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ABSTRACT 
 

Publicly managed rangelands today are seeing higher demand from society for the goods and 

services they can provide, including livestock production, wildlife habitat, myriad forms of 

recreation, and ecosystem services. Adaptively managed multiple-use lands could benefit from 

more objective and synoptic data to evaluate ecosystem function and to carry out and defend land 

health assessments that allow or exclude certain land use activities. Field methods to measure 

critical soil and vegetation indicators are well-established and becoming standardized across 

jurisdictions. However, field methods have two main limitations: 1) most can only observe small 

portions of the landscape, which may produce an incomplete picture of the status and trend of 

rangeland health; and 2) field methods cannot measure some indicators very well or not at all. 

This research focused on developing methods to measure soil and vegetation characteristics from 

unmanned aerial system (commonly known as drones) imagery, which can observe significantly 

more land than their field counterparts. I demonstrated the measurement of one soil 

(erosion/deposition) and four vegetation (forage utilization, fractional cover, vegetation height, 

canopy gaps) indicators using drone imagery and compared each with established field methods. 

The results show that drone imagery methods can serve as a complement to field methods or even 

a replacement in some cases. I found that drone imagery methods can precisely map topographic 

change and forage utilization across extents not previously possible. Imagery methods can 

outperform field methods for vegetation heights and canopy gaps in some vegetation 

communities. Drone-imagery indicators have matured to the point where they can start being 

integrated into adaptive land management. An online space dedicated to sharing imagery 

workflows amongst the range community could quicken the pace of identifying best practices to 

facilitate the transition toward this technology. Adopting drone-based inventory and monitoring 

data, however, will not replace field skills in plant identification, knowledge of vegetation 

phenology and succession, and logical interpretation of the data for land health assessments.  
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INTRODUCTION 

 

Intellectual Merit and Research Context 

Rangelands are typically arid to semi-arid lands composed of indigenous vegetation usually 

characterized as grasslands, savannas, shrublands, and deserts (Society for Range Managment, 

1998). What links these lands under common terminology is their marginal value for cultivating 

crops in their dry environments. Rangelands occur all over the world, but in North America, I am 

primarily referring to lands starting in the Great Plains in the center of the continent and 

stretching west to the Pacific Ocean. These lands are below the high elevation forests, where a 

large proportion are managed by public agencies due to their tendency to be remote and drought 

stricken. These lands were once thought only valuable for production of food and fiber in the 

form of livestock (Sayre, 2017). In more recent decades, society has assigned many more values 

to these lands including biodiversity, wildlife habitat, ecosystem services including water 

provisioning, clean air, carbon sequestration, and myriad forms of recreation (Havstad et al., 

2007; Millennium Ecosystem Assessment, 2005; Yahdjian et al., 2015). 

 

The beginning of the 20th century saw a recognition that western rangelands were degrading and 

producing less forage for livestock than previously. In reaction to this, the field of range science 

began in the West in an attempt to determine the carrying capacity of land and sustain natural 

grass production for the livestock industry (Sayre 2017). A century later, the goal of range 

science is still to try to keep lands useful and productive but for an expanding set of values and 

higher demand from society. 

 

Rangeland landscapes today are a mosaic of vegetation communities impacted by disturbances 

such as herbivory (domestic and wild), fire, disease, and an array of human manipulation. 

Ownership and management of these lands is also a mosaic of public and private entities 
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sometimes with conflicting missions, and a general public with diverging opinions on how the 

land should be used and managed.  

 

Rangeland managers today, especially on public lands, have a difficult task of managing for 

multiple use (FLPMA 1976). To manage for all desired uses, rangeland science and management 

has moved away from assessing site conditions relative to specific land uses (e.g., livestock 

grazing), and toward a more holistic ecosystem approach known as range health. Range health is 

the ‘the degree to which the integrity of the soil and ecological processes of rangeland ecosystems 

are maintained’ (NRC, 1994; Pellant et al., 2005) which is assessed through the ecological 

attributes of biotic integrity, soil and site stability, and hydrologic function (Pellant et al., 2005; 

Pyke et al., 2002).  

 

Managers need information on the status and trend of rangeland health to make informed 

decisions on type and intensity of land use, as well as to prescribe corrective actions. Assessing 

the three aspects of rangeland health is carried out by measuring indicators. Indicators are 

vegetation or soil traits that are essential for tracking the basic functions and associated ecosystem 

services provided by rangelands (Herrick et al., 2010). Indicators can be qualitative or 

quantitative and include proportion of ground cover, species composition, presence of rills and 

soil pedestals, and vegetation heights as examples. 

 

Rangeland health indicator data can be used in an adaptive management framework. Adaptive 

management is the scientific method applied to resource management: recurrent management 

while striving to reduce uncertainty in understanding mechanisms of ecosystem dynamics 

(Kendall and Moore, 2012). Depending how and when indicator data are collected, they can be 

used for inventory, monitoring, or assessments. An inventory is a point in time measurement of 

the resource to determine location or  current condition (Elzinga et al. 1998), which can provide 
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the basis for management plans (West, 2003). For example, a species inventory could show a 

significant presence of an invasive species. Monitoring is the collection and analysis of repeated 

observations or measurements to evaluate changes in condition and progress toward meeting a 

management objective (Elzinga et al. 1998; Kendall and Moore 2012). Upon developing and 

implementing a plan of action to combat the invasive species, monitoring data are collected to 

inform progress or lack thereof toward the resource management goal. Monitoring data are 

perhaps the most important part of adaptive management because it tells us if actions are working 

or should be adapted.  It completes the information feedback loop (Moir and Block, 2001) and 

primes another iteration of the adaptive management cycle with a bit more knowledge of the 

ecosystem. Assessments are point-in-time interpretations of monitoring and inventory data in 

relation to management objectives, benchmarks, or reference (i.e., ideal) condition (West, 2003). 

An example is a comparing a grazing allotment with land health standards for permit renewal 

(USDI Bureau of Land Management, 2001).  

 

Methods refer to the mechanics of how to measure an indicator (Karl et al., 2017) and have been 

developing since range became a field of science in the early 20th century. There are often several 

methods for measuring the same indicator with nuance to the information they provide and their 

interpretability. For example, there are several methods to measure vegetation cover - along a step 

transect, via a continuous line transect, with point intercept techniques, or estimated in plot 

frames (Elzinga et al., 1998).   

 

Field methods are able to generate very detailed data describing a site including species 

composition, presence of biological crusts, and fine-scale erosion. The fundamental limitation of 

field methods are that they are generally limited in geographic scope and cost-prohibitive to cover 

large areas (Booth and Cox, 2011). Data from small plots or key areas cannot be automatically 

scaled up to represent entire pastures or landscapes (West, 2003). Small sample sizes over large, 
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heterogeneous landscapes may lead to high degrees of uncertainty of indicator values and 

rangeland health.  

 

There is never enough funding to collect ground-based inventory and monitoring data at the 

frequency, detail, or scale that would be ideal over a long time horizon (Booth and Cox, 2011). 

Remote sensing (aerial photography & satellite imagery) offers methods for collecting range data 

over larger extends and potentially reducing the cost of information. As of the year 2019, there 

are geospatial imagery platforms and products available to study rangelands at myriad grains and 

extents. From space-borne sensors capable of imaging entire continents to manned aerial 

photography capable of hyperspectral imaging with sub-meter resolution, the choice of remotely 

sensed data is large and growing. However, expanding the extent of data with remote sensing 

often has the tradeoff of detail loss and inferring/modeling indicator values instead of observing 

them. Additionally, many fine-scale soil and vegetation characteristics that indicate rangeland 

health, are not easily measured with satellite imagery because of coarse resolution and temporal 

infrequency (Tueller, 1996). Use of manned aerial photography is primarily limited by cost. 

 

Research to develop monitoring methods from small unmanned aerial system (sUAS), commonly 

known as drones, is currently receiving a lot of attention to expand inventory and monitoring 

extents. There are currently several types of relatively inexpensive ready-to-fly drones that are 

small enough to be carried into the field and deployed by one person. They can capture very high 

resolution data (< 5 cm resolution) over dozens to hundreds of hectares on-demand. These tools 

have enabled rangeland scientists and managers to study the land at a new scale with 

inexpensively produced 2D and 3D imagery products. Drone imagery methods have the potential 

to replace field methods in some instances, expand or compliment others, and enable the 

development of new indicators (Cunliffe et al., 2016; Olsoy et al., 2018; Rango et al., 2009).   
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My research sought to develop methods of measuring important rangeland indicators with UAS 

color and multispectral imagery. My goals were to expand the extent of inventory and monitoring 

data and to measure indicators in ways not possible with traditional ground-based methods.   

 

Rangeland Remote Sensing Literature Review 

The first use of aerial photography to assess agricultural lands occurred in the 1930s (Monmonier, 

2002; Rango et al., 2008). Widespread use began as a way for the USDA to monitor crop and 

pasture acreage to stabilize the over-supply of crops and support soil-conserving crops. Aerial 

photography for range science also began in the 1930’s with the first images acquired in 1936 at 

Santa Rita Experimental Range, AZ (Browning et al., 2009), and in 1937 at Jornada Experimental 

Range, NM (Laliberte et al., 2004).  

 

Over the following decades, there were many studies using aerial photography for rangeland 

applications, mostly through photo interpretation. For example, Dudzinski and Arnold (1967) 

located sheep from aerial imagery to infer grazing behavior. Driscoll (1970) demonstrated using 

color infrared imagery to photo interpret shrub species and measure foliar cover in Colorado 

rangelands.  

 

The satellite sensor age beginning in the 1970s ushered in new digital imagery analysis and the 

ability to study rangelands on landscape, regional, and continental scales (Tueller, 1989). For 

example, Maxwell (1976) and Haas et al. (1975) each used Landsat MSS imagery to estimate 

green biomass in the Great Plains. Musick (1984) used spectral indices from Landsat MSS to 

estimate vegetation cover at Jornada Experimental Range in southern New Mexico. Despite these 

new capabilities, there was often a mismatch in the information satellite imagery could provide 

and the information range managers wanted (Hunt et al., 2003). Satellite imagery at the time had 
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relatively coarse spatial resolution, too coarse for many inventory and monitoring indicators and 

the ability to infer plant successional stages (Hunt et al., 2003). 

 

Some range remote sensing research shifted back to aerial photography because of the capability 

of generating high-resolution imagery (< 1 m) which could produce more detailed information 

including percent bare-ground, and individual plant species (Tueller, 1996). Many digital image 

analysis techniques developed for satellite imagery began to be applied to aerial photography. 

Acquiring aerial imagery on film was still the most common practice meaning it had to be 

scanned or digitized before analysis. For example, Everitt et al. (1980) analyzed color infrared 

film photographs with a densitometer to separate 12 rangeland sites in a south Texas coastal 

prairie. Whiteman and Brown, (1998) used film aerial photographs, digitized to create 0.6 m 

pixels, where they estimated woody shrub density and cover in Mitchell grasslands in 

Queensland, Australia. Gong et al., (2000) digitized aerial film to 0.3 m resolution to estimate tree 

heights in a California oak woodland. Film was still being used as recently as 1999 when Petersen 

et al., (2005) used color and color infrared film to classify 3 willow species in southeastern 

Oregon after they digitized it to 7 cm pixels.  

 

Acquiring aerial imagery with digital sensors began to appear in the rangeland remote sensing 

literature in mid-2000s (Booth et al., 2006; Booth and Cox, 2008). An all-digital workflow 

streamlined image processing and analysis for measuring range indicators such as vegetation 

cover (Duniway et al., 2012; Karl et al., 2014), canopy gaps (Karl et al., 2012b), vegetation 

heights (Gillan et al., 2014), and soil erosion (Gillan et al., 2016). In addition to all digital passive 

sensors, active sensors such as light distance and ranging (LiDAR) were shown to be useful tools 

for measuring 3-dimensional rangeland indicators. For example, airborne LiDAR was 

demonstrated to accurately measure the 3D structure of rangeland shrubs (Glenn et al., 2011; 

Streutker and Glenn, 2006) and erosion in dryland ecosystems (Perroy et al., 2010).  



13 
 

 

Collecting high-resolution imagery (or LiDAR) from manned airplanes typically requires 

contracting with a commercial provider, which can be expensive and inflexible in terms of short-

notice scheduling. UAS were seen as a more affordable and safer option that could be brought in-

house and deployed on-demand. One of the first published papers using UAS-based imagery for a 

rangeland application was with a fixed-wing drone used to estimate shrub utilization (Quilter and 

Anderson, 2001). Hardin et al. (2007) and Hardin and Jackson (2005) used fixed-wing UAS for 

monitoring knapweed in Utah. Researchers at the Jornada Experimental Range in New Mexico 

produced a large body of research which exposed the range community to the potential of UAS 

and advanced image analysis for range monitoring, assessments, and inventories (Laliberte et al., 

2011; Rango et al., 2009). Those demonstrations, however, used relatively large and expensive 

drones and required a team of specialists. It was not easily replicated for public lands due to cost 

and aviation rules at the time (see Rango and Laliberte, 2010).   

 

The arrival of inexpensive multi-rotors and sensors small enough to mount on them, has made the 

use of drone imagery much more practical in terms of cost and learning curve. Dandois and Ellis 

(2010) shifted the paradigm by being the first to measure the size and structure of vegetation in 

2D and 3D with inexpensive digital cameras mounted on multi-rotor platforms. Multi-rotor 

copters can be easily operated by one person and programmed to conduct autonomous data 

collecting missions. At the heart of this new approach was a computer vision photogrammetry 

technique called structure-from-motion (Snavely et al., 2008; Westoby et al., 2012) that made it 

possible to produce very accurate point clouds and orthomosaics from drone-based digital 

imagery (see Appendix A for details). Anderson and Gaston (2013) predicted the merging of 

these hardware and software technologies would revolutionize spatial ecology.  
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In 2013, a Chinese company, DJI (www.dji.com), released the first ready-to-fly consumer multi-

rotor called Phantom and in 2014 released Phantom 2 with an integrated camera. This signaled 

the beginning of mainstream awareness of the potential uses of drone imagery to impact research 

for natural resource and earth sciences. Demand has subsequently soared in the research 

community and many other sectors including agriculture, civil engineering, archeology, law 

enforcement, and real estate (Colomina and Molina, 2014; Floreano and Wood, 2015; Watts et 

al., 2012). Commercial companies have responded by continually improving airframes, global 

navigation satellite systems, autopilots, and image processing software.  

 

Natural resource scientists are currently researching the use of drone imagery to measure a variety 

of soil and vegetation indicators. For example, Cunliffe et al., (2016) demonstrated the use of 

small multi-rotor imagery to 3D model semi-arid vegetation and estimate above ground biomass 

in New Mexico. Olsoy et al., (2018) used a Sensefly Ebee (www.sensefly.com), a small wing-

shaped drone carrying an RGB sensor, to estimate the heights of sagebrush shrubs and relate it to 

pygmy rabbit habitat. Baena et al., (2017) identified dryland tree and shrub species in Peru with a 

modified RGB sensor flown on a Sensefly Ebee. Cox et al., (2018) tracked the size and pace of 

headcut erosion with a combination of historical aerial imagery and 3D modeling of recently 

collected drone imagery.  

 

Additional research is required to meet the ultimate goal of integrating drone-based indicators 

within adaptive management of public rangelands. The research needs include: comparing 

imagery indicator values with traditional field methods across different vegetation communities; 

developing image-processing workflows that can efficiently estimate multiple indicators; and 

developing new image-based methods not previously published.   
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PRESENT STUDY 
This dissertation consists of three research projects described in Appendices A, B, and C. Taken 

together, they demonstrate UAS imagery methods to geographically expand and enhance the 

ability to estimate one soil and four vegetation indicators. The following section describes each of 

the projects including their objectives, equipment and imagery methods, comparison with 

traditional field methods, major findings, and a description of my role in the research.   

 

 

Appendix A: Fine-resolution Repeat Topographic Surveying of Dryland Landscapes 

using UAS-Based Structure-from-motion Photogrammetry: Assessing Accuracy and 

Precision against Traditional Ground-based Erosion Measurements  

Jeffrey K. Gillan, Jason W. Karl, Ahmed Elaksher, and Michael C. Duniway 

Remote Sensing. 2017 (9), DOI:10.3390/rs9050437 

 

We used drone-based imagery to measure the vertical change of a rangeland soil surface to 

quantify and visualize soil erosion, deposition, and redistribution. Along thirty topographic 

transects we measured the soil surface height from digital elevations models (DEMs) created 

from aerial imagery from a large fixed-wing drone. We compared the heights to ground-based 

measurements taken from a laser range finder suspended from an erosion bridge and found strong 

vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and 

February 2015, respectively) and high vertical repeatability for creating DEMs (RMSE 2.8 cm). 

Our results suggest repeat UAV imagery and structure-from-motion photogrammetry processing 

could replace erosion bridges and provide for a more synoptic landscape assessment than field-

based methods of shifting soil surfaces for some studies. Though we used a large and impractical 

drone (in terms of cost and aviation rules) in this study, the methods would be easier and the same 

results could be achieved with smaller and more affordable equipment.  
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I led the research including developing the concept for the study, reviewing literature on the 

topic, processing and analyzing the data, and preparing the manuscript. The erosion bridge 

measurements were collected by staff at Jornada Experimental Range as part of the ‘Threshold 

Resistance and Connectivity’ study originally developed by Michael Duniway and Jeffrey 

Herrick. Drone mission planning and operation was carried out by Connie Maxwell and Amy 

Slaughter, both of Jornada Experimental Range. Writing and editing of the final manuscript was 

aided by my co-authors, Jason Karl, Ahmed Elaksher, and Michael Duniway.  

 

Appendix B: Estimating forage utilization with drone-based photogrammetric point 

clouds 

Jeffrey K. Gillan, Mitchel P. McClaran, Tyson L. Swetnam, and Philip Heilman 

In Press at Rangeland Ecology & Management, DOI: 10.1016/j.rama.2019.02.009  

 

Similar to my other research projects, I sought to compare and contrast a traditional field method 

with a drone imagery method that can observe larger land extents. We developed a point cloud 

differencing method to estimate forage utilization, an approach unique in published literature. We 

tested the method at Santa Rita Experimental Range, a semi-arid savanna in southern Arizona. 

We found strong agreement between field and point cloud estimates of forage utilization across 6 

test plots. Additionally, our method allowed us to map and visualize utilization intensity across 

space, a potentially useful dataset for investigating grazing behavior. With minor workflow and 

technological improvements, it would be feasible to estimate forage utilization over the entire 

pasture (150 ha) and potentially even larger areas using drone-imagery point clouds. This was the 

first study I conducted using inexpensive multi-rotor drones for image collection. It was an 
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important step toward demonstrating that cost-effective tools could be useful for rangeland 

inventory and monitoring. 

 

Mitch McClaran, Phil Heilman, and Tyson Swetnam conceived of the original idea to measure 

grass height change with drone-based point clouds. We equally developed the study and plot 

design. Rachel Turner and Sarah Noelle carried out ground-based measurements of biomass and 

utilization. I collected all of the drone imagery, processed the imagery into point clouds and 

orthomosaics, conducted the analysis, and interpreted the results. I was the primary manuscript 

author with input and writing from Mitch McClaran, Tyson Swetnam, and Phil Heilman.  

