order of 1–4 km without cumulus parameterization) 

is necessary. Since MCSs are dependent upon antecedent meso-γ-scale features, they 
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cannot be resolved by large-domain operational forecast models that focus on the meso-α 

scale and larger (Gutzler et al. 2009). 

 The North American Monsoon Experiment (NAME; Higgins et al. 2006) in 2004 

advanced our knowledge of convective processes in the North American monsoon core 

region (see Higgins and Gochis 2007) and provided a valuable dataset for assessing 

model representation of monsoon convection. However, a noted major weakness in the 

NAME observational network experimental design was the lack of measurements of both 

the diurnal cycle of the boundary layer and moisture fluxes at higher elevations away 

from the coast (Higgins and Gochis 2007), a critical region for monsoon convective 

initiation. This lack of measurements strongly motivated the North American Monsoon 

GPS Transect Experiment 2013 (Transect 2013) (Adams et al. 2014; Serra et al. 2016) 

that included 10 GPS meteorological stations that were installed in northwest Mexico to 

capture the evolution of PWV during convection initiation through organization and 

propagation from the highest elevations of the SMO to the coastal plains of the GoC. 

 In our study, we use a convective-permitting model to downscale operational 

forecasts over northwest Mexico during Transect 2013. Using a similar model, Kursinski 

et al. (2008a) showed that a 5% change in initial PWV values (within the analysis error) 

significantly changes the amount of convective precipitation over northwestern Mexico, 

therefore implying that monsoon convective forecasts are sensitive to the initial 

specification of PWV. Here, we report on the results of validating our forecasts against 

satellite rainfall and surface observations from the Transect 2013 dataset. A follow-on 

study will document the results of the assimilation of GPS PWV into the model forecasts. 
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2. Data and model description 

a) GPS PWV from the Transect 2013 experiment 

 In the previous section, we introduced Transect 2013 where 10 GPS 

meteorological sensors were deployed across northwest Mexico within the North 

American monsoon core region during summer 2013. These GPS sensors are indicated 

by black dots in the bottom panel of Fig. 1 and were set up into three strategically placed 

transects (Serra et al. 2016) whose configuration and monitoring purposes are 

summarized in Table 1. The longer-term SuomiNet GPS stations 

(http://www.suominet.ucar.edu), principally located within the United States at the time 

of this study, are indicated by triangles the bottom panel of Fig. 1. Gulf surges identified 

by the coastal transect have the advantage of being based on full-tropospheric moisture 

and are consequently less subject to localized land surface effects (e.g., surface 

dewpoint). Additionally, the advection of moisture along the gulf can be monitored to 

estimate the speed and extent of the surge, which, as discussed above, has important 

consequences for the location of convective outbreaks mainly in the southwest United 

States. The SMO transect, whose terrain cross section is highlighted in Fig. 2, offers a 

first-time look at in situ high-frequency PWV evolution during convective initiation in 

the higher elevations and thereby filling the gap in the NAME dataset in this locale that 

was noted by Higgins and Gochis (2007). 

 GPS meteorological sensors also provide standard meteorological variables 

including precipitation at 1-min temporal resolution. GPS PWV is high frequency (~5 

min) and all weather, which makes it particularly advantageous for rapidly evolving 

cloudy and rainy conditions. For example, the strong upswing in PWV prior to deep 

http://www.suominet.ucar.edu/
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convective events in association with water vapor convergence (Kursinski et al. 2008a,b; 

Adams et al. 2011, 2013, 2015) permits the use of the time rate of change of PWV for 

identifying the events as well as a proxy for their intensity. Global Navigation and 

Satellite Systems (GNSS)-Inferred Positioning System and Orbit Analysis Simulation 

Software (GIPSY-OASIS; https://gipsy-oasis.jpl.nasa.gov/) is used to obtain PWV from 

the GPS signal at 5-min temporal resolution. For more information on the derivation of 

PWV from the GPS signal, see Bevis et al. (1992). One of the 10 stations, RAYN, failed 

in mid-July and was excluded from the analysis.  

b) Gridded precipitation dataset 

 The gridded rainfall dataset that we use for verification purposes in our northwest 

Mexico domain is the Tropical Rainfall Measuring Mission (TRMM) Multisatellite 

Precipitation Analysis (TMPA) 3B42, version 7, dataset (referred to hereinafter as 

TRMM; Huffman et al. 2007) based on its past performance that compared it three other 

datasets with similar subdaily temporal resolutions capable of resolving the diurnal cycle 

of convective precipitation: Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks (PERSIANN; Sorooshian et al. 2000), Global Satellite 

Mapping of Precipitation (GSMaP; Okamoto et al. 2005; Kubota et al. 2007; Aonashi et 

al. 2009; Ushio et al. 2009), and the Climate Prediction Center (CPC) morphing 

technique (CMORPH; Joyce et al. 2004) datasets. These datasets have unique ways of 

incorporating infrared geostationary satellite data, polar-orbiting satellite microwave data, 

and/or gauge observations, as well as additional analysis methods to determine 

quantitative precipitation estimates (QPE) that are explained in detail in their respective 

references in Table 2. Stage IV is a combined WSR-88D radar and gauge-based gridded 

https://gipsy-oasis.jpl.nasa.gov/
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rainfall product within the United States that Chen et al. (2015) consider the “benchmark 

for validating other radar- or satellite-based QPE products” (p. 4445). They show that 

Stage IV and TRMM display similar spatial precipitation patterns over the United States 

and state that their results “cast a vote of confidence for the satellite QPE algorithm” of 

TRMM to be a reference for developers of a QPE algorithm in the Global Precipitation 

Measurement (GPM). Stillman et al. (2016) examine TRMM, CMORPH, and 

PERSIANN satellite precipitation datasets across the Walnut Gulch Experimental 

Watershed (WGEW), a 150 km2 desert watershed in southeast Arizona just to the north 

of the SMO, and find that TRMM performs the best and PERSIANN the worst when 

compared to observations during the warm season. Tian et al. (2010) compared TRMM, 

GSMaP, CMORPH, and PERSIANN. In the western United States, in contrast to 

TRMM, they show that GSMaP, CMORPH, and PERSIANN generally miss the heaviest 

rain rates (greater than 40 mm day−1) and overestimate precipitation, particularly in the 

warm season. 

c) Other observational and atmospheric reanalysis data sources 

  Data sources used to identify synoptic features such as IVs, TEWs, and tropical 

cyclones (TCs) as well as to calculate gulf surges outside of the coastal transect are 

described in Table 3. 

d) WRF-ARW Model configuration and hindcast simulations 

 The Advanced Research version of the Weather Research and Forecasting (WRF-

ARW; Skamarock et al. 2008) Model, version 3.4.1, is used for retrospective daily 

convective simulations (referred to as hindcasts) for the duration of Transect 2013. The 

WRF-ARW configuration is based on the real-time quasi-operational model at the 
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University of Arizona within the Department of Hydrology and Atmospheric Sciences 

(UA HAS), hereinafter referred to as UA-WRF 

(http://www.atmo.arizona.edu/?section=weather&id=wrf), whose configuration was also 

the basis for a study that dynamically downscaled regional climate models (Luong et al. 

2017). Our model uses three nested domains (d01, d02, and d03), as described in Table 4, 

that feature 27 vertical levels with a terrain-following hydrostatic pressure coordinate that 

is a traditional sigma coordinate (Skamarock et al. 2005). The innermost domain (d03) 

closely corresponds to the NAME Tier I region (which itself encompasses the monsoon 

core region) and since it has a 2.5-km horizontal grid spacing, it explicitly resolves 

convection at the meso-γ scale. The coarser domains of d01 and d02 (30- and 10-km 

horizontal grid spacing, respectively) employ the Kain–Fritsch cumulus parameterization 

scheme (Kain 2004). Other model physics applied to all domains is shown in Table 5. 

 The hindcasts are executed daily during the Transect 2013 period for 79 days 

(from 26 June through 12 September 2013) in two sets of simulations that have different 

initial conditions and 6-hourly lateral boundary conditions: 1) the NAM model (32-km 

horizontal grid spacing) and 2) GFS model (0.25° horizontal grid spacing). To capture the 

diurnal cycle of convection, the hindcasts are initialized at 1200 UTC (0500 LT) and run 

for 24 h. The Rapid Refresh (RAP) model is used to initialize the soil moisture and 

temperature because these surface data have finer spatial resolution as compared to the 

NAM and GFS models. 

3. Analysis methods 

a) Assessment of synoptic features 

 Following Douglas and Englehart (2007), who summarized transient features of 

http://www.atmo.arizona.edu/?section=weather&id=wrf
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the 2004 monsoon season in NAME, we track IVs, gulf surges, TEWs, and tropical 

cyclones (TCs) during the Transect 2013 period. These features are then used to 

categorize days by the synoptic forcing conditions to assess their relative impact on 

forecast skill within the hindcasts. 

 1) IDENTIFICATION OF TRANSIENT SYNOPTIC FEATURES 

 We subjectively determine an IV, based on Bieda et al. (2009), by an area of 

enhanced relative vorticity that moves westward along the southern periphery of the 

monsoon high and is depicted by a swirl pattern in the GOES water vapor infrared 

channel. Additionally, North American Regional Reanalysis (NARR)-A 300-hPa 

geopotential height and wind fields are also examined to confirm the IV presence. We 

note IVs that approach the NAME Tier I region (monsoon core). 

 We objectively identify TEWs from the ERA-Interim reanalysis and GFS analysis 

using a vorticity-tracking algorithm (Hodges 1994, 1995) that was previously shown to 

be effective in tracking TEWs across the tropical Atlantic and east Pacific (e.g., 

Thorncroft and Hodges 2001; Serra et al. 2010). We identify a TEW as a vertically 

averaged relative vorticity feature over the 850–600-hPa layer that exceeds +5 × 10−6 s−1 

with the following requirements: 1) the vorticity feature persists for at least 2 days, 2) its 

track has a length of at least 1000 km, and 3) its track passes within 500 km of the mouth 

of the GoC. Similar TEW tracks were found in the ERA-Interim and GFS vorticity fields 

(not shown). If a TEW track coincided with a TC identified in the “best track” database, 

then that track is categorized as a TC (not a TEW). Note: Two TEWs that occurred were 

not initially found by the objective vorticity tracking algorithm and were not included. 

They were later verified by both GOES infrared imagery and NWS area forecast 
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discussions. 

 Gulf surges are identified using hourly Transect 2013 GPS PWV at the three 

coastal transect stations (MOCH, KINO, and PSCO) and hourly dewpoint temperature at 

Yuma, Arizona (KNYL), located north of the GoC. In the coastal transect, per Serra et al. 

(2016), we first calculate a 24-h moving average of PWV to smooth the data. Then, we 

calculate a percent increase from the minimum PWV in a previous 24-h period to the 

maximum PWV in the current 24-h period (ending at 1200 UTC to match the hindcasts). 

The thresholds used to identify a gulf surge are specific to each of the three GoC sites and 

are based on the minimum PWV percent increase for each site out of all three gulf surges 

in Fig. 4 of Serra et al. (2016): 11% at MOCH, 19% at KINO, and 28% at PSCO. North 

of the GoC, after smoothing hourly dewpoint temperatures at KNYL via a 24-h moving 

average, we identify gulf surges with two criteria: 1) a minimum dewpoint increase of 

4°C in 2 consecutive 24-h periods that is based on the three gulf surges in Fig. 4 of Serra 

et al. (2016), and 2) a dewpoint temperature of at least 18°C (~64°F) in the current 24-h 

period that is partially based on the NWS method that uses this daily mean dewpoint 

temperature as one of its two threshold criteria (NWS Tucson 2015, personal 

communication). 

 2) CRITERIA FOR IDENTIFYING STRONGLY-FORCED AND WEAKLY-FORCED DAYS 

 As a first pass, we classify days as strongly or weakly forced based on the 

presence of one or more of the synoptic features discussed in the previous section known 

from the literature to facilitate convective organization in the North American monsoon 

region based on Douglas and Englehart (2007). We choose days when organized 

convection propagates off the high terrain of the SMO toward the west over the lower 
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elevations of Sonora and the border region of southern Arizona, as documented in the 

2013 Monsoon Weather Discussions led by UA HAS graduate students and part of the 

Transect 2013 field campaign (https://monsoonwx2013.wordpress.com). To disregard 

days with monsoon breaks and light convective activity, we use TRMM to identify days 

when precipitation fell along the northern SMO crest and to the north and west toward 

the lower elevations of northwest Mexico and adjacent extreme southern Arizona. Only 

days with 24-h accumulations of at least 20 mm in at least five grid points in a region 

bounded by 26.0°–32.5°N and 114°–107.25°W (except for the GoC and Baja Peninsula) 

are considered.  

b) Statistical performance metrics for WRF Model simulations 

 Given the sensitivity of model rainfall to initial specification of PWV found by 

Kursinski et al. (2008a), we compare model PWV for the sets of strongly and weakly 

forced days to observed GPS PWV. These results are then used to interpret analysis of 

hindcast rainfall against TRMM observations. 

 1) EVALUATION OF MODELED PWV 

 For direct comparisons of GPS-derived PWV and WRF-simulated PWV, the time 

and location are first matched with instantaneous PWV values extracted directly from the 

Transect 2013 and SuomiNet GPS datasets every third hour (i.e., 1200, 1500, 1800, …, 

1200 UTC). Then, the WRF-simulated PWV is mapped to each GPS site using vertical 

integration and inverse-distance squared weighting schemes that are described in 

appendix A. Mean bias and root-mean-square error (RMSE) are computed between GPS 

observations and WRF-simulated (model) values. Here, mean bias is defined as the 

model mean minus the observation mean. In this convention, a negative (positive) mean 

https://monsoonwx2013.wordpress.com/
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bias indicates a dry (moist) model bias relative to the observations. RMSE is defined as 

the square root of the mean squared differences between the observed and modeled 

values (Wilks 1995). A paired observation-model two-tailed t test is used to determine 

the level of statistical significance of the differences of the mean biases. 

 2) EVALUATION OF MODELED RAINFALL  

 To compare TRMM precipitation with the d03 WRF modeled precipitation, the 3-

h TRMM mean precipitation rate is first converted to 3-h accumulations to match the 

time interval of the output of the WRF hindcasts. Then, WRF precipitation is scaled up 

from its 2.5-km horizontal resolution to 0.25° to match that of TRMM using the Earth 

System Modeling Framework (ESMF) “conserve” function within NCL. For each 3-h 

forecast period, modeled precipitation (WRF) is subtracted from observed precipitation 

(TRMM) to produce the bias maps for the combination of both strongly and weakly 

forced days.  

 Precipitation forecast skill is evaluated by first completing a 2 × 2 forecast 

contingency matrix (Table 6) and then calculating the critical success index (CSI; 

Donaldson et al. 1975), probability of detection (POD), and false-alarm ratio (FAR) at 

each grid point for a subset of days. Mason (1989) and Schaefer (1990) have shown that 

CSI is a biased metric that is dependent on the number of observed events. To address 

this bias, POD and FAR were added to the analysis. The metrics range from 0 to 1. CSI 

and POD have a perfect (zero) forecast skill of 1 (0). FAR has a perfect (zero) forecast 

skill of 0 (1). CSI is defined as a ratio of hits (A) to observed events (A + C) and false 

alarms (B): 

CSI =  
𝐴

(𝐴 + 𝐵 + 𝐶)
      (1) 
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POD is defined as the ratio of hits (A) to observed events (A + C): 

POD =  
𝐴

(𝐴 + 𝐶)
      (2) 

FAR is defined as the ratio of false alarms (B) to total forecasts (A+B): 

FAR =  
𝐵

(𝐴 + 𝐵)
     (3) 

We define a precipitation event at a grid point that has at least 2.5 mm (10 mm) of 

accumulation in the 6-h (daily) periods and at least 3 observed events in both the strongly 

and weakly forced days subsets. We use a neighborhood verification technique that 

considers modeled events in ±2 grid points where each grid point is assigned a weighted 

average of the difference of the metric between the strongly and weakly forced subsets of 

days. The metric is undefined for a grid point if any of the subsets have 1) less than 3 

observed events or 2) no modeled events in all neighborhood grid points. For each grid 

point, a two-tailed statistical local significance test (p value < 0.10) was established via 

1000 permutations in a Monte Carlo resampling method. Only grid points that containing 

at least 900 unique values are used. Finally, the statistical field significance is obtained in 

a method similar to Livezey and Chen (1983) using the same permutation method as a 

local test but with the resampling of the maps. The 900th value (90%) of the histogram is 

the critical value for statistical field significance. Pattern correlations are computed 

between the common grid points of the subdaily maps and daily maps.  

 3) FORWARD MODEL SENSITIVITY EXPERIMENTS 

 To demonstrate the potential impact of constraining the moisture fields in WRF, 

we conduct a suite of analyses on the forward sensitivity of WRF PWV and rainfall to the 

initial specification of PWV at GPS transect sites that is described in appendix A. 
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4. Model performance for strong and weak days 

a) Overview of 2013 monsoon season 

 Synoptic forcing mechanisms affecting convective precipitation coinciding with 

the Transect 2013 period are shown in Fig. 3. IVs were the most prevalent features with 

28 days impacted by 12 events. This was followed by 26 days being impacted by 6 TCs. 

Two TEW tracks (impacting 4 days) that came within 500 km of the mouth of the GoC 

were not associated with TCs. The remaining TEWs were actually TCs, or in one 

instance developed into a TC, and thus were not included in the TEW count (Fig. 3). The 

tropical activity in the eastern North Pacific in 2013 was above average with 18 TCs 

occurring versus a seasonal average of 15 for this basin from 1971 to 2009 

(http://www.nhc.noaa.gov/, accessed 2 December 2016). No TCs directly impacted the 

land areas in northwest Mexico and adjacent southwest United States.  

 Sixteen gulf surges were identified in the coastal transect and KNYL with 5 

surges initiated by TCs. One TEW initiated an additional gulf surge. Gulf surges were 

identified at MOCH (10), KINO (12), PSCO (11), and KNYL (7). In the coastal transect, 

an adjacent upstream station that recorded a gulf surge on the same or following day was 

considered part of the same event. Because surface dewpoint temperature data could lag 

or lead a PWV signal, we allowed gulf surges identified at KNYL an error of ±1 day to 

be considered part of the same event. Adams and Comrie (1997) differentiated between 

“major” and “minor” surges where “major” surges initiate near the GoC mouth and 

traverse the entire GoC while “minor” surges initiate partway up the GoC from cool MCS 

outflow and run the balance of the GoC. Out of the 16 total gulf surges, 7 were “major” 

in that they were observed at all 3 coastal transect sites (MOCH, KINO, and PSCO) and 4 

http://www.nhc.noaa.gov/
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of these also being observed at KNYL. Five of the gulf surges were “minor” if they were 

observed at PSCO or KNYL, but did not include all coastal transect sites. A third 

category of “partial” was defined for 4 gulf surges that did not reach PSCO. 

 Considering only days when appreciable rainfall was observed in northwest 

Mexico and adjacent southwest United States (i.e., monsoon active periods), we identify 

22 strongly forced and 41 weakly forced days (Table 7). Since no consistent relationship 

is observed between the presence or absence of a gulf surge and a strongly forced or 

weakly forced day, we conclude that a strongly forced day solely requires the presence of 

an IV and, conversely, a weakly forced day requires the absence of an IV. The lack of a 

strong relationship between gulf surges and day classification suggests that MCSs 

initiating in northwest Mexico are not dependent upon gulf surges for their development. 

This is in contrast to convection that occurs in Arizona where gulf surges play a more 

integral role as indicated by previous literature (e.g., Hales 1972; Brenner 1974; Fuller 

and Stensrud 2000; Higgins et al. 2004). Comparing the mean upper-tropospheric winds 

at 300 hPa from NARR data suggests that enhanced easterly winds, and thus higher 

vertical wind shear, were present over the northern SMO on the strongly forced days than 

on weakly forced days (not shown). We hypothesize that the hindcasts will exhibit better 

performance of representing observed precipitation for the strongly forced days because 

an IV would be present within the convective-permitting domain of the WRF simulations 

(core monsoon region). In contrast, relatively poor model forecast performance is 

expected on weakly forced days when there are no obvious dynamic forcing mechanisms 

present to facilitate convective organization.  
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b) Model diurnal cycle in PWV  

 Relatively larger moist biases and RMSEs are found at GPS sites located in 

Mexico than in the United States (e.g., MULT) in both the WRF-NAM (Fig. 4) and 

WRF-GFS (Fig. 5) hindcasts. The largest errors occur at the sites located on the western 

slope of the SMO (e.g., MULT), where diurnally generated convection transitions to 

more organized (MCS type) convection during the late afternoon. Thus, the SMO transect 

has captured weaknesses in the forecast model PWV in the same regions that were noted 

in the NAME 2004 field campaign dataset (Higgins and Gochis 2007). We later show 

that these weaknesses in the model PWV fields may also result in rainfall forecast errors. 

The moist bias is greatest overall in the WRF-NAM hindcasts contributing to a higher 

number of GPS sites that display statistically significant positive differences in PWV at 

model initialization. In contrast, the smaller PWV biases in the WRF-GFS hindcasts at 

model initialization result in fewer GPS sites having statistically significant differences.   

 We investigate the model initialization of the WRF-NAM hindcasts in greater 

detail since they display the highest PWV biases and RMSEs (Fig. 4). Nine out of 15 

GPS sites show significant positive PWV biases greater than 2 mm generally west of the 

SMO crest toward lower elevation. Of the three sites that have a significant positive 

PWV bias of 0–2 mm, one is located near Phoenix in central Arizona (SA31), another is 

in extreme southeast Arizona (AZCO), while the final one is located in a relatively dry 

area east of the SMO crest (CUAH). The highest RMSE values are found on the western 

SMO slope and foothills with 5–7 mm at MULT, ONVS, and BGTO. The lowest RMSE 

(< 2 mm) is located at CUAH east of the SMO crest. RMSEs of 2–3 mm are located in 

southern Arizona at the same sites that feature the lowest model bias (AZCO and SA31). 
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 As a rule, both the WRF-NAM and WRF-GFS hindcasts (Figs. 4 and 5) show a 

decrease in bias with time within the diurnal cycle (wet model biases decrease and even 

become biased dry). MULT is the only SMO transect site that maintains a statistically 

significant moist model bias throughout the diurnal cycle in both sets of hindcasts. In the 

WRF-NAM hindcasts (Fig. 4), PSCO is the only site that retains a statistically significant 

positive PWV bias, increasing from +2 to +4 mm at model initialization to +4 to +6 mm 

at 0600 UTC and lasting until the end of the diurnal cycle. The increased moist bias trend 

with time at PSCO, also in the WRF-GFS hindcasts, is the exception to the overall 

behavior of the GPS sites in that they typically show increased dry bias (decreased moist 

bias) throughout the diurnal cycle. The number of sites with statistically significant biases 

decrease with time correspondingly as the wet biases decrease in the context of the WRF-

NAM hindcasts. While statistically significant dry biases of −2 to 0 mm at BASC (higher 

elevation) are not observed until 0900 UTC and through the end of the diurnal cycle, 

statistically significant moist biases of +2 to +4 mm are observed at ONVS (lower 

elevation) at model initialization (1200 UTC) and 1500 UTC. In the WRF-GFS hindcasts 

(Fig. 5), BASC is the only site with a statistically significant dry bias (−2 to 0 mm) at 

model initialization and does not become statistically significant again until 0600 UTC 

through 0900 UTC with values of −2 to 0 mm. The bias then becomes drier with values 

of −4 to −2 mm at the end of the diurnal cycle. Around the same time, lower-elevation 

ONVS has a statistically significant dry bias of −4 to −2 mm from 0900 UTC until 1200 

UTC. 

c) Model diurnal cycle in rainfall 

 The spatially averaged RMSE of daily precipitation accumulation between the 
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WRF hindcasts and each satellite-based rainfall product all fall within the same order of 

magnitude (Table 8). In additional to being supported by the previous studies mentioned 

in section 2b, the choice of TRMM as the primary source of hindcast rainfall verification 

is also justified by the fact that it has the lowest RMSE with 8.7 mm day−1 (7.8 mm 

day−1) for WRF-NAM (WRF-GFS). The highest RMSE is observed in PERSIANN with 

9.9 mm day−1 (9.2 mm day−1) for WRF-NAM (WRF-GFS). For each satellite-based 

product, the wetter WRF-NAM has a higher RMSE than its respective WRF-GFS RMSE.  

 In Figs. 6 and 7, we verify the mean diurnal cycle of WRF precipitation that is 

produced explicitly from the cloud microphysics in d03 (top row) against TRMM (middle 

row) and display the spatial patterns of the biases (bottom row) in addition to the overall 

spatially averaged values across the domain (Table 9) for the period of Transect 2013. 

We normalize the 3- and 24-h hindcast precipitation accumulations into a mean hourly 

rainfall rate. Because there are no statistically significant differences in spatially averaged 

rainfall biases between the strongly and weakly forced days, we present the combined set 

of days where blue (red) areas indicate a wetter (dryer) model bias. 

 The model-simulated precipitation biases are strongly tied to the evolution of the 

diurnal cycle of convection. In the WRF-NAM hindcasts (Fig. 6), the precipitation 

analysis of the diurnal cycle, whose overall positive (moist) PWV bias was mentioned in 

the previous subsection, correspondingly shows a larger positive (wet) model rainfall bias 

compared to the WRF-GFS (Fig. 7) as seen through the 2100–0000 UTC period. WRF-

NAM hindcast rainfall begins earlier than the WRF-GFS as seen in the 1200–1500 UTC 

and 1500–1800 UTC periods (Figs. 6 and 7, left two panels in the top rows). This 

contributes to the WRF-NAM spatially averaged rainfall model bias both maximizing 3 h 
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earlier and being greater in magnitude when compared to the WRF-GFS (+0.12 mm h−1 

at 1800–2100 UTC for WRF-NAM versus +0.06 mm h−1 at 2100–0000 UTC for WRF-

GFS). While the spatially averaged TRMM maximizes during the 0000–0300 UTC 

period (0.18 mm h−1), the spatially averaged modeled precipitation maximizes 3 h earlier 

during the 2100–0000 UTC period with 0.28 mm h−1 (0.24 mm h−1) for WRF-NAM 

(WRF-GFS) (Table 9). At the time of maximum precipitation bias (1800–2100 UTC for 

WRF-NAM and 2100–0000 UTC for WRF-GFS), the SMO Transect 2013 sites ONVS, 

MULT, and BASC (located near the center of each map) coincide with the largest 

gridpoint-based positive precipitation biases. The spatially averaged precipitation bias is 

approximately zero by the 0000–0300 UTC period before minimizing in the 0600–0900 

UTC period (−0.07 mm h−1 for WRF-NAM and −0.06 mm h−1 for WRF-GFS) and 

remaining negative (dry) for the remainder of the diurnal cycle. The dry precipitation bias 

region that begins to appear during the 0000–0300 UTC period is most pronounced just 

to the north of the ONVS and MULT stations with a smaller area farther south that are 

both on the western slope of the SMO. The transition from relatively large positive 

precipitation biases prior to 0000 UTC to relatively large negative precipitation biases 

after 0300 UTC suggests that WRF is challenged overall in representing the evolution of 

organized convection in northwest Mexico with respect to timing. A wet model bias 

(more pronounced in WRF-NAM) is observed in the western slopes of SMO south of the 

mountain transect sites in the 24-h period. This bias is not seen across the region of MCS 

activity on this large time scale because of the canceling effect of the forecast timing 

error. In summary, regardless of the source of boundary forcing, WRF consistently 

initiates the convection on the crest of the SMO too early and underestimates the 
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propagating, more MCS-type precipitation that occurs in the afternoon and early evening 

hours. Our WRF-ARW hindcast results using a convective-permitting grid spacing are 

broadly similar to the earlier findings of Lee et al. (2007) and Collier and Zhang (2007), 

who also examined model simulations of the diurnal cycle for the monsoon, although at 

coarser spatial scales.    

d) Evaluation of model performance for rainfall 

 We use the CSI, POD, and FAR metrics to evaluate the hindcasts for both 

strongly forced and weakly forced subsets of days (Figs. 8 and 9). We display the 

differences of the forecast metrics between the two subsets of days for all but the first 6-h 

period because convection is limited 1200–1800 UTC (see Fig. 6, row 2). We also 

perform this analysis for the entire 24-h forecast period (1200–1200 UTC). Blue (red) 

areas indicate a higher forecast skill for strongly (weakly) forced days. The rank of field 

statistical significance (pattern correlation of the subdaily grid to the daily grid) is 

displayed in the lower left (upper right) of each map with both statistics listed in Table 

10. 

 The CSI, POD, and FAR differences display similar spatial patterns within each 

time period with the POD and FAR having a greater range of difference than the CSI. In 

the 24-h period, there is a common pattern of greatest CSI and POD and least FAR for 

the strongly forced days in an area across the high terrain just west of the SMO crest 

(around BASC) and into lower elevations of Sonora (Figs. 8 and 9, column 4). This area 

is where convection initiates over the highest terrain and propagates generally toward the 

west in late afternoon and continues toward the GoC into the evening and early morning 

as MCSs. Between the strongly and weakly forced days, the patterns of the differences of 
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CSI and POD are field statistically significant across both the WRF-NAM and WRF-GFS 

hindcasts, while the FAR differences are field statistically significant only in the WRF-

GFS during this time.  

 In the 1800–0000 UTC period, the spatial patterns of the metric differences show 

increased forecast skill for the strongly forced days across the western SMO slope in the 

BASC–MULT–ONVS region. In the WRF-GFS hindcasts, the spatial patterns display 

field statistical significance and have the highest map correlations with the 24-h period 

(0.55, 0.50, and 0.55 for CSI, POD, and FAR, respectively). In contrast, in the WRF-

NAM hindcasts, only the CSI difference patterns are field statistically significant while 

the POD difference pattern is the highest correlated metric to the 24-h period (0.41). 

 In the 0000–0600 UTC period, we find the lowest ranks of field statistical 

significance (highest rank is 74.7%) indicating that, when the precipitation biases 

between the WRF and TRMM minimize (Figs. 6 and 7, bottom row) as TRMM 

precipitation transitions to the lower terrain, the differences in forecast skill has the 

highest likelihood of occurring by chance. The CSI and FAR difference patterns in the 

WRF-NAM at this time have the highest correlations to the 24-h pattern (0.43 and 0.42, 

respectively).  

 In the 0600–1200 UTC period, WRF precipitation is confined to the eastern SMO 

slope (CUAH–CHIH), near the immediate coast, and over the GoC (Figs. 6 and 7, top 

row). The differences of the metrics between the strongly and weakly forced days in the 

lowest terrain (<1000 m) of Sonora is minimal (±0.1). The CSI and FAR difference 

patterns are field statistically significant in both the WRF-NAM and WRF-GFS, while 

the POD difference patterns are field statistically significant only in the WRF-NAM. In 
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the WRF-NAM hindcasts, the strongly forced days have highest forecast verification 

metrics south of MOCH–BGTO (tropical related) along the coast and in the northern 

SMO and east slope (BASC–CUAH–CHIH). The WRF-GFS hindcasts show the highest 

skill in the strongly forced days across eastern SMO slope in the CSI and POD difference 

maps.  

  In the 1800–0000 UTC and 24-h periods, the strongly forced days display higher 

precipitation forecast skill than the weakly forced days in all or some of the three metrics 

that are field statistically significant. This includes areas across west of the SMO crest, 

western SMO foothills, and toward the GoC where MCSs mature and decay and supports 

the idea that the WRF simulations in the weakly forced days are more challenged to 

capture the mature stages of MCSs once they propagate off the western slopes of the 

SMO. This finding is consistent with our hypothesis that MCS development in WRF will 

tend to more preferentially occur when an IV is nearby and conversely WRF is more 

challenged to forecast MCS development in the absence of an IV. 

 There is some agreement, in terms of spatial patterns, in the rainfall verification 

metrics among the four satellite-based precipitation datasets. This is showcased in the 

differences in daily (24 h) forecast verification metrics between the strongly forced days 

and weakly forced days for WRF-NAM (WRF-GFS) in Fig. 10 (Fig. 11) using TRMM, 

CMORPH, PERSIANN, and GSMaP. Additionally, CSI (CSI and FAR) differences in 

the WRF-NAM (WRF-GFS) have field statistical significance across all products. 

5. Case study of 8–10 July 2013 

a) Synoptic overview 

 An IV approached from the east and across the SMO in conjunction with the 
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second major gulf surge of the season triggered by TC Erick on 8 July 2013. Based on 

our classification criteria, the first day (8–9 July) is considered weakly forced while the 

second day (9–10 July) is considered strongly forced. GOES water vapor IR imagery 

depicted a mature MCS cloud shield each evening at approximately 0600 UTC in similar 

locations over northern Sonora and the immediate border region of southern Arizona 

(Fig. 12, top panel). Pressure and winds on the 2.0 potential vorticity unit (PVU) surface 

indicate the location of the IV as shown by a PV anomaly at 1800 UTC from the 1200 

UTC GFS 6-h forecast (Fig. 12, bottom panel). Rising motion from the upward tilting of 

isentropes ahead of the PV anomaly was closer to the area of the MCS development on 

the second day. 

 At 1200 UTC 8 July, an IV was located south of Big Bend, Texas, and was 

moving west into the Mexican state of Chihuahua as shown on the dynamic tropopause 

map (Fig. 12, bottom left). The lowest pressure indicated by the 6-h GFS forecast of the 

associated PV anomaly was between 280 and 300 hPa. GOES infrared imagery showed 

convective clouds near the southern tip of the Baja California Peninsula in association 

with TC Erick, which triggered a gulf surge at the mouth of the GoC earlier in the day 

that was observed by all 3 transect sites and Yuma. As shown in the 3-hourly GOES IR 

and TRMM accumulations (Fig. 13, rows 1 and 2), thunderstorms developed along the 

Sonora–Chihuahua border along the northern SMO crest at approximately 2100 UTC 8 

July. By 0000 UTC 9 July, an MCS began to form near ONVS–MULT–BASC. Between 

0300 and 0600 UTC, rainfall maximized in intensity with a large 3-h accumulation swath 

of 20 mm north of ONVS. A mature MCS evident by a vast cloud shield over Sonora at 

0600 UTC began to dissipate by 0900 UTC. While the synoptic lift from the IV was not 
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likely playing a role in the development of the MCS because of its distance, the 20–25-kt 

(1 kt = 0.51 m s−1) east winds above 200 mb over the northern SMO likely created 

favorable vertical wind shear for the formation and maintenance of the MCS.  

 After lingering convection and debris clouds at 1500 UTC (Fig. 14, top row), the 

following strongly forced day is similar in terms of the MCS formation and location. It is 

classified as strongly forced because at 1200 UTC 9 July the IV was located on the 

eastern border of the Tier I region (core) and therefore had more influence than on the 

previous day despite the PV anomaly being weaker (one grid point with 260–280 hPa). 

Its location directly over the northern SMO at 1800 UTC (Fig. 12, bottom right) aided in 

upward motion and wind shear for the MCS that would form just to the west. TRMM 

precipitation (Fig. 14, row 2) showed that diurnal convection began approximately three 

hours earlier than the previous day at 1800 UTC near CUAH just east of the SMO crest 

in association with the IV. By 2100 UTC, convection in the northern SMO was in a 

similar region to the previous evening, but with greater spatial extent. Between 0300 and 

0600 UTC 10 July, the 3-h rainfall accumulation maximized at the same time as the day 

before but with a larger 20-mm swath that is also shifted north and west at a location 

around MOCH and toward the northeast into southern Arizona. By 0600 UTC, the MCS 

cloud shield reached maximum coverage similar to the previous day. A small 20-mm 

swath is apparent in the next 3-h period near the border region, but after 0900 UTC the 

MCS cloud shield quickly dissipated. Only lingering showers were present between 

PSCO and Yuma at 1200 UTC. 

b) Evaluation of model hindcast precipitation 

 Here, we illustrate the importance of synoptic forcing to MCS development in 
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existing models and WRF. The 24-h rainfall accumulations across all four satellite-based 

rainfall products display roughly similar rainfall patterns of the MCSs that had occurred 

each evening and night, but the magnitudes were different (Fig. 15). TRMM 

(PERSIANN) gives the lowest (highest) rainfall accumulations for both days. For 9 July 

2013 (Fig. 15, bottom row), the large 90-mm isohyet in PERSIANN (and to a less extent, 

CMORPH) is likely an overestimate that may have been contaminated by the high IR 

brightness from the massive anvil. PERSIANN is also the only product that does not 

include gauge bias correction.  

 Figure 16 displays the 24-h precipitation accumulation from the model providing 

the lateral boundary conditions (columns 2 and 4), their respective WRF simulations 

(columns 3 and 5), and TRMM (column 1) for both the weakly forced day (top row) and 

strongly forced day (bottom row). The coarse resolution of the parent models requires 

cumulus parameterization, as they cannot represent precipitation explicitly as is apparent 

in the precipitation accumulation pattern. TRMM shows MCS-related precipitation of 

upward of 20–50 mm (yellow, orange, and red) over a large portion of northern Sonora 

on the weakly forced day. While the NAM model shows a closed 10-mm isohyet north of 

the MCS maximum precipitation area, the GFS model shows a small closed 20-mm 

isohyet on the western edge of this region. 

 The respective WRF-NAM shows a semblance of the NAM model precipitation 

pattern in northern Sonora, but the WRF-GFS has does not replicate the GFS model 

precipitation area in central Sonora. The weakly forced day displayed poor WRF 

performance in terms of MCS location and timing (Fig. 13, rows 3–4). A large area of 

rainfall with accumulations of greater than 20 mm in WRF-NAM begins 1800–2100 
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UTC just west of the crest in the southern SMO around and south of BGTO. TRMM at 

the same time showed accumulations of no more than 6 mm. This swath expanded into 

the northern SMO toward MULT by 2100–0000 UTC. The WRF-GFS demonstrates a 

similar pattern, but with less intensity. At 0300–0600 UTC, the WRF-NAM indicated 

convection south of ONVS–MULT–BASC, while TRMM showed the MCS occurring 

north of there. By 0600–0900 UTC, the WRF-GFS shows an area of rainfall in the same 

region as the WRF-NAM 3 h earlier. Both parent models and their respective WRF 

simulations show precipitation along the SMO from central Sonora south that is not 

observed in the TRMM. For the strongly forced day, a larger area of 20–50-mm 

accumulation is shown in central Sonora close to the Arizona border region from the 

MCS. WRF precipitation developed rapidly prior to 2100 UTC from the central SMO 

into southern Arizona and continued through 0000 UTC near the Arizona border near the 

area of TRMM rainfall, although it was 3–6 h too early (Fig. 14, rows 3–4). At 2100–

0000 UTC, a large rainfall swath greater than 20 mm was shown at lower elevations west 

of MULT in both WRF-NAM and WRF-GFS for the strongly forced day as the model 

advances the precipitation off the SMO too quickly. By 0000–0300 UTC, the 20-mm 

swath was located near KINO close to the actual MCS location. After this time, the 

WRF-GFS performed relatively well in simulating the MCS near its actual location 

through 0900 UTC with 3-h swaths of rainfall greater than 20 mm that matched the 

timing of TRMM. In contrast to the weakly forced day, the rainfall patterns of the parent 

models and their respective WRF simulation are similar in nature and cover the general 

location of the MCS observed in TRMM. Similar to the weakly forced day, there is still 

there is an overforecast of rainfall in the WRF simulations (especially WRF-NAM) south 
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of the MCS locations along the SMO, reflecting the erroneous early initiation of 

convective precipitation and positive modeled precipitation biases early in the day, as 

discussed above in reference to Figs. 6 and 7.  

6. Discussion 

 In both WRF-NAM and WRF-GFS hindcasts, regardless of the strong or weak 

classification criteria, relatively large positive biases in modeled simulated PWV occur 

on the western slopes of the northern SMO during the first part of the day (prior to 0000 

UTC). These moist biases likely contribute to an erroneous model representation of the 

diurnal cycle of convection that initiates 3–6 h earlier than observed in TRMM; simulated 

convective rainfall is too high prior to 0000 UTC and too low after 0300 UTC. MCS-type 

convection is more likely to occur in the latter period. These same types of systematic 

errors in the modeled representation of the diurnal cycle of convection have also been 

noted in prior studies modeling North American monsoon precipitation using a coarser 

resolution with parameterized convection. 

 Given the relative poor performance of the WRF Model for organized MCS-type 

convection during the weakly forced days without the appreciable influence of an IV, we 

hypothesize that the convective-permitting WRF Model simulations would potentially 

benefit the most from the assimilation of GPS-PWV observations in these types of days. 

This hypothesis is well supported by an ensemble-based model sensitivity analysis of the 

8–10 July 2013 case study that included a weakly forced day followed by a strongly 

forced day. The sensitivity of model-simulated PWV and rainfall relative to the initial 

PWV specification at ONVS for the weakly forced day (8–9 July 2013) and strongly 

forced day (9–10 July 2013) is shown in Fig. 17 with the methodological approach 
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described in appendix A. The ONVS Transect 2013 site was chosen in this analysis for 

the following reasons: 1) its location west of the crest of the SMO approximately 

corresponds to where the transition to organized MCS-type convection occurs during 

these particular days, 2) it exhibits the largest relative biases and RMSE in modeled 

simulated PWV within the SMO transect, and 3) its location at model initialization is far 

enough upstream to be a source of moisture feeding the convection that would commence 

along the SMO crest approximately 6 h later owing to diurnal mountain/valley-breeze 

circulation. Other sites closer to the SMO crest (i.e., MULT and BASC) do not appear to 

have a large PWV “memory” indicated by the lower sensitivities there (not shown). At 

the model initialization and 12-h forecast times (left two panels of Fig. 17, respectively), 

we find clear higher sensitivity of the modeled simulated PWV to specification of PWV 

initial conditions at this site for the weakly forced day than for the strongly forced day. 

This results in relatively high sensitivity of the model-simulated rainfall in northern 

Sonora to the initial PWV specification at ONVS (Fig. 17, top right) and in the same 

general location where the MCS is observed to occur via GOES IR imagery (Fig. 13, row 

1) and TRMM precipitation (Fig. 13, row 2). Similar patterns of PWV and precipitation 

sensitivity can also be found at higher-elevation stations along the SMO transect, like 

MULT and CHIH (not shown), though these stations did not exhibit as strong a 

sensitivity to forecast PWV and rainfall as ONVS.    

 These sample results strongly suggest that the WRF Model simulation results 

would be more sensitive to the initial specification of local PWV west of the SMO crest 

during the weakly forced days. In other words, as compared to days when an IV is 

present in this region, a more accurate specification of local moisture conditions during 
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the weakly forced days would have a greater relative impact on the model simulation of 

organized MCS-type convection. Therefore, we hypothesize that assimilation of GPS-

derived PWV may be of greatest value to improve the WRF precipitation forecasts during 

the types of days when the obvious synoptic-scale forcing mechanisms to facilitate 

organized convection are absent. As mentioned in our prior work of Serra et al. (2016), a 

subsequent study will focus on the assimilating the GPS PWV observations into the 

WRF-GFS configuration considered here to formally assess this hypothesis.  

7. Conclusions 

 Daily WRF-ARW hindcasts of monsoon convection are performed using the 

forcing data for initial and boundary conditions from the operational GFS and NAM 

model during the period of Transect 2013. Both WRF-GFS and WRF-NAM hindcasts 

display a consistent moist bias in the initial specification of PWV when compared to 

GPS-derived PWV with the WRF-NAM being the wetter of the two. We classify days by 

their level of synoptic forcing; strongly and weakly forced days are differentiated by the 

clear presence of an IV. The presence or absence of a gulf surge is not found to alter the 

WRF hindcasts for MCS development over northwest Mexico in contrast to MCS 

development in southern Arizona where previous literature indicates a high dependence 

on antecedent gulf surges. Model forecast precipitation skill is evaluated using the 

objective CSI, POD, and FAR metrics for the days when appreciable NAM precipitation 

in observed by TRMM. The strongly forced days initiated over the SMO displayed 

notably higher precipitation forecast skill than the weakly forced days, especially for 

areas west of the SMO crest. Therefore, strongly forced days appear to improve the 

model’s ability to deterministically forecast more organized, propagating MCS-type 
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convection that accounts for a greater proportion of the monsoon precipitation west of the 

SMO crest toward the GoC. The 8–10 July 2013 case study is a clear illustration of this 

point. During these two days, nearly identical MCSs evolved in the same area in northern 

Sonora in terms of precipitation amounts and spatial extent of the cloud shield. However, 

WRF reasonably simulates the MCS only on the day classified as strongly forced, or 

when an IV is near the initiation region at the highest elevations of the SMO (9–10 July 

2013), but not on the weakly forced day (8–9 July 2013) when the IV is located farther 

east. Relative to the specification of initial modeled PWV at the ONVS Transect 2013 

site near the western SMO foothills, we find higher sensitivity to the initial PWV field, 

12-h forecast PWV (0000 UTC), and 12-h forecast 12-h rainfall accumulation (0000–

1200 UTC) for the weakly forced day than for the strongly forced day. Because ONVS 

shows higher sensitivity than higher-elevation sites (e.g., MULT and BASC), we 

hypothesize that the initial specification of PWV west of the SMO crest is crucial for 

improved convective-permitting forecasts especially for MCS-type precipitation. 

Furthermore, these simulations would potentially benefit the most from the assimilation 

of GPS-PWV observations on days when synoptic-scale forcing mechanisms (e.g., IVs) 

that facilitate organized convection are absent. To formally assess this hypothesis, we 

introduced a subsequent study focusing on assimilating the GPS PWV observations into 

the WRF configuration in our prior work (Serra et al. 2016). 
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Tables 

 

Table 1: List of station names, locations, and elevations for each station in each transect 

within Transect 2013 along with its purpose. 

 

 

S
M

O
 T

ra
n

se
ct

 

Station Lat (°N) Lon (°W) 
Elevation 

(m MSL) 

 
Purpose 

KINO 28.8149 111.9287 7  To observe the development 

of MCSs in the core region at 

high temporal resolution from 

convective initiation at the 

northern SMO crest (BASC-

CUAH) to organization and 

propagation along the western 

SMO slope/foothills (MULT-

ONVS) and towards the GoC 

(KINO) 

ONVS 28.4602 109.5288 189  

MULT 28.6356 108.7595 1550  

BASC 28.2035 108.2098 1999  

CUAH 28.4079 106.8922 2058  

CHIH 28.6224 106.1006 1463  

 

 

C
o
a
st

a
l 

T
ra

n
se

ct
 Station Lat (°N) Lon (°W) 

Elevation 

(m MSL) 

 
Purpose 

MOCH 25.7815 109.0264 15  To observe the propagation of 

gulf surges along the GoC 

from south to north (MOCH-

KINO-PSCO) 

KINO 28.8149 111.9287 7  

PSCO 31.3004 113.5483 53  

 

 

S
o
u

th
er

n
 T

ra
n

se
ct

 

Station Lat (°N) Lon (°W) 
Elevation 

(m MSL) 

 
Purpose 

MOCH 25.7815 109.0264 15  To observe the strong 

precipitation gradient 

between the central GoC 

(MOCH) and the central 

SMO foothills (BGTO) 

BGTO 25.3625 107.5511 207  
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Table 2: Satellite-based precipitation datasets available during the period of study. 

 

 

Product Source 

Time 

Resolution 

Spatial 

Resolution References 

CMORPH NOAA 3-hourly 0.25° Joyce et al. (2004) 

GSMaP JAXA Hourly 0.10° Okamoto et al. (2005) 

Kubota et al. (2007) 

Aonashi et al. (2009) 

Ushio et al. (2009) 

 

PERSIANN UCI 3-hourly 0.25° Sorooshian et al. (2000) 

TRMM NASA 3-hourly 0.25° Huffman et al. (2007) 
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Table 3: Descriptions of other observational and atmospheric reanalysis datasets used in 

this study. 

 

 

Dataset Source Purpose 

Surface meteorological data 

from Naval Air Station Yuma 

(KNYL) 

Mesowest 

(http://mesowest.utah.edu) 

To calculate a 

gulf surge in 

addition to the 

coastal transect 

0.25° 3-hourly TMPA (Huffman 

et al. 2007) 

NASA’s Goddard Earth 

Sciences Data and Information 

Services Center 

(https://mirador.gsfc.nasa.gov/) 

Observed 

precipitation to 

compare with 

hindcasts 

NOAA’s 4-km GOES-East 

satellite imagery (water vapor IR 

channel) 

Iowa Environmental Mesonet 

(http://mesonet.agron.iastate.ed

u/archive/data) 

To subjectively 

depict IVs 

NARR dataset (29 vertical 

levels, 32-km horizontal 

resolution, 3-h temporal 

resolution) (Mesinger et al. 