 

Appendix C: Toward Operationalizing the use of low cost UAS as an imaging tool 

for rangeland inventory and monitoring 

Jeffrey K. Gillan, Willem J.D. van Leeuwen, and Jason W. Karl 

Formatted for Environmental Monitoring and Assessment 

 

Transitioning from research demonstrations to a suite of monitoring methods that are useful for 

supporting management decisions (e.g., accurate, repeatable, and cost-effective) will require 

additional exploration to develop best practices for image acquisition and workflow specifications 

that can efficiently estimate multiple indicators. The objectives of this project were to: 1) develop 

a unified workflow to measure three common rangeland indicators from drone imagery, fractional 

cover of plant functional types, canopy gaps, and vegetation heights; and 2) assess agreement 

between imagery-based indicator values and field-measured values and investigate how fractional 

cover estimates differed between two sensor types (RGB v. multi-spectral). I embedded with a 

field monitoring crew in the Northern California District of the Bureau of Land Management to 

compare imagery-derived (using small drones) and field-measured indicator values. The indicator 
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values between imagery and field methods yielded encouraging agreement while revealing 

systematic differences between the methods. There was minimal difference in fractional cover 

accuracy between sensor types. Drone imagery will enable broader extent observations of 

fractional cover, but with a tradeoff of detail loss. For canopy gaps and vegetation heights, drone 

imagery was found to measure the indicators more thoroughly than field methods. Workflow best 

practices for producing a suite of indicators is likely to vary by vegetation composition and 

phenology. An online space dedicated to sharing imagery-based workflows could spur 

collaboration among researchers and quicken the pace of integrating drone-imagery data with 

adaptive management of rangelands.  

 

I developed the concept for the project, collected the aerial imagery, processed all data, generated 

indicator values, and interpreted results. I wrote the manuscript with input and guidance from 

Wim van Leeuwen, Jason Karl, Mitch McClaran, and Kyle Hartfield. The Great Basin Institute, 

in partnership with BLM, collected all field indicator data used in this study.  

 

Conclusions and Future Directions 

This research adds to the growing body of knowledge on using UAS-based imagery for rangeland 

inventory and monitoring data collection. I demonstrated that drone-imagery can expand the 

extent of each of the indicators I investigated (soil erosion, forage utilization, fractional cover, 

canopy gaps, and vegetation heights) compared with traditional field methods. These larger 

sampling extents can increase our confidence in indicators values and effectively reduce the cost 

of collecting rangeland health information across landscapes. Despite the broader extent, drone 

data will typically be used in a sampling framework instead of a landscape census (see Karl et al., 

2012a). 
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In addition to expanding the extent of some indicators, drone-imagery methods produce maps, 

facilitating spatial analyses and visualizations of indicator value patterns that are not possible 

with field data alone. Spatially explicit data can foster tangential ecological inquiries not currently 

possible with field data. For example, pairing livestock movement data (via GPS or 

accelerometers) with dense point cloud representations of their grazing environment and utilized 

forage, could enable interesting grazing behavior studies. Quantifying and visualizing soil 

movement can reveal erosional processes related to vegetation, gaps, slope, and soil type, in ways 

not easily discerned from field transects. 

 

Drone-imagery will enable us to measure some indicators more thoroughly than field methods. 

This was best demonstrated with vegetation heights. Photogrammetry can extract hundreds of 

measurements per individual plant, revealing the complex nature of vegetation structure and 

improving our ability to assess wildlife habitat, compute biomass, and calculate carbon storage. 

Drone-imagery will empower us to develop new indicators, features of the land that cannot be 

measured at all from the ground. These could include landscape-style metrics describing the 

connectivity of wind and water forces, and fragmentation of vegetation communities or habitat.  

 

Expanding the extent of data, however, is often a tradeoff with observation detail. For fractional 

cover, distinguishing grasses and other herbaceous species as well as identifying rare plants and 

biological crusts is a significant challenge from imagery at any scale. This limitation will prevent 

imagery-based monitoring from completely replacing field-based observation. For forage 

utilization, detecting light grazing will be difficult with a point cloud approach. Similarly, 

detecting small amounts of soil surface change (1-2 cm) would not be possible with the imagery 

scale we used. However, management scenarios requiring levels of grazing or erosion detection 
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more precise than thresholds in this research are exceedingly rare, and not likely to impede the 

methods’ utility.  

 

The next step in this research is to leave the plot realm (where most drone imagery research has 

so far occurred) and scale-up to pastures and landscapes while maintaining rapid data processing 

and product turnaround. Creating image products faster and cheaper will be aided by two 

technologies. The first is leveraging differential GNSS technology onboard the drones. Real time 

kinematic GNSS is becoming more common for precisely recording drone position at image 

exposure time. Through direct georeferencing, the need for ground control targets is reduced or 

eliminated (Forlani et al., 2018; Turner et al., 2014), which will accelerate data collection efforts 

and streamline reference identification during photogrammetric processing. The current model of 

using a single powerful desktop computer to process individual drone-collected images into point 

clouds, elevation models, and orthomosaics is not a time- or cost-effective approach to producing 

image products from thousands of aerial images. The second technology that will enable scaling 

up of drone-based monitoring of rangelands is using distributed network processing or many 

high-performance computing nodes to speed dense point cloud generation (Goff et al., 2011; 

Gorelick et al., 2017; Jones et al., 2018).   

 

Drone imagery-indicators have matured to the point where they can start being integrated into 

adaptive land management. An online space dedicated to sharing imagery workflows amongst the 

range community could quicken the pace of identifying best practices to facilitate the transition 

toward this technology. Drone-based aerial photography and ground data offer different lines of 

evidence for some pattern or process and an additional stream of information to help us 

understand what is happening on the land and insights into how we can keep it healthy and 

productive. 
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Abstract 

Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is 

an emerging tool for repeat topographic surveying of dryland erosion. These methods are 

particularly appealing due to the ability to cover large landscapes compared to field methods and 

at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and 

precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been 

explored in many studies, typically by comparing image coordinates to surveyed check points or 

LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution 

DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of 

measuring soil surface change called erosion bridges. We assessed accuracy by comparing the 

elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m 

long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us 

to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 

1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 

2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the 

DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and 

strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM 

processing could replace erosion bridges for a more synoptic landscape assessment of shifting 

soil surfaces for some studies. However, while collecting the UAS imagery and generating the 

SfM DTMs for this study was faster than collecting erosion bridge measurements, technical 

challenges related to the need for ground control networks and image processing requirements 

must be addressed before this technique could be applied effectively to large landscapes. 

 

Keywords: dryland erosion; photogrammetry; road network disturbance; UAS; erosion bridge 
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Introduction 

Repeat topographic surveys are an important tool for studying and managing dryland ecosystems, 

particularly for tracking soil erosion and gully formation (D’Oleire-Oltmanns et al., 2012; Eltner 

et al., 2014; Gillan et al., 2016; Martinez-Casasnovas et al., 2003; Marzolff and Poesen, 2009). 

Other applications include hydrologic erosion modeling (Al-Hamdan et al., 2014; Goodrich et al., 

2011), formulating ecohydrologic models (Vivoni et al., 2014), predicting plant species 

occurrence via topographic attributes (Lassueur et al., 2006), and delineating watersheds at a very 

fine scale to improve studies of water and energy cycling in water-limited ecosystems (Templeton 

et al., 2014). 

 

An emerging tool for repeat topographic surveying is structure-from-motion (SfM) 

photogrammetry derived from unmanned aerial system (UAS) imagery (Eltner et al., 2014; 

Harwin and Lucieer, 2012; Lucieer et al., 2013; Niethammer et al., 2010; Rosnell and 

Honkavaara, 2012). Use of this tool has increased dramatically due to the proliferation of low-

cost and easily accessible consumer UAS, the availability of many off-the-shelf sensors small 

enough to be carried aboard small aircraft (Pajares, 2015), and advances in computer vision and 

software to process imagery (Gonçalves and Henriques, 2015; Snavely et al., 2008). SfM differs 

from traditional photogrammetry in that it can reconstruct 3-dimensional scenes based purely on a 

large number (typically millions) of automatically detected ground points in many overlapping 

images independent of ground references (Fonstad et al., 2013). This allows it to be very flexible 

in terms of accepting images with inconsistent overlap, rotation between successive images, and 

images from different angles (i.e. nadir and oblique) (Ai et al., 2015). SfM can also handle 

images collected with consumer grade cameras with unknown or unstable lens characteristics 

(Westoby et al., 2012). Traditional photogrammetry is less flexible in that it requires consistent 

image overlap, minimal rotation between successive images, and calibrated sensors (Ai et al., 

2015). The flexibility of SfM is ideal for UAS-based topography surveying. Scientists and land 
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managers now have the ability to make on-demand imagery products, often at finer spatial and 

temporal resolutions along with reduced costs compared to imagery from satellite or manned 

aircraft (Anderson and Gaston, 2013).  

 

A typical product of image-based reconstructions are digital terrain models (DTMs; i.e., bare 

ground). Differencing a time-series of DTMs constructed from UAS imagery enables 

quantification and visualization of soil movement (i.e., erosion and deposition) in more detail and 

over a larger area compared to field methods such as erosion bridges (Shakesby, 1993), erosion 

pins (Fanning, 1994; Sirvent et al., 1997), and total station surveying (Martı́nez-Casasnovas et al., 

2002; Wheaton et al., 2009). Additionally, high-resolution SfM DTMs can be produced at a finer 

resolution and lower cost compared to airborne laser scanning (Wallace et al., 2016) and can 

cover a larger geographic extent but with a reduction in detail compared with terrestrial laser 

scanning (Neugirg et al., 2016).  

 

Knowing the expected accuracy (i.e., correctly representing the terrain) and precision (i.e., 

repeatability of terrain measurements) are critical aspects of using this tool effectively for repeat 

topographic surveys. Past research has shown that high-resolution (< 10 cm ground sampling 

distance) DTMs from UAS can be created with vertical accuracy < 5 cm (Clapuyt et al., 2015; 

D’Oleire-Oltmanns et al., 2012; Eltner and Schneider, 2015; Gonçalves and Henriques, 2015; 

Lucieer et al., 2014; Stöcker et al., 2015). Quantifying vertical repeatability is essential to 

separate model error from actual surface change (Milan et al., 2011; Wheaton et al., 2009). Past 

studies of high-resolution DTMs have found repeatability to be on average 1.7–6 cm (Clapuyt et 

al., 2015; Lucieer et al., 2013).  

 

Many research papers have reported accuracy and precision of SfM DTMs by using surveyed 

check points or comparison with LiDAR derived DTMs. None, however, have directly compared 
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the results with concurrent erosion bridges, a common field method that has been demonstrated to 

effectively measure small topography changes for many natural resource applications including 

livestock impacts (Nash et al., 2003), post-fire erosion (Sankey et al., 2010; Shakesby et al., 2002; 

White et al., 2006; White and Loftin, 2000), erosion rates in cultivated fields (Van De et al., 

2008), and impacts of recreational trails (Eagleston and Rubin, 2013). Though they can detect 

micro changes in soil surface with high precision, erosion bridges measure linear topographic 

profiles usually at lengths between 1 and 10 m, making it possible only to sample small portions 

of the landscape. Additionally, the choice of where to locate erosion bridges in a study area 

requires a priori knowledge and anticipation of where soil movement will occur. Unexpected 

consequences of the disturbance or process of interest may cause soil erosion to occur in places 

not sampled by the erosion bridges. Alternatively, measuring soil surface change via UAS 

photography and SfM methods provides synoptic observation of entire study areas and the ability 

to spatially locate sources and sinks of sediment movement, including areas with unexpected 

results.  

 

In this paper, we directly compare SfM DTMs with erosion bridge data to demonstrate that the 

method of UAS-based SfM DTMs, though more technically challenging, can provide additional 

benefits of increasing sampling area. Included are analyses showing the differences in accuracy 

and precision that can be expected between the field and aerial methods. We demonstrate these 

methods in the context of investigating erosional impacts of unpaved road networks across the 

landscape.  

 

The proliferation of unpaved road networks on public lands is a persistent and pressing problem 

for land managers globally (Okayasu et al., 2007), particularly in the western USA (Brooks and 

Lair, 2005; Watts et al., 2007). These unpaved roads present a challenge for soil conservation 

(Duniway and Herrick, 2011), with assessments of road erosion often relying on modelling that is 
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not well parameterized to highly disturbed conditions (Grismer, 2007; Laflen and Forest, 1997). 

Many immediate and pronounced impacts from roads and related disturbances are associated with 

altered erosion and hydrology (Duniway et al., 2010; Duniway and Herrick, 2013) which are not 

well captured by common rangeland monitoring methods (e.g., Herrick et al.(Herrick and Van 

Zee, 2009)). The USDA-Agricultural Research Service Jornada Experimental Range (JER) is 

conducting a long-term controlled experiment called Threshold Resistance and Connectivity 

(TRAC) to investigate further the effect of road networks on rangeland health. Across an 870 ha 

watershed, a series of unpaved roads were constructed with a road grader and received vehicle 

driving treatments several times per year which consisted of driving on the roads with a 4WD 

pick-up truck to simulate traffic. The soil erosion and compaction component of the TRAC study 

is currently being measured with a series of erosion bridges which sample a small portion of the 

experimental roads. A UAS-based DTM differencing approach to measuring soil erosion from 

roads could greatly expand and improve data collection for this study, as well as provide an 

important tool for land managers tasked with monitoring conditions on unpaved road networks. 

Though we test this technology over a relatively small area (15 ha), we view the results in terms 

of expanding the geographic extent and discuss the opportunities and challenges of scaling-up 

this approach. 

 

The objectives of this project were to: 1) create high-resolution SfM DTMs from UAS-acquired 

imagery and assess their accuracy by comparing surface elevation profiles from the DTM with in 

situ close-range laser measurements from erosion bridges; 2) assess precision (i.e., repeatability) 

of SfM DTMs between image acquisition dates in order to quantify the level of topographic 

change that is detectable; 3) conduct DTM differencing to quantify and visualize soil movement 

over a 9 month time-span; and 4) assess the feasibility of applying these methods to large 

landscapes (> 200 ha). 
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Materials and Methods 

Study Area 

We conducted this study at the JER north of Las Cruces, NM (32°36’19.30” N, 106°37’12.14” 

W; 1420 m). The JER lies on the northern end of the Chihuahuan Desert and has a semi-arid 

climate. The study area received 293 mm of precipitation during the study period from June 2014 

to February 2015 with more than half of the precipitation falling as the late summer monsoon 

rains. The TRAC study is located on a broad alluvial fan emanating from the western flank of the 

San Andres Mountains. The study area slopes gently from east to west with an average of slope of 

2°. The soil was characterized as shallow gravelly loam (Ecological Site ID R042XB010NM). 

Shrubs dominated by Larrea tridentata (Creosote), Prosopis glandulosa (Mesquite), Flourensia 

cernua (Tarbush), and Parthenium incanum (Mariola) cover approximately 40–50% of the study, 

while an understory of grasses and forbs is nearly non-existent.  

 

The TRAC project has a total of 47 plots (50 × 50 m) spread out over 870 ha (Figure 1). We 

selected a subset of six test plots within a 15 ha strip to compare UAS-based topographic 

surveying with erosion bridge measurements. The layout of the plots was chosen to be along a 

north-south line, which facilitated image acquisition. 

 

Field Measurements 

As part of the TRAC project, soil surface elevation profiles were measured in June 2014 and 

February 2015 along 5 linear transects in each plot using a laser range finder mounted on an 

erosion bridge (Figures 2, 3). The erosion bridge consisted of a metal beam suspended 

approximately 1.5 m above the ground using tripods on each side for support. Permanent nails in 

the ground marked the beginning and end of each transect and also provided a guide to set up the 

bridge identically each time. A laser range finder (Leica Disto D8) was slid along the beam in a 

rolling carriage and the distance from the beam to the ground was recorded every 10 cm along the 
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6.1 m erosion bridge for a total of 62 measurements. The laser had footprint of ~ 0.1 mm. 

Adjustments were made to account for slight sag in the middle of the beam. The vertical 

repeatability of this method was estimated to be ± 2.5 mm based on consecutive surveys without 

terrain change. Manufacturer reported accuracy was ± 1.0 mm. Since the primary objective for 

the erosion bridge measurements was measuring the terrain change, vegetation encountered along 

the transects was delicately pulled aside to ensure the laser was striking the ground.  

 

Image Acquisition 

We acquired UAS imagery in June 2014 and February 2015 within a few days of the erosion 

bridge measurements using an MLB BAT4 fixed-wing (Figure 2; Table 1) which weighs 59 kg 

and has a 4 m wingspan. The aircraft was powered by an 110 cc 2-stroke engine and required a 

runway (152 m minimum) for take-off and landing. The BAT4 has a telemetry range of over 16 

km and has an endurance of approximately five hours before refueling. These characteristics 

make it an ideal platform to image large landscapes and flight tests have shown that it can image 

nearly 13 km2 (1300 ha) in 2.5 h at 213 m above ground level (AGL). Operation of the UAS in 

national and restricted airspace was conducted under a Federal Aviation Administration 

certificate of authorization held by New Mexico State University Physical Science Laboratory.  

 

For this study, the aircraft flew on average 152 m AGL which yielded a ground sampling distance 

of ~ 2.7 cm and an image footprint of 156 × 104 m. The onboard sensor was a 21 megapixel 

Canon EOS 5D Mark II DSLR and a Canon EF 35 mm lens. It was mounted within the fuselage 

with a lens hole cut on the bottom of the aircraft. The entire acquisition mission was executed 

autonomously using Cloud Cap Piccolo autopilot and the mission planning and flight software 

Piccolo Command Center (www.cloudcaptech.com). Both acquisitions used the same flight plan. 

Planned image forward overlap was 66% and image sidelap was 66%. The forward overlap was 

lower than typical (~ 80%) due to camera triggering speed. All images were intended to be 
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vertical (nadir). Three parallel flight lines were in north-south orientation and eighteen parallel 

flight lines were in east-west orientations (Figure 2c) to ensure multiple views for all surfaces. 

For each acquisition date, the flight plan was executed twice to ensure target coverage and image 

overlap in case of camera triggering problems or slight variations in roll, pitch, and yaw at the 

time of exposure. Each point on the ground was captured on average in 20 images. Images were 

captured in RAW format and converted to 16-bit TIFF for image processing. Images were taken 

within a few hours of solar noon to minimize shadowing. There was more shadowing, however, 

in the February 2015 acquisition because of the lower winter sun angle. 

 

Repeat DTM surveys require highly accurate spatial references to ensure proper scaling, rotation, 

and georeferencing of the 3D model. Though direct georeferencing with onboard GNSS and 

inertial measurement units (IMU) has become common, imagery products are still generally more 

accurate and precise using a network of surveyed ground control points (GCPs)(D’Oleire-

Oltmanns et al., 2012; Turner et al., 2014). In terms of GCP patterns, recent literature has 

suggested that GCP networks should be evenly distributed (Harwin and Lucieer, 2012) and 

generally surround the area of interest due to DTM quality deteriorating outside of GCP 

envelopes (Javernick et al., 2014; Smith et al., 2014). Regarding GCP density (quantity per area), 

references from traditional aerial photogrammetry suggest locating GCPs at the beginning and 

end of each flight line along with interior GCPs located every 3–5 images (Eltner et al., 2016; 

Kraus, 2007; McGlone, 2013). Some SfM studies have reported the highest accuracies with GCPs 

densities similar to the traditional approach (Clapuyt et al., 2015; Harwin and Lucieer, 2012). 

Beyond this density, there appears to be a saturation point where additional GCPs offer no further 

improvement (Long et al., 2016; Tonkin and Midgley, 2016; Turner et al., 2012). Other research 

has shown that GCPs quantities can be greatly reduced with a well-defined camera model and 

proper weighting of tie point and marker accuracy (James et al., 2017). 
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We surveyed 12 GCPs in each plot with a Leica TS02 total station (http://leica-geosystems.com). 