2006) 

NOAA Operational Model 

Archive and Distribution 

System (NOMADS) 

(https://nomads.ncdc.noaa.gov/

data/narr/) 

A secondary tool 

to visualize IVs 

ERA-Interim dataset (60 vertical 

levels, ~70-km horizontal 

resolution, 3-h temporal 

resolution) (Dee et al. 2011) 

ECMWF Public Datasets 

(http://apps.ecmwf.int/datasets) 

To track TEWs 

“Past track seasonal maps” in the 

Eastern Pacific for 2013 based 

on the HURDAT “best track” 

database 

NOAA’s National Hurricane 

Center 

(http://www.nhc.noaa.gov/data) 

To identify TCs 
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Table 4: Horizontal resolutions of the 3 nested WRF-ARW domains along with the 

cumulus parameterization scheme, if used. 

 

 

 d01 d02 d03 

Horizontal Resolution 30 km 10 km 2.5 km 

Cumulus Parameterization Kain-Fritsch Kain-Fritsch none 

 

 

 

 

  



 77 

Table 5: Listing of the physics schemes that are used in our WRF-ARW configuration 

and applied to all domains. 

 

 

Category Scheme Reference 

Microphysics WRF single-moment 6-class Hong and Lim (2006) 

Planetary Boundary Layer Yonsei University Hong et al. (2006) 

Longwave Radiation Rapid Radiative Transfer Model Iacona et al. (2008) 

Shortwave Radiation Goddard Chou and Suarez (1999); 

Chou et al. (2001) 

Land Surface Model Unified Noah Tewari et al. (2004) 
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Table 6: A 2 × 2 forecast contingency table as input for the CSI, POD, and FAR metrics 

to calculate precipitation forecast skill for each grid point. 

 

 

  Observed? 

  Yes No 

Forecast? Yes A (hits) B (false alarms) 

No C (misses) D (correct negatives) 
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Table 7: List of strongly forced days and weakly forced days based on the presence of an 

inverted trough and appreciable TRMM rainfall in northwest Mexico. Because no lateral 

boundary conditions were unavailable for 7 Jul (marked with asterisk), a weakly forced 

day, that day was omitted from the analysis. With the exception of 7 Jul, there are 22 

strongly forced days and 40 weakly forced days during Transect 2013. 

 

 

Strongly forced days Weakly forced days 

9 Jul 26 Jun 5 Aug 

10 Jul 30 Jun 9 Aug 

12 Jul 1 Jul 10 Aug 

13 Jul 2 Jul 11 Aug 

17 Jul 3 Jul 12 Aug 

18 Jul 4 Jul 13 Aug 

22 Jul 5 Jul 14 Aug 

31 Jul 7 Jul* 18 Aug 

1 Aug 8 Jul 19 Aug 

2 Aug 11 Jul 23 Aug 

15 Aug 15 Jul 24 Aug 

16 Aug 16 Jul 28 Aug 

20 Aug 23 Jul 1 Sep 

21 Aug 24 Jul 6 Sep 

22 Aug 25 Jul 7 Sep 

25 Aug 26 Jul 8 Sep 

26 Aug 27 Jul 9 Sep 

27 Aug 28 Jul 10 Sep 

30 Aug 29 Jul 12 Sep 

31 Aug 30 Jul  

3 Sep 3 Aug  

5 Sep 4 Aug  
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Table 8: Grid-based RMSE mean of daily rainfall accumulation (mm day−1) from each 

satellite-based precipitation product and each hindcast simulation for the duration of 

Transect 2013. Values are listed in ascending order. 

 

 

  Product WRF-NAM WRF-GFS 

TRMM 8.7 7.8 

CMORPH 9.3 8.6 

GSMaP 9.6 8.8 

PERSIANN 9.9 9.2 
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Table 9: Mean grid precipitation rate for TRMM, WRF-NAM, WRF-GFS, and model 

bias (WRF minus TRMM) for the diurnal cycle (mm hr-1) for 3-h and 24-h intervals of 

the hindcasts during the Transect 2013 period. Highest hourly mean precipitation rate and 

model biases are bolded. 

 

 

Time (UTC) TRMM WRF-NAM WRF-NAM bias WRF-GFS WRF-GFS bias 

1200-1500 0.05 0.07 +0.02 0.02 -0.03 

1500-1800 0.04 0.13 +0.09 0.05 +0.01 

1800-2100 0.09 0.21 +0.12 0.14 +0.05 

2100-0000 0.16 0.28 +0.10 0.24 +0.06 

0000-0300 0.18 0.21 +0.01 0.20 -0.01 

0300-0600 0.15 0.11 -0.06 0.11 -0.06 

0600-0900 0.12 0.07 -0.07 0.07 -0.06 

0900-1200 0.08 0.05 -0.04 0.05 -0.04 

1200-1200 0.11 0.14 +0.02 0.11 -0.01 
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Table 10: For both the WRF-NAM (top) and WRF-GFS (bottom) hindcasts, field 

significance values of the differences in forecast metrics between the two subsets of 

strongly and weakly forced days are listed. Field significance levels that are greater than 

90% are in bold and those between 80% and 90% are in italics. Also, pattern correlations 

between the subdaily and daily grids are shown with the greatest pattern correlation in 

bold. 

 

 

 

WRF-NAM CSIstrong – CSIweak PODstrong – PODweak FARstrong – FARweak 

Time (UTC) 
Field 

Significance 

Level 

Pattern 

Correlation 

to Daily  

Field 

Significance 

Level 

Pattern 

Correlation 

to Daily 

Field 

Significance 

Level 

Pattern 

Correlation 

to Daily  

1800-0000 97.4% +0.39 81.3% +0.41 46.4% +0.38 

0000-0600 28.6% +0.43 0.3% +0.30 74.7% +0.42 

0600-1200 >99% +0.40 94.1% +0.26 >99% +0.10 

1200-1200 >99%  98.1%  56.1%  

       

WRF-GFS CSIstrong – CSIweak PODstrong – PODweak FARstrong – FARweak 

Time (UTC) 
Field 

Significance 

Level 

Pattern 

Correlation 

to Daily 

Field 

Significance 

Level 

Pattern 

Correlation 

to Daily 

Field 

Significance 

Level 

Pattern 

Correlation 

to Daily  

1800-0000 >99% +0.55 98.5% +0.50 94.8% +0.55 

0000-0600 17.4% +0.45 2.3% +0.43 55.5% +0.45 

0600-1200 >99% +0.45 82.6% +0.19 >99% +0.40 

1200-1200 98.7%  93.4%  93.6%  
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Figures 

 

 
 

Figure 1: (top) The WRF-ARW nested domain configuration in our hindcast setup. 

Domain d01 has 159 (west–east) × 99 (south–north) grid points with a horizontal spacing 

of 30 km, domain d02 has 270 × 231 grid points with a horizontal spacing of 10 km, and 

the innermost domain d03 has a 460 × 548 grid points with a horizontal spacing of 2.5 

km. (bottom) Domain d03 with locations of the Transect 2013 (circles) and SuomiNet 

(triangles) stations as well as terrain shaded every 250 m. The SMO transect (KINO–

CHIH) is situated within the northern third of the North American monsoon core region 

outlined in black and bounded by 24°–30°N and 112°–106°W. 
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Figure 2: A west-to-east cross section of the mountainous terrain (m ASL) shows the 

locations of the SMO transect stations indicated by red solid vertical lines. Distance relative 

to the easternmost station CHIH is indicated by black dashed lines along the abscissa.  
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Figure 3: Counts of synoptic forcing mechanisms during the 2013 season (27 Jun–9 Sep) 

that have been demonstrated to impact North American monsoon convection in northwest 

Mexico and adjacent southwest United States. The first four cities indicate sites recording 

gulf surges. The event count (gray) shows the actual number of forcing mechanisms, while 

the day count (black) is the number of days that were affected by that particular forcing 

mechanism. 
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Figure 4: Mean 3-hourly model bias (top plot of each hour) and RMSE (bottom plot of 

each hour) of PWV and for all WRF-NAM hindcasts relative to GPS-derived PWV across 

northwest Mexico and adjacent southwest United States (Transect 2013 and selected 

SuomiNet stations) within the diurnal cycle. Circles indicate stations with model biases 

that are statistically significant (p value < 0.01). Terrain is contoured every 500 m (gray 

lines). 
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Figure 5: As in Fig. 4, but for the WRF-GFS hindcasts. 
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Figure 6: (top) Mean hourly rainfall rate of WRF-NAM hindcasts, (middle) TRMM 

precipitation analysis, and (bottom) model bias (WRF minus TRMM) for the combined set 

of strongly and weakly forced days within diurnal cycle for 3-hourly intervals (columns 1–

8) and 24 h (column 9). The WRF hindcasts were scaled up to the TRMM 0.25° grid using 

the “conserve” method of the ESMF software function within NCL. Mean values across 

all grid boxes for rainfall rate (top two rows) and biases (bottom row) are shown in the 

bottom-left corner of each map. Blue (red) pixels indicate a wet (dry) model bias. Yellow 

circles indicate the locations of a subset of the Transect 2013. Terrain is contoured every 

500 m (black lines). 
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Figure 7: As in Fig. 6, but for the WRF-GFS hindcasts. 
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Figure 8: Differences between the strongly and weakly forced days of grid-based (top) 

CSI, (middle) POD, and (bottom) FAR forecast verification metrics for WRF-NAM 

hindcasts (modeled) and TRMM (observed) rainfall for the 1800–0000 UTC (column 1), 

0000–0600 UTC (column 2), 0600–1200 UTC (column 3), and 1200–1200 UTC (daily) 

(column 4) periods. Increased forecast skill is shown in red (blue) for the strongly (weakly) 

forced days. Gray pixels indicate where metrics could not be computed. See text for metrics 

description and local significance methodology. The statistical field significance rank of 

each map is displayed in the bottom-left corner of each map and was obtained via 1000 

permutations in a Monte Carlo resampling technique. The pattern correlation of metric 

between the subdaily (columns 1–3) and daily (column 4) forecast metric is given in the 

top-right corner of each subdaily map. Yellow circles indicate the locations of a subset of 

Transect 2013. Terrain is contoured every 500 m (black lines). 
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Figure 9: As in Fig. 8, but forecast metrics calculated for the WRF-GFS hindcasts. 
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Figure 10: Differences between the strongly and weakly forced days of grid-based daily 

rainfall forecast verification metrics for WRF-NAM hindcasts and each satellite-based 

precipitation product of TRMM (column 1), CMORPH (column 2), PERSIANN (column 

3), and GSMaP (column 4). The metrics include (top) CSI, (middle) POD, and (bottom) 

FAR. See Fig. 8 caption for description and text for complete methodology. 

 

 

 

 

 

 

 

 

 



 93 

 
 

Figure 11: As in Fig. 10, but forecast metrics calculated for the WRF-GFS hindcasts. 
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Figure 12: (bottom) Pressure (shaded every 20 hPa below 160 hPa) and winds (kt) are 

displayed on the 2.0 PVU surface (dynamic tropopause) for the 6-h 1200 UTC GFS 

forecast valid at 1800 UTC with terrain contoured every 500 m (purple dashed lines). (top) 

Approximately 12 h later (0545 UTC), the observed water vapor IR channel from GOES 

satellite. These maps are shown for a (left) weakly forced and (right) strongly forced day 

composing the 8–10 Jul 2013 case study. 
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Figure 13: 3-hourly GOES IR (11-μm channel) imagery (row 1), 3-h rainfall accumulation 

of TRMM (row 2), WRF-NAM hindcast (row 3), and WRF-GFS hindcast (row 4) for the 

weakly forced day of 8 Jul 2013. Times are in UTC and indicate the time of the GOES IR 

image and the ending time of the 3-h rainfall accumulation. Yellow circles indicate the 

locations of a subset of Transect 2013. Terrain is contoured every 500 m (black lines). 
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Figure 14: As in Fig. 13, but for the strongly forced day of 9 Jul 2013. 
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Figure 15: For the (top) weakly forced (1200 UTC 8 Jul 2013 to 1200 UTC 9 Jul 2013) 

and (bottom) strongly forced (1200 UTC 9 Jul 2013 to 1200 UTC 10 Jul 2013) day, 24-h 

rainfall accumulations are shown for the satellite-based precipitation products of TRMM 

(column 1), CMORPH (column 2), PERSIANN (column 3), and GSMaP (column 4). 

Block dots indicate the locations of a subset of Transect 2013. Terrain is contoured every 

500 m (black lines). 

 

 

 

 

 

 

 

 

 

 

 



 98 

 
 

Figure 16: For the (top) weakly forced (1200 UTC 8 Jul 2013 to 1200 UTC 9 Jul 2013) 

and (bottom) strongly forced (1200 UTC 9 Jul 2013 to 1200 UTC 10 Jul 2013) day, 24-h 

rainfall accumulations are shown for TRMM (column 1), NAM (column 2), WRF-NAM 

(column 3), GFS (column 4), and WRF-GFS (column 5). 
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Figure 17: Relative sensitivity of WRF PWV (columns 1 and 2) and grid-scale rainfall 

(RAINNC; in domain d03) (column 3) at time t + Δτ to changes in the initial condition of 

PWV at ONVS GPS ground site (marked as a blue star, lon: 109.53°W, lat: 28.46°N). The 

sensitivities of ONVS PWV to WRF PWV (% PWV per % PWV) at Δτ = 0 and Δτ = 12 

(columns 1 and 2) and ONVS PWV to RAINNC (% PWV per % mm) at Δτ = 12 to 24 

(column 3) are presented for both the (top) weakly forced (1200 UTC 8 Jul 2013 to 1200 

UTC 9 Jul 2013) and (bottom) strongly forced (1200 UTC 9 Jul 2013 to 1200 UTC 10 Jul 

2013) day. Note: only statistically significant correlations (p value < 0.05) are shown. The 

24-h 25-mm TRMM isohyet is plotted by a dotted line. See text for calculation of 

ensemble–based sensitivities. Terrain is contoured every 500 m (black lines). 
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APPENDIX A 

Expanded Analysis Methods 

a) Calculation of PWV in WRF 

 WRF PWV is calculated as a discrete summation across all model levels for each 

grid point (i,j) in the d03 domain:  

PWV𝑖,𝑗 =  ∑ (
𝑝𝑘

𝑅𝑑  𝑇𝑣𝑘
) (QVAPOR𝑘) (𝑍𝑘+0.5 − 𝑍𝑘−0.5)

nlev

𝑘=1

,       (A1) 

where pk is pressure (Pa), Tvk is virtual temperature (K), and QVAPORk is the water vapor 

mixing ratio (kg water vapor/kg dry air), and all are associated with the mass point at 

model level k. The geopotential height (m) respective upper and lower bounds on the 

staggered grid at model level k are Zk+0.5 and Zk-0.5 (m) are. Rd is the dry air gas constant, 

and nlev is 27, the number of model levels. The variables used in this PWV calculation 

are first interpolated to the location of the GPS station using an inverse-distance 

weighting of the four closest corresponding model grid points. 

 b) Forward sensitivity analysis methodology 

 Before calculating the sensitivities, we spin up the WRF simulation for 12 h to get 

the appropriate variance of state variables in d03. We first add small perturbations on 

WRF meteorological fields (in the outermost domain: d01) based on the NCEP GFS error 

covariance (cv3) using the WRF Data Assimilation (WRFDA) tool. Then, we integrate 

WRF-GFS for 12 h to propagate these perturbations to the innermost domain (d03).  The 

resulting 40-member ensemble in d03 composes our WRF initial conditions. We sample 

the model-equivalent GPS PWV for each ensemble member, iens, at a site (refer to 

section a in this appendix), isite (PWVisite,𝑡=0,iens
mod ), using these initial conditions, that is, 
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PWVisite,𝑡=0,iens
mod = 𝐇𝐱iens

mod     (A2) 

where 𝐱iens
mod  is the QVAPOR 3D field at t = 0 for ensemble member iens and H is the 

observation operator that maps the model moisture field to site-specific PWV as would 

be observed from a GPS ground site [see Eq. (A1)]. This operator bilinearly interpolates 

QVAPOR to a site location and vertically integrates the interpolated profile to get PWV. 

Thus, we have a 40-element vector, yisite,𝑡=0
mod , for each GPS site of our study domain. 

 Starting with the ensemble d03 initial conditions, we generate an ensemble of 

hourly WRF 2.5-km forecasts with Δ𝜏 out to 24 h. For each grid point (i,j) of the model 

forecast (𝑡 + Δ𝜏), we can calculate the relative local sensitivity of WRF Model variable 

𝑿𝑖,𝑗,𝑡+Δ𝜏 to PWV initial conditions at a particular site PWVisite,𝑡=0 using the statistics 

from the ensemble forecasts expressed as 

(
Δ𝑋𝑖,𝑗,𝑡+Δ𝜏

ΔPWVisite,𝑡=0
) =

cov(𝑋𝑖,𝑗,𝑡+Δ𝜏 , PWVisite,𝑡=0
mod )

var(PWVisite,𝑡=0
mod )

×
〈PWVisite,𝑡=0

mod 〉

〈𝑋𝑖,𝑗,𝑡+Δ𝜏〉
.           (A3) 

Here, 𝑋𝑖,𝑗,𝑡+Δ𝜏 represents the ensemble WRF forecast of PWV or rainfall at grid point 

(i,j).  In principle, 𝑋𝑡+Δ𝜏 can be any 3D model forecast variable. The 〈∙〉, cov(∙) and 

var(∙) notations represent the expected value (ensemble mean in this case), covariance, 

and variance across the ensemble, respectively. The PWV at a model grid point is 

calculated in the same way as Eq. (A2) with H now corresponding to just the integration 

of the QVAPOR profile without interpolation. The sensitivity in Eq. (A3) (which is a 

linear regression estimate) can be interpreted as the local linear sensitivity of the model to 

changes in PWV initial conditions. This is analogous to the linear sensitivity component 

of the Kalman gain in an ensemble Kalman filter. A more general concept of ensemble-

based sensitivity analysis has been discussed in detail by Torn and Hakim (2008). 
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APPENDIX B 

Acronyms 

CMORPH CPC morphing technique 

CSI Critical success index 

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA ECMWF Re-Analysis 

ESMF Earth System Modeling Framework 

FAR False-aarm ratio 

GFS Global Forecast System 

GoC Gulf of California 

GOES Geostationary Operational Environmental Satellite 

GPM Global Precipitation Measurement 

GPS Global positioning system 

GSMaP Global Satellite Mapping of Precipitation 

HAS Department of Hydrology and Atmospheric Sciences 

IV Inverted trough 

JAXA Japan Aerospace Exploration Agency 

LT Local time 

MCS Mesoscale convective system 

NAM North American Mesoscale Forecast System 

NAME North American Monsoon Experiment 

NARR North American Regional Reanalysis 

NASA National Aeronautics and Space Administration 

NCL NCAR Command Language 

NOAA National Oceanic and Atmospheric Administration 

NWP Numerical weather prediction 

NWS National Weather Service 

PERSIANN Precipitation Estimation from Remotely Sensed Information Using 

Artificial Neural Networks 

POD Probability of detection 

PV Potential vorticity 

PWV Precipitable water vapor 

RMSE root-mean-square error 

SMO Sierra Madre Occidental 

TC Tropical cyclone 

TEW Tropical easterly wave 

TMPA TRMM Multisatelite Precipitation Algorithm 

TRMM Tropical Rainfall Measuring Mission 

TS Tropical storm 

UA University of Arizona 

UCI University of California, Irvine 
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UTC Universal coordinated time 

WRF-ARW 

Advanced Research version of the Weather Research and Forecasting 

Model 

WSR-88D Weather Surveillance Radar-1988 Doppler 
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Abstract 

  In northwest Mexico on 8 July 2013, early afternoon convection in the Sierra 

Madre Occidental (SMO) mountain range propagated north and west and organized into a 

Mesoscale Convective System (MCS) by early evening in the lower elevations of Sonora 

and the northern Gulf of California (GOC) reaching peak intensity at 2300-0200 LT. The 

main objective of this study is to investigate the utility, including potential improved 

simulation of the MCS, of assimilating observations from ground-based GPS-PWV 

stations from the North American Monsoon Transect Experiment 2013 into convection-

allowing Advanced Weather Research and Forecasting Model (WRF-ARW) retrospective 

forecasts (hindcasts). 

 We use an ensemble adjustment Kalman filter (EAKF) in the Data Assimilation 

Research Testbed (DART) software with a 6-h spin-up, 6.5 1-h DA cycles, Gaspari-Cohn 

3-D covariance localization, and 20 ensemble members. Then, we initialize a 24-h 

deterministic hindcast from the ensemble-mean analysis at 0500 LT (1200 UTC). Using 

an engineering approach for an observation network novel to this region, we run a series 

of sensitivity experiments investigating, for example, the impact of different covariance 

localization cutoffs and types of adjusted variables within the ensemble DA algorithm. 

 For all experiments, across the GPS-PWV stations, the DA algorithm reduces the 

PWV RMSE from 3 mm at the prior at the beginning of the DA cycling period to 0.25-1 

mm at forecast initialization. This falls within the GPS-PWV observation error of 1-2 

mm. There is a short memory at the 9 GPS-PWV stations for these adjustments in that the 

PWV RMSE rises quickly and becomes similar to the non-DA experiment by hour 2. 

Especially with the GPS-PWV stations near the GOC, this short “memory” is partially 
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attributed to moisture adjustments in non-uniform regions being advected north. 

Assimilating GPS-PWV observations reduces water vapor mixing ratio error near the 

surface to within the radiosonde humidity instrument error. The assimilation also 

increases Convective Available Potential Energy (CAPE) in the region of the MCS. 

 Assimilating GPS-PWV observations improves the simulation of the MCS. To 

evaluate hindcast performance, we use the percentage of area < -32 °C of the simulated 

cloud shield that matches the < -32 °C region of the observed MCS cloud shield at times 

spatial MCS criteria are met. First, compared to a hindcast beginning at 0500 LT 

(cold_start experiment) (34% during observed maximum intensity [at, e.g., 2300 LT]), 

there is improved simulation of the MCS when the hindcast initializes 12 h earlier (42% 

for ensemble spin-up [no_assim experiment] and 37% for deterministic spin-up 

[warm_start experiment]) because, as a first order, the meso-γ-scale flow has time to 

establish in the convection-allowing grid. Then, the assimilation of GPS-PWV 

observations (assim experiment) nudges the location and broadens the coverage of the 

MCS towards the observation for further improvement of the simulated MCS (50%). 

 Increasing the covariance localization cutoff when adjusting all variables 

(all_vars experiments) improves the simulated MCS (from 31% for 0.03 radians to ~50% 

for 0.07 and 0.10 radians). Increasing the covariance localization cutoff when adjusting 

only thermodynamic variables (no_winds experiments) slightly improves the simulated 

MCS from 0.03 radians (36%) to 0.07 radians (42%) but degrades the simulated MCS at 

0.10 radians (25%). 
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1. Introduction 

a) Importance of NAM rainfall and NWP 

 The North American Monsoon (NAM) is responsible for approximately 50-70% 

of the annual precipitation in northwest Mexico and the Southwest US (Douglas et al. 

1993; Adams and Comrie 1997). The NAM begins in southern Mexico in May and 

expands north and westward along the Sierra Madre Occidental (SMO) mountain range 

in northwest Mexico and southwest U.S. in June and July. The convective rainfall at the 

northern periphery of the NAM in southwest U.S. peaks in August before declining in 

late September. In both Mexico and the U.S., the NAM has significant impacts on water 

supply and demand, severe weather, extreme heat, drought, and wildfire during the warm 

season (Ray et al. 2007). 

 The North American Monsoon Experiment (NAME; Higgins et al. 2006; Higgins 

and Gochis 2007) was a multi-agency field campaign that took place in the summer of 

2004 whose goal was to determine the limits of predictability of summertime 

precipitation of the NAM through both an enhanced observational campaign and follow-

up numerical weather prediction (NWP) studies. The Sierra Madre Occidental (SMO) 

mountain range has been shown to have a primary role in the spatial and temporal 

evolution of convective rainfall throughout the diurnal cycle (e.g., Gochis et al. 

2004,2007; Lang et al. 2007). Sea breezes from the Gulf of California (GOC) also 

contribute to moist upslope flow that aids in this convection (Johnson et al. 2007). The 

diurnal cycle of convection begins with individual thunderstorms forming along the crest 

of the SMO and its western slope in the early afternoon (Adams and Comrie 1997; 

Nesbitt et al. 2008). Then, these individual cells may organize into a mesoscale 
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convective system (MCS) that propagates generally westward towards lower elevations 

and the GOC throughout the evening and early morning hours (Lang et al. 2007; Nesbitt 

et al. 2008). A peak in seasonal observed late-evening/early-morning precipitation across 

lower elevations is associated with these MCSs (Lang et al. 2007). Although not 

necessary, an upper-level inverted trough (IV; Adams and Comrie 1997; Pytlak et al. 

2005; Bieda et al. 2009; Newman and Johnson 2012; Seastrand et al. 2015), a transient 

synoptic scale feature, can aid in the formation of an MCS. NAME-related research has 

shown that meteorological processes, such as the ones contributing to MCSs, occur on 

the meso-γ and meso-β scales (1-100 km). Regional modeling studies have demonstrated 

that a convection-allowing modeling system is necessary to effectively represent MCSs 

in this region (Gao et al. 2007; Li et al. 2008). 

b) Lack of in-situ observations in the NAM region 

 NAME-related research has shown that the lack of in-situ observations at higher 

elevations of the SMO is a source of uncertainty in characterizing the environmental 

conditions of the location in which convective initiation occurs along with moisture 

transport from lower elevations (Higgins and Gochis 2007). In-situ meteorological data in 

Mexico are sparser and less reliable than in the U.S.; this leads to poor initial condition 

specification in the forecast model in Mexico irrespective of the model’s spatial 

resolution. High-density observational networks that have a high temporal frequency 

would allow for better conceptualization of the initiation and upscale growth of 

convection over northwest Mexico. While there have been efforts to restore the radar and 

radiosonde networks throughout the country (Zavaleta and Vargas 2012), these low-

density observations are costly. In addition, the radar is subject to partial signal blockage 
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from nearby complex terrain (e.g., Minjarez-Sosa et al. 2012). To address the need for 

high-quality moisture observations near the SMO, the North American Monsoon GPS 

Transect Experiment 2013 (Transect 2013; Serra et al. 2016) was deployed in 

northwestern Mexico during the 2013 NAM season. Transect 2013 involved nine Global 

Positioning System precipitable water vapor (GPS-PWV) ground-based stations that 

monitored the diurnal cycle of the moisture in this region and are used in the current 

study (described in Section 2a). 

c) Errors in simulating the timing and propagation of NAM convection 

 Mesoscale processes associated with the initiation and growth of deep convection, 

particularly over the highest elevations of the SMO, and the sources of water vapor 

relevant to these processes, are poorly understood. As a result, both operational and high-

resolution models have difficulty simulating the timing and subsequent propagation of 

deep convection over the SMO (e.g., Li et al. 2008; Castro et al. 2012; Pearson et al. 

2014). Janowiak et al. (2007) showed that the peak in the numeral modeling of diurnal 

precipitation in the NAM is maximized 3-6 hours earlier than observations during 

NAME. A similar temporal shift was reported by Moker et al. (2018) near the SMO 

during the 2013 NAM season for situations when a precursor IV was absent (“weakly 

forced” day). In our study, expanding on the work of Moker et al. (2018), we investigate 

the impact of assimilating GPS-PWV observations into high-resolution model forecasts 

of organized convective events such as the MCSs. 

d) DA studies in the NAM region 

 Data assimilation (DA) studies in the NAM region is limited to Mo et al. (2007). 

With the assimilation of soundings during NAME, they found that the impacts are 
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regional and concentrated over the core monsoon region with only small differences in 

the upper-level circulation features such as the jet stream and large-scale waves. At lower 

levels, they found that the differences depend on the assimilation system. In addition to 

the soundings improving short-range forecasts over the core monsoon region, they also 

generally improve the analyses over the areas where the assimilation system has the 

largest uncertainties and errors. 

e) Advantages of ensemble DA 

 The ensemble Kalman Filter (EnKF) uses a flow-dependent and multivariate (via 

ensemble) estimation of forecast error covariance, which permits correction of forecast 

errors in state variables such as wind, temperature, and moisture. The error reduction is 

done in a more consistent way relative to older approaches like the 3D-VAR (e.g., Meng 

and Zhang 2008). An EnKF system permits adjustments of the model grid based the 

sensitivity to the data being assimilated. Demonstrating this concept, Liu et al. (2012), in 

their study, assimilate satellite PWV data via the EnKF and find that it improves the 

short-range hindcast of a tropical storm, particularly the early genesis and later 

intensification. The moisture in the column is adjusted based on the sensitivity to the 

PWV observation rather than adjusting the entire moisture profile based on fixed and 

predetermined correlation lengths, as is the case for optical interpolation (OI) and 3D-

VAR approaches. The EnKF has been shown to improve forecasts and reduce uncertainty 

for large-scale model prediction systems (e.g. Whitaker and Hamill 2002) and short-term 

analysis and prediction of MCSs (e.g. Torn 2010; Ancell et al. 2011; Suarez et al. 2011; 

Meng and Zhang 2007).  
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f) Previous studies on HiRes WRF modeling in the NAM 

 Kursinski et al. (2008) show that precipitation in high-resolution modeling studies 

over the SMO is sensitive to PWV initialization. In hindcasts of NAME Intensive 

Observing Periods (IOPs) using a WRF adjoint modeling system, Cassell and Castro 

(2011) show that the development of MCSs in Sonora and Arizona is sensitive to the 

initial specification of atmospheric water vapor where convection initiates in the SMO.  

 During the 2013 season, Moker et al. (2018) showed the that diurnal cycle of 

convection in hindcast simulations begins and ends 3-6 hours too early compared to 

satellite (TRMM) rainfall observations. This is reflected in a high moisture bias at model 

initialization they found compared to the GPS-PWV observations. Also, on days when 

synoptic forcing is weak (no IV), the precipitation forecast was poorer compared to 

strong days (with an IV) in areas west of the SMO into the lower elevations of Sonora 

where MCSs tend to propagate in the early evening and overnight hours. Finally, the 

sensitivity to rainfall and PWV several hours after initialization to initial PWV at a lower 

elevation site was higher in the weakly-forced day than the strongly-forced day. This 

would indicate that there would be greater change in the forecast for the weakly-forced 

day with PWV assimilation.   

g) Previous studies involving PWV DA 

 The value of PWV from radiosondes and ground-based GPS PWV (including 

zenith total delay (ZTD) and slant wet delay (SWD)) for improving moisture and 

precipitation forecasts has been demonstrated in several studies covering a variety of 

terrain across the U.S., Europe, and Japan. 

 1) NORTH AMERICAN STUDIES 
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 Over the Central US, Kuo et al. (1993) pioneered the assimilation of PWV into a 

weather prediction model. They assimilate radiosonde-based PWV into a mesoscale 

model by relaxing the predicted value toward the observed value while maintaining the 

3D structure of the moisture field. They find improved the short-range precipitation 

forecasts as a result. Using the same assimilation method, Kuo et al. (1996) assimilates 

GPS-based PWV using 4D-VAR with improved moisture analysis. However, they use a 

sounding for a reference of the vertical structure of moisture. Guo et al. (2000) 

assimilates GPS-PWV using 4D-VAR and succeeds in reproducing the observed 

precipitation pattern associated with a squall line. The vertical structure of the moisture 

could only be recovered with the addition of wind profiler data. Rainfall structure 

improved from the assimilation of rainfall and surface dewpoint. Ha et al. (2003) 

assimilates SWD into a 4D-VAR modeling system and finds that it improves cold front 

location and strength resulting in a more accurate short-range precipitation forecast. 

Compared to assimilating PWV, assimilating SWD resolves more moisture information 

in between stations. 

 Also, in the Central US, Gutman et al. (2004) and a companion study (Smith et al. 

2007) find improvements to lower (below 500 hPa) tropospheric humidity in the RUC 

(now RAP) model forecast system, even though this region already benefits from a dense 

network of surface observations. Both studies rely on the RUC configured using OI for 

PWV (Smith et al. 2007). Smith et al. (2007) report that PWV has the greatest impact on 

3- and 6-h forecasts but continues to have a noticeable impact on 9- and 12-h forecasts. In 

addition, the densification of the US GPS network over the course of the experiment 

period (18 in 1999 to ~275 in 2004) had a positive impact on the relative humidity, 
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convective available potential energy (CAPE) (e.g., Moncrieff and Miller 1976), and 

PWV (Gutman et al. 2004; Smith et al. 2007) forecast errors. Smith et al. (2007) indicate 

that their results ultimately depend on the DA technique; better results are expected with 

dimensional variational techniques that allow for the direct assimilation of ZTD (thereby 

avoiding the retrieval of PWV). 

 2) EUROPEAN STUDIES 

 In a European study, Poli et al. (2007) examine the impact of the assimilation of 

ZTD observations into the 4D-VAR Météo-France global forecasting system (Action de 

Recherche Petite Echelle Grande Echelle [ARPEGE]). Their results indicate that these 

data positively constrain the synoptic patterns up to 4 days during all seasons over France 

including the improvement of the 12- to 36-h forecasts of rainfall patterns during spring 

and summer. 

 Yan et al. (2009) assimilated ZTD observations from the Convective and 

Orographically-induced Precipitation Study (COPS) campaign, which examined the 

impact of a dense installation of GPS observations in northeast France and southwest 

Germany on high-resolution precipitation forecasts, into the Météo-France Applications 

of Research to Operations at Mesoscale (AROME) regional non-hydrostatic model with a 

2.5 km horizontal resolution and 3-h 3D-VAR data assimilation cycles using the Poli et 

al. (2007) scheme. Their results suggest that while the COPS ZTD observations provide 

additional improvements to short-range forecasts of summertime convective rainfall 

compared to assimilation of the European operational GPS network alone, most of the 

improved skill results from the assimilation of ZTD observations from the operational 

network that was already in place. Like in the Gutman et al. (2004) and Smith et al. 
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(2007) studies, improvements in precipitation forecasts result primarily through 

modification of the lower tropospheric moisture profile in their simulations. Yan et al. 

(2009) also note that for their COPS case studies the convection improved in terms of 

both the timing and amounts.  

 3) JAPANESE STUDIES 

 Seko et al. (2011) conducted an assimilation experiment of GEONET-derived 

PWV by using a local ensemble transform Kalman filter (LETKF; Hunt et al. 2007) 

method based on the Japan Meteorological Agency Non-Hydrostatic Model (JMANHM; 

Saito et al. 2007). 

 Seko et al. (2013) developed a two-way nested NHM-LETKF system and 

investigated the synergistic effects of simultaneous assimilation of the Doppler radar 

radial wind velocity and water vapor data observed by GEONET (i.e., PWV and SWD, 

which is the accumulated water vapor amount along the ray path of a GPS signal). They 

succeeded in increasing the number of ensemble forecasts that reproduced localized 

heavy rainfall by assimilating the GPS data and the Doppler radar data. 

 Oigawa et al. (2018) is the first study that assimilates PWV data with a horizontal 

resolution of less than 10 km and uses a small horizontal localization radius for PWV 

data over a precipitating region. 

h) Objective 

 On 8 July 2013, early-afternoon convection formed in the SMO in northwest 

Mexico that propagated and organized into an MCS by early evening as it moved west 

and north towards lower elevations of Sonora and the GOC, peaking in intensity at 2300-

0200 LT. Moker et al. (2018) showed that the downscaled operational models were 
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unable to simulate this MCS. The main objective of the current study is to investigate the 

utility of assimilation of GPS-PWV observations from Transect 2013 into convection-

allowing WRF-ARW hindcasts on this day, including any potential improvement of the 

simulated MCS. To address this objective, we develop a configuration of the EAKF in 

DART and run a series of sensitivity tests.  

 This manuscript is broken down as follows: we describe the data and methods in 

Section 2, describe the sensitivity and impact assimilation experiments in Section 3, 

report the results in Section 4, discuss and make implications of the results in Section 5, 

and finally summarize and make recommendations in Section 6. 

2. Data and methods 

 In this section, we discuss the data and methods involved in our study and 

executing the objective in Section 1h. This section is organized into the following 

subsections: GPS-PWV observation and Transect 2013 network description (Subsection 

a), model physics and domain description (Subsection b), data assimilation scheme 

(Subsection c), experimental design (Subsection d), and forecast verification methods 

(Subsection e). Refer to Table 1 for more information on the datasets used. 

a) GPS-PWV data 

 PWV data in this study is gathered from the nine GPS-PWV stations in Transect 

2013 (Serra et al. 2016; Adams et al. 2014) that were deployed across northwest Mexico 

from late July to middle September 2013. Transect 2013 was comprised of three transects 

(Fig. 1b) whose purpose was to observe: 1) convective initiation and diurnal cycle in the 

SMO in Sonora and western Chihuahua in 6 stations that addresses a study gap 

documented in NAME (Higgins and Gochis 2007), 2) gulf surge progression in the GOC 
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in 3 coastal stations in Sonora and Sinaloa, and 3) atmospheric moisture behavior 

between two close sites with a high precipitation gradient in northern Sinaloa. An all-

weather ground-based GPS-met station can measure PWV with a high temporal 

resolution (~1-min). PWV is derived from the GPS signal delay which is proportional to 

the vertically integrated amount of water vapor in the air (Bevis et al. 1992). Technical 

details on GPS-to-PWV conversion methods are found in Bevis et al. (1992). GPS-PWV 

has an error of a few percent that translates to ~1-2 mm (Bevis et al. 1992; Rocken et al. 

1993; Duan et al. 1996; Wolfe and Gutman 2000; Adams et al. 2011). For Transect 2013 

data, Global Navigation and Satellite Systems (GNSS)-Inferred Positioning System and 

Orbit Analysis Simulation Software (GIPSY-OASIS; https://gipsy-oasis.jpl.nasa.gov) is 

employed to obtain PWV from the GPS signal at a 5-min temporal resolution. This 

procedure uses satellite information greater than 10° from the horizon resulting in a cone 

that represents an observation with a 10-15 km radius (Serra et al. 2016). 

b) Model description 

 We use version 3.4.1 of the Advanced Research Weather Research and 

Forecasting (WRF-ARW; Skamarock et al. 2008) model with 27 vertical levels, three 

nested domains (Fig. 1a; Table 2); and a 50-hPa top to produce the experimental hindcast 

simulations. Previous NAME research had concluded that a convective-allowing 

horizontal grid spacing is required for adequate representation of the diurnal cycles of 

processes in the NAME Tier I region. The innermost domain (d03) closely corresponds to 

the NAME Tier I region and has a 2.5-km horizontal grid spacing that indeed allows for 

explicit convection. The coarser domains (d01 and d02) employ the Kain–Fritsch 

cumulus parameterization scheme (Kain 2004). Except for using adaptive time stepping, 
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this model configuration is identical to Moker et al. (2018). The following model 

physical parameterizations used are: Yonsei University (YSU) PBL scheme (Hong et al. 

2006), WSM6 explicit microphysics (Hong and Lim 2006), RRTMG longwave radiation 

(Iacono et al. 2008), Goddard shortwave radiation (Chou and Suarez 1994), and Unified 

Noah Land surface scheme (Tewari et al. 2004). These are listed in Table 1 along with 

details on the nested domain configuration. 

 We use the GFS (0.25° horizontal grid spacing) model for initial conditions (ICs) 

and 6-h lateral boundary conditions (LBCs). Moker et al. (2018) found that the GFS had 

a lower precipitation and moisture bias than the NAM model (32-km horizontal grid 

spacing). Like Moker et al. (2018), the Rapid Refresh (RAP) model is used to initialize 

the volumetric soil moisture and temperature because these data have finer spatial 

resolution than the GFS model. 

c) Assimilation Scheme 

 1) INITIAL ENSEMBLE PERTURBATIONS AND SPIN-UP 

 After the WRF Preprocessing System (WPS) is used to generate the initial WRF 

fields and LBCs from the 0000 UTC run of the GFS model, a 20-member ensemble is 

created from the mean state in the 30-km domain (d01). With the WRF Data Assimilation 

(WRF-DA; Barker et al. 2012) software, we use the CV3 option to generate 20 sets of 

random errors from the default global covariance file via the NMC method (Parrish and 

Derber 1992) with the default values for variance, horizontal scale, and vertical scale (see 

Table 3). Then, these errors are added back to the mean state (d01) to serve as the ICs for 

the ensemble members. Then, the LBCs are also updated using a method described by 

Torn et al. (2006). The ensemble “spins up” for 6 h until 0600 UTC to allow for the 
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perturbations in d01 to propagate to the convective-allowing 2.5-km domain (d03) (row 3 

of Fig. 2). The ensemble at 0600 UTC serves as the “forecast” or “prior” for the data 

assimilation algorithm described in the next subsection. 

 2) EAKF DATA ASSIMILATION ALGORITHM 

 We use the ensemble adjustment Kalman Filter (EAKF; Anderson 2001, 2003) 

within the Data Assimilation Research Testbed (DART) software (Anderson et al. 2009) 

to assimilate the GPS-PWV observations into the WRF forecasts. Using the configuration 

parameters in Table 3, we employ a “local least-squares” framework with equations 

adapted from Anderson (2003) and is described in the following steps and eqs. 1-6: 

1) Start with a forecast (or “prior”) ensemble (denoted by an 𝑓 superscript). At the 

first assimilation time (0600 UTC), use the result of the 6-h spin-up. 

2) Obtain an ensemble sample of the observation by using the PWV observation 

operator 𝐻 (defined in the next subsection [Subsection 2c3]) on the WRF state 

variables 𝑥 (Table 6) for each member 𝑖 (eq. 1). 

 𝑃𝑊𝑉𝑖
𝑓

= 𝐻(𝑥𝑖
𝑓

)  (1) 

3) Retrieve a GPS-PWV observation 𝑃𝑊𝑉𝑜 and its error 𝜎𝑜 (Table 3). 

4) Adaptively inflate the prior ensemble spread 𝜎𝑓 by multiplying it by a value that 

evolves in time and varies in space according to the method described in 

Anderson (2009). For the first DA cycle, use the default initial values in Table 3. 

5) Calculate the analysis ensemble mean (or “posterior”) of the model-equivalent 

PWV (𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅ ) (eq. 2). 
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 𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅ = (
1

1
(𝜎𝑓)2 +

1
(𝜎𝑜)2

) (
𝑃𝑊𝑉𝑓̅̅ ̅̅ ̅̅ ̅̅

(𝜎𝑓)2
+

𝑃𝑊𝑉𝑜

(𝜎𝑜)2
) (2) 

6) For each ensemble member 𝑖, calculate the analysis of the model-equivalent PWV 

(𝑃𝑊𝑉𝑖
𝑎) (eq. 3) and observation increment ∆𝑃𝑊𝑉𝑖 (eq. 4). 

 𝑃𝑊𝑉𝑖
𝑎 = √

(𝜎𝑜)2

(𝜎𝑓)2 + (𝜎𝑜)2
(𝑃𝑊𝑉𝑖

𝑓
− 𝑃𝑊𝑉𝑓̅̅ ̅̅ ̅̅ ̅̅ ) + 𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅  (3) 

  ∆𝑃𝑊𝑉𝑖 = 𝑃𝑊𝑉𝑖
𝑎 − 𝑃𝑊𝑉𝑖

𝑓
 (4) 

7) For each ensemble member 𝑖, obtain an analysis value for each grid point for each 

of the WRF variables (Table 6). The WRF variable 𝑄𝑉𝐴𝑃𝑂𝑅 (water vapor 

mixing ratio) is used as an example variable to be adjusted and shown in eqs. 5-6. 

For a given grid point, obtain analysis 𝑄𝑉𝐴𝑃𝑂𝑅𝑖
𝑎 by first multiplying the 

observation increment ∆𝑃𝑊𝑉𝑖 by the forecast ensemble sensitivity of 𝑄𝑉𝐴𝑃𝑂𝑅𝑖
𝑓
 

to 𝑃𝑊𝑉𝑖
𝑓
 (linear regression) to get the increment ∆𝑄𝑉𝐴𝑃𝑂𝑅𝑖 (eq. 5). Then, 

multiply the ensemble sensitivity by a 5th-order piecewise covariance localization 

function (Gaspari and Cohn 1999) (explained in Subsection 2c4). Finally, add the 

forecast ensemble sample 𝑄𝑉𝐴𝑃𝑂𝑅𝑖
𝑓
 to the increment ∆𝑄𝑉𝐴𝑃𝑂𝑅𝑖 to obtain the 

analysis 𝑄𝑉𝐴𝑃𝑂𝑅𝑖
𝑎 (eq. 6).  

 ∆𝑄𝑉𝐴𝑃𝑂𝑅𝑖 =
𝑐𝑜𝑣(𝑄𝑉𝐴𝑃𝑂𝑅𝑖

𝑓
, 𝑃𝑊𝑉𝑖

𝑓
)

𝑣𝑎𝑟(𝑃𝑊𝑉𝑖
𝑓

)
∆𝑃𝑊𝑉𝑖 (5) 

  𝑄𝑉𝐴𝑃𝑂𝑅𝑖
𝑎 = 𝑄𝑉𝐴𝑃𝑂𝑅𝑖

𝑓
+ ∆𝑄𝑉𝐴𝑃𝑂𝑅𝑖 (6) 

8) Continue until all 5-min GPS-PWV observations are processed (+/- 30 minutes of 

observation time) for each site and WRF variables (Table 6) are updated to the 
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analysis. Do this for each domain. Then, advance the ensemble members one hour 

to the next observation time using WRF-ARW. 

 Hourly DA cycles are defined as: 1) 1-h ensemble forecasts that are then 

ensemble-averaged and 2) an ensemble update of the mean and each member with a new 

analysis from the assimilated observations. We run 6.5 DA cycles from 0600 UTC to 

1200 UTC before initializing the forecast; the first cycle at 0600 UTC is a considered a 

half-cycle because the ensemble is updated immediately after the spin-up. 

 3) GPS-PWV OBSERVATION OPERATOR 

 The model-equivalent GPS-PWV observation is calculated in the 

obs_def_tpw_mod.f90 Fortran module in DART. The following steps closely 

approximate the code contained within this module and can be thought of as the RHS of 

eq. 1. 

1) For the four grid points surrounding the observation location, construct vectors of 

pressure and water vapor mixing ratio from surface values and mass points above. 

2) Bilinearly interpolate these vectors horizontally to the observation location to 

obtain one vector each of pressure and water vapor mixing ratio. 

3) Using eq. 7, summate the products of the mean water vapor mixing ratio (𝑞) and 

the pressure (𝑝) difference for each level (𝑘) across all vertical levels. Then, 

negate and divide by the gravitational acceleration constant to get PWV in mm.  

 𝑃𝑊𝑉 =  −
1

9.81
∑ (

𝑞𝑘 + 𝑞𝑘+1

2
) (𝑝𝑘+1

27

𝑘=1

− 𝑝𝑘) (7) 

The first layer is integrated between the surface (𝑘 = 1) and the mass point at the first 

model level. All other layers are integrated between the mass points at each model level. 
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The top half of the top model level is not included in the integration; this has virtually no 

impact on the calculation because moisture is negligible above 100 hPa. This PWV 

calculation is the integration within a column rather than the observed cone implying that 

the atmosphere away from the site may less adequately represented the further one moves 

away from the surface. 

 4) HORIZONTAL AND VERTICAL COVARIANCE LOCALIZATION 

 Covariance localization in three dimensions must be applied to the adjustments of 

state variables to limit spurious correlations. We use the Gaspari-Cohn function (Gaspari 

and Cohn 1999) that is a 5th-order piecewise polynomial function similar to a Gaussian 

function with a given cutoff in radians that indicates the half-width – in this case the 

distance from the observation where the function is halfway to zero (not to be confused 

with a function value of 0.5). At the observation location, the function value is 1; at 

2 × cutoff, the function value is 0. The cutoff is multiplied by the mean radius of earth 

(6380 km) to obtain the horizontal-equivalent distance. The cutoff is multiplied by a set 

normalization height to obtain the vertical-equivalent distance. In our study, we set the 

normalization height to 50 km. 