Comparative analysis showed that there was no significant difference in image product quality 

using 3 GCPs and 12 GCPs. Accordingly, we used 3 GCPs per plot as ground referencing during 

SfM processing and used the remaining 9 locations as check points (Figure 3b). Our main sources 

of errors were centering the prism pole at the GCP locations and the uncertainties in angle and 

distance measurements observed with the total station. Following the procedure described by 

Baykal et al. (Baykal et al., 2005), with a 1.0 mm centering error for the prism pole (Franklin and 

Meyer, 2016) and the published accuracy of the Leica TS02 total station (Leica Geosystems, 

n.d.), the estimated relative positional uncertainty of the GCPs is approximately 1.5–1.7 mm. 

Each plot was surveyed separately in its own local coordinate system. We then converted the 

local coordinates into universal transverse Mercator (UTM) coordinate system by determining the 

x, y, z position of the 3 GCPs in each plot using a Trimble GeoXH 6000 GNSS receiver. We 

differential corrected the coordinates with data from a Continuously Operating Reference Station 

(CORS) using the Trimble’s GPS Pathfinder Office (http://www.trimble.com/) (3D positional 

accuracy of 10 cm). The local coordinates of the check points were projected into UTM using 

ArcGIS 10.2 (ESRI, Redlands, CA). This total station/GNSS method of referencing was done to 

have the accuracy of a total station survey but in a real world coordinate system making it GIS 

ready for future analysis with additional data sets. The GCP/check point targets were 17 cm 

diameter black plastic lids with a 5 × 5 cm white square in the center. For each flight, ten GCPs 

were placed on the permanent nails that mark the ends of each erosion bridge (Figure 3b). Two 

additional targets were placed near the center of each plot, attached to PVC stakes in the ground. 

The same GCP/check points were used for 2014 and 2015 imagery. Image exposure location and 

orientation information recorded by the BAT4’s onboard GNSS/IMU was not used for 

referencing because of large positional errors due to time synchronization problems between the 

camera shutter and the GNSS/IMU.  
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Image Processing 

We used SfM photogrammetry software Agisoft Photoscan version 1.1.6 build 2038 

(http://www.agisoft.ru) to create 3D point clouds, digital surface models (DSMs), and 

orthomosaics for each plot individually. The first step consisted of photo alignment and creation 

of sparse point clouds. Agisoft Photoscan uses algorithms similar to Scale Invariant Features 

Transform (SIFT) (Lowe, 2004) to search for features that are identifiable in multiple images and 

through an iterative bundle adjustment determines the location and orientation of all cameras in 

the block as well as calculates 3D coordinates of the features in a sparse point cloud. Internal 

camera parameters were not known a priori, however, self-calibration provided by Agisoft 

Photoscan was used as it has been shown to produce accuracy results similar to pre-calibration 

approaches (Harwin et al., 2015). No erroneously located sparse points were detected (e.g., 

sinkers and flyers) so no manual point filtering was conducted. Next, we manually identified 

GCPs in 2 images for each plot which enabled Agisoft Photoscan to estimate the locations of the 

GCPs in all other images based on the scene geometry. The estimated GCP locations were 

checked and adjusted to the center of each GCP. Coded targets that Agisoft Photoscan can 

automatically identify were experimented with but were unreliable at this image scale. We 

performed the linear Helmert transformation to convert the scene’s arbitrary coordinates into 

UTM Zone 13, WGS84 (the coordinates of the GCPs), then potential non-linear errors were 

removed by optimizing the scene with another bundle adjustment using the GCP coordinates 

(Agisoft, 2014). Within the bundle adjustment we specified the following measurement 

accuracies: marker accuracy, 3 cm; marker accuracy, 0.1 pixels; and tie point accuracy, 4 pixels. 

The latter two parameters were default in Agisoft Photoscan, while the first parameter was an 

estimate of accuracy using the total station/GNSS workflow. The lens parameters we optimized 

included focal length (f), principal point coordinates (cx, cy), radial distortion parameters (k1, k2, 

k3), affinity and non-orthogonal (b1, b2), tangential distortion (p1, p2). We specified “ultra-high” 

density and “mild filtering” settings for dense point cloud creation which generated an average 
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density of 1444 points·m−2 (Table 1, Figure 3c). A more detailed description of the SfM 

workflow can be found in Snavely et al. (Snavely et al., 2008), Westoby et al. (Westoby et al., 

2012), Smith et al. (Smith et al., 2015), and Eltner et al. (Eltner et al., 2016). 

 

In repeat topographic surveys, the presence of shrubs and other vegetation can confound our 

ability to quantify soil change. Accordingly, we identified and filtered out all vegetation in the 

point clouds. We used the “Classify Ground Points” tool in Agisoft Photoscan to identify ground 

and non-ground points based on their topographic position compared to surrounding points. The 

point cloud was first divided into a grid of equally sized cells, and the point with the lowest 

elevation was identified as being ground. Additional ground points were identified based on a 

user specified distance and angle from the original ground point. After testing each of the 

parameters we found the best results had a cell size of 0.75 m, a maximum angle to other ground 

points of 1 degree, and maximum distance of 5 cm from the originally identified ground point. 

See also Cunliffe et al. (Cunliffe et al., 2016) for similar a methodology used to filter vegetation 

in a semi-arid shrubland. To have greater control over the interpolation process (Agisoft 

Photoscan does not publish full methods), we exported only the ground points into Log ASCII 

Standard (LAS) files, then imported them into ArcGIS 10.2 as ESRI LASD files. We converted 

the point clouds to DTMs) using natural neighbor interpolation with a spatial resolution of 5 cm. 

Areas where the points had been removed because they were identified as vegetation, became 

gaps in the DTMs represented as “no data”. Some manual editing was necessary to completely 

remove vegetation areas from the DTMs due to omission by the ground point classification in 

Agisoft Photoscan. We assessed the quality of the DTMs by comparing northing, easting, and 

elevation coordinates with the 9 check points in each plot. We subtracted the 2014 DTM from the 

2015 DTM on a cell by cell basis to make a DTM difference image for each of the six plots. 

Because this was a methodological test and because minimal erosion was expected between 

acquisition dates, we did not transform the DTM difference measurements into estimates of soil 
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volume and mass. Dense point clouds, DSMs, and orthomosaics with the vegetation still present 

were also generated and exported from Agisoft Photoscan for visualization purposes.  

 

Assessing Agreement between Erosion Bridge and DTMs 

Using the colored point clouds to visual identify the ends of the topographic transects (marked 

with targets), we extracted elevations from the DTMs using the “interpolation line” tool available 

in ArcMap 3D Analyst toolbar. The extracted profile is intended to be the exact area measured by 

the erosion bridge to facilitate direct comparison between the two methods (Figure 3d). The 

erosion bridge laser measurements (originally distance to ground) were converted to elevation in 

the same UTM coordinate system as the DTMs by assigning the first laser measurement (nail) the 

same GNSS coordinate as the GCP. The rest of the erosion bridge elevation values were 

calculated as a vertical deviation from the beginning nail elevation. Using this methodology, the 

erosion bridge topographic profiles were not a completely independent “check” data set and 

testable only for z-value elevation. This was done deliberately to compare the photogrammetric 

DTM methods with erosion bridge methods independent from the inherent inaccuracies of 

referencing tools such as GNSS. 

 

Erosion bridge measurements were taken every 10 cm, while DTMs had 5 cm cell sizes. Using an 

R script (R version 3.1.1.; (Karl and Gillan, n.d.), we paired a DTM height with its corresponding 

erosion-bridge height every 10 cm along the transect. The remaining DTM heights that were not 

paired (half) were removed from the analysis. There were a total of 62 pairs per transect and 1860 

pairs across all transects in the 6 plots. Because the measurements were taken twice (June 2014, 

February 2015) the total number of comparative height pairs was 3720. We removed from the 

analysis the height pairs corresponding to the nails at both ends of the transects because they were 

used to convert the erosion bridge data to UTM coordinates, and thus not independent. On several 

of the transects, shrubs were present. To make the erosion-bridges directly comparable with the 
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DTMs, we removed any height pairs that had the presence of vegetation (i.e., vegetation pulled 

aside to laser the ground) because vegetation areas were already removed from the DTMs. After 

removing height pairs influenced by vegetation and nail pairs, we had 3314 pairs for analysis. 

 

Assessing DTM Repeatability 

A common method for quantifying repeatability is propagating accuracy error in each digital 

elevation model (DEM; a generic term encompassing both DTMs and DSMs; see Lane et al. 

2003(Lane et al., 2003)). For example, Brasington et al. (Brasington et al., 2003) and Wheaton et 

al. (Wheaton et al., 2009) showed how individual errors in a DEM can be propagated in a DEM 

difference as: 

𝛿𝑢𝐷𝑜𝐷 = √(𝛿𝑧𝑛𝑒𝑤)2 + (𝛿𝑧𝑜𝑙𝑑)2, (1) 

where 𝛿𝑢𝐷𝑜𝐷 is the propagated error in the differenced DEM, and 𝛿𝑧𝑛𝑒𝑤 and 𝛿𝑧𝑜𝑙𝑑 are the 

individual errors in the first and second DEM, respectively. Another method measures the height 

of unchanged features during the time-series which could include natural features such as rocks or 

a network of validation points (Derose et al., 1998; Gessesse et al., 2010). Comparison of DEM 

change to change measured by the erosion bridge offers a third method of quantifying 

repeatability. Deviation of the DEM change estimates from the erosion bridge change 

measurements (“true change” for the purposes of this study) is an indication of the repeatability 

of the DEM method. Using this method produced 1657 estimate of repeatability, far more than 

the check point dataset (n = 54) or locating invariant features (e.g., rocks) in the imagery of each 

plot. Because photogrammetric processing was separate for each plot, we assessed repeatability 

for each plot individually. 

 

Based on the quantified repeatability error we used a statistical threshold to separate model error 

in DTM differencing from actual surface change. We used a t-distribution 95% confidence 
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interval where the upper and lower 2.5 percentiles (i.e., < 2.5 percentile and > 97.5 percentiles) 

were considered to be actual surface change. Values > 2.5 percentile and < 97.5 percentile were 

discarded as model error. This method of thresholding represents a conservative estimate of 

change which limits type I errors (i.e. reporting soil movement when it did not occur). Setting a 

threshold level of detection should reflect the specific application of the repeat topographic 

survey and the potential costs of false positives and false negatives. For our application, we did 

not want to wrongly attribute soil erosion to vehicular driving on dirt roads if it did not actually 

happen. 

 

Results 

DTM Comparison with Check Points 

We assessed the easting, northing, and elevation accuracy of the DTMs through a traditional 

method of comparing image coordinates with independent check point coordinates. The easting 

and northing RMSE for all plots was 1.1 cm and 1.5 cm, respectively for the June 2014 

acquisition (Table 2). The easting and northing RMSE for the Feb. 2015 acquisition was nearly 

identical with RMSE of 1.1 cm and 1.1 cm, respectively.  

 

The elevation RMSE for all plots was 2.3 cm in the June 2014 acquisition and February 2015 

acquisition. DTM precision (repeatability) between acquisition dates was determined by 

subtracting 2014 check point ground coordinates from 2015 check point ground coordinates. 

Precision RMSE was estimated to be 1.4, 1.6, and 1.7 cm for easting, northing, and elevation, 

respectively (Table 3).  

 

Agreement between Aerial DTMs and Erosion Bridges (Accuracy) 

Comparing the topographic transects measured by the aerial DTMs and the erosion bridges 

produced vertical RMSE of 2.9 cm and 3.2 cm for all plots in June 2014 and Feb. 2015, 
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respectively (Table 4). Except for plot 5, the DTMs in each of the plots in both 2014 and 2015 

were reconstructed with a slight systematic higher elevation on average compared with the 

erosion bridges. DTM and erosion bridge elevation profiles for Plot 5 for each year along with the 

topographic change from one year to the next are shown in Figure 4a (graphs for remaining plots 

are in the supplemental material). 

 

DTM Repeatabilty 

Across all plots the vertical repeatability of the DTMs, as measured by the difference between 

erosion bridge change and DTM change, had an average RMSE of 2.8 cm (Table 5). In individual 

plots, RMSE ranged from 2.2 cm to 4.4 cm. Applying the 95% C.I. threshold, the average vertical 

error (undetectable surface change) was between −4.7 cm and 6.1 cm. Vertical surface change 

detectability varied between individual plots. The lower 95th percentile threshold ranged between 

−2.0 cm and −8.8 cm while the upper 95th percentile threshold ranged between 4.6 cm and 8.6 

cm. 

 

The only anomalies in the repeatability results occurred in Plot 4 where 8 measurements from the 

erosion bridge showed deepening of a narrow rill that was not detected in the DTMs (Figure A4). 

Therefore the difference between the erosion bridge change and DTM change at this site was 

much larger than all other repeatability measures in the study. These values had a 

disproportionately large effect on the threshold of this plot but were retained in the analysis to 

demonstrate some of the discrepancies between the two methods of topographic measurement.  

 

In comparison with the check point benchmark, accuracy and precision using the erosion bridge 

benchmark was slightly worse. This was not altogether unexpected because the check point 

benchmark was a comparison of DTMs with survey grade positioning of flat discs. The erosion 

bridge benchmark method was more challenging given the range of surface roughness of the 
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transects. In addition, there was a small spatial mismatch in the way the terrain was measured 

between DTMs and erosion bridge laser measurements. The erosion bridge laser measured a point 

on the ground less than a millimeter in size while the DTM was an interpolation of 3-4 points 

within a 5 cm cell.  

 

Topographic Change 

Over the 9 month span between data collections there was very little soil movement. The erosion 

bridge measurement showed an average positive vertical change of only 4 mm (Table 5). The 

DTMs showed an average change of −2 mm between acquisitions. This indicates that there is a 

small but systematic shift between the ground and imagery methods. The cause of this shift is 

unknown in this case, but can easily be corrected if the offset remains stable in further 

investigations. Maps of DTM differencing showed very little surface change within the area 

enclosed by the GCPs deep enough to cross the threshold of true surface change (Figure 4b as 

example; other maps are in Appendix A). Only a few areas within arroyos (dry water channels) 

experienced significant soil change. An exception to this can be seen in the northwest corner of 

plot 5 where there is indication of significant soil deposition. This is not true surface change but 

are instead DTMs errors that will be described in more detail in the discussion.  

Discussion 

Comparison with Other Studies 

The vertical accuracy of our UAS-based SfM DTMs were quite similar to other studies using 

very fine spatial resolution imagery. Gonçalves and Henriques (Gonçalves and Henriques, 2015) 

had a vertical RMSE of 2.7–4 cm comparing DTMs to independent check points measured with 

GNSS. Lucieer et al. (Lucieer et al., 2014) reported a vertical RMSE of 4.4 cm comparing DTMs 

to ground check points measured with GNSS. Stöcker et al. (Stöcker et al., 2015) comparing 

DTMs to ground check points measured with a total station found RMSE of Z coordinates to be 

1.6 cm. Eltner and Schneider (Eltner and Schneider, 2015) reported a 3D RMSE of 9 mm 



46 
 

compared to ground check points measured with a total station and 3D RMSE of 8.7 mm 

compared to terrestrial laser scanning. Glendell et al. (Glendell et al., 2017) compared vertically 

differenced DEMs using terrestrial laser scanning methods against UAS image reconstructions, 

both with 2 cm GSD. They found vertical difference RSMEs as low as 5 and 6 cm. 

 

Directly comparing the accuracy of different studies is generally not possible due to the multitude 

of acquisition and processing specifications. Some of the differences included the original scale 

of the imagery, overlap, the density of the point clouds, and the methods they used to create a 

benchmark that have varying levels of inherent accuracies (i.e., GNSS, Total Station, Laser 

Scanning). However, even with minor mismatches comparing accuracy between studies, it is 

clear from the literature and this study that fine-scale terrain can be surveyed from UAS-based 

SfM to accuracies within a few centimeters.  

 

Repeatability of UAS-based SfM DTMs is less reported in the literature for very fine spatial 

resolution image studies. Our DTMs (absolute mean difference ± 1.8 cm) were quite similar to a 

study by Lucieer et al. (Lucieer et al., 2013) who looked at static ground areas totaling 205,000 

pixels and found the absolute mean difference between two DTMs to be ± 1.7 cm. Clapuyt et al. 

(Clapuyt et al., 2015) created replications of DTMs using different image sets at one point in time 

and found mean vertical precision to be ± 6 cm. This lower precision was possibly due to less 

precise GNSS coordinates of check points and sparser point clouds, so it is not directly 

comparable to our study. Neugirg et al. (Neugirg et al., 2016) reported repeatability of DTMs 

having a standard deviation of 6.2 cm which was less precise than our DTMs (2.3 cm). 

 

Topographic Surveying for Soil Erosion 

Our results from comparing SfM-generated DTMs to check points, and strong agreement with 

erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace 
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erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some 

studies. For example, with soil surface DTM differencing it may be possible to view landscape-

scale effects of the TRAC driving treatments including cumulative effects downstream of the 

disturbance. Gillan et al. (Gillan et al., 2016), using DTM differencing to estimate soil erosion 

across the study area following vegetation removal treatments in southern Utah, USA, showed 

that soil movement to neighboring treatments potentially violated assumptions of treatment 

independence and was not adequately captured by in-situ soil-surface sampling. The ability to 

map areas of soil erosion and deposition in landscapes could help increase understanding of soil 

loss patterns due to road networks and potentially improve our ability to model these dynamic 

processes. Owing to the difficulty in setting up and calibrating erosion bridges, it is possible only 

to sample a small portion of the same landscape. Even then, it takes much longer to set up the 

erosion bridges and take measurements than it does to acquire and process UAS images of the 

same plots.  

 

However, there is tradeoff between geographic extent and pixel size (i.e., spatial resolution) for 

surveying soil elevation change. The ability to discern topographic change from UAS-based SfM 

DTM differencing is lower than that of erosion bridge measurements, meaning SfM DTM 

differencing requires a larger vertical change of soil to be detectable as it was implemented in this 

study. Using our strict change threshold (95% CI), we could detect soil erosion greater than 4.7 

cm and deposition greater than 6.1 cm from UAS-based DTM differencing at this image scale. 

Whether this level of precision is suitable for studying or monitoring dryland soil erosion depends 

on the objective and the cost of making Type I and Type II errors (Mudge et al., 2012). For the 

TRAC study, our implementation of a strict threshold was appropriate to avoid Type I errors (i.e., 

falsely attributing a linkage between vehicle driving and erosion processes). In a monitoring 

context, the cost of not detecting soil movement may be great enough to warrant relaxing the 

threshold (i.e., accepting a lower C.I.), thereby improving the detectability of soil movement. An 
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approach that leverages the advantages of both the aerial and ground methods could be workable 

in some situations. For example, the aerial DTM differencing method we employed could be used 

to cover a large geographic extent to identify potential problem areas at a coarse resolution. Once 

the areas have been identified, more precise erosion monitoring methods (lower flying UAS; in 

situ measurements) could be used to more closely monitor those areas.  

 

DTM Errors 

Our calculated DTM differences showed that errors fell into two categories. The first were areas 

of erroneous soil surface change in the edges or corners of some plots (e.g., Figure 4B, northwest 

corner of Plot 5). This vertical error is likely due to a combination of sources. First, these errors 

could be caused by slight “doming” affect as described by James and Robson (James and Robson, 

2014) and Eltner and Schneider (Eltner and Schneider, 2015) who showed that nadir-only image 

acquisitions coupled with SfM self-calibration can lead to poor modeling of camera radial 

distortion expressed as incorrect lower elevations in the periphery of the 3D scene. Alternatively, 

our observed areas of incorrect soil surface change could be due to the absence of ground control 

in the scene periphery and illustrates decay of DTM accuracy outside the area enclosed by the 

ground control network (Jaud et al., 2016; Javernick et al., 2014; Smith et al., 2014; Tonkin and 

Midgley, 2016). For our study plots, there does not appear to be a consistent distance outside the 

enclosed area where accuracy begins to rapidly decline. Some plots displayed increased error 

immediately outside enclosed area while other plots showed little DTM difference errors for 10’s 

of meters. Variation amongst plots could be due to slight differences in image overlap, accuracy 

of GCPs, or differences in the original photo alignment. 