 With a Gaspari-Cohn localization cutoff of 0.07 radians (~450-km horizontal-

equivalent distance), the mean 0.5 function value contour across all GPS-PWV locations 

sites forms an area of ~150,000 km2 that matches the magnitude of the spatial scale of an 

MCS in general (Maddox 1980) and is centered near the actual MCS initiation location 

on that day (Fig. 3b, panel 3). In observed soundings during the 2013 NAM season, the 

3.5-km vertical-equivalent distance fits well with the highest correlations of PWV to 

water vapor mixing ratio just above the surface at CHIH (~0.7 to 0.9) and MAZT (~0.6 to 
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0.8) (Fig. 4). Being limited to the Gaspari-Cohn localization function precludes having a 

secondary maximum that would be needed to capture the secondary region high 

correlation of 0.65 at ~7.5 km MSL in MAZT, but we are confident that not addressing 

the second maximum does not have a noticeable negative impact due to lower water 

vapor amounts at that level. 

d) Experimental design 

 Our study consists of three main hindcast experiments, which are listed in the 

schematic in Fig. 2 and the top three rows of Table 4, using the WRF-ARW configuration 

listen in Table 2. The first two experiments do not involve data assimilation: cold_start 

experiment (Fig. 1, row 1) and no_assim experiment (Fig. 1, row 2). The cold_start 

experiment is identical to the WRF-GFS experiments of Moker et al. (2018) in which the 

IC and 6-h LBCs are taken from the 0.25° 1200 UTC GFS run and then WRF-ARW is 

run for 24 h as a deterministic forecast. The no_assim experiment uses ICs and LBCs 

from the perturbations of the 0000 UTC GFS run using WRF-DA that creates 20 

ensemble members as described in Section 2c1. Then, these ensemble members are 

advanced 12 h via WRF-ARW until the 1200 UTC forecast initialization time when a 24-

h deterministic forecast is initialized with the ensemble mean. The assim experiment (Fig. 

2, row 3) contains the assimilation of GPS-PWV in hourly cycles for the 6 hours leading 

up to the forecast initialization time of 1200 UTC. We adjust all variables including 

winds as listed in Table 6. The assim experiment uses the same ensemble as no_assim 

from 0000 to 0600 UTC, but then hourly DA cycles are run with WRF-DA and the 

EAKF within DART from 0600 to 1200 UTC. This DA algorithm is described in detail in 

Section 2c2 with a configuration overview in Table 3. Finally, a 24-h deterministic 
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forecast is initialized at 1200 UTC from the ensemble mean of the final analysis.  

e) Hindcast verification 

 The cloud shields of simulated MCSs are verified against the infrared window 

channel (~11 μm) of the gridded Satellite (GridSat-B1) latitude equal-angle 0.07° dataset 

(Knapp et al. 2011). To identify an MCS, we use the definition from Maddox (1980): 

1) A cloud shield colder than -32 °C that has an area of at least 100,000 km2. 

2) An interior cloud shield colder than -52 °C that has an area of at least 50,000 km2. 

3) The cloud shield has an eccentricity of at least 0.7 at the time of maximum extent. 

4) The size conditions in 1 and 2 must persist for at least 6 hours.  

The cloud shield of the MCS is observed from the GridSat-B1 brightness temperature is 

compared with the model-equivalent brightness temperature that is converted from the 

outgoing longwave radiation variable (OLR) WRF variable via the Stefan-Boltzmann 

law. Only condition 1 is used for the WRF hindcasts because modeled cloud shields with 

temperatures < -52 °C were rarely found in our experiments. After defining the MCS 

using the 3-h GridSat-B1, the percentage of the area of the modeled cloud shield < -32 °C 

that is matched with that of the observed is the metric for determining the hindcast 

performance of the simulated MCS. The WRF grid is regridded to the GridSat-B1 grid 

using the “bilinear” option of the EMSF_regrid NCL function. 

 The gridded rainfall dataset that we use for visual verification is the Tropical 

Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 

version 7 dataset (Huffman et al. 2007), hereafter referred to as just TRMM. Its 3-h 

temporal resolution captures the diurnal cycle of convective precipitation. Moker et al. 

(2018) concluded that TRMM was preferable to other satellite precipitation datasets. 
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Additionally, they found that TRMM gave the lowest root mean square difference 

compared to their hindcast simulations for the 2013 monsoon season. 

 To verify the initialized temperature, humidity, and wind profiles for our 

experiments, we use 1200 UTC sounding data from radiosondes launched from Mazatlán, 

Sinaloa (MAZT) and Chihuahua, Chihuahua (CHIH). The instrumental errors are 

calculated from the Vaisala Radiosonde RS92-SGP data sheet (available online at 

https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-

F-LOW.pdf, accessed 28 April 2019). CHIH is the only upper air site collocated with a 

GPS-PWV site, but it is in a relatively dry region ~200 km east of the SMO crest where 

afternoon convection initiates. MAZT is located along the GOC in southern Sinaloa, 

which is near the southern edge of the convection-allowing domain (d03), ~150 km south 

of the closest GPS-PWV station (BGTO), and > 300 km from the location of the MCS 

that we are investigating. This region was also being affected by the outer bands of 

Tropical Storm Erick. For future investigations involving similar MCSs in this region, we 

recommend choosing a day when the 1200 UTC sounding from Empalme, Sonora is 

available; it is the best RAOB site location for model verification of the atmospheric 

profile in that it is located along the GOC ~100 km from both KINO and ONVS and near 

the region of high moisture and convective activity.  

3. Assimilation experiments 

 Because the NAM is a novel region for GPS-PWV assimilation, we take an 

engineering approach to the data assimilation algorithm to determine the most physically 

important options for the minimization of errors of the initial model fields (e.g., moisture) 

and creating the environment necessary for a well-simulated MCS several hours later. We 

https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-LOW.pdf
https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-LOW.pdf
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explore this with a variety of sensitivity and impact experiments, including the radius of 

influence of the observation (Subsection a), adjusting thermodynamic and dynamic 

variables (Subsection b), and other uncertainties (Subsection c) like assimilating 

individual observations versus one mean observation (“super-obbing”), changing the 

number of ensemble members, and running an ensemble forecast, for example. A list of 

these sensitivity experiments is in Table 4.  

a) Spatial localization 

 We investigate the sensitivity of covariance localization radius using the cutoff 

values of 0.03, 0.05, 0.07, and 0.10 radians of the Gaspari-Cohn function (Gaspari and 

Cohn 1999) to adjust the WRF state variables (Table 6). Table 5 shows the horizontal- 

and vertical-equivalent distances for each cutoff. Fig. 3a shows the function graphically 

for each GPS-PWV site. Fig. 3b shows the mean horizontal component of that function 

across all sites for each cutoff. We used 0.07 radians for the assim experiment with the 

rationale explained in Section 2c4. 

b) Adjusted variable localization 

 We investigate the sensitivity of the variables we adjust in eqs. 5-6 of the 

assimilation scheme (Table 6) for each cutoff that is described in the previous subsection. 

All variables (thermodynamic and dynamic) are adjusted in the all_vars experiments 

whereas only thermodynamic variables (no horizontal wind or vertical motion) are 

adjusted in the no_winds experiments. 

c) Other impacts 

 We also explore other impacts. The super_ob experiment looks at the impact of 

“super-obbing” (e.g., Lorenc 1981; Purser et al. 2000), which is a “data thinning” 
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procedure that combines multiple observations into one datum that has been used mainly 

for satellite observations to reduce computing time. In our case, during the DA cycles for 

each site, we assimilate the mean of the 5-min observations +/- 30 min analysis time 

rather than the 5-min observations individually like in the assim experiment.  

 The 40_mem experiment looks at the impact of using 40 ensemble members 

instead of the 20 ensemble members during the spin-up and DA cycles in the assim 

experiment. The ens_fx experiment looks at the impact of an ensemble forecast instead of 

the deterministic forecast in the assim experiment. The warm_start experiment is a 

deterministic forecast that begins at 0000 UTC and runs for 36 h that includes a 12-h 

spin-up and 24-h forecast. The forecast is compared to the cold_start experiment in order 

to investigate the impact of a spin-up. 

4. Results 

a) Overall performance 

 1) PWV 

 From the perspective of the GPS-PWV, we evaluate the assimilation of PWV in 

the 6 hourly DA cycles and its effect on the first 7 hours of the forecast. At the time of 

the first DA cycle 6 hours before forecast initialization, PWV RMSE across all stations 

decreases from 3 mm to 0.5 mm after the posterior of the final cycle (Fig. 4a, top panel). 

The 0.5 mm in the assim experiment is compared to just above 2 mm for the no_assim 

experiment and just under 2 mm for the cold_start experiment. The average difference in 

RMSE between prior and posterior is ~1 mm. The mean bias starts at +1 mm at 0600 

UTC for the prior but then becomes negative by the 0700 UTC posterior (Fig. 4a, bottom 

panel). From 0700-0800 UTC, the model advance decreases the bias for the only time 
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during the cycles and reaches a minimum of -1 mm for the prior at 0800 UTC. The 

posterior at this time brings the bias closer to zero. With the model advance from 0800-

0900 UTC and the 0900 UTC analysis, the bias stays nearly constant. After this time, the 

mean bias increases to +1 mm once again after advancing to 1000 UTC followed by two 

more cycles of increasing the bias ~0.5 mm with model advance and decreasing ~1 mm 

in the posterior. By 1200 UTC, the posterior mean bias is nearly zero.  

 One can see that the PWV RMSE is minimum and mean bias is near zero for the 

assim experiment at forecast initialization (Fig. 4a) that matches well with the low biases 

across all stations (Fig. 4b, bottom panel). After the forecast starts, the assim experiment 

RMSE rises rapidly from 0.5 mm to 2 mm in 1 hour. This can be attributed to biases of 

+4.0 mm bias at PSCO, -2.0 mm at ONVS, +2.1 mm at MULT, and +2.4 mm at BGTO. 

The other 5 stations have biases less than +/- 1 mm. Between 1 and 2 hours, the assim 

experiment RMSE approaches the no_assim experiment RMSE. By 2 hours into the 

forecast, the RMSE of the assim experiment is just under 3 mm while the no_assim 

experiment is just above 2 mm. Contributing to the higher RMSE is the relatively higher 

moist bias at PSCO and MOCH. At PSCO, the bias is +4.5 mm in the no_assim 

experiment while it is +5.9 mm in the assim experiment. At MOCH, the bias is -2.1 mm 

in the no_assim experiment while it is -3.6 mm in the assim experiment. Between 2 and 3 

hours into the forecast, the assim experiment passes the the cold_start experiment RMSE. 

At 3 hours into the forecast, there is a high moist bias at 2 sites that are mainly driving the 

high RMSE in the assim experiment: PSCO (+7.7 mm) and BGTO (+4.5 mm). From 3-6 

hours into the forecast, the RMSE decreases as the mean biases decrease. After 6 hours 

into the forecast, the mean biases become negative and the RMSEs begin to rise. 
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 The adjustments of PWV from the assim experiment advects northward from the 

model initialization at 12z through 19z (Fig. 5). For instance, the drying out in the 

northernmost site of PSCO (-4.1 mm) has the moisture return for the next 2 h from added 

moisture just to the south of the site over the GOC. By 14z, PSCO has +1.4 mm. 

 2) CLOUD COVER AND RAINFALL 

 According to Maddox (1980), an MCS must have a cloud shield that is at least 

100,000 km2 with a temperature of < -32 °C and an inner colder area with an area of at 

least 50,000 km2 with a temperature of < -52 °C, as explained in Section 2e. These 

criteria must be met for at least 6 h and the region at maximum coverage must have an 

eccentricity of 0.7. 

 The MCS lasted 9 h, from 3-12z Jul 9, as shown by the progression of the cloud 

top temperature every 3 h from the GridSat-B1 infrared brightness temperature (Fig. 6a, 

row 1). Fig. 6b shows the associated 24-h accumulated rainfall. A small area of 

convection begins along the SMO near MULT in the western slope of the northern SMO 

by 21z Jul 8. By 00z Jul 9, the convection had built south and west across the ONVS-

MULT-BASC transect sites in a developing MCS with coldest brightness temperatures -

70 to -65 °C (~150 hPa, ~14 km, ~ 46 kft). However, the MCS criteria had not been met 

yet. At 03z Jul 9, cloud tops become the coldest ~100 km north of ONVS with values of -

80 to -75 °C (~115 hPa, ~16 km, ~ 52 kft) and this is when the convection meets the 

MCS Maddox (1980) criteria. The cloud shield expands north and west with the anvils 

over the GOC coast at KINO and south. By 06z Jul 09, the anvil expands and west 

reaching halfway across the GOC between KINO and PSCO. Active convection 

continues with colder cloud tops around -75 to -70 °C. By 09z Jul 09, the coldest areas 
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warm slightly as the cloud shield maximizes in coverage. By 12z Jul 09, the clouds warm 

significantly with a decrease in convection; only two areas are near -70 °C but most of 

the area is in the -60 to -40 °C range and MCS criteria are still met. At 15z Jul 09 (not 

shown), the cloud tops had warmed to where the MCS criteria were no longer met.  

 The WRF-ARW hindcast experiments rarely displayed cloud top temperatures 

colder than -52 °C and rarely did the region colder than < -32 °C form an area of at least 

100,000 km2. Therefore, we match up the modeled areas < -32 °C that match < -32 °C 

observed area meeting the first criteria of Maddox (1980). At 21z Jul 8, the cold_start 

experiment produced convection that started earlier and was more widespread than the 

observed and different from no_assim and assim experiments (Fig. 6a, row 2). It also did 

not resemble the shape of an MCS. By 00z Jul 9, the convection in cold_start experiment 

was strongest as indicated by the coldest cloud top temperatures. By 03z Jul 9, the 

convection becomes most widespread north of ONVS-MULT-BASC, but convection had 

developed just to the south of there that was not present in the observed, with 42.3% of 

the MCS area matching. From 06-09z, 34.3% and 19.4% matching, respectively, 

convection builds south and east between ONVS-MULT-BASC and MOCH-BGTO 

while convection ends north of ONVS-MULT-BASC. Looking at the 24-hour TRMM 

rainfall, this resulted in a lack of rainfall north of ONVS-MULT-BASC and an 

abundance of rainfall south of there (Fig. 6b, panel 2).  

 The assim and no_assim experiments (Fig. 6a, rows 3-4) were most similar to 

each other and to the observations, especially just to the north of the ONVS-MULT-

BASC region, with the time of strongest convection at 03z Jul 8. The assim experiment 

performed better with the area matching the MCS going from 43.4% to 56.3%. 
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Convection in these experiments began at 21z Jul 8 around MULT on the western slope 

of the northern SMO. From 00-03z, the convection developed into an MCS where the one 

in the assim experiment was closer to observations and further south than no_assim 

experiment. By 06z, the intensities were similar and greater than the already-weakened 

one in the cold_start experiment. Also, at that time, the MCS in no_assim experiment 

was drifting even farther north and west from the assim experiment and observations with 

the centroid being ~150 km due east of PSCO. The MCS in the assim experiment was 

most aligned with observations (50.3% match) with the centroid centered 100-150 km 

southeast of the no_assim experiment (41.6% match). At 09-12z, the assim experiment 

(33.4% and 8.8% match, respectively) had more cold clouds associated with the MCS 

than no_assim experiment (20.5% and 5.6% match, respectively), but the observed MCS 

was still stronger at this time than any of the experiments. Although there was a deficit in 

rainfall directly over the ONVS-MULT-BASC region for the MCS compared to 

observations, the total rainfall aligned best in the assim experiment with the rainfall 

maximizing too far north in the no_assim experiment (Fig. 6b). 

 In all experiments, the proportion of cloud temperatures colder than -60 °C is less 

widespread than the observed. Also, in the steeper terrain of the western slope of the 

central SMO, south of ONVS-MULT-BASC, the convection is more widespread 

(although less organized) leading to more rainfall. This southern area of convection also 

occurs separately from the MCS whereas that separation is less apparent in the 

observations.  

 3) INITIALIZATION FROM SOUNDINGS 

 At 12z, the CHIH and MAZT sounding verification of water vapor mixing ratio 
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(QVAPOR), temperature (T), and horizontal winds (U and V) is shown in Fig. 7a and 7b, 

respectively. While CHIH is collocated with a GPS-PWV site, MAZT is located near the 

southern edge of the convective-allowing domain (d03) about 150 km from the closest 

site (BGTO). As a result, it is no surprise that the adjustments are greater over CHIH. At 

CHIH, QVAPOR was most improved (Fig. 7a, row 1) in the assim experiment from the 

no_assim experiment. From the surface to 700 hPa, a bias of +1 to +2.5 g kg-1 was 

decreased to -0.5 to +0.5 g kg-1, falling within the range of the instrument error. 

Compared to the cold_start experiment, there was a slight improvement of bias. In the 

mid-levels of the atmosphere (~ 650-500 hPa), QVAPOR was dry in the cold_start and 

no_assim experiments but was overcorrected to a positive bias. Below 650 hPa, the cold 

bias of -1 to 2.5 °C in both the cold_start and no_assim experiments was minimized (Fig. 

7a, row 2). However, above that level, the DA introduced a cold bias of -1 to -2 °C while 

the cold_start and no_assim experiments was in between -1 and +1 °C. There was 

negligible change to QVAPOR and T profiles (Fig. 7b, rows 1-2) at MAZT. 

 For both CHIH and MAZT, different from the QVAPOR and T, the cold_start 

experiment had the lowest bias for the winds while the assim and no_assim experiments 

had a greater bias and were also close to each other. At CHIH, the horizontal winds have 

highest bias especially closest to the ground (below 700 hPa). The U wind bias of +3 to 

+4 m s-1 between 950 and 700 hPa actually changed the direction from easterly to 

westerly compared to the no_assim and cold_start experiments (Fig. 6a, rows 3-4). The -

10 to -5 m s-1 V wind bias below 750 hPa gave near zero winds compared to southerly 

winds in the no_assim and cold_start experiments effectively stopping the southerly flow 

(gulf surge) at the northern end of the GOC (not shown). Looking at MAZT, there were 
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no noticeable changes to winds from the DA, but there was generally a greater bias 

throughout the profile in both U and V (Fig. 7b, rows 3-4). 

b) Model increments 

  Across the DA cycles, the PWV increments and increments of variables at 850 

hPa and 750 hPa show a pattern of increments near the MCS formation in northwest 

Mexico (Fig. 8a). Increments at low levels (e.g., ~ 950 hPa) are more chaotic owing to 

the non-linear advective influences of the GOC and the model moisture bias. 

 1) MOISTURE 

 In general, the magnitude of PWV increments is 0.5 to 1 mm (Fig. 8a, left panel). 

The highest magnitude of PWV increments are along the GOC, both positive and 

negative. There is an average positive PWV increment in the northern SMO and west 

through the GOC. However, there chaotic patterns of negative PWV increments north of 

ONVS-MULT that are mostly contributed by the QVAPOR increment (Fig. 8a, column 

1) at 850 hPa at which level overall has the greatest magnitude of increments near 1 g kg-

1 in this region. South and southwest of ONVS-MULT to MOCH over the GOC, the 

increment is mainly negative. Although there is a mixture of positive and negative 

QVAPOR increment contributions at 950 hPa, there is a positive QVAPOR increment at 

850 hPa, especially in the middle of the GOC. South of MOCH, positive PWV 

increments due to generally positive QVAPOR increments at 950 hPa and 850 hPa and 

are associated with the outer bands of Tropical Cyclone Erick. East of the SMO crest 

(CUAH-CHIH), the negative PWV increment is reflected by the 750 hPa positive 

QVAPOR increment.  

 2) TEMPERATURE 
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 At 950 hPa, the temperature increments over the GOC generally demonstrate a 

noisy pattern of both negative and positive values (Fig. 8a, column 2). The highest of ~ 

+1 K in the shape of an arc just to the east of PSCO associated with an outflow boundary 

from an MCS in the northern part of the domain that can also be seen at 850 hPa. At 950, 

850, and 750 hPa, there were generally positive temperature increments from KINO to 

the ONVS region and to the north towards PSCO. South of ONVS-MULT-BASC, there 

is a general negative temperature increment. East of the SMO is a positive increment. 

 3) U WINDS 

 The U increments (Fig. 7a, column 3) at 950 hPa were greatest (+/- 1 m s-1) in the 

western half of the GOC with alternating positive and negative streaks perpendicular to 

the Baja peninsula that are associated with sea breezes from the Pacific Ocean blowing 

east through the Baja terrain. Also, there was a positive and negative arc-shaped couplet 

of U increment just east of PSCO that matches up with an outflow bounding mentioned 

in the previous subsection. Otherwise, from an imaginary line halfway between KINO 

and MOCH, the U increment was negative to the north of that line and negative to the 

south. At 850 hPa, this rule generally holds. From just north of ONVS-MULT to the US 

border, although there is an underlining negative U increment, there are blotches of 

positive U increments due to MCS convection in that region. In the eastern slope, the U 

increments are positive. At 750 hPa, there is large area of positive U increment between 

ONVS-MULT-BASC and MOCH-BGTO, across the highest elevations of the SMO, and 

east of the SMO crest. There is a negative U increment west of the SMO crest and north 

of ONVS.  

 4) V WINDS 
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 The V increments (Fig. 8a, column 4) at 950 hPa were of similar magnitude to the 

U increments. Also, south of KINO in the western half of the GOC there were alternating 

positive and negative streaks perpendicular to the Baja peninsula similar to the U 

increments associated with the Pacific Ocean sea breeze through the terrain. In the 

northern part of the GOC, there was a general negative increment near 1 m s-1, Other than 

this, the V increments at 950 and 850 hPa west of the SMO crest were similar to the U 

increments. Northeast of the SMO had a negative increment. At 750 hPa, the underlining 

V increment is negative along the SMO transect sites and to the north with blotches of 

positive increments associated with convection. South of an imaginary line halfway 

between ONVS and MOCH, north and west of BGTO, and west of the SMO, there was 

an area with small positive V increment. 

 5) RESULTING CHANGE TO FORECAST INITIALIZATION 

 At forecast initialization time (12z), Fig. 8b shows the difference in the 

meteorological fields from the DA (assim – no_assim). As a general rule, these maps are 

less noisy than the increment maps (Fig. 8a). There is increased PWV from KINO to just 

to the north of ONVS-MULT in that is much larger than what was shown in the 

increments (Fig 8b, left panel). This is contributed from increase of QVAPOR at lowest 

levels of 950 and 850 hPa (Fig. 8b, column 1).  South of KINO along the GOC, there is 

decreased PWV contributed mostly by 750 hPa QVAPOR near KINO to 950 hPa 

QVAPOR near the GOC mouth. South of BASC, there is a tripole band of increase-

decrease-increase of PWV parallel to the SMO that is separated by elevation: increase 

from the coast to ~ 500 m, decrease from ~ 500-1500 m, and increase above ~ 1500 m. 

The patterns of the differences in temperature are essentially opposite to the QVAPOR 
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differences (Fig. 8b, column 1), i.e., if there is an increase in QVAPOR, there is decrease 

in T, and vice versa. 

 Looking at the winds, west of PSCO the change in V has the highest decrease at 

950 hPa that was also seen at 850 hPa that matched up well with the increments in 

association with the gulf surge. Across the KINO and ONVS region, there was a decrease 

of U with a mix of positive and negative differences of V. The highest elevations of the 

SMO had an increase in U and a decrease in V that matched up with the pattern in the 

increments.  

c) Sensitivity tests and other impacts 

  1) IMPACT OF SPATIAL AND ADJUSTED VARIABLE LOCALIZATION 

 In this subsection, we explore the sensitivity of the DA and simulated MCS to 

covariance localization radius and adjusted WRF variables. In the all_vars experiments, 

there is a general steady decrease in PWV RMSE through the cycles (Fig. 9a, column 1), 

while in the no_winds experiments, the RMSE is minimized by DA cycle 3 before 

increasing quickly after model advance from cycle 3-4 (Fig. 9b, column 1). In the 

all_vars experiments, there is a mean moist bias in the priors throughout all cycles (~ +1 

mm) except for cycle 3 where it is a dry bias (~ -1 mm) (Fig. 8a, column 2). In contrast, 

in the no_winds experiments, there is mean moist bias in the priors throughout all cycles 

except for cycles 2-4 in the 0.10 radian cutoff (Fig. 9b, column 2). The moist bias 

generally decreases with larger cutoffs. Cycles 5-7 have higher prior biases in no_winds 

experiments (~ +1 to +1.5 mm) than in the all_vars experiments (~ +1 mm). The 

posterior for the final cycle has a lower RMSE for the all_vars experiments with a range 

~ 0.25-0.75 mm than for the no_winds experiments with a range of ~ 0.50-1 mm. In the 
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all_vars experiments, the RMSE increases to 1-2 mm by fh01. In the 0.07 and 0.10 

radian cutoffs, the RMSE rises to ~ 3 mm for at least fh02-fh04 before decreasing to near 

2mm by fh06. In the 0.03 and 0.05 radian cutoffs, the PWV RMSE rises to ~2 by fh02-

fh04 before stabilizing at 2 mm. Except for 0.10, the RMSE in the no_winds experiments 

increases to 2-3 mm by fh01, then decreases and stabilizes around 2 mm until fh06. In 

both the all_vars and no_winds experiments, the RMSE increased quickly to near 3 mm 

by fh07. 