 

The second source of error in our DTM differences came from imperfect filtering of vegetation 

and was expressed as large gains or losses of elevation immediately adjacent to shrubs (i.e., one 

or both of the DTMs still contained vegetation and when differenced created large changes in 
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elevation). Vegetation filtering is still a significant challenge at this very fine scale and reduces 

our ability to automate DTM difference processing. Our approach was to use the topographic 

position of points in the cloud to identify ground points, however, other SfM studies have used a 

variety of methods to filter vegetation with no clear consensus on a superior workflow (Cunliffe 

et al., 2016; Javernick et al., 2014; Jensen and Mathews, 2016; Smith et al., 2014; Wallace et al., 

2016). In our semi-arid shrubland study area, there is a distinct difference in color between the 

creosote/mesquite shrubs and the bare ground. Coupling color separation with our current use of 

topographic position filtering could be very successful in terms of separating vegetation from 

ground. 

 

Limitations for Large Landscapes  

There are two main technical constraints to currently adopting UAS-based DTM differencing 

over large landscapes (> 200 ha) in an operational capacity. The first challenge is the ground 

control requirements. We achieved accuracy and precision RMSE < 3 cm within the envelope of 

3 GCPs for each of our 50 × 50 m plots, but expanding this methodology over the entire TRAC 

study area would necessitate hundreds of GCPs to achieve this same level accuracy and precision. 

To make quality data collection over large landscapes a more cost effective endeavor, GCP 

demand needs to be reduced or eliminated. Fortunately, recent research is showing that direct 

georeferencing using onboard GNSS differentially corrected with base station data can produce 

similar (Rehak et al., 2013) or slightly worse (Hugenholtz et al., 2016; Turner et al., 2014) image 

product accuracy compared with GCPs. More testing is needed with this technology to see if 

vertical accuracy and precision RMSE < 3 cm is possible. Ground control demand may also be 

reduced by the addition of oblique imagery (Harwin et al., 2015; James and Robson, 2014), well-

defined camera models, and proper weighting of tie point and marker accuracy during bundle 

adjustments (Carbonneau and Dietrich, 2016; James et al., 2017). 
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Additionally, the time and computing resources required to replicate our method over the entire 

TRAC study would also be prohibitive. Even with powerful desktop computers with high-end 

CPUs, GPUs, and abundant RAM, SfM processing is computationally intensive and can take 

many days to produce dense point clouds from a large imagery dataset. Additional research into 

optimization of the number and type (i.e., nadir vs. oblique) of images for high-quality products 

from SfM is needed. As we continue to collect remotely sensed data at an ever finer resolution 

and greater extents, cyberinfrastructure that leverages high-performance computing (Goff et al., 

2011) and distributed network processing (i.e. cloud computing) such as Google Earth Engine 

(https://earthengine.google.com) will become increasingly necessary for storing, processing, and 

interpreting data for natural resource management in the age of big data. 

 

Conclusions  

Our results demonstrated the utility of SfM DTM differencing using UAS imagery for monitoring 

changes in soil surface as an alternative to in situ measurements from traditional erosion bridges. 

Accuracy of the DTMs as measured against erosion bridge was high (RMSE 2.9 cm and 3.2 cm 

in 2014 and 2015, respectively), and correspondence with change as measured by the erosion 

bridges was also in high agreement (RMSE 2.8 cm). The technique we presented allows for a 

synoptic view of soil movement which provides information on the spatial distribution of erosion 

and deposition processes that was difficult and expensive to generate previously. However, while 

collecting the UAS imagery and generating the SfM DTMs for this study was faster than 

collecting erosion bridge measurements, technical challenges related to the need for ground 

control networks and image processing requirements must be addressed before this technique 

could be applied effectively to large landscapes.  
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Figures and Tables 

 

 

Fig. 1. This study was conducted at the USDA-Agricultural Research Service Jornada 

Experimental Range outside of Las Cruces, NM. Our six test plots (within yellow box) are a 

subset of the threshold resistance and connectivity (TRAC) project which is investigating the 

impact of roads and vehicular traffic on dryland landscapes. 
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Fig. 2. (a) We measured surface elevation profiles using a laser range finder (inset map) attached 

and slid along a 6.1 m erosion bridge. (b) We acquired high-resolution imagery using an MLB 

BAT4 fixed-wing unmanned aerial vehicle. (c) The flight path for the image acquisition in June 

2014 and February 2015. The yellow line is the flight path and the blue dots represent the image 

locations. 
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Fig. 3. (a) Six 50x50 m test plots were chosen to compare laser range finder (erosion bridge) and 

UAS-based digital terrain model (DTM) methods for representing surface topography. (b) For 

each plot we measured surface elevation profiles along 5 transects using both methods. The 

DTMs were reconstructed using structure-from-motion photogrammetry methods referenced with 

3 ground control points and were assessed with 9 check points. (c) Point clouds were created for 

each plot as an intermediate step to build DTMs. (d) Along each transect we compared the 

elevations between the erosion bridge and DTM 62 times (10 cm spacing). 
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Fig. 4. (a) Surface topographic profiles from Plot 5 measured with erosion bridges and digital 

elevation models (DSMs) reconstructed from UAS imagery. The surface heights (y-axis) are 

shown as a vertical difference from the first erosion bridge height for easier interpretation and 

comparison across graphs. The large differences between erosion bridge and DSM surface height 

measurements at the end of Transect 1 were due to the presence of vegetation. All height pairs 

with vegetation influence were not included in the accuracy and precision analyses. (b) DTM 

difference image for plot 5 overlaid on UAS-based orthophotos. Blue colors represent elevation 

decrease (erosion) and the red colors represent elevation increase (deposition) from June 2014 to 

February 2015. Transparent areas are within the threshold of repeatability error as determined by 

the difference between the erosion bridge change and DTM change along the transects. The 

indicated deposition in the northwest corner of the plot is likely DTM error caused by ‘doming’ 

effect outside of the GCP envelope, as opposed to real surface change. 
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Table 1. Acquisition and processing specifications for June 2014 and February 2015 imagery 

 

Aircraft Bat 4 Fixed-Wing 

Sensor Canon EOS 5D Mark II, 21 megapixels 

Canon EF 35 mm lens 

Flying height above ground level (m) ~ 152 AGL 

Image Forward Overlap (%) 66 

Image Side Overlap (%) 66 

Image Ground Footprint (m) 156 × 104 

Ground sampling distance (cm) ~ 2.7 

Image Count 25–35 images per plot 

Avg. Point density (points·m−2) 1444 

DTM cell size (cm) 5 

 

 

 

Table 2. Check point coordinates minus DTM coordinates.  

Plot Acquisition 

Date 

Check 

Points n 

Mean Difference (cm) 
Absolute Mean 

Difference (cm) 
RMSE (cm) 

Easting Northing  Elevation Easting Northing Elevation Easting Northing Elevation 

1 
June 2014 9 −0.1 −0.9 −0.2 1.0 0.9 1.7 

1.1 1.1 2.2 

Feb. 2015 9 0.0 −1.0 0.2 0.8 1.3 0.9 
1.0 1.8 1.2 

2 
June 2014 9 −0.4 0.8 −1.0 1.0 1.1 3.0 

1.7 1.7 4.0 

Feb. 2015 9 −0.5 0.2 −1.1 1.1 0.4 2.5 
1.4 0.5 3.8 

3 
June 2014 9 −0.4 0.1 −0.2 0.9 0.7 0.9 

1.1 0.9 1.2 

Feb. 2015 9 −0.6 −0.0 0.1 0.9 0.6 1.3 
1.3 0.9 1.4 

4 
June 2014 9 0.2 0.1 0.1 0.3 0.6 1.1 

0.4 0.9 1.4 

Feb. 2015 9 0.6 −0.5 1.0 0.6 0.9 1.1 
0.7 1.1 1.3 

5 
June 2014 9 0.4 0.3 1.7 0.8 1.4 2.0 

1.0 2.6 2.7 

Feb. 2015 9 −0.5 0.3 2.0 1.2 1.0 2.9 
1.3 1.1 3.5 

6 
June 2014 9 −0.3 0.3 0.0 0.7 0.6 0.9 

0.9 0.7 1.1 

Feb. 2015 9 0.1 0.2 0.1 0.6 0.8 0.4 
0.8 0.9 0.5 

All 
June 2014 54 −0.1 0.1 0.0 0.8 0.9 1.6 

1.1 1.5 2.3 

Feb. 2015 54 −0.1 −0.1 0.4 0.9 0.8 1.5 
1.1 1.1 2.3 

 

 



66 
 

Table 3. DTM precision (repeatability) calculated by subtracting 2014 check point image 

coordinates from 2015 check point image coordinates.  

Plot 
Check 

Points n 

Mean Difference (cm) 
Absolute Difference 

(cm) 
RMSE (cm) 

Easting Northing Elevation Easting Northing Elevation Easting Northing Elevation 

1 9 −0.2 0.1 −0.5 1.0 1.2 1.4 1.2 1.7 2.0 

2 9 0.0 0.6 0.1 1.5 1.0 1.1 1.9 1.5 1.4 

3 9 0.1 0.1 −0.3 0.9 0.9 1.4 1.1 1.2 1.6 

4 9 −0.3 0.6 −0.9 0.5 1.2 1.4 0.6 1.3 1.7 

5 9 1.0 0.0 −0.3 1.7 1.5 1.6 1.8 2.3 2.1 

6 9 −0.5 0.0 −0.1 0.8 0.6 0.9 1.0 0.7 1.0 

All 54 0.0 0.2 −0.3 1.1 1.1 1.0 1.4 1.6 1.7 

 

 

 

Table 4. Erosion bridge vertical measurements minus digital terrain model measurements. 

Plot Acquisition Date Sample Size n Mean Difference (cm) 
Absolute Mean 

Difference (cm) 
RMSE (cm) 

1 
June 2014 249 −2.2 2.5 2.9 

February 2015 249 −1.1 1.7 2.3 

2 
June 2014 292 −1.2 1.6 2.1 

February 2015 292 −0.9 1.9 3.0 

3 
June 2014 298 −2.1 2.2 2.6 

February 2015 298 −0.3 1.5 2.2 

4 
June 2014 278 −1.7 2.6 3.4 

February 2015 278 −1.7 2.5 4.8 

5 
June 2014 285 0.4 2.4 3.0 

February 2015 285 0.7 3.1 3.7 

6 
June 2014 255 −2.5 2.6 3.1 

February 2015 255 −1.7 2.0 2.4 

All 
June 2014 1657 −1.5 2.3 2.9 

February 2015 1657 −0.8 2.1 3.2 
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Table 5. Digital elevation model (DTM) vertical repeatability error as measured by comparing 

the DTM change with erosion bridge change (erosion bridge change minus DTM change). 

Because structure-from-motion processing was carried out separately for each plot to create 

DTMs, we assessed repeatability error individually for each plot.  

Plot 
Sample 

n 

Mean 

Erosion 

Bridge 

Change 

(cm) 

Absolute 

Mean 

Erosion 

Bridge 

Change 

(cm) 

Mean 

DTM 

Change 

(cm) 

Absolute 

Mean 

DTM 

Change 

(cm) 

Erosion 

Bridge 

Change 

Minus 

DTM 

Change 

(cm) 

Standard 

Deviation 

(cm) 

Absolute 

Erosion 

Bridge 

Change 

Minus DTM 

Change (cm) 

Change 

Difference 

RMSE 

(cm) 

95% 

Confidence 

Interval (cm) 

Lower Upper 

1 249 0.3 0.5 −0.7 1.9 1.0 2.4 2.0 2.6 −3.6 5.8 

2 292 0.5 0.7 0.2 1.4 0.2 2.4 1.6 2.4 −4.4 5.0 

3 298 0.8 1.0 −0.8 1.5 1.7 1.9 2.1 2.6 −2.0 5.5 

4 278 −0.1 1.1 −0.1 1.9 0.0 4.4 2.3 4.4 −8.8 8.6 

5 285 0.4 0.7 0.0 1.3 0.3 2.1 1.6 2.2 −3.9 4.6 

6 255 0.6 0.7 −0.1 1.6 0.8 2.1 1.9 2.2 −3.4 5.0 

All 1657 0.4 0.8 −0.2 1.6 0.7 2.7 1.9 2.8 −4.7 6.1 
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Supplemental Material 

 

Supplemental Fig. 1. Plot 1 DTM differences and topographic profiles 
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Supplemental Fig. 2. Plot 2 DTM differences and topographic profiles 
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Supplemental Fig. 3. Plot 3 DTM differences and topographic profiles 
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Supplemental Fig. 4. Plot 4 DTM differences and topographic profiles 
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Supplemental Fig. 5. Plot 6 DTM differences and topographic profiles 
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Abstract 

Monitoring of forage utilization typically occurs at sample locations, or key areas, selected for 

their presumed potential to represent utilization across pastures. However, utilization can vary 

greatly across landscapes and may not be well represented by traditional ground-based sampling 

without great effort. Remote sensing from satellite and manned airborne platforms offer spatial 

coverage at landscape scale but their poor spatial resolution (satellite) and cost (manned airborne) 

may limit their use in monitoring forage utilization. High-resolution photogrammetric point 

clouds obtained from small unmanned aerial systems (sUAS), represent an appealing alternative. 

We developed a method to estimate utilization by observing the height reduction of herbaceous 

plants represented by 3-dimensional point clouds. We tested our method in a semi-arid savanna in 

southern Arizona by comparing utilization estimates with ground-based methods after a month-

long grazing duration. In six plots, we found strong correlation between imagery and ground-

based estimates (r2 = 0.78) and similar average estimate of utilization of across all plots (ground-

based = 18%, imagery = 20%). With a few workflow and technological improvements, we think 

it is feasible to estimate point cloud utilization over the entire pasture (150 ha) and potentially 

even larger areas. These improvements include optimizing the number of images collected and 

used, equipping drones with more accurate global navigation satellite systems (e.g., GPS), and 

processing images with cloud-based parallel processing. We show proof of concept to provide 

confident estimates of forage utilization patterns over large pastures and landscapes, at levels of 

spatial precision that are consistent with ground-based methods. The adoption of drone-based 

monitoring of utilization of forage on rangelands could follow the paradigm shift already 

demonstrated by GPS and GIS technologies, where the initial high computing costs were reduced, 

use became the norm, and the availability of more precise spatial patterns was applied to 

prescribe and evaluate management practices. 

Keywords: Drone, UAS, remote sensing, structure-from-motion photogrammetry, rangelands 
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Introduction 

Forage utilization, defined as the proportion of current year’s production by weight consumed or 

destroyed by animals (Heady, 1949), can indicate levels of use and potential impacts from 

grazing. Managers often establish maximum levels of utilization to ensure sustainability of use 

and establish monitoring protocols to detect those levels of utilization (Smith et al., 2016; USDI 

Bureau of Land Management, 1997). Monitoring of grazing pasture and rangelands, however, is 

time-consuming and therefore the area sampled is limited by the availability of time and 

resources.  

 

Monitoring typically occurs at a handful of sample locations, or key areas, selected for their 

presumed potential to represent utilization across larger pasture and landscape-scale management 

units. However, utilization can vary greatly across a pasture due to livestock preference for 

specific forage species, terrain barriers, sun exposure, and distance to water (Bailey et al., 1996). 

As a result, patchy distribution of utilization may not be well represented by traditional ground-

based sampling, and therefore levels of utilization could be poorly represented across the large 

landscapes typical of western rangelands (Veblen et al., 2014). Finding more efficient methods of 

collecting monitoring data at pasture and landscape scales should help improve understanding of 

conditions and their response to management across the vast rangelands in the western U.S. and 

world (Booth and Tueller, 2003). 

 

Remote sensing from satellite and manned airborne platforms offer spatial coverage at landscape 

scale (Booth and Cox, 2011), but their poor spatial resolution (satellite) and cost (manned 

airborne) may limit their use in monitoring forage utilization. High-resolution imagery from small 

unmanned aerial systems (sUAS), commonly known as drones, represent an alternative 

(Anderson and Gaston, 2013; Rango et al., 2009). The availability of low cost sensor-carrying 

sUAS and the advancement of photogrammetric software has made on–demand 3-dimensional 
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(3D) depictions of rangeland vegetation relatively easy to produce. Further, sUAS have the 

potential for frequent on-demand deployments yielding imagery at scales sufficiently fine to 

resolve low stature herbaceous vegetation. Though sUAS imagery cannot be expected to cover 

the large geographic extents available from satellites or manned aircraft, they can easily exceed 

the extent of area covered by most ground-based campaigns. These new tools and the imagery 

products we can create with them have the potential to address a number of management 

concerns regarding forage use by livestock and wildlife, quality of wildlife habitat, and amount of 

wildfire fuels.  

 

There has been very little research using remote sensing to measure forage utilization from any 

platform or scale. The only known study to explicitly estimate utilization did so by relating 

simulated browse (manually removed winterfat leaves to simulate livestock browsing) with UAS 

imagery spectra (Quilter and Anderson, 2001). There is, however, a large and growing body of 

literature on remotely sensing forage biomass where one could presumably estimate utilization 

with biomass measures at two points in time. The most common method relies on the relationship 

between ground-based measures of biomass with co-registered imagery spectra. This method has 

been demonstrated with satellite imagery (Edirisinghe et al., 2011; Feng and Zhao, 2011; 

Kawamura et al., 2005; Marsett et al., 2006; Schucknecht et al., 2017; Todd et al., 1998), manned 

airborne imagery (Beeri et al., 2007), and sUAS imagery (Wang et al., 2014). However, seasonal 

and phenological changes in spectra may limit the general application of this approach given the 

need for multi-temporal estimates of biomass. 

 

Alternatively, 3D representation of vegetation can estimate biomass and should be robust across 

the seasons when spectra is likely to change. Cunliffe et al. (2016), for example, estimated 

biomass of grass (Bouteloua eriopoda) with grass volume derived from UAS-obtained 

photogrammetric point clouds. While this method overcomes the limitation of relating spectral 
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properties to biomass, it has a new challenge of accurately measuring herbaceous vegetation 

height. This is usually achieved by subtracting a digital terrain model (DTM) from a digital 

surface model (DSM). However, using a photogrammetric approach to make a DTM is 

challenging because it cannot ‘see’ underneath dense vegetation and thus the ground elevation 

under grasses must be interpolated from nearby ground elevations (Swetnam et al., 2018). In a 

natural rangeland environment, unbroken extents of vegetation and/or sloped terrain can lead to 

incorrect estimation of ground elevations under vegetation. These challenges often introduce 

vertical errors in canopy height models which can make a big difference in the volume and 

biomass estimates of low statue vegetation such as forage grasses. Studies in crop fields have 

produced accurate DTMs when the vegetation is not present (Bendig et al., 2014). This strategy 

does not work in many rangeland environments where perennial grasses (albeit dormant) are 

present year-round.  

 

We report a “proof of concept” assessment of a remotely acquired photogrammetric method for 

estimating utilization without having to estimate biomass. Forage utilization in rangeland settings 

can be determined from the proportion of plants whose height has been reduced by grazing 

(Roach 1950). We can mimic this method by measuring change in plant height using point cloud 

analysis. We evaluated this method in a mixed shrub-grass savanna by comparing ground-based 

estimates and sUAS point cloud estimates of forage utilization following a month-long grazing 

event. This is the first study to use remotely sensed data to directly estimate forage utilization by 

grazing cattle.  

 

The objectives for this study were: 1) Estimate forage utilization by differencing pre-grazed and 

post-grazed sUAS photogrammetric point clouds, 2) Compare imagery-derived utilization with 

ground measurements of utilization at transect and plot scales, and 3) Identify critical 

improvements that will extend this method to cover pasture-sized areas. 
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Methods 

Study Area 

The experimental area (pasture UA-C) is an 147 ha fenced pasture on the Santa Rita 

Experimental Range (SRER) in southern Arizona (31° 48’ 36” N, 110° 50’51” W, elevation 1174 

m; Fig. 1; http://cals.arizona.edu/srer). SRER soils are characterized as clay loams, sandy loams, 

and limey upland soils. This semi-arid area experiences a typical Sonoran Desert bimodal pattern 

of precipitation where most moisture falls in late summer, the rest primarily in December and 

January (McClaran and Wei, 2014). Mean annual temperature and precipitation are 19°C and 

35.8 cm year-1, respectively. The pasture lies on a sandy loam upland ecological site within 

Sonoran Desert grassland savanna (MLRA 41-3). The dominant herbaceous forage species 

included Eragrostis lehmanniana (Lehmann lovegrass), Digitaria californica (Arizona 

cottontop), Muhlenbergia porteri. (bush muhly), and Aristida ssp. (threeawn). Woody species 

consisted of Prosopis velutina (mesquite), Gutierrezia sarothrae (broom snakeweed), Zinnia 

pumila, Opuntia ssp. (prickly pear), and Cylindropuntia ssp. (cholla). 

 

In calendar year 2016, there was 39.5 cm of precipitation in the study pasture, 77% of which fell 

in July, August, and September. Herbaceous grass production follows the late summer monsoon 

rain. At peak greenness (mean Landsat 8 NDVI = 0.45) as a proxy for peak forage production, 80 

animal units consisting of cow/calf pairs entered the pasture on August 22, 2016, and remained 

until September 23, 2016. At the time of withdrawal, herbaceous vegetation had already begun 

senescence indicated by lower NDVI values (mean = 0.36) and a lighter green color. This timing 

near the end of the growing season minimized the amount of re-growth following defoliation 

compared to a timing earlier in the growing season.  
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Ground Methods 

Within the study pasture, we chose six randomly placed points to compare ground-based and 

sUAS imagery estimates of utilization (Fig. 1). From the random points, we chose a random 

azimuth to orient the rectangular plot. The baseline of the plots were oriented at 220° azimuth 

from the plot point. Perpendicular from the baseline, we established 5 sampling transects, each 30 

m long. Transects were spaced approximately 20 m apart, but that distance varied depending on 

the ability to navigate through or around mesquite and cactus. The plot size was ~ 0.27 ha or 100 

m x 30 m.  

 

Following the removal of cattle from the pasture we measured utilization using the ‘ungrazed 

plant’ method along each transect. The method (Roach, 1950) was developed at the SRER and is 

based on the grazing habits of cattle. With ample available forage, cattle are likely to graze a 

grass clump once and move on to the next. Because of this behavior, there is a relationship 

between the percentage of ungrazed clumps and utilization of forage. At every other pace along 

the transect (20 total observations), the observer recorded the nearest herbaceous plant as ‘grazed’ 

or ‘ungrazed’. Classifying very lightly grazed plants as ‘grazed’ is likely to over-estimate forage 

use because the tops of grass plants generally contain a small proportion of the plants biomass. To 

identify these very lightly grazed plants, we employed the grazed class method (Schmutz et al., 

1963) which consists of species specific photo-guides for estimating biomass use. Plants with ≤ 

10% use were classified as ‘ungrazed’. The percent of ungrazed observations was entered as x in 

the linear formula. 

 

% 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 79.9451 − 0.8705𝑥      [1] 

 

Utilization was calculated for each transect and for each plot (aggregate of 5 transects). 
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Additionally, we estimated utilization with before and after grazing measures of forage biomass, 

a method that is commonly used in other rangeland systems. Immediately before and immediately 

after the grazing period, we estimated forage production along each transect using the 

comparative yield method (USDI Bureau of Land Management, 1999). For each plot, forage was 

clipped, dried, and weighed from three calibration frames (40 x 40 cm) representing low, 

medium, and high amounts of forage. These frames were given scores of 1, 3, and 5, respectively. 

These calibration frames are used to train the observer to visually interpret all additional frames 

with a score of 0 to 5. This method allowed for quicker data collection and the ability to cover a 

larger area than destructive sampling methods. We estimated forage production in 20 frames 

along each transect for a total of 100 frames per plot. From the forage production data, we 

calculated utilization as: 

 

% 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 1 − ( 
𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑜𝑠𝑡−𝑔𝑟𝑎𝑧𝑒𝑑

𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑟𝑒−𝑔𝑟𝑎𝑧𝑒𝑑
)                                                 [2] 

 

where utilization is calculated from the ratio of biomass measured pre-grazed to post-grazed. We 

refer to this as the ‘biomass change’ method hereafter. We calculated utilization with the biomass 

change method at only the plots (aggregate of 5 transects) because we did not record pre-grazed 

estimates for each transect.  

 

Image Acquisition 

Immediately before and after cattle grazing, we acquired very high-resolution drone imagery of 

each plot with DJI Phantom 3 Professional and Phantom 4 multi-rotor drones (See Table 1 for 

image acquisition specifications). These drones weigh ~ 3 lbs, have electric motors, and typically 

have 20 minute flight endurance. The Phantom series are the most ubiquitous drones on the 

market and are off-the-shelf ready to fly with modest price points around $1500. We acquired the 
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imagery for each plot using autonomous grid pattern missions programmed in Ipad application 

Altizure v 3.0 (https://next.altizure.com). We flew low to the ground (20 m above ground level) 

in order to get very high-resolution imagery (8-10 mm) capable of resolving low stature 

herbaceous plants. In the structure-from-motion (SfM) photogrammetry approach we employed, a 

high number of overlapping images is recommended to reconstruct complex features (Smith et 

al., 2015; Westoby et al., 2012). However, the optimized number of images needed to reconstruct 

perennial dryland grasses was unknown prior to this study. Consequently, we blanketed each plot 

with 900-1000 images with high-overlap (80%), likely more imagery than what is necessary for 

reconstruction. We acquired imagery at nadir and 42° oblique angles because the inclusion of 

oblique images in the sparse point cloud step has been shown to improve scene geometry 

compared with only nadir images (James and Robson, 2014). It was hypothesized that oblique 

images might also improve reconstruction of herbaceous vegetation at the base of mesquite trees, 

areas that are less visible from nadir only imagery. Each plot took approximately 45 minutes to 

fly including two battery changes. Wind speed during the flights typically ranged from 5-10 mph, 

not strong enough to disrupt operations.  

 

 

Because the expected positional accuracy of the drone global navigation satellite system (GNSS) 

is poor (1-2 meters horizontally and 5-10 m vertically from true location), we surveyed ground 

control points (GCPs) to be used in the photogrammetry processing. On each plot, we surveyed 

13 GCPs. Ten were used in the photogrammetry processing, and three were held back as x, y, z 

check points. The GCPs were located on the ends of each vegetation transect (Fig. 1). Each GCP 

consisted of a 17 cm diameter round plastic lid mounted on a 0.5 m rebar stake. The lids were 

painted black & white in an iron cross pattern. We experimented with but ultimately abandoned 

the use of coded targets, patterns that can be detected automatically by software, because it could 

not reliably locate GCPs in oblique imagery. We surveyed the GCPs with a Trimble R10 real-

time kinematic GNSS, a setup consisting of a base station and rover. Points were surveyed in 
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NAD 83 UTM Zone 12 N projection with a horizontal precision of 5-7 mm vertical precision 6-

16 mm.  

 

Point Cloud Generation 

We used image-based 3D reconstruction software Agisoft Photoscan v 1.3 

(http://www.agisoft.ru) for point cloud generation. Each point in the cloud is an x, y, z location of 

a surface feature with its natural color assigned to it. The SfM process of making point clouds is 

well documented (Eltner et al., 2016; Smith et al., 2015; Snavely et al., 2008; Westoby et al., 

2012) so it will be abbreviated here. All image processing was carried out on a Windows machine 

with two Intel Xeon CPUs (2.4 GHz;16 logical processors each), two EVGA GeForce GTX 1080 

video cards, and 256 GB RAM.  

 

We did ‘high quality’ initial alignment using the GNSS and time stamp metadata of each image to 

expedite the process. During this process, camera physical dimensions and lens distortion 

parameters were calculated with self-calibration. The pose of each exposure station was 

determined and a sparse point cloud was generated. Any images that did not align or were 

misaligned were realigned.  

 

After initial alignment, we located all 10 GCPs and 3 check points and marked them in the 

images. By locating a GCP on two overlapping images, the software estimated the locations of 

the GCP on all other overlapping images. We went through every image and adjusted the 

estimated location of the GCPs to the center of the targets. Each GCP was visible on 100 to 400 

images. Points in the center of the plot generally had more image projections and vegetation 

blocked the view of the GCP in some images.  Manually adjusting GCPs locations was the most 

time-consuming aspect of the point cloud generation.  
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We used the GCPs for a bundle adjustment optimization procedure. Following the 

recommendation  of James et al. (2017) we optimized parameters focal length (f), principal point 

coordinates (cx, cy), radial distortion (k1, k2), and tangential distortion (p1, p2). We also 

optimized to correct for rolling shutter effect present in Phantom sensors (Vautherin, 2016). Next, 

we used the ‘gradual selection’ tool to identify and remove low-quality sparse points with the 

following criteria: reprojection error >0.5 pixels, reconstruction uncertainty >30, and projection 

error > 3. The sparse cloud was optimized (bundle adjustment) after each removal of low quality 

points.  

 

We created dense point clouds using ultra high density setting, which attempts to create a point 

for every image pixel, a desirable behavior for very fine-scale vegetation. For this step, we sought 

to optimize the number of images needed to reconstruct grass with high detail while limiting 

processing time. On one plot we experimented with the number of images used in dense 

reconstruction testing a model using only nadir images (150-200) and a model using nadir + all 

oblique images (900-1000) for dense reconstruction. The nadir only dense point cloud had ~27 

million points and took approximately 5-6 hours to process. Comparatively, the nadir + oblique 

point cloud had ~87 million points and took upwards of a week to process. However, higher point 

density does not necessarily indicate better or more detailed grass height reconstruction. We 

tested grass height difference of the two point clouds by subtracting one from the other using 

M3C2 tool in CloudCompare. A detailed description of these methods is in the ‘Point Cloud 

Filtering’ and ‘Point Cloud Differencing’ sections of this paper. The nadir only point cloud was 

on average only 1 cm lower in height than the nadir + oblique point cloud, which suggests nadir 

only imagery is a more efficient approach.   

 

Another concern of eliminating oblique images was losing the ability to detect and model 

herbaceous vegetation under mesquite trees. We evaluated this concern on one plot and found 
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herbaceous vegetation to be visible and reconstructed at the base of nearly all mesquites. We are, 

however, giving up some ability to model grass at the base of some mature mesquite trees that 

have wide obscuring canopies. These were rare occurrences in our study plots that we assume 

should not significantly alter utilization estimates. We proceeded to carry out dense point cloud 

reconstruction for all the plots using nadir images only (Fig. 2A). The plot point clouds typically 

had between 25 and 50 million points with density ranging from 3000-5000 points·m-2.  

 

Point Cloud Filtering 

The goal of filtering is to remove any points that are not of interest in the analysis. For this study, 

we were interested in only herbaceous vegetation. Using the ‘classify points’ tool in Photoscan, 

we identified and removed points representing tall woody trees and shrubs while retaining low 

stature vegetation such as grasses and forbs (Fig. 2B). Cunliffe et al. (2016) and Gillan et al. 

(2017) both demonstrated the use of this type of filtering approach in semi-arid shrublands in 

New Mexico. This point filtering tool is a type of maximum local slope filter (Montealegre et al., 

2015) where the lowest elevation point within a user defined grid cell is assumed to be ground. 

All additional ground points are identified based on a user defined maximum angle and distance 

from the origin ground point. To identify and remove woody trees and shrubs we found the best 

combination of parameter values were a grid size of 2 m, a maximum angle of 18°, and a max 

distance of 0.5 m. However, no filter is perfect so some tree stems and small shrubs were likely to 

remain. We exported the point clouds in log ASCII format (las) format, in projection NAD 83 

UTM Zone 12 N.  

 

In the open source program CloudCompare (Girardeau-Montaut 2011), we further filtered the 

point clouds to remove non-herbaceous vegetation points (i.e., bare-ground, rocks, woody 

vegetation stems) with a color threshold (Fig. 2C). We calculated a green leaf algorithm 
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(
𝐺∗2−𝑅−𝐵

𝐺∗2+𝑅+𝐵
; Louhaichi et al. 2001) on the colorized points and applied a simple threshold to 

separate the herbaceous vegetation from all other surface features. We found that that a green leaf 

algorithm value > 0.035 was an appropriate threshold for identifying vegetation points. This cut-

off value varied slightly between plots due to nuanced soil and vegetation color as well as 

illumination differences. We removed the non-herbaceous points leaving point clouds consisting 

of only herbaceous vegetation before and after grazing.  

 

Point Cloud Differencing 

We used Multiscale Model to Model Cloud Comparison (M3C2) point cloud differencing tool 

(Lague et al. 2013; James et al. 2017) in CloudCompare to subtract pre-grazed herbaceous points 

from post-grazed herbaceous points in the vertical (z) plane only. This type of analysis is very 

similar to the well-established method of digital elevation model differencing (Brasington et al., 

2003; Wheaton et al., 2009), but uses points instead of gridded raster surfaces. Doing the analysis 

with points removes the step of having to interpolate the points into an elevation surface. Before 

differencing, we thinned and smoothed the pre- and post-grazed point clouds to reduce noise and 

absorb horizontal co-registration error (see Table 2). M3C2 calls this subset of points ‘core 

points’. We applied a 6 cm horizontal distance between core points, effectively removing 96% of 

the total points within a cloud, resulting in 120-200 core points·m-2. The elevation values of the 

core points were calculated as an average of all points within a 3 cm spherical radius of the core 

point. In the vertical (z) plane only, the algorithm measures the distance from the averaged core 

point in pre-grazed cloud to the average core point in the post-grazed cloud (Fig. 2D). If there are 

not core points from both clouds in the same vertical cylinder, then no differencing occurs.   

 

We performed point cloud differencing for each transect and for entire plots (minimum convex 

polygon surrounding the 5 transects). We isolated each transect in CloudCompare using the 
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‘cross-section’ tool. We set the width of the transects at 1 m, an area we thought would contain 

the 40 cm wide frame measurements with some additional space for possible spatial registration 

errors. We then exported the M3C2 point data to .csv format. We deleted any point difference 

values < -1.0 m or >1.0 because grass could not have been grazed or grown a meter in the one-

month duration of the study. The sporadic existence of such erroneous values is due to some kind 

of error, most likely an unfiltered tree or shrub point differenced from underlying grass points. 

For each plot, the existence of these points was typically <0.5%. 

 

Repeatability Error and Threshold for Detecting Vegetation Height Change  

Because we estimate vertical differences between point clouds at two points in time, it is essential 

to quantify the repeatability (precision) error of point cloud reconstructions in order to separate 

true grass height change from measurement error. Good point cloud reconstruction requires 

finding the same surface features in multiple images. This can be an easier task for solid features 

(e.g., bare-ground, rocks) that are visible from several angles. For vegetative surfaces, even very 

slight differences in image perspectives or illumination can cause features to be obscured or have 

altered texture between successive images. This phenomenon can cause point cloud 

reconstructions of vegetation to be less repeatable. For each plot we measured the repeatability 

between the before and after grazing point clouds by looking initially at the check points. With 

perfect repeatability, the check point modeled coordinates should not change between two points 

in time. The observed change can be used to estimate repeatability error primarily due to scene 

geometry, lens calibrations, or reference quality. In addition to the check point analysis, we 

developed an herbaceous vegetation reconstruction error term. We did so by reconstructing a 3D 

scene twice using two independent image sets acquired within 30 minutes of each other (plot 5 on 

Sept 6, 2016). We used M3C2 to vertically difference the point clouds (same methods described 

previously). In theory, there should be no vertical difference between the point clouds, so any 

difference is due to reconstruction error. The standard deviation of check point differences was 
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3.0 cm. As expected, the standard deviation of herbaceous points (using same filtering methods) 

was larger at 7.7 cm. We calculated the total repeatability error for each plot as the standard 

deviation of the check point vertical repeat error plus 4.7 cm (7.7 cm herbaceous height SD minus 

3.0 check point SD) for herbaceous reconstruction error (Fig. 2E; Table 2). Based on this two-part 

error assessment, the vegetation vertical repeatability error among plots ranged from 5.2 to 7.5 

cm (Table 2). 

 

We added a 90% confidence interval to the repeatability error to set a grass height change 

detection threshold that reduces type I errors (false positive for grazing designations).  

 

Grass height change detection threshold = (check point SD + 4.7 cm) * 1.645                  [3] 

 

Using plot 5 as an example, the repeatability SD of the check points was 1.1 cm. We added the 

grass reconstruction error of 4.7 cm for a total of 5.8 cm. The CI90 = 5.8 * 1.645 = 9.5 cm. Using 

this logic, grass height must be reduced by 9.5 cm in this plot for it to be considered grazed. 

Vegetation height change detection thresholds ranged from 8.5 cm to 12.3 cm (Table 2).  

 

We applied the vegetation height change detection threshold to all core points in the differenced 

point clouds and labeled each point as grazed or ungrazed (Fig. 2E). We then calculated the 

percentage of ungrazed core points within the total forage core points and used that value in the 

‘ungrazed plant’ method equation (Eq. 1; Fig. 2F) to estimate forge utilization. We then 

compared these values of utilization with ground-based estimates of utilization at transect scale, 

plot scale aggregated from 5 transects, and plot scale with all measurements within a polygon 

surrounding the transects (Fig. 2F). Transect 5 of plot 4 was omitted from the study because we 

failed to image the entire plot during August acquisition. Our comparative analysis contained 29 

transects within 6 plots.  
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Accuracy of point cloud maximum plant heights   

Accuracy in this case, refers to how well we can create a point cloud to capture the ‘true’ 

vegetation heights. This differs from the previous section that was primarily concerned with the 

repeatability of point cloud generation. Knowing how well point cloud reconstructions 

represented the true structure of the grass indicates how sensitive our methods are to detecting a 

change in height. It may also provide an explanation for differences between the ground and point 

cloud methods for estimating utilization. Prior to this the study, the accuracy of 

photogrammetrically reconstructing herbaceous vegetation from UAS imagery was unknown in 

our study ecosystem. To quantify vegetation maximum height accuracy, we used a hand-held tape 

to measure the maximum height of 21 herbaceous plants (grasses and forbs) immediately prior to 

the August image acquisition. We then compared the ground-based measured heights with the 

point cloud heights of those same 21 plants using CloudCompare.  

 

Results  

Agreement between imagery and ungrazed plant method of estimating utilization 

At the transect scale, there was a poor linear relationship between point cloud and ‘ungrazed 

plant’ methods of utilization (R2 = 0.011; Fig. 3A), and differences ranged from an overestimation 

(below 1:1 line) of 38% to an underestimation (above 1:1 line) of 34% of ground-based value. 

The median absolute difference between the methods was 13% (Fig. 3D). At the aggregated 

transect scale, the agreement between the point cloud and ungrazed plant method was much 

stronger than the transect scale (R2 = 0.78; b = 0.41; Fig. 3B). Method differences ranged from an 

overestimation of 8% to an underestimation of 6% and median absolute difference was 5.2% (Fig. 