 In the all_vars experiments, larger cutoff results in a better development of the 

MCS from the brightness temperature that can be seen with larger spatial scale and colder 

cloud tops from 03-09z (Fig. 10a, columns 3-5). At 6z, the MCS is matched with 

observation 31.1% for 0.03, 41.1% for 0.05, 50.3% for 0.07, and 49.7% for 0.10. This 

results in a greater rainfall falling in the MCS region (within the 15-mm isopleth) with 

0.07 and 0.10 radian cutoffs (Fig. 10c, bottom row). In no_winds experiments, 0.03, 0.05, 

and 0.07 radian cutoffs show an MCS progression from 03-09z (Fig. 9b, rows 1-3, 

columns 3-5) that are similar to each other where the localization does not have much 

impact. At 6z, the MCS is matched with observation 36.2% for 0.03, 40.8% for 0.05, 

42.0% for 0.07, but decreases to 24.8% for 0.10. Looking at the 0.07 rad cutoff at 03z, 

the time that the MCS is strongest, the cloud tops are colder and are uniform in the 

all_vars experiments (Fig. 9a, row 3, column 3) whereas in the no_winds experiments the 

coldest cloud tops indicate more separate updrafts in a ring-like formation (Fig. 10c, row 

3, column 3). Unlike in the all_vars experiments, the highest rainfall is located the 

northern region and shows a linear pattern in the no_winds experiments for the 0.03, 0.05, 

and 0.07 radian cutoffs (Fig. 10d, rows 1-3). With the 0.10 radian cutoff, any semblance 
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of an MCS disappears with a smaller region of cold cloud tops well to the north at 03z 

that dissipates by 06z (Fig. 10b, rows 4, columns 3-4) resulting in an obvious absence of 

rainfall in the observed MCS region (Fig. 10d, row 4). 

 The change in MCAPE (calculated by the wrf_cape_2d NCL function that uses 

the parcel with the highest θe) from a change in cutoff and adjusted variables for the DA 

cycles is shown from initialization (fh00) to 19z (fh07), around the time convection 

begins in the SMO, for the all_vars (Fig. 11a) and no_winds experiments (Fig. 11b). For 

the all_vars experiments, although unclear in fh00 (Fig. 11a, column 1), with increased 

localization radius, there is increased MCAPE in the area of the MCS along and north of 

an imaginary line from KINO-ONVS at fh07 (Fig. 11a, column 8). For the no_winds 

experiments, there is no obvious MCAPE trend with increasing localization radius (Fig. 

11b). The change in CAPE at f00, with the exception of the 0.03 rad cutoff, are of higher 

magnitude than the no_winds experiments, including a large area of MCAPE decrease of 

more than 1500 J/kg in the mid-GOC and a large increase of CAPE over the MCS region 

more expansive and of higher magnitude than the all_vars experiments. Despite the 

greater positive MCAPE change over the MCS region, the negative region over the GOC 

is advected north replacing much of the positive area by fh07. The all_vars experiments 

cutoffs of 0.05 and 0.07 have the highest MCAPE change remaining in the MCS region 

at this time. 

 Looking at the 12z CHIH sounding for the all_vars experiments, the water vapor 

mixing ratio bias decreases with increased localization radius for with a range of less than 

1 g kg-1 across all experiments throughout the column (Fig. 12a, row 1). For the no_winds 

experiments, there was no trend in biases with increased cutoff and the range is between 
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1 and 1.5 g kg-1 (Fig. 12c, row 1). The temperature has no trend with increased cutoff for 

both the all_vars (Fig. 12a, row 2) and no_winds experiments (Fig. 12c, row 2). The 

range is less than 1°C for the all_vars experiments and 1-2 °C for no_winds experiments. 

For the verification of winds, the all_vars and no_winds experiments acted opposite to 

each with increased cutoffs. Increased cutoffs lowered U biases in the profile with the 

no_winds experiments, but only U winds biases for the all_vars experiments were 

decreased above 700 hPa and actually increased below 700 hPa. For V winds, increased 

cutoff lowered biases below 750 hPa for the all_vars experiments, but actually raised 

biases for theno_winds experiments. 

 2) OTHER IMPACTS  

 The impact of an ensemble forecast (ens_fx experiment) is explored versus a 

deterministic forecast (assim experiment). (Note that the ens_fx experiment uses a 0.05 

rad cutoff while the assim experiment uses a 0.07 radian cutoff.) In the ens_fx 

experiment, the PWV RMSE and mean bias amplitude is lower. By fh02, the RMSE 

increases 1.5 mm from 0.5 mm at initialization to where it stabilizes at 2 mm through at 

least fh07 while the mean bias decreases slowly from +5 mm (moist bias) to -1 mm (dry 

bias) (Fig. 13a, row 2), resembling a smoothed version of the assim experiment hindcast 

(Fig. 13b, row 1). The coldest brightness temperature associated with the MCS at the 

strongest time of 03z Jul 9 is tapered from -80 °C in the assim experiment (Fig. 14a, row 

1, column 3) to -60 °C in ens_fx (Fig. 14a, row 3, column 3) demonstrating that the 

ensemble mean removes the extremes in the updraft locations of widespread convection 

whose locations within the MCS are not collocated throughout the convection. At 6z, the 

MCS is only matched 36.3%. The coldest brightness temperature in the ens_fx 
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experiment is a small circle of -80 °C at 21z Jul 8 just south of MULT (Fig. 14a, row 3, 

column 1) near the beginning of the diurnal convection before the MCS forms. This 

circle indicates a common initialization point across the ensemble whereas the brightest 

areas in the actual MCS are less uniform.  

 In the super_ob experiment, we investigate the impact of assimilating a mean 

hourly observation as compared to individual 5-min within the +/- 30 minutes of analysis 

time. Compared to all other experiments including the assim experiment, the RMSE 

PWV increments across all stations are smaller than the super_ob experiment (Fig. 13a, 

row 3). At forecast initialization, the posterior is 1 mm which is higher than the assim 

experiment of 0.5 mm. The PWV biases within the increments are also smaller at ~0.25 

mm and they do not become negative as in the assim experiment. Further, the mean 

RMSE increases to 2 mm at f01 and remains stable through f06. The shape of the MCS 

during its development at 03z Jul 9 has two main areas of convection instead of one 

larger one (Fig. 13a, row 2). This leads to less rainfall distributed in the middle of the 

highest rainfall in the observed MCS region (Fig. 14b, top-right panel). At 6z, the MCS 

was 41.7% matched, about 8% lower than in the assim experiment. The changes in 

MCAPE are of lower magnitude at f00 with an overall decrease in MCAPE by fh07 near 

the time of convective initiation (Fig. 15, row 2). 

 We look at doubling the number of ensemble members from 20 to 40 in the 

40_mem experiment and its impact on the DA and forecast. Surprisingly, this resulted in 

the poorest forecast. From the first 4 cycles, both the prior and posterior PWV RMSE 

decrease quickly to 0.5 mm before stabilizing throughout the final cycles (Fig. 13a, row 

4). The increment is less than 1 mm until cycle 4 where at which time the increment 
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becomes ~1.5 mm. The mean PWV bias increment becomes zero by cycles 3 and 4 when 

the model advance increases the mean bias 1 mm for the last cycles. At fh00, the 

posterior PWV is just above 0.5, slightly higher than the assim experiment. From fh00 to 

fh02, the PWV RMSE increases to 2.5 mm where it stabilizes. At 6z, the MCS is very 

low at 23.9% matched. The poorer MCS simulation is shown in the lack of a continuous 

area of cold cloud tops throughout the observed MCS time (Fig. 14a, row 3) thereby 

minimizing rainfall (Fig. 14c, row 3). The MCAPE difference is negative along the SMO 

coast up to 100 km inland at fh00 (Fig. 15, row 3). This negative difference is advected 

eastward into the MCS region by fh07. 

 Finally, we investigate the impact of 12-hour spinup with the warm_start 

experiments versus no spinup with the cold_start experiment. At fh00, the PWV RMSE 

for the cold_start experiment is ~2 mm while the warm_start experiment is 2.5 mm (Fig. 

13b). The higher RMSE in the warm_start experiment is contributed by a higher bias 

(~1.5 mm) compared to the cold_start experiment (1 mm). Biases trend to become 

negative throughout the first 7 hours of the forecast. Despite the higher bias and RMSE, 

the warm_start experiment produces a better forecast of MCS in terms of the progression 

of the clouds via the brightness temperature (Fig. 14b) where at 6z the MCS is 37.2% 

matched up from the 34.3% match in the cold_start experiment. A conclusion of an 

improved MCS forecast in the warm_start experiment is not as straightforward by 

looking at the total rainfall, but superfluous precipitation has decreased in the western 

slope of the southern SMO (Fig. 14d)  

5. Discussion 

 The assimilation of GPS-PWV into the convection-allowing WRF forecasts is 
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successful in lowering the PWV RMSE. There is also limited positive impacts to the 

simulation of the MCS in our study. This does not appear to be an initial value problem 

but an error within the model. 

a) Decreased PWV RMSE at the site locations 

 For all experiments, during the 6-hour DA partial cycling period leading up to 

forecast initialization, analysis PWV RMSE across all 9 stations decreases with each 

cycle (Figs. 9a and 13a), indicating that the assimilation worked. In general, the PWV 

RMSE increments are smallest at the beginning and increased past the first 2-4 cycles. At 

the beginning of the cycling period, the RMSE is ~ 3 mm, but decreases to a range of 

0.25-1 mm after the final analysis. The mean PWV bias, however, did not display this 

trend of decreasing throughout the cycling period (Figs. 9b and 13b). In the first DA 

cycle, the prior mean PWV bias was +1 mm. After the first cycle brings the PWV to ~ 0 

mm, the model advance in subsequent cycles in general increases the bias 0.5-1 mm. An 

anomaly to this behavior is the model advance between cycles 2-3 where the model 

advance decreases the PWV bias resulting in a dry bias in the all_vars experiments 

whereas the model advance does not change the PWV bias (near 0 mm) in the no_winds 

experiments. And important consideration is that the RMSE cannot be evaluated outside 

of the 9 site locations. 

b) Response of MCS 

 Without the use of an ensemble or DA, there was improvement of MCS shape and 

progression just by adding a 12-h spin-up. This improvement was greater from the 

cold_start experiment (no spin-up) to the warm_start experiment (12-h spin-up) (Fig. 

14b) than from the no_assim experiment (same as the warm_start experiment, but with 
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an ensemble spin-up) to the assim experiment (Fig. 5a, rows 3-4). Despite adding a moist 

bias and wind degradation in warm_start experiment, a continuous MCS is simulated 

especially at 03-06z Jul 9. In the spin-up, flow and circulations have time to become 

more realistic at the convective-allowing domain from the 0.25° GFS ICs and LBCs 

allowing for the formation of an MCS. (The ensemble during spin-up also improves the 

MCS in terms of intensity and coverage.) No experiment was able to simulate the 

expanse and duration of the observed MCS. 

 Despite a reduction of PWV RMSE, we did not find a robust relationship between 

localized improved PWV and better skill of rainfall that begins 7+ hours after 

initialization. This may appear at first to go against Kursinski et al. (2008), but there were 

3 important differences in that study: a) QVAPOR was multiplied by 5% difference, b) 

no other variables were adjusted, c) no localization (adjustments were grid-wide). 

Assimilating the observations from the nine GPS-PWV sites does not necessarily 

improve the location and strength of the MCS from the no_assim experiment; 

improvement depends on the turning parameters such as covariance localization radius 

and adjusted variable localization. In the all_vars experiments, 0.03 and 0.05 radian 

cutoffs bring the location of the MCS further south to along with observation but degrade 

the shape of the MCS whereas 0.07 and 0.10 rad cutoffs improve the shape of MCS along 

with its rainfall. In the no_winds experiments, the highest rainfall is confined to the 

northern edge of the observed MCS in 0.03, 0.05, and 0.07 radian cutoffs with a slight 

improvement from the no_assim experiments. In the 0.10 radian cutoff, the semblance of 

an MCS is missing. 
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c) Representativeness of GPS-PWV observations 

 The conversion of GPS to PWV with GIPSY software results in a cone that 

represents an atmosphere with a 15-20 km radius centered at the site location. During the 

6-hour DA cycle period, there was convection from an MCS from the previous evening 

nearby the ONVS-MULT-BASC and Tropical Storm Erick whose northern edge was in 

close proximity to MOCH-BGTO. According to Seko et al. (2011), convective rainfall 

changes the PWV in a localized area making the representation radius much smaller. 

Convection combined with complex terrain may not allow for realistic spatial 

sensitivities to other state variables. PWV east of the SMO crest correlated with PWV 

west of the SMO where the air masses are very different although one can affect the 

other. A new covariance function can be introduced that stops at terrain. Further, there is 

no unique solution for QVAPOR adjustments when assimilating PWV as it is a 

vertically-integrated quantity. One could adjust QVAPOR layers differently to achieve 

identical PWV. 

d) Sources of error 

   1) IMPERFECT MODEL 

 Throughout all experiments, there is a short memory of initial WRF moisture 

adjustments indicating an imperfect model giving way to model error. In other words, the 

adjustments in QVAPOR at forecast initialization do not maintain for more than a couple 

of hours after the simulation begins. For instance, in the assim experiment, from 0.5 mm 

RMSE at f00, the RMSE increases to or surpasses the 2 mm in the no_assim experiment 

between fh01 and fh02. RMSE stabilizes at ~2-3 mm after fh01. Mean moist PWV biases 

of ~1 mm decrease with time after forecast initialization and becoming negative by fh09.  
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 An imperfect model can also be attributed to performance of the 40_mem 

experiment where one would expect the 40-member ensemble to be more representative 

of the errors with double the degrees of freedom. Even though the model reaches 

minimum posterior PWV RMSE after 3 cycles, the increment is still large (> 1 mm) 

between cycles. Out of the all our experiments, this one simulates the MCS the poorest.   

   2) INSTABILITY FROM ASSIMILATING OBSERVATIONS INDIVIDUALLY 

 Inconsistent analysis is observed between the super_ob experiment with smaller 

increments and the assim experiment with relatively larger increments. In the assim 

experiment, 12 5-min observations are assimilated +/- 30 minutes from the hourly 

observation time at each site. In the super_ob experiment, the mean of the observations in 

the 1-h window is assimilated. Nerger (2015) notes that combination of serial processing 

of observations combined with localization can cause destabilization of the analysis in the 

EnKF. They also show that different orders of the observations result in different 

analyses as an indication of the instability. 

   3) LACK OF STATIONS AND OBSERVATION VARIABLES  

 Only 9 stations are used to assimilate PWV across northwest Mexico in complex 

terrain. In order for the assimilation to have an impact on more than just a bull eye around 

each site, larger cutoffs are needed. Covariances across terrain, even with the use of 

localization, may not be realistic especially with the model error in mind. Variables that 

are far away from the site may have spurious correlations despite the use of localization. 

Assimilating other variables than PWV would benefit the forecast. Wind data assimilated 

from soundings, for example, would correct the bias that develops during the 12-hour 

period (6-hour spinup + 6 hourly DA cycles). Winds do not usually improve if they are 
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adjusted with only the covariances relative to the GPS-PWV observations in our study. 

   4) INCORRECT OBSERVATION OPERATOR  

 The observation operator uses the 4 closest grid points to calculate PWV. This 

equates to an area that is 5 km x 5 km. However, the GPS-PWV observation is a cone 

representative of an area that has a radius of 20-30 km across a proportion of the lower 

atmosphere where the majority of the moisture resides. An example observation operator 

that would capture the GPS-PWV footprint would be to use a 7 x 7 grid box representing 

a 17.5 km x 17.5 km area. Additionally, instead of the site location treated a point where 

all grid boxes are bilinearly interpolated, each box would contribute 1/49 to the PWV at 

the site. 

6. Summary and Recommendations 

a) Summary  

 We performed the assimilation of GPS-PWV in a series of hindcast simulations 

on 8 July 2013, a day that Moker et al. (2018) had identified as “weakly forced”, using 

the “linear least squares” implementation (Anderson 2003) of the EAKF (Anderson 

2001) via DART software (Anderson et al. 2009). The control experiments consisited of 

the cold_start, no_assim, and assim experiments (Fig. 2). For the assim experiment, a 

Gaspari and Cohn (1999) location cutoff of 0.07 radians was chosen because the mean 

function across all locations matched up with the magnitude of an MCS (Fig. 3b, column 

3). The vertical-equivalent distance also included the highest correlations of PWV to 

vertical moisture distribution in observed soundings during the NAM season (Fig. 3c). 

All WRF state variables were adjusted in the EAKF (Table 6). 

 The simulation of the MCS improves with the spin-up (12 h) because the meso-γ-



 146 

scale flow is being established in the convection-resolving domain during that time. We 

use the criteria defined in Maddox (1980) to determine the observed MCS and then as a 

metric determine the proportion of the simulated MCS matched the location of the 

observed MCS. At 6z, the cold_start experiment showed a 34.3% MCS match. Then, 

with the influence of spin-up, the warm_start experiment (deterministic spin-up) showed 

37.2% match and the warm_start experiment (ensemble spin-up) showed a 41.6% match, 

Then, the GPS-PWV DA improves the MCS location bringing it south closer to the 

observation as well as increasing intensity to where at 6z there is a 50.2% match in the 

assim experiment. 

 Within the hourly DA cycles leading up to forecast initialization, PWV RMSE 

time series across the 9 sites minimizes with time indicating that the DA is functioning 

properly. At CHIH, the water vapor mixing ratio improved to within instrument error 

below 700 hPa. The T profile also improved but the wind profile shows mixed results. At 

MAZT, there is negligible changes to QVAPOR as it is 150 km away from the closest 

GPS site (BGTO). Both upper air sites show an increased wind bias from the spin-up. In 

addition, at the time of convective initiation (18z), there is increased MUCAPE in the 

region where MCS reaches peak intensity a few hours later (near KINO-ONVS). 

 In addition to determining the role of spin-up in the warm_start experiment, we 

also run a series of other sensitivity experiments involving spatial localization cutoff 

distances, localization of the adjusted variables (thermodynamic variables only versus all 

variables), ensemble size, “super-obbing”, and deterministic versus ensemble forecast. In 

the all_vars experiments, the simulation of the MCS improves with increased cutoff 

length with 0.07 and 0.10 radian being the best. In the no_winds experiments, there is not 
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much change between 0.03-0.07 radian cutoffs with the rainfall was focused towards the 

northern edge of the observed MCS rainfall. By 0.10 rad, the simulated MCS was 

degraded. The super_ob experiment provided the smallest increments during the DA 

cycles and simulated an MCS close to the assim experiment. The 40_mem experiment 

minimized PWV error quickest during the DA cycles but produced the poorest MCS 

simulation out of all experiments that is attributed to model error. 

b) Recommendations 

 A lack of vertical information is a source of uncertainty when assimilating an 

integrated quantity such as GPS-PWV. Expanding on NAME over a decade ago, we 

recommend a field campaign in this region to assess statistical connections of quantities 

of moisture and winds in three dimensions. One way to address this is with the addition 

of lidars that can continuously observe atmospheric variables a few km from the ground.  

Addressing model configuration and model error is independent of DA. For the 

configuration, add more vertical layers to the model as in other convection-allowing 

ensemble DA forecasting studies. For example, Schwartz et al. (2014) used 40 vertical 

levels. For model error, investigate the role of model dynamics and parameterizations 

such as cloud microphysics. One way to address this is to create a 20-member ensemble 

with random microphysics schemes. 
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Tables 

Table 1: Information on the datasets used.  

Data Resolution Reference(s) Source Use 

GPS-PWV 5 min Adams et al. (2014) 

Serra et al. (2016) 

ResearchWorks UW 

archive 

http://hdl.handle.net/1

773/37267 

Assimilation 

and IC / 

Forecast 

Verification 

NCEP Global 

Forecast 

System (GFS) 

model fields 

0.25°, 6 h NCAR https://rda.ucar.edu/dat

asets/ds084.1 

IC / LBC for 

WRF-ARW 

simulations 

TRMM/TMPA 

3B42 TRMM 

Rainfall 

Estimate Data 

V7 

0.25°, 3 h Huffman et al. (2007) https://disc.gsfc.nasa.g

ov/datasets/TRMM_3

B42_V7/summary 

Forecast 

Verification 

(rainfall) 

Geostationary 

IR Channel 

Brightness 

Temperature - 

GridSat B1 

0.07°, 3 h Knapp et al. (2011) https://www.ncdc.noaa

.gov/gridsat/gridsat-

index.php?name=data 

Forecast 

Verification 

(MCS cloud 

shield) 

Radiosonde 

data (CHIH 

and MAZT) 

12 h Earth System Research 

Laboratory (ESRL) 

https://ruc.noaa.gov/ra

obs/ 

IC Verification 

(moisture, 

temperature, 

and winds) 
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Table 2: Configuration of the WRF-ARW for the simulations.  

 

Parameter Domain d01 Domain d02 Domain d03 

Horizontal grid 159 × 99, 

 ∆𝑥 = 30 km 

270 × 231, 

 ∆𝑥 = 10 km 

460 × 548, 

 ∆𝑥 = 2.5 km 

Vertical grid 27 levels, 

 ptop = 50 hpa 

Same as d01 Same as d01 

Cumulus scheme Kain-Fritch Same as d01 None 

PBL scheme YSU Same as d01 Same as d01 

Explicit microphysics WSM6 Same as d01 Same as d01 

Radiation (longwave) RRTMG Same as d01 Same as d01 

Radiation (shortwave)  Goddard Same as d01 Same as d01 

Land surface scheme Unified Noah Same as d01 Same as d01 
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Table 3: Configuration of DART parameters.  

 

Parameter Value 

Filter type EAKF (Ensemble Adjustment 

    Kalman Filter) 

CV3 variance scale factor 0.25 

CV3 horizontal length scale factor 1.00 

CV3 vertical length scale factor 1.50 

Covariance localization Gaspari-Cohn, 0.07 rad cutoff 

Horizontal distance: 446 km 

Vertical distance: 3.5 km 

Adaptive inflation (prior only) 1.0, 0.6 (initial mean, spread) 

Adaptive inflation flavor Spatially-varying time-evolving 

Adaptive localization threshold disabled 

Ensemble members 20 

Observation type GPS-PWV 

Observation error  0.075 cm 
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Table 4: Description of assimilation experiments  

 

 Name Description Values/Notes 

Control 

Experiments 

cold_start See Fig. 2, top panel N/A 

no_assim See Fig. 2, middle panel N/A 

assim See Fig. 2, bottom panel 

 

Deterministic fx, 0.07 

rad cutoff, 20 members, 

all_vars, no superob 

 
Sensitivity 

Experiments 

Spatial 

localization 

Assess impact of assimilating 

observations using differing 

Gaspari-Cohn covariance 

cutoffs 

Cutoffs of 0.03, 0.05, 

0.07, and 0.10 rad 

(equivalent distances 

listed in Table 5) 

Adjusted variable 

localization 

Assess impact of adjusting all 

variables (all_vars) vs. 

thermodynamic variables 

only (no_winds) 

See Table 6 for adjusted 

variables for all_vars 

and no_winds. 

 

super_ob Assess impact of assimilating 

mean hourly observations 

(“super ob”)  

Use 1-hr mean of 5-min 

PWV observations for 

DA cycles 

40_mem Assess impact of 40 

ensemble members for 

spinup/DA cycles 

Same schem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ens_fx Assess impact of ensemble 

forecast 

Use ensemble members 

of the posterior at 1200 

UTC in assim  

warm_start Assess impact of forecast 

spin-up from a warm start 

(12-hour spin-up) vs. cold 

start (0-h spin-up) 

No assimilation. 

Deterministic runs. 
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Table 5: Gaspari-Cohn covariance function cutoffs and equivalent lengths. 