3D). Agreement at the plot scale was also strong (R2 = 0.81; b= 0.49; Fig. 3B); and ranged from 

an overestimation of 8% to an underestimation of 3%, and the median absolute difference was 6% 
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(Fig. 3D). Interestingly, at both the aggregated transect and entire plot scales, the ground-based 

estimate of utilization was underestimated when the point cloud estimate was <15% utilization 

and overestimated when >15% (Fig. 3B). 

 

The average utilization of all 6 plots combined was estimated at 18.5% using the ungrazed plant 

method (Table 3). The point cloud method with 5 aggregated transects had utilization of 20.8%, 

while the entire plot point cloud method estimated a total utilization of 22.8% for all 6 plots. In 

terms of plot rank order (most to least), the point cloud methods were similar to the ungrazed 

plant method with some slightly different ordering (Table 3). The discrepancy in rank order 

between the ground-based and point cloud methods was the result of only a few percentage 

points.  

 

Agreement between imagery and biomass change method of estimating utilization 

The agreement between the point cloud methods and biomass change field method was not as 

robust as the ungrazed plant method. At the aggregated transect scale, the agreement between the 

point cloud and biomass change estimates of utilization was modest (R2 = 0.46; b=0.61; Fig. 3C); 

and differences between the point cloud and biomass change estimates of utilization ranged from 

an overestimation of 9.8% to an underestimation of 10.6%, and median absolute difference was 

4.7% (Fig.3D). At the plot scale, the agreement was also modest (R2 = 0.51; b=0.76; Fig. 3C); and 

differences between the point cloud and biomass estimates of utilization ranged from an 

overestimation of 8.9% to an underestimation of 8.9%, and median absolute difference was 3.6% 

(Fig.3D). As occurred with the ungrazed plant results, at both the aggregated transect and plot 

scales, the biomass change estimates of utilization was underestimated when the point cloud 

estimate was <15% utilization and overestimated when >15% (Figs. 3C). 
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The utilization of all 6 plots combined was estimated at 23.3% using the biomass change method 

(Table 3). The point cloud method with 5 aggregated transects had utilization of 20.8%, while the 

entire plot point cloud method estimated a total utilization of 22.8% for all 6 plots. Utilization 

rank order using the biomass change method was a bit different than the other methods (Table 3). 

Most notably, it estimated plot 3 to have the highest utilization (37.5%), 15% higher than the 

ungrazed plant method, 11% higher than the aggregated transect point cloud method, and 9% 

higher than the entire plot point cloud method.   

 

 

Accuracy of point cloud maximum plant heights   

On average, the point maximum plant heights were 45% of ground measured heights with SD of 

12% (Fig. 4; Appendix Table 1). Under-estimation of grass plant height is likely a function of 

imagery that is too coarse to detect and match features in the diffuse canopy and possible 

movement of that canopy caused by wind.  

 

 

Discussion 

Our ‘proof of concept’ assessment provides results that support the use of photogrammetric point 

cloud differencing as a viable alternative to ground-based estimates of forage utilization in a 

semi-arid mixed shrub savanna ecosystem. There was strong agreement between utilization 

estimates using drone-based point cloud differencing of plant height and the ground-based 

ungrazed plant method (developed at SRER) for which it was expected to mimic. There was also 

good agreement with the biomass change ground-method. This suggests that the point cloud 

method of detecting change in plant height could provide reliable estimates of utilization in other 

rangeland ecosystems, and more importantly represent utilization over a larger spatial extent with 

shorter field-time than the traditional ground-based estimates. 
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The approach of simply estimating change in plant height is advantageous compared with other 

remote sensing approaches that must estimate forage biomass at multiple points in time. 

Specifically, our method should be more stable across seasons than a 2D imagery spectra 

approach (e.g., Wang et al. 2014) where spectra/biomass relationships can differ among seasons 

for the same amount of mass. Additionally, our approach should be more replicable than a 3D 

representation of biomass which is reliant on making DTMs and canopy height models (e.g., 

Cunliffe et al. 2016). For example, our approach could be especially advantageous in ecosystems 

with large amounts of herbaceous cover (e.g., Great Plains) that would make it difficult to sense 

the ground elevation. 

 

Agreement between ground-based and point cloud methods were stronger at plot scale than 

transect scale. Some of this can be attributed to the central limit theorem, which suggests that as 

more measurements are aggregated, the distribution will better represent the central tendency of a 

normal distribution leading to better agreement between the methods. In addition, the mechanics 

of performing the measures could contribute to the improved relationship at the plot-scale. In the 

ungrazed plant method, the absence of a plant at the point of observation causes the observer to 

seek the nearest plant, perhaps away from the transect line. This can create a mismatch in the 

exact ground footprint being sampled by the two methods. Also, the ground-based method is 

taking a sample of 20 individual plants along the transect. The point cloud method cannot 

distinguish individual plants and is instead taking a census of all herbaceous points in the 3 cm 

radius core point (~120-200 core points per m2). If there is a large plant consisting of multiple 

core points, some points may be classified as grazed and others as ungrazed, leading to different 

estimates of utilization compared to the ground-based method which would have classified that 

entire plant as grazed.  
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Interestingly, the strong relationship between the point cloud and both the ungrazed plant and 

biomass change estimates of utilization occurred in spite of the point cloud representing on 

average 45% of grass height. We propose that the strong relationship exists because 1) grass mass 

is disproportionately concentrated at the lower portions of the plant (Nafus et al., 2009; Schmutz 

et al., 1963), and 2) we considered any plant with ≤ 10% utilization as ‘ungrazed’ in our ground 

estimates. Based on the agreement between the field and point cloud methods, it appears that our 

ability to model the bottom 45% of plant height was sufficient for the level of grazing intensity in 

this study. For studies or management goals that require a more sensitive detection of grazing, it 

would possible to reconstruct the top of grass canopies better by flying lower to the ground or 

using a sensor with higher spatial resolution.  

 

We defined grazing in this study as a modeled grass height reduction with 90% confidence 

interval. The confidence interval can be changed to better meet management goals. Relaxing this 

threshold will likely increase the points that are identified as grazed which in turn will increase 

utilization estimates. This could increase Type I errors of identifying grass as being grazed when 

it was not. Consequences of this could be the pasture is grazed less than desired. Strengthening 

the threshold will reduce the number of points we identified as grazed which will lower 

utilization estimates. This could increase Type II errors (true grazing that is not detected) for this 

application. Consequences of this could be the pasture is grazed more than desired.  

 

There are a few potential limitations of the point cloud utilization method. First, it assumes any 

reduction in herbaceous height past the threshold is due to grazing. Vegetation height could also 

be reduced by wind, rain, animal trampling, or sagging under their own weight. It may be 

appropriate to consider and inspect these occurrences before assuming all height reduction is due 

to grazing. Second, the point cloud method, along with the field methods we compared it to, are 

conservative estimates of utilization. It is possible that some utilization was not detected due to 
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grass growth after being grazed. This was likely an infrequent occurrence because we timed the 

grazing to coincide with peak biomass. Third, it is unlikely that herbaceous species (e.g., native 

vs. non-native) can be distinguished with high-resolution imagery. Therefore, an estimate of what 

is being utilized will be very challenging. Because the vegetation community was fairly simple at 

SRER, separating woody vegetation, herbaceous vegetation, and non-vegetation features was 

achievable. However, further parsing of vegetation composition will become extremely 

challenging when using RGB sensors.   

 

Expanding Spatial Coverage of Point Cloud Analysis 

This study demonstrated an ability to measure forage utilization at plot scales (0.25 ha). With this 

proof of concept established, the method must be expanded and tested over larger areas. The real 

advantage of drone data is to cover greater extents of land and capture more indicator variability 

than can be realistically sampled with ground methods.  

 

An additional benefit of a drone approach is generating a spatial explicit map of forage utilization 

across a pasture. These image products will be used to better understand the response to 

management practices intended to change grazing intensity and location (Brock and Owensby, 

2000; Guenther et al., 2000). Utilization maps will improve our knowledge of herbivore behavior 

in relation to habitat characteristics such as distance from drinking water, slope, previously 

grazed patches, and neighboring non-forage vegetation (e.g., Bailey et al. 1996; Washington-

Allen et al. 2004). A utilization map also enables a reverse assessment of the accuracy of 

utilization estimates based on a few ground-based estimates to represent pasture- and landscape-

scale patterns. The implication being that we are able to ask how well ‘key areas’ represent the 

response of utilization at the pasture-scale to changes in the management practices and growing 

conditions. This could especially be useful when two or more herbivore species are grazing, such 
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as elk and cattle, and a ‘key area’ designed for cattle may not represent the spatial use pattern of 

elk (Laca et al., 2010) 

 

With a few workflow and technological improvements, we think it is feasible to estimate point 

cloud utilization over the entire pasture (150 ha) and potentially even larger areas. Here, we 

identify critical improvements to the workflow that will speed estimates of utilization 

measurements and increase the likelihood of adoption by practitioners. 

 

First, we can reduce the number of images per area needed for herbaceous vegetation 

reconstruction. We only used the nadir images (~190 per plot) for dense point cloud generation, 

and therefore could have avoided the time spent collecting and processing the 760 oblique 

images. Woodlands or other ecosystems with more tree cover may benefit from more oblique 

images to view forage change at the base of the trees. The more open canopy of mesquite savanna 

made it possible to view herbaceous vegetation change at the base of most mesquite trees with 

just nadir images. Future acquisitions at SRER should consist of nadir images along with a 

modest amount (a few dozen) of oblique images which have been shown to improve scene 

geometry in the initial alignment (James et al., 2017). Fewer images and flight lines per area will 

free up our flights to cover larger areas.  

 

Second, we should use higher resolution sensors (more megapixels or longer focal lengths) to 

allow higher flight elevation and greater spatial coverage per flight time without loss of data 

resolution (3000-5000 points·m-2 in our study). Higher resolution sensors are already available for 

the Phantom series (Phantom 4 Pro with 20 mpx) while other studies have demonstrated the use 

of higher-resolution RGB cameras on other drone aircrafts (Bendig et al., 2014; Gillan et al., 

2017; Li et al., 2016). We should also consider flying more than one drone at a time, which 
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currently requires a special waiver from the United States Federal Aviation Administration (CFR 

107.35).  

 

Third, we need more precise and differentially correctable GNSS onboard the drones to precisely 

capture the coordinates of each exposure station (location of camera when image was taken) to 

streamline direct georeferencing and reduce reliance on ground control. The success of our point 

cloud differencing method depends on the point clouds being very well co-registered in 3 

dimensions. Horizontal (xy) co-registration is important in order to difference the height of same 

grass plant. Vertical (z) co-registration is important because it drives the vertical repeatability 

error and thus sets the threshold for detection of vegetation height change. We achieved very 

good co-registration with the RTK surveyed ground control points (0.9 cm horizontal, 1.4 cm 

vertical). However, the survey added an entire day of field work and hours of post-processing in 

Photoscan spent locating targets in the imagery.  

 

With enough precision, direct georeferencing with RTK GNSS has the potential to greatly reduce 

the cost of measuring utilization over larger areas by reducing ground control requirements. Early 

results from drone-mounted RTK report accuracies of 2-4 cm (x, y) and 2-9 cm (z) among a 

variety of systems (Forlani et al., 2018; Hugenholtz et al., 2016; Rehak et al., 2013). Given that 

our accuracies are were better than the drone-mounted RTK tests suggests that establishing 

permanent ground control points and RTK base stations may provide a greater return on 

investment for range and pastures that are routinely measured.  

 

Alternatively, there is a little known photogrammetric technique that can be used to ensure good 

co-registration between multi-temporal imagery products without differential GNSS. Raw images 

from before and after a grazing event can actually be processed within the same project 

‘chunk’(Gillan et al., 2016; Korpela, 2006). The initial alignment should be conducted with all 
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images from both time periods, while the dense point clouds should be created with images from 

just one time period. This multi-temporal approach should produce point clouds co-registered to 

within a few cm. The drawback, is that the absolute georeferencing accuracy of the products will 

still depend on the references used (GCPs or GNSS). Also, doubling the image count in a project 

chunk will increase processing demands in the initial alignment.  

 

Reducing the processing time of point clouds is the final improvement needed to expand the use 

of drone-based photogrammetry to estimate utilization of forage on rangelands. Measuring 

indicators over entire pastures will require tens of thousands of images, and processing them is a 

big data problem that quickly overwhelms the model of using a single powerful desktop 

computer. To achieve the goal of creating useable imagery products and analysis summaries in 1 

or 2 days, we must shift to a cloud computing or network computing model where super 

computers or many regular computers tackle the problem with parallel processing nodes. Projects 

such as NSF funded Cyverse (Goff et al., 2011) and Google Earth Engine (Gorelick et al., 2017) 

show that big data processing is accessible now to anyone with an internet connection, though 

advanced computing skills is often required. Removing the technical barriers for mass adoption 

will likely require a ‘software-as-a service’ model where users upload images to a server and get 

an automated product (e.g., point cloud) in return. This shifts the burden of photogrammetry 

expertise as well as purchasing and maintaining hardware. Commercial companies (e.g., 

DroneDeploy and Agisoft) are offering cloud-based image product creation, but they are likely to 

be expensive over large extents and not specific for rangeland applications. Researchers and 

resource agencies should partner to develop cloud-based image processing tools specifically for 

estimating forage utilization and other rangeland monitoring applications.   
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Implications 

We focus on three implications that emerge from this successful ‘proof of concept’ assessment 

showing that drone-based estimates of forage utilization can replicate estimates from traditional 

ground-based methods. First, there is promise to provide confident estimates of forage utilization 

patterns over large pastures and landscapes, at levels of spatial precision that are consistent with 

ground-based methods, and that promise will only increase as the technology becomes more 

affordable and easy to use.  

 

The second implication is related to the clear benefit of adopting 21st century technology to assess 

site-specific resource conditions at exceptional precision and extent. This implies that training for 

rangeland managers (or at least geospatial specialists) is likely to include operation of drones for 

data collection and use of cloud-computing resources to handle data processing demand. 

Adopting these technologies may be similar to the proliferation of global positioning systems 

(GPS) and geographic information systems (GIS) in the later 20th century, where the initial high 

computing costs were reduced, use of the technologies became the norm, and the availability of 

more precise spatial patterns was applied to prescribe and evaluate management practices.  

 

The third implication is that these technologies do not replace field skills in plant identification, 

knowledge of phenological patterns of growth, and ability to associate utilization patterns with 

the distribution of soils and geomorphic surfaces. Common sense and field setting acuity will 

remain critical to logical interpretation and application of the extensive and precise information 

available from these new technologies.   
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Figures and Tables 

 

 

Fig. 1. Study area and plot design on the Santa Rita Experimental Range in southern Arizona, 

USA 
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Fig. 2. Workflow to calculate forage utilization with point clouds. A) We created drone-based 

structure-from-motion photogrammetry point clouds before and after a month-long grazing event. 

Here we depict a single 30 m transect. B) Tall woody vegetation was removed using a local 

maximum slope threshold in Agisoft Photoscan. C) Bare-ground and woody stems were filtered 

with a green leaf algorithm leaving only herbaceous vegetation. D) Vertical height change 

estimated by subtracting pre-grazed herbaceous points from post-grazed herbaceous points using 

M3C2 in CloudCompare. E) Repeatability of height change estimated at each plot and applied a 
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90% confidence interval to set a vegetation height change detection threshold (*threshold varies 

per plot). Each point was labeled as ‘grazed’ or ‘ungrazed’ based on this threshold. F) The 

percentage of ungrazed points was entered into the ungrazed plant method equation (Eq. 1) to 

estimate utilization. We compared point cloud utilization with ground-based utilization at 

individual transects (white rectangles), plot aggregated from 5 transects, and the entire plot (black 

rectangle).  
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Fig. 3. A) Linear regression between point cloud and ungrazed plant method estimates of 

utilization with transects as the sample unit. Plot numbers are labeled 1-6 on the graphs. B) Linear 

regressions between point cloud and ungrazed plant method with the sample units being plot 

aggregated from 5 transects and entire plot. C) Linear regressions between point cloud and 

biomass change method with the sample units being plot aggregated from 5 transects and entire 

plot. D) Box plots showing difference between point cloud and ground-based method utilization. 

Whiskers show the range, boxes show the interquartile range, and the middle line represents the 

median.  
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Fig. 4. Comparing the maximum height of one Arizona cottontop (Digitaria californica) plant as 

measured in the field and estimated with sUAS-based photogrammetric point clouds. The ground-

measured height was 80 cm but was modeled with point clouds to be 36 cm. Combined with point 

cloud repeatability error 90% confidence interval of ~ 9 cm, the plant would need to be reduced 

to a point-cloud height of 27 cm before it could be detected as ‘grazed’. 
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Table 1. Image acquisition specifications 

 
Aircraft DJI Phantom 3 Professional & Phantom 4 multi-rotors 

Sensor 12 mpx; 33 millisecond rolling shutter readout; RGB 

Image format jpeg file format; 5.2 mb per image; bit depth R(8) + G(8) +B(8) 

Autopilot Altizure v 3.0 for Ipad 

Flying Height ~20 m above ground level 

Image dimensions 8-10 mm ground sampling; 31 m x 23 m footprints 

Ground speed 4-5 m/second 

Image Count per plot 
~ 950 total; 190 nadir, 760 42° oblique (190 N, 190 S, 190 W, 

190 E) 

Image forward and side overlap 75-80% 

Flying time per plot 45 min 

 

 

Table 2. Check point (n=3 per plot) repeatability and vegetation height change detection 

threshold  
 

Plot Check point x 

repeatability 

RMSE (cm) 

Check point y 

repeatability 

RMSE (cm) 

Check point z 

repeatability 

RMSE (cm) 

Check point z  

repeatability 

SD (cm) 

Grass 

Repeatability 

error SD (cm) 

Total 

Repeatability 

error SD (cm) 

CI90 Height 

Change 

Threshold 

(cm) 

1 2.0 1.8 1.7 1.2 4.7 5.9 9.7 

2 0.8 1.1 0.8 1.0 4.7 5.7 9.3 

3 0.8 1.5 1.9 0.5 4.7 5.2 8.5 

4 2.5 1.4 2.3 2.8 4.7 7.5 12.3 

5 0.8 1.1 0.9 1.1 4.7 5.8 9.5 

6 0.7 0.6 0.9 1.0 4.7 5.7 9.3 

 

 

Table 3. Utilization estimated with ground-based methods and point cloud differencing methods 

arranged from most to least utilization by plot. Normal approximation used to generate standard 

error and 95% confidence interval.  

Forage 
Utilization 

Ungrazed Plant 
Aggregated 
Transects 

Biomass Change 
Aggregated 
Transects 

Point Cloud 
Differencing  
Aggregate 
Transects 

Point Cloud 
Differencing  

Plot Scale  

Most Plot 6 (24.2%) Plot 3 (37.5%) Plot 6 (32.0%) Plot 6 (31.1%) 

 Plot 3 (22.4%) Plot 4 (23.4%) Plot 3 (26.8%) Plot 3 (28.5%) 

 Plot 5 (20.7%) Plot 5 (21.8%) Plot 4 (25.1%) Plot 5 (26.8%) 

 Plot 4 (16.4 %) Plot 6 (22.2%) Plot 5 (23.3%) Plot 4 (25.1%) 

 Plot 2 (14.6%) Plot 1 (13.9%) Plot 1 (9.4%) Plot 1 (13.7%) 

Least Plot 1 (12.9%) Plot 2 (13.5%) Plot 2 (8.5%) Plot 2 (11.1%) 

Avg. 18.5 ± 4.7% 23.3 ± 9.1% 20.8% ± 10.1% 22.7% ± 8.6% 
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Supplemental Material 

Supplemental Table 1. Comparison of ground measured and point cloud modeled maximum 

height of 22 selected herbaceous plants.  

 

Plant 
Specimen 

Species Ground  measured 
maximum height 

(cm) 

Point cloud maximum 
height (cm) 

Height proportion 

(Point cloud height / Ground-
based height) 

1 Digitaria californica 80 36 0.45 

2  Heteropogon contortus  80 33 0.41 

3  Bouteloua filiformis 50 30 0.6 

4  Eragrostis lehmanniana 80 28 0.35 

5 Digitaria californica 50 26 0.52 

6 Eragrostis lehmanniana 100 53 0.53 

7  Ambrosia artemisifolia 40 13 0.32 

8 Aristida sp. 60 10 0.16 

9 Kallstroemia grandiflora 50 30 0.6 

10 Setaria leucopila 58 17 0.29 

11 Heteropogon contortus 100 44 0.44 

12 Digitaria californica 64 40 0.62 

13 Eragrostis lehmanniana 80 27 0.33 

14 Aristida sp. 69 29 0.42 

15 Digitaria californica 80 33 0.41 

16 Aristida sp. 50 31 0.62 

17 Eragrostis lehmanniana 75 34 0.45 

18 Eragrostis lehmanniana 50 27 0.54 

19 Amaranthus sp. 60 26 0.43 

20 Digitaria californica 60 21 0.35 

21 Aristida sp. 55 34 0.61 

    Mean 0.45 
Standard Deviation 0.12 
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Supplemental Table 2. Point cloud marker residuals (surveyed coordinate minus modeled 

coordinate) 

 

Plot 
Acquisition 

Date 
Markers (n) 

Residual RMSE (cm) 

Easting(x) Northing(y) Elevation(z)  x, y, z 

1 

Aug. 2016 
GCP (10) 2.6 0.5 0.7 2.8 

Check (3) 1.6 1.5 0.8 2.4 

Sept. 2016 
GCP (10) 0.9 0.9 0.6 1.4 

Check (3) 1.4 1.0 2.2 2.8 

2 
Aug. 2016 

GCP (10) 0.8 0.6 0.6 1.3 

Check (3) 1.1 1.4 2.2 2.9 

Sept. 2016 
GCP (10) 0.5 0.4 0.3 0.8 

 Check (3) 0.6 0.4 1.3 1.5 

3 

Aug. 2016 
GCP (10) 1.5 1.3 0.4 2.1 

Check (3) 2.2 0.9 0.4 1.0 

Sept. 2016 
GCP (10) 1.1 1.0 0.5 1.6 

Check (3) 0.8 1.6 1.6 2.4 

4 

Aug. 2016 
GCP (10) 1.2 1.2 3.1 3.6 

Check (3) 0.6 0.6 1.5 1.7 

Sept. 2016 
GCP (10) 1.4 1.7 2.1 3.1 

Check (3) 2.6 1.5 2.4 3.8 

5 

Aug. 2016 
GCP (10) 1.0 0.6 1.0 1.6 

Check (3) 0.5 0.4 1.6 1.7 

Sept. 2016 
GCP (10) 0.7 0.6 0.5 1.0 

Check (3) 0.5 0.8 0.9 1.4 

6 

Aug. 2016 
GCP (10) 0.8 0.9 0.9 1.5 

Check (3) 0.9 0.5 1.8 2.0 

Sept. 2016 
GCP (10) 0.9 0.5 0.7 1.3 

Check (3) 0.2 0.2 1.2 1.2 

Plot 

Avg 

Aug. & Sept. 

2016 

GCP (60)  1.1 0.8 0.9 1.8 

Check (18) 1.0 0.8 1.4 2.0 
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Abstract 

The recent availability of small and low-cost sensor carrying unmanned aerial vehicles (UAVs, 

commonly known as drones) coupled with advances in image processing software (i.e., structure 

from motion photogrammetry) have made drone-collected imagery a potentially valuable tool for 

range inventory and monitoring. Transitioning from research demonstrations to a suite of 

monitoring methods that are useful for supporting management decisions (e.g., accurate, 

repeatable, and cost-effective) will require additional exploration to develop best practices for 

image acquisition and workflow specifications that can efficiently estimate multiple indicators. 

The objectives of this project were to: 1) develop a unified workflow to measure three common 

rangeland indicators from drone imagery: fractional cover of plant functional types, canopy gaps, 

and vegetation height; 2) assess agreement between imagery-based and field-measured values and 

3) investigate how fractional cover estimates differed between two sensor types (RGB v. multi-

spectral). We embedded with a field monitoring crew in the Northern California District of the 

Bureau of Land Management to compare imagery-derived (using small drones) and field-

measured values. The correspondence between imagery and field methods yielded encouraging 

agreement while revealing systematic differences between the methods. There was minimal 

difference in fractional cover accuracy between sensor types. Drone imagery will enable broader 

extent observations of fractional cover, but with a tradeoff of detail loss. For canopy gaps and 

vegetation heights, drone imagery was found to measure the indicators more thoroughly than field 

methods. Workflow best practices for producing these indicators is likely to vary by vegetation 

composition and phenology. An online space dedicated to sharing imagery-based workflows 

could spur collaboration among researchers and quicken the pace of integrating drone-imagery 

data with adaptive management of rangelands.  

 

Keywords: drone, unmanned aerial system, rangelands, adaptive management, ecological 

inventory and monitoring, remote sensing 
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Introduction 

Rangeland inventory and monitoring (I & M) data, used to evaluate ecosystem function and 

successional states, are important for adaptive management of public and private rangelands 

(Allen et al., 2017; Kendall and Moore, 2012; Mitchell, 2010). Because it is challenging to 

measure fine-scale vegetation and soil indicators (e.g., species composition, canopy gaps, 

vegetation heights) over entire landscapes, sampling approaches are commonly used to 

extrapolate limited data from field plots to estimate conditions in larger landscapes (Elzinga et al., 

1998; Karl et al., 2017). On landscapes units with heterogeneous or patchy vegetation 

characteristics, a field sampling approach that observes a relatively small proportion of the 

inference area may estimate indicator values and their change with low confidence (Booth and 

Cox, 2011).  

 

Range scientists and managers have long sought a remote sensing solution to extend geographic 

coverage of indicator observations. Satellite imagery products, however, are often too coarse to 

observe fine features of interest such as individual plants and the bare-ground between them 

(Tueller, 1996). Imagery from manned airplanes can be sufficiently fine-grained but are often 

cost-prohibitive. . The recent availability of small and low-cost sensor carrying unmanned aerial 

vehicles (UAVs, commonly known as drones) along with the codification of piloting and airspace 

rules have made drone-collected imagery a potentially valuable tool for range inventory and 

monitoring. Small drones (< 5 kg) can now be easily brought into the field and deployed to image 

dozens to hundreds of hectares at spatial resolutions capable of measuring fine-scale vegetation 

and soil indicators. They hold the promise of observing larger extents and estimating landscape I 

& M values with higher confidence than traditional field sampling.  

 

Research has shown that several quantitative range indicators can be estimated from high-

resolution imagery (<10 cm ground sampling distance (GSD)). Fractional cover estimates have 
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been demonstrated using classification algorithms (Baena et al., 2017; Cruzan et al., 2016; A. S. 

Laliberte et al., 2010a; Laliberte et al., 2010b; Laliberte et al., 2011b, 2011a; Laliberte and 

Rango, 2011; Lu and He, 2017; McGwire et al., 2013) and visual interpretation (Booth and Cox, 

2009, 2008; Breckenridge et al., 2011; Duniway et al., 2012; Hardin et al., 2007; Karl et al., 2014; 

Moffet, 2009; Seefeldt and Booth, 2006) with high success for plant functional types and species 

identification. From high-resolution imagery, it is possible to estimate large inter-canopy gaps 

(Karl et al., 2012; Rango et al., 2009) as well as vegetation heights and structure using 

photogrammetry (Cunliffe et al., 2016; Gillan et al., 2014; Jensen and Mathews, 2016; Olsoy et 

al., 2018; Swetnam et al., 2018) 

 

Most existing research has focused on quantifying indicator value agreement and inherent 

differences between imagery and traditional field methods. This is necessary for integrating 

drone-based indicators with existing monitoring programs and legacy field data. Transitioning 

from research demonstrations (i.e., one-off research projects that culminate with a peer-reviewed 

publication) to a suite of monitoring methods that are useful for supporting management 

decisions (e.g., accurate, repeatable, and cost-effective) will require additional exploration to 

develop best practices for image acquisition and workflow specifications that can efficiently 

estimate multiple indicators. Public agencies that manage rangelands often need multiple lines 

evidence to diagnose complex land issues (Bland et al., 2017; Michalak et al., 2017) and to carry 

out land health assessments (USDI Bureau of Land Management, 2001). Calculating multiple 

indicators from a single image acquisition and workflow helps to reduce the cost of such data. 

 

Workflows must be customized to account for compositional and phenological differences 

between vegetation communities. For example, methods that successfully estimate fractional 

cover in a shrubland may fall short in a more biologically diverse grassland. Moreover, the timing 

of collecting data conducive to detecting (in the imagery) the I & M features of interest is likely 
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to vary between ecosystems and with precipitation regimes (Hunt et al., 2003; Lass and Calihan, 

1997).  

 

In this paper, we present the results of a pilot program to test the use of image products collected 

from small UAVs to produce multi-indicator rangeland inventory and monitoring data. For this 

test, we embedded with a Bureau of Land Management (BLM) field monitoring crew in Northern 

California to compare field-measured and imagery-derived indicator values and to evaluate the 

logistics of using small UAVs as a field-deployed tool for rangeland monitoring. We sought to 

develop image acquisition and processing methods specific for this study area (see details below) 

in part because the vegetation communities  represent a large portion of other lands the BLM 

manages in the American West. Accordingly, the methods described in this paper could be 

applied to other similar vegetation communities.   

 

Our objectives were to: 1) develop a unified workflow to measure three common rangeland 

indicators from drone imagery: fractional cover of plant functional types, canopy gaps, and 

vegetation heights; 2) assess agreement between imagery-based indicator values and field-

measured values; and 3) investigate how fractional cover estimates differed between two sensor 

types: RGB v. multi-spectral.  

 

Methods 

Study Area 

Field research was conducted at the Applegate and Eagle Lake field offices in the BLM’s 

Northern California District (NCD), in northeastern California and across the border into Nevada 

(Fig. 1). The combined land area of both field offices is 11,165 km2 and consists primarily of 

semi-arid sagebrush steppe, scattered mountain ranges reaching elevation of 2500 m, and 

extensive desert playas devoid of vegetation. Mean annual precipitation ranges from 25 to 35 cm 



117 
 

with 75% occurring between October and March. Typically, the warmest month is July with 

average temperature highs of 31.5°C and lows of 10.4°C. January is typically the coldest month 

of the year with average temperature highs of 4.7°C and lows of -6°C. A primary use of BLM 

lands in the NCD is cattle grazing. Greater sage-grouse (Centrocercus urophasianus), a species of 

conservation concern, has critical habitat within the district. The district has been heavily invaded 

by cheatgrass (Bromus tectorum) which has led to large range fires such as the Rush fire in 2012. 

There are also large populations of wild horses and burros which can contribute to impairment of 

rangeland health across the NCD and localized heavy impacts to riparian areas.  

 

Field Data Collection 

Three-person crews collected field data following the protocols of the BLM’s assessment, 

inventory, and monitoring (AIM) strategy (MacKinnon et al., 2011). The AIM program is 

intended to provide long-term data on the status and trend of land health (biotic integrity, soil and 

site stability, hydrologic function) for multiple applications and scales on public rangelands 

(MacKinnon et al., 2011; Taylor et al., 2014; Toevs et al., 2011). AIM uses standardized 

collection methods, and randomized (i.e., probability-based) sampling designs to infer the status 

and trend of indicators across reporting areas that could include grazing allotments, watersheds, 

or entire field offices or districts. A total of 122 plots were visited and sampled in the NCD 

between May 22 and September 11, 2017.  

 

At each plot, three 25-m transects were established radiating out from the plot’s center to form a 

‘spoke’ plot design, oriented at magnetic 0°, 120°, and 240°, respectively (Herrick et al., 2017; 

Fig. 2). The transects lines started 5 meters away from the plot center where equipment was 

stored and a soil pit dug to determine ecological site.  
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Along each transect, fractional cover was estimated using the line-point intercept method (LPI; 

Herrick et al., 2017). Every 0.5 m along the transect, an observer dropped a 1-mm-diameter metal 

pin to the ground without directing its landing location. Vegetation intercepted by the pin was 

recorded to species. The ‘top-hit’ (i.e., foliar cover) was recorded along with any lower vegetation 

touched by the pin. Ground surface was recorded for each pin drop as bare soil, rock, litter, or 

biological crust regardless of whether vegetation was also encountered. Each transect had 50 

observations, and transects were aggregated to form a plot sampling unit with a total of 150 

observations. To facilitate comparison with imagery fractional cover, we used just the ‘top-hit’ 

vegetation to calculate foliar cover. Cover (as a proportion) is calculated by dividing the number 

of observations of a given cover class by the total number of observations.  

 

Vegetation heights were measured along the LPI transects at 2.5 m intervals (30 total 

measurements per plot). The height and species of the tallest herbaceous and woody vegetation 

within a 15 cm cylinder tangent to the transect was recorded to the nearest cm (Herrick et al., 

2017). This included any dead or dormant plant. For the purposes of this study, only woody 

vegetation heights were compared with drone imagery.  

  

Measures of inter-canopy gaps can help estimate magnitude of wind erosion and parameterize 

erosion prediction models (Okin, 2008; Webb et al., 2014). Inter-canopy gaps were measured 

along the three transects following Herrick et al. (2017). Field crews recorded the distances (in 

cm) between vegetation canopies (i.e., gaps) with only gaps > 25 cm being recorded. The canopy 

gap indicator was reported as the percentage of the total transect length for gap sizes of 25-50 cm, 

51-100 cm, 101-200 cm, and > 200 cm as recommended by Herrick et al. (2017).  
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Developing a Unified Workflow for Multiple Indicators 

Studies describing the use of drone-collected imagery to estimate fractional cover and vegetation 

heights are summarized in Fig. 3. While these studies present varied methods, collectively they 

represent the myriad choices for turning drone-collected imagery into quantitative estimates of 

ecosystem indicators. Breaking down each paper’s workflow into its component parts helped to 

reveal the popularity of choices for each decision and identify gaps in research (i.e., viable 

choices that have not been tested). This literature review served as a starting point for designing a 

workflow tailored to the NCD study area. In addition, we documented (in graphical form) the 

step-by-step instructions to produce each of the indicators (Fig. 4). Taken together, the literature 

review and step-by-step workflow empower other researchers or land managers to understand and 

reproduce this workflow. It may also serve as a template to design a workflow tailored to their 

environment.  

 

UAV Image Acquisition 

UAV imagery was acquired at 16 AIM plots in NCD between June 16 and July 1, 2017 (Fig. 1; 

supplemental Table S1). At 12 of the plots, we collected the imagery 2-5 days after the field 

crews had collected their data. For the remaining four plots, we embedded with the field crew and 

acquired the imagery immediately before the field measurements. Accessing all of the plot 

locations required off-trail hiking across rugged terrain with the drones and associated equipment 

carried in backpacks. We chose the plots to cover a range of ecological sites and vegetation 

communities in coordination with the field crew’s monitoring schedule. Drones were operated 

under a Part 107 sUAS license with a special use permit to conduct air operations over BLM land. 

 

We acquired aerial imagery with Phantom 3 Professional and Phantom 4 quad-rotor drones 

(https://www.dji.com). Both drones have nearly identical 12 megapixel integrated RGB sensors 

(Table 1). We also employed a Parrot Sequoia sensor (https://www.parrot.com), which we 



120 
 

mounted on the Phantom 3. The Sequoia is a very small multi-spectral sensor with green, red, 

red-edge, and near-infrared (NIR) bands (Table 1). With its own external power supply, GNSS, 

and sensor-triggering capabilities, the Sequoia operated independently from the drone.   

 

Autonomous grid pattern missions were programmed in Altizure v 3.0 (https://next.altizure.com). 

We flew one mission to collect nadir (vertical) imagery and four missions to collect 25°-30° 

oblique images because prior research has shown that the incorporation of oblique images into 

photogrammetry can improve scene geometry (James and Robson, 2014). We collected imagery 

40 m above ground level (AGL) at each plot, yielding GSD of 1.5 cm for the Phantom imagery 

and 3.7 cm for the Sequoia imagery (Table 1). This resolution was chosen because it was 

determined resolute enough to detect the presence of bunch grasses while limiting excessive 

processing time typical of finer-scale data (see Gillan et al. In Press). Sequoia imagery was 

collected on only seven plots due to a manufacturer defect that caused the sensor to overheat (see 

Fig. 1 for plot locations and supplemental Table S1 for plot details). At each plot area we 

collected between 210 and 280 images per sensor. Radiometric calibration of the drone-collected 

images was deemed unnecessary because all classification, analysis, and interpretation was 

conducted within individual plots using images that were collected during a single drone flight.  

 

Though the Phantom drones and Sequoia sensor record geographic coordinates of each acquired 

image with its onboard global navigation satellite system (GNSS), it is typically accurate to only 

a few meters, which is too coarse for our desired image products. Because we visited these 

remote plots only one time, it was not practical to install and survey ground control points (GCPs) 

to reference the scenes. To overcome this limitation, we placed a single 8 m long scale-bar in the 

center of each plot instead of surveying GCPs (sensu Carbonneau and Dietrich, 2016). The scale-

bar consisted of two ‘iron cross’ targets on the ends of an 8 m collapsible rod. Informing the 

photogrammetry software of an object of known length (i.e., scale-bar) ensures correct horizontal 
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and vertical dimensions within the image products, enabling accurate estimates of fractional 

cover and vegetation heights. Using this approach, however, the image products may be 

systematically shifted both horizontally and vertically compared to their true location (i.e., 

georeferencing error).  

 

Photogrammetry & Image Product Creation 

We used structure-from-motion photogrammetry (SfM) software Agisoft Photoscan v. 1.3.5 

(www.agisoft.com) to make point clouds and orthomosaics of each plot and sensor separately. 

The general SfM process of making point clouds is well-documented (Eltner et al., 2015; Smith et 

al., 2015; Snavely et al., 2008; Westoby et al., 2012) so it will be abbreviated here. The Photoscan 

workflow follows the same method presented in Gillan et al. In Press, except the use of scale-bar 

referencing. We generated point clouds with densities between 1,000-3,000 points·m-2. 

Orthomosaic spatial resolutions were 1.5 cm for Phantom imagery (Fig. 2A) and 3.7 cm for 

Sequoia imagery (Fig. 2B).  

 

UAV Imagery Indicator Generation 

The following section describes the workflow used to extract indicator values from drone-based 

imagery products. Throughout the workflow (Fig. 4), we prioritized simple and easy to 

implement methods to facilitate adoption by future users. 

 

Classifying Fractional Cover 

Orthomosaics were clipped to a consistent extent around each plot to remove photogrammetric 

artifacts at the edges (i.e., stretching and blurring). Prior to classification, we simplified the 

images through segmentation (i.e., grouping similar contiguous pixel together into objects; 

Burnett and Blaschke, 2003). With very high spatial resolution, classification on segments (or 

objects) have been shown to be more accurate than pixel-based classifications that suffer from 
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‘salt & pepper’ heterogeneity within features such as shrub canopies (Laliberte et al., 2011a). 

Segmentation also facilitates the use of non-color traits such as texture, size, and shape to 

distinguish classes, while pixel-based classifications can generally only use spectra (Navulur, 

2007). Additionally, objects can be more ecologically meaningful such as representing individual 

plants (Laliberte et al., 2010). Using the ‘segment mean shift’ tool in ArcGIS 10.5 

(https://www.esri.com), we attempted to group pixels into real features on the landscape (e.g., one 

segment for one shrub). This was quite difficult to achieve so most objects such as shrubs or large 

rocks often contained multiple segments.  