 

Cutoff (radians) 
Equivalent Distance (km) 

Horizontal Vertical 

0.03 191 km 1.5 km 

0.05 319 km 2.5 km 

0.07 446 km 3.5 km 

0.10 637 km 5.0 km 
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Table 6: Adjusted WRF variables in DART for all_vars and no_winds experiments.  

 

Variable 

description 
Variable name Dimensions Variable type all_vars no_winds 

Perturbation 

geopotential 

PH 3-D state ✓ ✓ 

Perturbation 

potential temperature 

T 3-D state ✓ ✓ 

Perturbation dry air 

mass in column 

MU 2-D state ✓ ✓ 

Water vapor mixing 

ratio 

QVAPOR 3-D state ✓ ✓ 

Cloud water mixing 

ratio 

QCLOUD 3-D state ✓ ✓ 

Rain water mixing 

ratio 

QRAIN 3-D state ✓ ✓ 

Ice mixing ratio QICE 3-D state ✓ ✓ 

Snow mixing ratio QSNOW 3-D state ✓ ✓ 

2-meter temperature T2 2-D diagnosed ✓ ✓ 

x-wind component U 3-D state ✓  

y-wind component V 3-D state ✓  

z-wind component W 3-D state ✓  

2-meter potential 

temperature 

TH2 2-D diagnosed ✓ ✓ 

2-meter specific 

humidity 

Q2 2-D diagnosed ✓ ✓ 

Surface pressure PSFC 2-D diagnosed ✓ ✓ 

10-meter U-wind 

component 

U10 2-D diagnosed  ✓  

10-meter V-wind 

component 

V10 2-D diagnosed ✓  
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Figures 

 

 
Figure 1: a) Identical to the setup of Moker et al. (2018) (Fig. 1 of that reference), the 

WRF-ARW nested domain (d01, d02, and d03) boundaries in thick black lines. Details of 

the domain configuration are listed in Table 1. 

b) The convective-allowing domain (d03) with the locations of the Transect 2013 GPS-

PWS sites in filled black circles. A thick black line outlines the NAM core region (24°-

30° N and 112°-106° W) with the SMO transect (KINO-CHIH) situated in the northern 

part. Terrain is shaded every 250 m.  

b) 

a) 
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Figure 2: Schematic of the main experiments. Ensemble adjustment Kalman filter 

(EAKF) analysis are indicted in red circles and 1-h model advances are indicated in blue 

arrows. 
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Figure 3: a) Horizontal-equivalent distances for each GPS site location of the Gaspari-

Cohn covariance localization function for the cutoffs of 0.03 (panel 1), 0.05 (panel 2), 

0.07 (panel 3), and 0.10 radians (panel 4). Terrain shaded in gray [m]. b) Mean horizontal 

component of the function across all 9 GPS sites for each cutoff (panel) c) Correlation of 

PWV to mixing ratio from 1200 UTC soundings at Chihuahua (CHIH; blue line) and 

Mazatlán (MAZT; red line) during the 2013 NAM. Dashed lines indicate the vertical-

equivalent distances for CHIH and MAZT for the cutoff of 0.07 radians (3.5 km). All 

horizontal- and vertical-equivalent distances for each cutoff are listed in Table 5. 

a) 

b) 

c) 

[m] 
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Figure 4: a) PWV RMSE (top panel) and mean bias (model – observation; bottom panel) 

(mm) across the 9 GPS-PWV stations in Transect 2013 for the hourly DA cycles (06-12z 

Jul 8) and for the first 7 hours of the forecast (12-19z Jul 8) for cold_start (solid blue 

line), no_assim (solid red line), and assim (solid green line), as well as prior (dashed 

orange line) and posterior (dashed purple line) during the DA cycles. 

b) Hourly PWV biases (mm) at the GPS-PWV stations for the first 7 hours of the forecast 

(12-19z Jul 8) for cold_start (row 1), no_assim (row 2), and assim (row 3). Red indicates 

a dry model bias and blue indicates a wet model bias.  

b) 

a) 
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Figure 5: Hourly PWV biases (mm) (assim – no_assim) from 12-19z Jul 8 across the 

convection-allowing domain (d03) and the 9 GPS-PWV sites in Transect 2013. Blue 

indicates higher PWV in the assim experiment. Terrain contoured every 500 m in gray.  
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Figure 6: a) Infrared brightness temperature (°C) from GridSat B1 (row 1) cold_start 

(row 2), no_assim (row 3), and assim (row 4) every 3 hours from 15z Jul 8 to 12z Jul 9. 

The WRF OLR (outgoing longwave radiation) variable is converted to brightness 

temperature using the Stefan-Boltzmann Law. One of the criteria for an MCS is a cloud 

shield colder than -32 °C that has an area of at least 100,000 km2 (Maddox 1980). When 

the observation meets this threshold, the -32 °C observed isotherm is outlined in the 

experiments. The percentage of the area that falls within the observed isotherm that is 

itself colder than -32 °C is displayed.  

b) Beginning at 12z July 8, 24-h rainfall accumulation (mm) from TRMM TMPA (panel 

1), cold_start (panel 2), no_assim (panel 3), and assim (panel 4). Terrain contoured every 

500 m. Locations of the Transect 2013 GPS-PWV sites in black circles. 

 

  

a) 

b) 
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Figure 7: 12z Jul 8 sounding verification for a) CHIH and b) MAZT (sounding in 

column 1; bias in column 2) for water vapor mixing ratio (g/kg; row 1), temperature (°C 

row 2), U wind (m/s; row 3), and V wind (m/s; row 4). The error of the instruments on 

board the Vaisala RS92 radiosonde is shaded in gray. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 
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Figure 8: a) Mean increments (posterior – prior) across all hourly assimilation cycles 

(06-12z Jul 8) and b) 12z ensemble mean initial field bias (assim – no_assim) for PWV 

(mm) (separate left panel) and water vapor mixing ratio (g/kg) (column 1), T (°C) 

(column 2), U (m/s) (column 3), and V (m/s) (column 4) at the 750 hPa (row 1), 850 hPa 

(row 2), and 950 hPa (row 3) levels. 

a) 

b) 
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Figure 9: PWV (mm) RMSE (left column) and mean bias (model – observation; right 

column) across the 9 GPS stations for the prior (red line) and posterior (blue line) for the 

hourly DA cycles (6-12z Jul 8) and for the first 7 hours of the forecast (black line) (12-

19z Jul 8) in a) all_vars and b) no_winds experiments. Covariance function cutoffs of 

0.03 (row 1), 0.05 (row 2), 0.07 (row 3), and 0.10 radians (row 4) are shown. Assim 

experiment is outlined in a red box. 

 

 

a) 

b) 

[mm] [mm] 
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Figure 10: Infrared brightness temperature (°C) every three hours from 21z Jul 8 to 9z 

Jul 9 for covariance function cutoffs of 0.03 (row 1), 0.05 (row 2), 0.07 (row 3), and 0.10 

radians (row 4) for a) all_vars and b) no_winds experiments. More information listed in 

the Fig. 6a caption and om Table 5. Refer to Fig. 6 caption for MCS verification 

technique. 

Beginning at 12Z Jul 8, 24-hour rainfall accumulation (mm) for c) all_vars and d) 

no_winds experiments. Assim is outlined in a red box.  

 

b) d) 
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Figure 11: Using the parcel with highest theta-e, CAPE (J/kg) bias (model – observation; 

right column) for the first 7 hours of the forecast (12-19z Jul 8) in a) all_vars and b) 

no_winds experiments. Covariance function cutoffs of 0.03 (row 1), 0.05 (row 2), 0.07 

(row 3), and 0.10 radians (row 4) are shown. Assim is outlined in a red box. 

 

 

 

 

 

a) 

b) 
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Figure 12: 12Z Jul 8 sounding verification for a) CHIH all_vars, b) MAZT all_vars, c) 

CHIH no_winds, and d) MAZT no_winds (sounding in column 1; bias in column 2) for 

water vapor mixing ratio (g/kg; row 1), temperature (°C; row 2), U wind (m/s; row 3), 

and V wind (m/s; row 4) for 0.03 (red), 0.05 (blue), 0.07 (green), and 0.10 rad (magenta) 

covariance function cutoffs. 

a) 

c) 

b) 

d) 
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Figure 13: a) PWV RMSE (left column) and mean bias (model – observation; right 

column) across the 9 GPS stations for the prior (red) and posterior (blue) for the hourly 

DA cycles (6-12z Jul 8) and for the first 7 hours of the forecast (black) (12-19z Jul 8) in 

assim (row 1), ens_fx (row 2), superob (row 3), and 40_mem (row 4). 

b) PWV RMSE (left column) and mean bias (right column) across the 9 GPS stations for 

the first 7 hours of the forecast in cold_start (row 1) and warm_start (row 2). 

 

 

     

  

a) 

b) 
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Figure 14: Infrared brightness temperature (°C) every three hours from 21z Jul 8 to 09z 

Jul 9 for a) assim (row 1), superob (row 2), 40_mem (row 3), and ens_fx (row 4) and b) 

cold_start (row 1) and warm_start (row 2). More information listed in the Fig. 5a 

caption. Refer to Fig. 6 caption for MCS verification technique. 

Beginning at 12z Jul 8, 24-hour rainfall accumulation (mm) for c) assim, super_ob, 

40_mem, and ensemble_fx and d) cold_start and warm_start. 

a) c) 

b) d) 
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Figure 15: Same as Fig. 11, but for assim (row 1), super_ob (row 2), and 40_mem (row 

3). 
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APPENDIX C: DATA ASSIMILATION BACKGROUND WITH AN 

APPLICATION TO ENSEMBLE KALMAN FILTERING AND GPS-PWV 
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1. Overview of Data Assimilation 

 The objective of this document is to describe how GPS precipitable water vapor 

(PWV) is assimilated into the WRF model along with background literature review of 

data assimilation. DA is a discipline that uses new information (e.g., observations) to 

update the estimate of the state of a system to reduce the error of the state. In the context 

of atmospheric science, DA attempts to create a consistent picture of the atmosphere in 

space and time using information and statistics from irregularly spaced observations 

(Kalnay 2002). On a model grid, DA adjusts unobserved atmospheric data with statistical 

connections with observed variables and the background structure of the state on that 

grid. A main problem with DA is the accuracy of estimates of the errors of a non-linear 

system with linear approximations. This section is organized by starting with DA being 

framed through a Bayesian lens in Subsection a. Then, DA methods can be divided into 

sequential and variational where they are discussed in Subsections b and c, respectively. 

 This document is organized as follows: a background of data assimilation (DA) in 

Section 1, a description of the Kalman Filter in Section 2, an explanation of the Ensemble 

Kalman Filter (EnKF) with an application to convection-resolving modeling in Section 3, 

and an exploration of past studies of GPS-PWV assimilation with a description of my 

WRF/DART setup in Section 4. 

a. DA from a Bayesian perspective  

The state of the atmosphere may be approximated by a gaussian probability 

density function (PDF). Conveniently, a multivariate gaussian PDF can represented by 

simply the mean and the covariance matrix. Bayes’ Rule states that the state sample can 
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be updated (“posterior” in Bayesian parlance) from the pre-assimilation state (“prior”) 

and the observations (“data likelihood”) (Wikle and Berliner 2007; Lorenc 1986). 

Let 𝑦 resemble the observation distribution, 𝑥 resemble the state distribution, and 

p(∙) notation indicate probability. The probability of observations given all previous 

information is 𝑝(𝑦|𝑥) and is called the “data likelihood” PDF. The probability of the state 

before the current observations is 𝑝(𝑥) and is called the “prior” PDF. The probability of 

the state given all observations including the current one is 𝑝(𝑥|𝑦) and is called the 

“posterior” PDF. Bayes’ Rule states that the “posterior” PDF is proportional to the 

product of the “prior” PDF and the “data likelihood” PDF (eq. 1).  

 𝑝(𝑥|𝑦) ∝ 𝑝(𝑥) 𝑝(𝑦|𝑥) (1) 

The “posterior” PDF is gaussian since it is proportional to the product of two gaussians. 

All observations (current and previous) are considered part of the same distribution; 

therefore, each observation can be assimilated individually since they do not change the 

statistics of the “posterior” PDF. 

b. Sequential methods 

One may use sequential methods to assimilate observations into a model. The 

model fields are updated whenever observations are available (called an “analysis”). 

Between observation times, the model is advanced forward in time until the next 

observation(s) are available. At the analysis time, the goal is to find an optimal weight 

(“least squares”) that includes statistical information about the observation and 

background state errors to estimate to the state that has minimum variance and is 

unbiased. This can be done in one dimension (a scalar) and is demonstrated in this 

section. After expanding this framework spatially to a grid, we can evolve it in time in the 
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Kalman Filter (Kalman 1960) and extended Kalman Filter (EKF). These methods are 

discussed in Section 2. For large models, we must represent the background state with an 

ensemble in the ensemble Kalman Filter (EnKF; Evensen 1994) discussed in Section 3. 

Consider PWV where its unknowable true value is indicated by 𝑃𝑊𝑉𝑡. Given a 

PWV measurement, 𝑃𝑊𝑉𝑜, and a background PWV measurement, 𝑃𝑊𝑉𝑏, we can find 

the best estimate, 𝑃𝑊𝑉𝑎, based on a linear relationship between the measurements and 

statistical assumptions about the measurements (adapted from Kalnay 2002). Eq. 2 

describes this scenario where A and B are linear coefficients for 𝑃𝑊𝑉𝑜 and 𝑃𝑊𝑉𝑏, 

respectively.  

 𝑃𝑊𝑉𝑎 = 𝐴 ∙ 𝑃𝑊𝑉𝑜 + 𝐵 ∙ 𝑃𝑊𝑉𝑏 (2) 

The sum of the coefficients is unity as a result of the unbiased assumption of 𝑃𝑊𝑉𝑎 (eq. 

3). 

 𝐴 + 𝐵 = 1 (3) 

We define the errors as the deviation of the measurement or analysis from the true value 

𝑃𝑊𝑉𝑡 in eq. 4-6: 

 𝜀𝑎 ≡ 𝑃𝑊𝑉𝑎 − 𝑃𝑊𝑉𝑡 (4) 

 𝜀𝑜 ≡ 𝑃𝑊𝑉𝑜 − 𝑃𝑊𝑉𝑡 (5) 

 𝜀𝑏 ≡ 𝑃𝑊𝑉𝑏 − 𝑃𝑊𝑉𝑡 (6) 

The expectation operator, 𝐸[∙], is equivalent to taking the arithmetic mean in the 

equations that follow. The measurements are assumed to be unbiased and therefore the 

analysis is unbiased. In other words, the expected values of their errors are zero (eq. 7). 

 𝐸[𝜀𝑜] =  𝐸[𝜀𝑏] = 𝐸[𝜀𝑎] = 0 (7) 
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Additionally, we assume that the errors between the two PWV measurements are 

independent and therefore uncorrelated (eq. 8). 

 𝐸[𝜀𝑜𝜀𝑏] = 0 (8) 

Error variances are defined as the expected value of the squared errors (eq. 9). 

 𝜎𝑜
2 ≡ 𝐸[𝜀𝑜

2] ,             𝜎𝑏
2 ≡ 𝐸[𝜀𝑏

2],              𝜎𝑎
2 ≡ 𝐸[𝜀𝑎

2] (9) 

Substitute B in terms of A from eq. 2 into eq. 1 and solve for 𝑃𝑊𝑉𝑎 to obtain the analysis 

equation (eq. 9).  

 𝑃𝑊𝑉𝑎 = 𝑃𝑊𝑉𝑏 + 𝐴(𝑃𝑊𝑉𝑜 − 𝑃𝑊𝑉𝑏) (10) 

Substitute 𝑃𝑊𝑉𝑜 and 𝑃𝑊𝑉𝑏 in terms of their errors and 𝑃𝑊𝑉𝑡 from eq. 4-6 and solve for 

analysis error 𝜀𝑎 to obtain the error analysis equation (eq. 11). 

 𝜀𝑎 = 𝜀𝑏 + 𝐴(𝜀𝑜 − 𝜀𝑏) (11) 

Using the assumption that the measurement errors are uncorrelated (eq. 7) and the 

definition of error variances (eq. 8), the analysis error variance equation (eq. 12) is 

obtained in terms of 𝐴 and the error variances by squaring and then taking the expected 

value of eq. 11. 

 𝜎𝑎
2 = (1 − 𝐴)2𝜎𝑏

2 + 𝐴2𝜎𝑜
2 (12) 

 The optimal weight 𝐴 (eq. 13) for the analysis (eq. 10) is obtained by minimizing the 

analysis error variance 𝜎𝑎
2 (eq. 12). This is done by taking the derivative of eq. 12 with 

respect to 𝐴 and setting it to zero. Note that according to the ‘Minimum Variance 

Method’, minimizing the variance is equivalent to minimizing the mean square error 

since 𝜀𝑎 is unbiased.  

 𝐴 =
𝜎𝑏

2

𝜎𝑏
2 + 𝜎𝑜

2
 (13) 
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The optimal weight 𝐴 is comprised of the ratio of variance of background 

measurement to the sum of variances of the background and observation and has a range 

of 0 to 1. If the observation error variance is zero (𝜎𝑜
2 = 0), then the optimal weight is 

unity (𝐴 = 1) and the analysis equals the observation (𝑃𝑊𝑉𝑎 = 𝑃𝑊𝑉𝑜). Similarly, if the 

background error variance is zero (𝜎𝑏
2 = 0), then the optimal weight is zero (𝐴 = 0) and 

the analysis equals the background (𝑃𝑊𝑉𝑎 = 𝑃𝑊𝑉𝑏). If the background and observation 

variances are equal (but not zero), then 𝐴 = 0.5 and the analysis is simply the arithmetic 

mean of the background and observation (𝑃𝑊𝑉𝑎 = 0.5(𝑃𝑊𝑉𝑏 + 𝑃𝑊𝑉𝑜)). 

 The least squares estimate of the analysis error variance is determined by 

substituting the optimal weight 𝐴 into eq. 12 and solving for 𝜎𝑎
2 (eq. 14).  

 𝜎𝑎
2 =

𝜎𝑏
2𝜎𝑜

2

(𝜎𝑏
2 + 𝜎𝑜

2 )
= 𝐴𝜎𝑜

2 = (1 − 𝐴)𝜎𝑏
2 =  (

1

𝜎𝑏
2 +

1

𝜎𝑜
2

)

−1

 (14) 

 The minimized analysis error variance is also equal to the inverse of the sum of 

the background error and observation error precisions (inverses of variances).  

Substituting 𝐴 into eq. 10, we obtain the analysis in terms of the observation, observation 

variance, background, and background variance (eq. 15). This linear combination of the 

background and observation measurements and their accuracies results in the best linear 

unbiased estimate that has minimum variance. 

 𝑃𝑊𝑉𝑎 = 𝑃𝑊𝑉𝑏 + (
𝜎𝑏

2

𝜎𝑏
2 + 𝜎𝑜

2
) (𝑃𝑊𝑉𝑜 − 𝑃𝑊𝑉𝑏) (15) 

After all observations are processes to get the new analysis (eq. 15), then it and its errors 

(eq. 14) are advanced in time until observations are next available. This can be done 

using a Kalman Filter (described in Section 2). 
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c. Variational methods 

 An alternative to the sequential approach is the variational or continuous 

approach. This involves minimizing a cost function, 𝐽(𝑥), that is comprised of the 

squares of the differences between the analysis and each measurement (eq. 16). We will 

use a scalar case once again.  

 𝐽(𝑥) =
1

2
{

(𝑃𝑊𝑉𝑏 − 𝑃𝑊𝑉)2

𝜎𝑏
2 +

(𝑃𝑊𝑉𝑜 − 𝑃𝑊𝑉)2

𝜎𝑜
2

} (16) 

 To minimize 𝐽(𝑥), we take its derivative with respect to 𝑃𝑊𝑉, set it to zero, and 

solve for 𝑃𝑊𝑉 (eq. 17). This will result in 𝑃𝑊𝑉 that is equal to 𝑃𝑊𝑉𝑎 in the analysis 

equation obtained via the optimal weight least-squares approach (eq. 15). 

 𝑃𝑊𝑉 = (
𝜎𝑜

2

𝜎𝑏
2 + 𝜎𝑜

2
) 𝑃𝑊𝑉𝑏 + (

𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑜

2
) 𝑃𝑊𝑉𝑜 (17) 

 A prevalent variational method is 3D-VAR (Lorenc 1986), where 3D-VAR stands 

for “three-dimensional variational” and the three dimensions are that of space, and allows 

for all observations at a particular time to be assimilated at once. In eq. 16, the scalars are 

replaced with vectors and the cost function 𝐽(𝑥) becomes a three-dimensional bowl. The 

gradient of 𝐽(𝑥) must be minimized instead of minimizing the derivative as in the scalar 

case. Finding the gradient of 𝐽(𝑥) is not a trivial task and must be done incrementally.  

 Other variational methods include but are not limited to 4D-VAR (Le Dimet and 

Talagrand 1986; Lewis and Derber 1985) and the Physical-space Statistical Analysis 

System (PSAS; Cohn et al. 1998). 4D-VAR is an extension of 3D-VAR in that accounts 

for the time dimension and includes all observations in space and time in the cost 

function. Because it takes into consideration time, it requires the use of a model requiring 

more computational resources and code for a tangent linear model (TLM) and an adjoint 
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model (AM). The PSAS solves 3D-VAR or 4D-VAR in observation space instead of 

model space using OI equations. Additionally, there is an incremental version of 4D-

VAR (Courtier et al. 1994) that solves for the analysis increment instead of the analysis 

itself resulting in a computationally cheaper computation.  

2. Kalman Filter 

 A Kalman Filter (KF) is a sequential method of data assimilation that evolves the 

state in time via a forward model (Kalman 1960). An analysis is computed that includes 

an optimal weight (or gain in multiple dimensions) whenever observations become 

available that follow the logic of eq.15. In NWP, the state is not just one location; it is 

vector that lies on a model grid. The conversion from scalar to multivariate is described 

in subsection a, the KF equations are described in subsection b, and the extended KF, 

which allows for slightly non-linear systems, is described in subsection c. 

a. Extension of variables from scalar to multivariate  

We are using the KF to propagate a state of the atmosphere and that is represented 

on a grid along with its error characteristics. We are also using multiple observations. 

Therefore, since are dealing with multi-dimensionality, we must extend our variables 

from scalars to vectors as shown in Table 1. The errors of the variables are also vectors. 

For brevity, we use the same symbol as the scalar case, 𝜺, to represent the errors, but they 

will become column vectors. A covariance matrix is generated by multiplying an error 

vector by its transpose and then taking the expected value. In the KF, 𝑷𝑓 (𝑚 × 𝑚) is used 

to indicate the forecast (background) covariance matrix (eq. 18).  

 𝑷𝑓 = 𝐸[𝜺𝜺𝑇] (18) 
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In practice, 𝑃𝑓 is estimated from a first guess of a model background. It represents the 

relationship of the model grid points to one another and has information depicting how 

the grid will change based on the assimilation of an observation.  

𝑹 (𝑛 × 𝑛) is the observation error covariance matrix (eq. 19). If the same 

instrument is used, then observation errors are uncorrelated and usually identical and 𝑹 is 

defined by the identity matrix multiplied by the observation error variance. Therefore, 

only the variances along the diagonal exist. 

  𝑹 = 𝑰𝑛𝜎𝑜
2       (19) 

Because observations are not usually located exactly on the model grid, an 

observation operator, 𝑯, is required. It maps the observation to model space and therefore 

has dimensions 𝑛 ×  𝑚. The observation operator performs interpolation in space from 

the model grid to the observation location as well as computation for variables that are 

not explicitly represented by the state vector (such as PWV that is discussed in Section 

4). 

b. Kalman Filter equations 

The KF has two phases. The “update” phase is the analysis performed (usually on 

a grid) using a least-squares optimal matrix (gain) and results in a new state and 

covariance matrix. The “predict” phase then propagates the new state and covariance 

matrix in time using a model. 

To get the KF analysis equation (eq. 20) in the update phase, we substitute the 

vector definitions from Table 1 into the same format as the least-squares scalar analysis 

equation (eq. 10). We also generalize the PWV to state vector 𝒙. 

 𝒙𝑎 = 𝒙𝑓 + 𝑲(𝒚 − 𝑯𝒙𝑓) (20) 
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The gain matrix 𝑲 replaces scalar weight 𝐴 and is multiplied by the innovation vector 

𝒚 − 𝑯𝒙𝑓 to get the analysis increment vector 𝒙𝑎 − 𝒙𝑓. Since the innovation vector is in 

observation space, the observation operator 𝑯 must be multiplied by the forecast state 

vector 𝒙𝑓 to get the model-equivalent observation so it can be subtracted from the 

observation vector 𝒚. The gain matrix 𝑲 is defined as the ratio between the error in 

model-observation space over the total error in observation space (eq. 21) and is similar 

to the scalar least-squares optimal weight (eq. 13). 

 𝑲 = 𝑷𝑓𝑯𝑇 (𝑯𝑷𝑓𝑯𝑇 + 𝑹)−1 (21) 

Finally, the analysis error covariance matrix, 𝑷𝑎, is updated (eq. 21) similar to the 

scalar analysis error variance equation (eq. 13). The analysis error covariance matrix 𝑷𝑎 

is determined by reducing the background error covariance matrix 𝑷𝑏 by a factor of 

(𝑰 − 𝑲𝑯). 

 𝑷𝑎 = (𝑰 − 𝑲𝑯)𝑷𝑓 (226) 

In eq. 20-22, all variables are valid at time 𝑡 so their time indices are removed for brevity. 

In the predict phase of the KF (eqs. 22-24), the model state and error covariance matrices 

are advanced in time from 𝑡 to 𝑡 + 1. The forecast state vector 𝒙𝑓 of dimension 𝑚 ×  1 is 

advanced in time by a linear model matrix 𝑴 of dimension 𝑚 ×  𝑚 (eq. 22).   

 𝒙𝑡+1
𝑓

= 𝑴𝑡→𝑡+1(𝒙𝑡
𝑓

) (23) 

The model error covariance matrix 𝑸 is the model error that accumulated with 

time from 𝑡 to 𝑡 + 1. It is constructed by the expected value of the model error vector 𝜼 

multiplied by its transpose (eq. 24). This error is difficult to estimate, but the KF will 

become unstable if 𝑸 is too large. 
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 𝑸 = 𝐸[𝜼𝜼𝑇] (24) 

The predicted error covariance matrix 𝑷𝑡+1
𝑓

 is propagated in time (eq. 25) by the linear 

model operator matrix 𝑴 and its transpose and then added to model error covariance 

matrix 𝑄. 

 𝑷𝑡+1
𝑓

= 𝑴𝑷𝑎𝑴𝑇 + 𝑸 (25) 

This predict phase continues until new observations are available to assimilate. At that 

time, we return to the update phase with eqs. 20-23 and set 𝑷𝑡
𝑓
 to 𝑷𝑡+1

𝑓
 and 𝒙𝑡

𝑓
 to 𝒙𝑡+1

𝑓
. 

c. Extended Kalman Filter 

In the KF, linearity is assumed in the observation operator 𝑯 and forward model 

operator 𝑴. However, sometimes these operators are non-linear and are represented as 𝓗 

and 𝓜, respectively. In the Extended Kalman Filter (EKF), the non-linear versions 

replace the linear versions of these matrices. Eq. 20 is replaced by eq. 26 and eq. 23 is 

replaced by eq. 27. 

 𝒙𝑎 = 𝒙𝑓 + 𝑲(𝒚 − 𝓗𝒙𝑓) (26) 

 𝒙𝑡+1
𝑓

= 𝓜𝑡→𝑡+1(𝒙𝑡
𝑓

) (27) 

The other KF equations remain the same. The 𝓗 and 𝓜 matrices can be 

linearized by taking the Jacobian at the current time to allow for the computations of 

equations 21, 22, and 25. 𝓗 is linearized at time 𝑡 (eq. 28) and 𝓜 is linearized at 𝑡 → 

𝑡 + 1 (eq. 29). 

 𝑯 =
𝜕𝓗

𝜕𝒙
|

𝑡
 (28) 

 𝑴 =
𝜕𝓜

𝜕𝒙
|

𝑡→𝑡+1
 (29) 
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The non-trivial tangent linear model (TLM) 𝑴 and its adjoint (AM) 𝑴𝑇 must be coded to 

be run alongside the non-linear model 𝓜 in the EKF. 

The EKF can be use on only slightly non-linear systems because the linearization of 

highly non-linear systems will cause high instability in the filter. In NWP, both eq. 20 

and 24 would not be computationally feasible with current technology because of the 

high dimensionality of 𝑷 ~ 1014. There would also be difficulty computing the matrix 

inversion of (𝑯𝑷𝑓𝑯𝑇 + 𝑹)−1 in the Kalman gain 𝑲 (eq. 21) and the propagation in time 

of the error covariance matrix with the TLM and AM (eq. 23). A remedy for this is to 

approximate the state using an ensemble and not explicitly store 𝑷. This is called an 

Ensemble Kalman Filter (EnKF) and is described in the next section.   

3. Ensemble Kalman Filter (EnKF) and NWP convective applications  

In convective-allowing NWP, the EnKF has been shown to lower error in 

initialization resulting in promising results in an operational setting (e.g. Schwartz et al. 

2015). The EnKF uses an ensemble to represent the state vector PDF so the KF equations 

can be computed. A common way to implement the EnKF is via the Data Assimilation 

Research Testbed (DART; Anderson et al. 2009), which is a community facility that 

allows for the application of EnKF methodologies, especially the Ensemble Adjustment 

Kalman Filter (EAKF; Anderson 2001). The general formulation of EnKF is discussed in 

subsection a, DART is described in subsection b, and past studies involving EnKF/DART 

in convective-allowing models are discussed in subsection c. 

a. Description of EnKF 

The EnKF uses Monte Carlo methods to sample the PDF of the atmosphere to 

approximate error covariances via ensembles. A gaussian state PDF is assumed. The error 
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covariance matrices are not explicitly constructed so the analysis error covariance matrix 

is never stored. The EnKF advances the state with a nonlinear model. No AM or TLM 

code is needed. In the context of NWP, unlike the KF or EKF, the implementation and 

computation of the EnKF is feasible because of the reduced dimensionality and not 

needing to propagate the covariance matrix of the state explicitly. The update step is 

computationally cheap relative to 4D-VAR. There is a flow-dependence to the error 

covariances as they propagate in time that resemble the dynamic structure of the 

atmosphere. 

The EnKF is a square root filter (SRF) in that the matrix square root of the error 

covariance matrix is propagated instead of the entire matrix. It was first proposed by 

Evensen (1994) for use in geostatistical applications, but it was eventually realized that 

the observations needed to be treated like random variables. Houtekamer and Mitchell 

(1998) developed an EnKF that addressed the treatment of observations this way. They 

defined the state as 𝒙𝑓̅̅ ̅ where the overbar indicates the ensemble mean (eq. 30).  

 𝒙𝑓̅̅ ̅ =
1

𝑁𝑒𝑛𝑠
∑ 𝒙𝑖

𝑓

𝑁𝑒𝑛𝑠

𝑖=1

 (30) 

The forecast error covariance matrix 𝑷𝑓 is approximated by a sample mean of the 

sum of the differences between each ensemble member and the ensemble mean 

multiplied by its transpose (eq. 31).  

 𝑷𝑓 = 𝒙𝑓(𝒙𝑓)𝑇 =
1

𝑁𝑒𝑛𝑠 − 1
∑ (𝒙𝑖

𝑓
− 𝒙𝑓̅̅ ̅)

𝑁𝑒𝑛𝑠

𝑖=1

(𝒙𝑖
𝑓

− 𝒙𝑓̅̅ ̅)
𝑇

 (31) 

There are two general types of EnKF, “stochastic” and “deterministic”, whose 

differences deal with the method in which the analysis error covariance matrices are 
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represented. Both types are considered SRFs (Tippett et al. 2003). The stochastic 

algorithm perturbs the observations to represent the observation error (Houtekamer and 

Mitchell 1998; Burgers et al. 1998), but this method introduces an additional source of 

sampling error that reduces the analysis error covariance accuracy and increases the 

probability of underestimating the analysis error covariance matrix (Whitaker and Hamill 

2002). The deterministic algorithm, in contrast, adjusts the analysis ensemble itself 

instead of perturbing the observations (Whitaker and Hamill 2002). There are several 

types of deterministic EnKFs. Examples are the Ensemble Transform Kalman Filter 

(ETKF; Bishop et al. 2001), the Local Ensemble Transform Kalman Filter (LETKF; Hunt 

et al. 2007), and the EAKF (Anderson 2001). 

Because of the sampling error from the state being represented by an ensemble, 

there are two main problems that arise in EnKFs that may render the filter not responsive 

to observations (filter divergence). First, since the covariance matrices are approximated 

and therefore not full rank, spurious correlations will occur as one moves away from the 

observation site. To mitigate this, error covariances must be localized in some fashion 

(Anderson and Anderson 1999). Second, the model error could be higher than the 

observation error. To mitigate this, the covariance is inflated. Methods for addressing 

these modifications are discussed in more detail in the next subsection. 

b. Data Assimilation Research Testbed 

 DART (Anderson et al. 2009) is a community DA facility that allows for the 

application of ensemble algorithms in operational forecasting. Many options are available 

including the EAKF (Anderson 2001), EnKF (EnSRF in Whitaker and Hamill 2002), 
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rank histogram filter (Anderson 2010), and particle filter (Poterjoy 2015), etc. The 

recommended algorithm is EAKF so that will be explored in depth.  

 EAKF creates an updated ensemble from the prior ensemble members and 

observations and approximates the KF. However, for the EAKF to accurately compute 

the KF, it would need a linear forecast model, linear observation operator, gaussian 

observation errors, and an ensemble larger than the state vector. We are using a non-

linear forecast model and an ensemble much smaller than the state vector, so errors are 

introduced. The EAKF algorithm takes advantage of Bayes’ rule introduced in Section 

1a. 

 For an observed variable, the EAKF shifts the prior ensemble so it becomes the 

same mean as the posterior. Then, the ensemble linearly contracts around the posterior 

mean resulting in a standard deviation equal to that of the posterior. Fig. 1 shows this 

process using 5 ensemble members. Once we arrive at the posterior values of the 

observed variables, the increments of each component of the prior state vector are 

computed from the observation increments via linear regression (Fig. 2). Anderson 

(2003) applies a “local least-squares” framework to the EAKF where each ensemble 

member at each model grid space is updated with scalars instead of vectors for each 

observation. Once an ensemble is established (discussed in Section 4), the steps to 

assimilate an observation is as follows (shown graphically in Fig. 3): 

1) Start with an ensemble of the state of the atmosphere. This is the “prior” state. 

2) Get an ensemble sample of the observation using the observational operator on 

the state variable for each member 𝑖: 𝑦𝑖
𝑓

= ℎ(𝑥𝑖
𝑓

). (Fig. 3, step 2). 
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3) Get the observation from the instrument 𝑦𝑜 and the observation error distribution 

(𝜎𝑜)2 (Fig. 3, step 3). 

4) Inflate the prior variances (𝜎𝑓)2 to maintain model spread because of the limited 

sample size and model error (Hamill et al. 2001; Anderson 2001; Whitaker and 

Hamill 2002). This can be done multiplicative (Anderson 2001) or additive 

(Hamill and Whitaker 2005), but the use of a relaxation can limit excessive 

ensemble spread in data-sparse regions caused by the previous two techniques 

(Zhang et al. 2004). A newer technique is to use adaptive inflation which evolves 

in time and varies in space (Anderson 2009). 

5) Calculate the analysis ensemble mean of the observation 𝑦𝑎̅̅̅̅  (eq. 32) and then for 

each ensemble member 𝑖 compute the analysis observation 𝑦𝑖
𝑎 (eq. 33) and 

observation increment ∆𝑦𝑖 (eq. 34) (Fig. 3, step 4). 

 𝑦𝑎̅̅̅̅ = (
1

1
(𝜎𝑓)2 +

1
(𝜎𝑜)2

) (
𝑦𝑓̅̅̅̅

(𝜎𝑓)2
+

𝑦𝑜

(𝜎𝑜)2
) (32) 

 𝑦𝑖
𝑎 = √

(𝜎𝑜)2

(𝜎𝑓)2 + (𝜎𝑜)2
(𝑦𝑖

𝑓
− 𝑦𝑓̅̅̅̅ ) + 𝑦𝑎̅̅̅̅  (33) 

  ∆𝑦𝑖 = 𝑦𝑖
𝑎 − 𝑦𝑖

𝑓
 (34) 

6) Linearly regress the observation increments ∆𝑦𝑖 onto state variable increments 

∆𝑥𝑖 for each ensemble member (eq. 35) and add to the prior state ensemble 

sample 𝑥𝑖
𝑓
 to get the analysis value for the state variable 𝑥𝑖

𝑎 (eq. 36) (Fig. 3, step 

5). 
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 ∆𝑥𝑖 =
𝑐𝑜𝑣(𝑥𝑖

𝑓
, 𝑦𝑖

𝑓
)

𝑣𝑎𝑟(𝑦𝑖
𝑓

)
∆𝑦𝑖 (35) 

  𝑥𝑖
𝑎 = 𝑥𝑖

𝑓
+ ∆𝑥𝑖 (36) 

7) Continue until all observations are processed and state variables are updated to the 

analysis. Then, advance the ensemble members to the next observation time via 

the non-linear forward model (Fig. 3, step 6).  

 To limit filter divergence from spurious correlations far away from the 

observation (Houtekamer and Mitchell 2001; Hamill et al. 2001) which could render the 

EAKF useless, covariance localization must be multiplied by the RHS of eq. 35. A 

popular localization technique is using a 5th order polynomial and setting a cutoff radius 

both horizontally and vertically (Gaspari and Cohn 1999). 

c. EnKF in convective-allowing NWP 

 In Zhang et al. (2006), the performance of an EnKF in conjunction with the fifth-

generation Pennsylvania State University–National Center for Atmospheric Research 

Mesoscale Model (MM5) was analyzed. They assimilated synthetic sounding and surface 

observations with a perfect-model assumption and found that an EnKF used with 40 

members kept the analysis close to the “truth”. They also concluded that larger ensemble 

sizes, smaller cutoff radii (localization half-widths), and the implementation of a variance 

relaxation method (Zhang et al. 2004) resulted in larger ensemble spread to possibly 

remedy filter divergence. In an extension of this work, Meng and Zhang (2008) modeled 

a mesoscale convective vortex (MCV) on 10-12 June 2003 using the Weather Research 

and Forecast Model (WRF; Skamarock et al. 2008). They showed that the EnKF 

outperformed the 3D-VAR in assimilating one or more meteorological variables.   
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 NCAR’s Experimental Real-Time Convection-Allowing Ensemble Prediction 

System (Schwartz et al. 2015) was a prototype of the use of EnKF in an operational 

limited-area convective-permitting ensemble forecasting system. This setup used DART 

in conjunction with the WRF in a continuously-cycling system that was used to initialize 

the ensembles. They assimilated rawinsonde temperature, wind, moisture, and altimeter, 

aircraft temperature and wind, satellite winds, surface temperature, wind, altimeter, and 

moisture from ship, buoy, METAR, surface synoptic observations, and Oklahoma 

Mesonet sites. Although NCAR’s system used a continuous-cycling framework, the use 

of partial cycling systems may lead to better forecasts by eliminating the buildup of 

biases. The downside is that they fail robustly to assess the model biases (Romine et al. 

2013). Also, the external model forcing is only responsible for the lateral boundary 

conditions (LBCs) in continuously-cycling systems whereas there may be dynamically-

inconsistent issues from the external model ICs in partially-cycling systems. 

4. Assimilating GPS PWV via EnKF  

a. PWV from GPS observations 

 Ground-based stations can measure precipitable water vapor (PWV) from Global 

Positioning System (GPS) satellites that have been in place since 1992 (Bevis et al. 

1992). The stations measure Zenith Total Delay (ZTD) based on the delay of L-band 

radio signals in the troposphere between the transmitters and station. The ZTD is 

dependent on the surface pressure (hydrostatic dry delay) and the total column PWV (wet 

delay) above the station. The ZTD can be converted to PWV with temperature and 

pressure data from the station using a method described in Bevis et al. (1992). Poli et al. 

(2007) suggests that the ZTD/PWV for each station is representative of a 17-km radius 
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with most of the contribution in the lowest 3 km. The error in PWV is 1-2 mm for small 

values. The long wavelength from the GPS transmitter makes PWV an all-weather 

observable meteorological variable.  

b. Value of PWV in NWP 

 Over the central US, Gutman et al. (2004) and a companion study Smith et al. 

(2007) showed that lower troposphere moisture fields in the RUC model improved upon 

the assimilation of PWV. This was done via an optimal interpolation method where the 

shape of the moisture profile is assumed to be correct and the values are adjusted by a 

certain percentage as demonstrated in Kuo et al. (1993) and Smith et al. (2000).  Smith et 

al. (2007) showed greatest impact to 3-6 hour forecasts with a noticeable impact on the 9-

12 hour forecasts.  

  In a European study, Poli et al. (2007) examine the impact of the assimilation of 

ZTD into at 4D-VAR system implemented with Meteo-France global forecast system. In 

addition to constraining the 1-4 day synoptic patterns for all seasons over France, this 

system also improves rainfall forecasts 12-36 hours out. In another European study as 

part of the Convective and Orographically-induced Precipitation Study (COPS) 

campaign, Yan et al. (2009) assimilate ZTD into a 3D-VAR/AROME Meteo-France 

system with 2.5-km horizontal grid spacing (convective-permitting). This study used a 

dense GPS network in the complex terrain of northeast France and southwest Germany 

that were a part of COPS. Improved forecast skill of rainfall were attributed to the 

assimilation of the ZTD where the lower tropospheric moisture profiles were improved 

similar to the Central US studies of Gutman et al. (2004) and Smith et al. (2007). 
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 Seko et al. (2011) were one of the first to assimilate PWV using an ensemble DA 

system. They used a Local Ensemble Transform Kalman Filter (LETKF) and analyzed 

fields of the mesoscale 4D-VAR system of the Japan Meteorological Agency (JMA) to 

improve rainfall in a case study. The horizontal resolution was 1.6 km with 20 ensemble 

members. The assimilation of PWV improved the lower tropospheric moisture and 

rainfall forecasts in the heavy bands. They hypothesize that the assimilation of more 

variables, having a higher resolution, and increasing the ensemble members will allow a 

better simulation of the rain bands. 

c. Experimental Design 

 1) PERTURBATIONS AND SPINUP 

In my data assimilation algorithm, I use DART with the EAKF filter and WRF-ARW 

version 3.41 to advance the model. I initialize the model at 0000 UTC with the same 

configuration as Moker et al. (2018). WPS and real.exe produce the wrfbdy and wrfinputs 

from ICs and LBCs using the 0.25-degree GFS and 30-km NAM in three nested domains: 

30 km, 10 km, 2.5 km. Soil temperature and moisture information is obtained from RAP. 

Then, I perturb the 30-km domain to form 20 ensemble members using WRF-DA (Barker 

et al. 2012). Here, the “cv3” option is chosen that uses the NMC method for background 

error covariance where the statistics are based on the difference between the 12h and 24h 

GFS forecasts on a global scale (Parrish and Derber 1992). The model “spins up” from 

0000 UTC to 0600 UTC in order for the perturbations in the 30-km domain to propagate 

to the innermost 2.5-km domain and there is flow-dependent background error statistics. 

 2) ASSIMILATION ALGORITHM 
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At 0600 UTC, we begin hourly assimilation cycles using the EAKF scalar update 

(Anderson 2003) that was generalized in Section 3b. During Transect 2013, 5-min PWV 

data from 9 stations across the SMO and lowest elevations of northwest Mexico. At each 

hour and for each station, the 5-min observations falling within +/- 30 min of the 

observation time are assimilated sequentially in the following 5 steps. When all hourly 

observations are assimilated, the models advance for 1 hour with WRF-ARW using the 

new wrfinputs. These hourly cycles continue until 1200 UTC where there is a final 

analysis. We assimilate a PWV observation in the following steps: 

1)  Compute an ensemble sample of the PWV observation at the GPS site 

𝑃𝑊𝑉𝑖
𝑓

= 𝐻(𝑥𝑖
𝑓

) using an operational operator 𝐻. First, construct a column of 

specific humidity q and pressure p at 4 model grid points surrounding the site. 

Then, bilinearly interpolate these columns to form one column above the 

observation site. Finally, multiply the average q in each model layer by the 

change in p, sum across all levels, then multiple by the negative reciprocal of 

the average force of gravity g to obtain the PWV in mm (eq. 37).  

 𝑃𝑊𝑉 =  −
1

𝑔
∑ (

𝑞𝑖 + 𝑞𝑖+1

2
) (𝑝𝑖+1

𝑛𝑙𝑒𝑣−1

𝑖=1

− 𝑝𝑖) (37) 

2) Use adaptive inflation on the prior variance with a method that evolves in time 

and varies in space (Anderson 2009). 

3) Get the PWV observation from the instrument using an observation error of 

0.75 mm. Note: this is half of that in the literature because the ensembles were 

being adjusted too greatly resulting in some members crashing during the 

predict stage. 
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4) For each ensemble member 𝑖, compute the PWV observation increment 

∆𝑃𝑊𝑉𝑖 (∆𝑦𝑖 in eq. 34) from the analysis PWV observation 𝑃𝑊𝑉𝑖
𝑎 (𝑦𝑖

𝑎 in eq. 

33) after first computing the analysis ensemble mean of the PWV observation 

𝑃𝑊𝑉𝑎̅̅ ̅̅ ̅̅ ̅̅  (𝑦𝑎̅̅̅̅  in eq. 32). 

5) For each ensemble member 𝑖, linearly regress the PWV observation 

increments ∆𝑃𝑊𝑉𝑖 onto state variable increments ∆𝑥𝑖 using eq. 38.  

∆𝑥𝑖 = 𝛽
𝑐𝑜𝑣(𝑥𝑖

𝑓
, 𝑃𝑊𝑉𝑖

𝑓
)

𝑣𝑎𝑟(𝑃𝑊𝑉𝑖
𝑓

)
∆𝑃𝑊𝑉𝑖 (38) 

This equation is eq. 34 mutiplied by 𝛽, the localization value (Gaspari and Cohn 1999) 

between 0 and 1 that decreases as one moves both horizontally and vertically away from 

the observation site. With a cutoff value of 0.07, the horizontal-equivalent distance is 

~450 km and the vertical-equivalent distance of 3.5 km. We regress onto all state 

variables (thermodynamic and dynamic) and on all three domains. Finally, add the state 

variable increment ∆𝑥𝑖 to the prior state ensemble sample 𝑥𝑖
𝑓
 to get the analysis value for 

the state variable 𝑥𝑖
𝑎 (eq. 36). 

 3) DETERMINISTIC FORECASTS 

After the final analysis occurs at 1200 UTC, the ensemble mean is then computed to 

initialize the WRF deterministic run which is then run for 24 hours as in Moker et al. 

(2018). 
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Tables 

Table 1: Conversion from scalar to vector quantities 

 

 Scalar Vector Dimension 

Background 𝑥𝑏 𝒙𝑏 ≡ [
𝑥0

𝑏

⋮
𝑥𝑛

𝑏
] 𝑚 × 1 

Analysis 𝑥𝑎 𝒙𝑎 ≡ [
𝑥0

𝑎

⋮
𝑥𝑛

𝑎
] 𝑚 × 1 

Observation 𝑥𝑜 𝒚 ≡ [

𝑦0

⋮
𝑦𝑛

] 𝑛 × 1 

 

 

 

 

 

 

 

 

 

 

 

 

 



 214 

Figures 

 

 
 

Figure 1: Using a 1-dimensional EAKF, 5 ensemble members that are also observable 

are adjusted from their prior values (green *) to their posterior values (blue *) based on 

observation(s) and error characteristics (not shown). The posterior ensemble members are 

a sample of resulting posterior PDF (blue line) after they are bias-corrected (mean 

shifted) and error-reduced (variance adjusted). Source: DART Tutorial. 
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Figure 2: Unobserved variables (on the ordinate) are adjusted from the increments (blue 

lines) from observed state variables (on the abscissa) using a scalar version of EAKF and 

5 ensemble members. The increments are the change from the prior (green *) to the 

posterior (blue *). In other words, the observed variable increments are linearly regressed 

onto the unobserved state variable increments in the joint space. The red line indicates the 

regression coefficient. Source: DART Tutorial. 
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Figure 3: The steps involved in assimilating an observation via the EAKF algorithm 

using 3 ensemble members. Green indicates prior, blue indicates posterior, and red 

indicates observation. Source graphic from DART Tutorial. 

 

 