 

The spectral features we used to classify the Phantom imagery were (Fig. 5): blue mean & 

standard deviation (SD), green mean and SD, red mean and SD, and green leaf algorithm (GLA; 

Louhaichi et al., 2001) mean and SD. Additionally, we used the following spatial features for 

classification of image segments: segment pixel count, rectangularity, and compactness. For 

rectangularity, values range from 0 to 1, with 1 being a rectangle. Compactness is the degree to 

which a segment is circular with values ranging from 0 to 1, where 1 is a circle. For Sequoia 

imagery, we included the red-edge and NIR bands and used normalized difference vegetation 

index (NDVI) instead of the green leaf algorithm. We calculated feature values for each segment. 

 

Noticeably absent from the list of features is canopy heights which are frequently used in object-

based classifications (Baena et al., 2017; Cruzan et al., 2016). In this workflow, canopy height 

models were created after vegetation classification and thus could not be used in the classification 

(details in ‘Vegetation Heights’ section).  

 

The final classes were annual herb/grass, perennial herb/grass, woody, bare-ground, and shadow 

in some cases (Fig. 5). The bare-ground class included bare-soil, rock, and lichen. For 

classification training, we created individual point shapefiles for each class. We placed 50-100 
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points per class on the segmented orthomosaics where we opportunistically found representative 

samples. Identifying specific classes was aided by LPI field data and ground photos. Because 

features (e.g., shrubs) often consisted of multiple segments, we placed multiple training points per 

shrub to capture the heterogeneity of the classes. At several plots (West Ft. Sage197, Tablelands 

440, Shaffer 243, Twin peaks 236, Crest 436, Snowstorm441, and Lower Lake 437), we omitted 

perennial herb/grass as a class because it either did not occur in the plot or the specimens were 

too small and indistinguishable to be useful for training.  

 

We used R package c50 (Kuhn and Quinlan 2017) to classify the orthomosaics. The algorithm, 

which is an R version of SEE5 (www.rulequest.com/see5-info.html), is a machine learning 

decision tree used to predict discrete classes. We specified adaptive boosting with 20 trials and 

disabled winnowing. We used 75% of the training samples to train the classifier and withheld 

25% for validation (see Supplemental Material for complete R code). C50 outputs confusion 

matrices and information to assess the importance of predictor features (see Supplemental Table 

S2 for feature importance and Table S3 for aggregated confusion matrix). We calculated 

fractional cover as the number of pixels per class as a proportion of total classified pixels (Fig. 

2C).  

 

Canopy Gaps 

From the classified orthomosaics, we calculated canopy gaps following the general methods 

presented in Karl et al., (2012b). First, we digitized the three transects using markers (iron-cross 

targets) located at the ends as a reference. We retained the bare-ground class and removed annual 

herb/grass, perennial herb/grass, and woody classes. We then converted the bare-ground raster 

into vector polygons and used the ‘intersect’ tool in ArcGIS to identify the parts of lines crossing 

the bare-ground polygons. We calculated the length of each line and created histograms for the 

proportion of total line length having lengths of 25-50 cm, 51-100 cm, 101-200 cm, and >200 cm.  
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Vegetation Heights 

We calculated vegetation heights using only the Phantom RGB imagery point clouds because the 

coarser Sequoia imagery would produce less detailed 3D reconstructions. Using the ‘classify 

ground points’ tool in Photoscan, We identified points representing the ground. This is a type of 

maximum local slope filter (Montealegre et al., 2015) where the lowest elevation point within a 

user defined grid cell is assumed to be the ground. All additional ground points were identified 

based on a user defined maximum angle and vertical distance from the origin ground point. For 

each plot we specified a grid cell size of 2 m while the max angle and max distance varied 

depending on the vegetation structure and imagery scale. We exported the original dense point 

clouds and the filtered point clouds (only ground points) in log ASCII format (.las) in projection 

WGS 84 UTM zone 10N (EPSG:32610).  

 

In ArcMap, we converted the original point clouds into digital surface models (DSMs) with a 5 

cm cell size by assigning the cell value as the highest elevation point and using natural neighbor 

interpolation to estimate values for cells with no points. Digital terrain models (DTMs) were 

created in a similar fashion with ground-only point clouds. The cell values were assigned the 

average value of the points with natural neighbor interpolation used for cells with no points. 

Using ‘raster calculator’, we subtracted the DTM from the DSM on a cell-by-cell basis to create a 

canopy height model (CHM). Due to the mechanics of interpolation, there is likely to be many 

small and near zero heights in the CHM that do not represent actual vegetation heights. Through 

exploration, we chose a threshold and removed from the CHM any values < 4 cm. In some plots, 

boulders were not filtered out of the point clouds because their slope resembled that of shrubs. To 

remove boulders from vegetation height data, we identified and deleted any height measurements 

that were not identified as vegetation (from the classified maps). Though this study specifically 

looked at woody vegetation heights, we chose not to filter herbaceous vegetation out of the CHM. 
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The spatial resolution of the drone imagery was generally too coarse to detect herbaceous 

vegetation heights (Gillan et al. In Press), especially for species such as cheatgrass (Bromus 

tectorum) and squirreltail (Elymus elymoides) with low-stature growth forms. Analysis of the 

CHMs showed very little if any registered heights concurrent with the presence of herbaceous 

vegetation. We retained all vegetation heights so to not omit any plants that were misclassified. 

Finally, we used the ‘aggregate’ tool to compute the highest height value within a 30 x 30 cm grid 

cell on the CHMs (Fig. 2D). We did this step to more closely match the field method of finding 

the highest part of the plant within a 15 cm radius of the rod.  

 

Comparison between Field and Imagery Indicators 

We assessed agreement between field and imagery indicator values using the plot as the sample 

unit. Imagery indicator values for fractional cover and vegetation heights were calculated within 

rectangular polygons along each field transects’ location approximately 0.33 m wide to contain 

spatial co-registration errors with field measurements. Canopy gap values were estimated along 

the three transects. For each indicator (fractional cover, canopy gaps, vegetation heights), we 

assessed method agreement by comparing the mean values (with 95% confidence intervals) 

across all 16 plots. Mean differences, (which include signed differences), were useful for showing 

bias toward overestimate or underestimate indicator values, while absolute mean differences 

(which eliminate signed differences) were computed to show true departure between methods. 

Additionally, we performed least-squares regression and calculated coefficients of determination 

(R2 values) to describe linear relationships between methods. For vegetation heights, we 

additionally compared maximum and standard deviation and the proportion of observations 

within eight histogram bins. On a subset of plots (n=7), we compared fractional cover agreement 

between Phantom and Sequoia multi-spectral imagery. Due to the relatively small sample sizes, 

we did not separate analysis by ecological site which is typically done for I & M data 

interpretation (see Karl and Herrick, 2010).  
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Results 

Method Agreement - Fractional Cover  

The woody vegetation cover class showed the strongest linear relationship between field and 

image measurements (R2=0.82; Fig. 6), followed by annual herb/grass (R2=0.79), bare-ground 

(R2=0.69), and perennial herb/grass (R2=0.24). Mean fractional cover across all plots was similar 

between field and imagery estimates for each of the four classes (Table 2). Mean method 

differences ranged from as small as -0.009 (perennial herb) to as large as -0.062 (bare-ground). 

Bare-ground had the largest absolute mean difference (0.145), followed closely by annual 

herb/grass (0.134). Perennial herb/grass and woody had absolute mean differences of 0.052 and 

0.047, respectively. Indicator value variation between plots was higher (i.e., larger standard 

errors) for imagery compared with field methods for each of the cover classes.    

 

Fractional Cover Sensor Comparison 

We found minimal differences in linear relationships between the Phantom RGB camera and 

Sequoia multi-spectral sensor in terms of fractional cover agreement with field measurements 

(Fig. 7). Similarly, average fractional cover and cover differences with field methods were < 3% 

different for each cover class (Table 3). 

 

Method Agreement - Canopy Gaps 

Proportion of inter-canopy gaps were generally underestimated for each size class (Fig. 8A; Table 

4). The greatest relative underestimations (proportional to the mean value) occurred at small gaps 

sizes (e.g., 25-50 cm), and steadily shrank as gap sizes increased. Variance (illustrated with 

confidence intervals) between field and imagery estimates were very similar. Linear relationships 

between field and imagery improved as the size of the gaps increased (Fig. 8B).  
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Method Agreement - Vegetation Heights 

Imagery methods underestimated mean vegetation heights by 18 cm on average and 

underestimated maximum vegetation heights on average by 8 cm (Fig. 9A). Regarding the 

proportion of height observations within histogram bins, nearly 50% of imagery observations 

were within the 4-14 cm bin, while field methods had only 14% of observations within that range 

(Fig. 9B). Conversely, there was a much higher proportion of field observations within the height 

bins from 35-54 cm (29% v. 11%), 55-74 cm (8% v. 3%), and 75-94 cm (13% v. 0%). The linear 

relationship of mean heights was weak (R2=0.12), mostly due to one plot with a dead woody plant 

that was too thin to be detected with imagery (Fig. 9C). Removing this one plot from analysis 

improved the linear relationship to R2=0.46. Height standard deviation had R2=0.47 (Fig. 9D) and 

maximum height had R2=0.34 (Fig. 9E). Mean and maximum vegetation height were 

overpredicted (compared to field measures) at some plots because tall woody plants were not 

encountered with the field methods. 

 

Discussion 

Fractional Cover 

Because imagery and field methods of observing vegetation cover have inherent mechanical 

differences (i.e., pin drops v. classified pixels) and possible co-registration error, perfect 

agreement between indicator values is not expected. Image-based measures should be, however, 

strongly related to field measures to be seen as a reliable tool worth adopting for rangeland 

monitoring. Though we found strong relationships between imagery and field estimates of 

fractional cover, some classes could be improved with small workflow adjustments detailed in the 

following two paragraphs.  

 

It was difficult to find useable training specimens for perennial herb/grass at the imagery scales 

(1.5 cm for Phantom and 3.7 cm for Sequoia) because candidate samples were often too small and 
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indistinguishable from adjacent pixels. This often led to omitting the class or poor results (e.g., 

under- or over-prediction). The imagery resolution was generally too coarse to identify and 

classify perennial bunchgrasses found in this study area. We would recommend imagery ≤ 1 cm 

GSD to identify individual bunchgrasses and other herbaceous plants as demonstrated in other 

projects (Cunliffe et al., 2016; Fraser et al., 2016; Gillan et al., In Press). Even at this fine 

resolution, however, separating herbaceous species from each other will be challenging (Gearhart 

et al., 2013; Laliberte et al., 2010b; Lu and He, 2017). 

 

Though the annual herb/grass and bare-ground classes had strong linear relationships with field 

methods, they had the highest mean absolute differences. The classifications often confused 

annual herb/grass (mostly cheatgrass) and bare-ground, a significant problem given the concern 

of cheatgrass expansion in the district. Confusion was primarily caused by cheatgrass that had 

senesced to a yellow/brown color making it difficult to separate from bare-ground. Separation 

may have been better in the spring while the cheatgrass was still green and easily distinguished 

from bare-ground. Imagery collected in the spring, however, may not capture other annuals such 

as prickly lettuce (Lactuca serriola) or perennials such as bottlebrush squirrel tail (Elymus 

elymoides).  

 

Vegetation phenology is critical to identify species or functional groups within imagery, more so 

than identifying the same features with field methods (Hunt et al., 2003; Lass and Calihan, 1997). 

As with any image classification, distinguishing features of interest is highly dependent on the 

spectral and spatial uniqueness of the classes (Laliberte and Rango, 2011). Integrating drone 

imagery will require a re-thinking of when monitoring occurs to maximize feature detectability. 

Depending on the goal of the inventory and monitoring, multiple acquisitions may be required in 

a year. 
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We found little difference in fractional cover agreement between the Phantom RGB camera and 

the Parrot Sequoia multi-spectral sensor. Other research has demonstrated the ability of RGB 

imagery to successfully classify cover (Cruzan et al., 2016; Laliberte et al., 2010a; Meng et al., 

2018). In addition to lower cost, RGB sensors generally offer higher spatial resolution compared 

with multi-spectral sensors, an advantage for identifying small plants and generating detailed 

point clouds. In theory, multi-spectral sensors offer additional bandwidth from which to separate 

species based on spectral differences (Laliberte et al., 2011a), though we found no discernible 

advantage in this study. Additionally, multi-spectral sensors can also be radiometrically calibrated 

to reflectance values which could improve consistency of repeat image classifications and aid the 

development of spectral libraries. Other sensors including LiDAR and hyperspectral have been 

demonstrated on drones to characterize dryland vegetation cover and structure (Mitchell et al., 

2012; T. T. Sankey et al., 2017b). Their data may help to distinguish more cover classes than 

RGB and multi-spectral. However, the additional cost and technical challenges of these sensors 

may make them less desirable for mass adoption and reducing monitoring costs.  

 

Fine-tuning spatial resolution and season of acquisition with an ideal sensor would give the best 

chance of accurately estimating fractional cover. However, perfecting the ability to 

algorithmically estimate fractional cover has its limits. For example, some plants may not be 

classified well due to inconsistent color, shape, or ‘look’ to them. In these cases, humans may be 

better than any algorithm at looking at images to identify objects. Humans can use knowledge of 

the plant’s physical characteristics and the context of an entire image to identify classes in ways 

that algorithms cannot. Photo interpretation is an inexpensive and simple alternative to 

classification algorithms that can produce strong agreement with field estimate of fractional cover 

(Booth and Cox, 2009, 2008; Breckenridge et al., 2011; Duniway et al., 2012; Hardin et al., 2007; 

Karl et al., 2014; Moffet, 2009; Seefeldt and Booth, 2006). This technique, though, can be labor 
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intensive over large areas and does not produce a map from which to estimate other indicators 

such as canopy gaps.  

 

Canopy Gaps 

Similar to our findings, Karl et al. (2012b) found that correlations between imagery and field 

estimates improved as the gap sizes increased, and gaps > 50 cm were reliably estimated from 

imagery in a variety of plant communities. In this research, consistent underestimation of canopy 

gaps at each size class had two main causes. The first was misclassifying bare-ground as annual 

herb/grass. The second (and less frequent) cause was scale (specifically grain) differences 

between field and imagery observations. The imagery, and subsequent grouping of pixels into 

objects, could not see small diameter branches or sparse vegetation the field observer could see. 

Take, for example, a group of shrubs close to each other. The imagery classification may perceive 

no gaps between the shrubs, while the field observer may observe that there are in fact gaps of at 

least 25 cm between the branch canopies.  

 

Canopy gaps are an example of an indicator that has the potential to be improved instead of 

simply replicated by drone imagery. Field-based measures of canopy gaps are a 1-dimensional 

representation of erosional force connectivity that is typically integrated over multiple directions 

in the plot to provide a composite value (Webb et al., 2014). Drone imagery could open up more 

meaningful 2-D or 3-D measurements of the same phenomenon. For example, with drone-based 

classifications, the size and configuration of bare ground patches parallel to the slope (indicator of 

water erosion potential) could be separated from the effects of bare ground patches in line with 

prevailing winds (indicator of wind erosion potential). Similarly, Ludwig et al., (2007) used two-

dimensional information on bare ground distribution to create an index related to a site’s ability to 

retain resources (i.e., a ‘leakiness’ index). 
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Vegetation Heights 

The differences between imagery and field estimates of woody vegetation heights were caused 

primarily by the mechanics of each method. For mean height, the field method averaged 30 

measurements of the tallest part of the plant that was encountered within a 15 cm radius of a rod 

placement. Most of these observations were high up on the plant. The point cloud/CHM methods 

observed all aspects of the plant, from the crown to the base. Naturally, numerous observations on 

the lower part of the plant brought down the average. The maximum vegetation height in a plot 

was generally underestimated by the imagery due to poorly modeling plant extremities that were 

too fine or small to detect. This is a well-known trait of photogrammetric reconstruction methods 

(Cunliffe et al., 2016; Gillan et al., 2014; Olsoy et al., 2018), but is not necessarily a limitation in 

a rangeland monitoring context. Maximum vegetation heights is a convenient trait to measure in 

the field, but does hold any specific ecological value. Drone-based photogrammetric point clouds 

can provide thousands of measurements, enabling more detailed and synoptic look at vegetation 

heights, including the ability to quantify observations per height bin, analyze height variance, and 

calculate vegetation volume. This technique will improve our ability to estimate biomass and 

carbon storage (Cunliffe et al., 2016), parameterize surface roughness for wind erosion modeling 

(Webb et al., 2014), quantify fuels for prescribed or uncontrolled fires (Leis and Morrison, 2011), 

and assess the quality of wildlife habitat (Olsoy et al., 2018). In NCD, for example, greater sage-

grouse habitat could be assessed with drone-based vegetation structure data, including the height, 

cover, and shape of sagebrush (Stiver et al., 2015). 

 

Multi-Indicator Workflow 

To efficiently meet the data needs of many I & M applications, be it a single complex issue or a 

holistic assessment of rangeland health for a grazing permit renewal, we should strive to estimate 

multiple indicators from a single drone data collection (see Karl et al., 2017). Collecting data for 

wind erosion modeling, for example, will benefit from the efficient workflow to estimate 
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fractional cover, vegetation heights, and canopy gap distribution, each of which are important 

factors in wind erosion potential (Webb et al., 2016). 

 

To achieve even greater efficiency, the majority of the workflow presented in this paper could be 

programmatically automated. By adopting real-time kinematic GNSS and eliminating the use of 

GCPs or scale-bars (Turner et al., 2014), we could presumably automate the photogrammetry 

stage of creating point clouds and orthomosaics. The workflow to estimate vegetation heights is 

fully automatable, though the point filtering stage (e.g., maximum local slope) would require 

parameter customization matched to vegetation composition. For the fractional cover and canopy 

gap workflow, training the imagery (i.e., identifying training samples) to detect functional groups 

or species is likely to require a human touch.   

 

The AIM core field methods have been standardized to facilitate data comparison across time, 

space, and observer (MacKinnon et al., 2011; Toevs et al., 2011). Methods to estimate rangeland 

indicators from drone-based imagery, however, are more complex and require more decisions 

compared with their counterpart field methods. Because best practices for producing a suite of 

indicators is likely to vary by vegetation composition and phenology, it seems unlikely and 

perhaps unproductive to pursue a standard set of protocols as have been developed for field 

methods (e.g., AIM core indicators). Instead, we should seek workflow recommendations and 

best practices for given ecosystems through crowdsourcing. This has been underway since 

published papers began reporting their methods, but could be accelerated with an online 

workflow repository. Given the high interest in this technology, a website like this could spur 

collaboration and advancement in ways that published literature alone cannot 

 

Documenting workflow decisions could be a useful resource for practitioners to learn the basic 

decisions necessary to estimate indicators, identify research gaps, and find workflow 
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combinations to suit particular ecosystems. A few existing protocol repositories include Protocols 

Exchange (https://www.nature.com/protocolexchange) and Protocols.IO (http://protocols.io). 

Cunliffe and Anderson (2019), for example, published a protocol to collect drone imagery for 

biomass estimation in Protocols Exchange (doi:10.1038/protex.2018.134). Alternatively, it could 

advantageous to share workflows through a website dedicated to rangeland I & M (e.g., The 

Landscape Toolbox, www.landscapetoolbox.com), where drone-based monitoring could be 

embedded within the larger context of rangeland data collection theory and field protocols. 

Because workflows are likely to vary by geography (region, precipitation, elevation), geotagging 

workflow study areas and making them discoverable in a map-based environment could help 

users find appropriate methods for their area of interest (see Karl et al., 2013).  

 

Conclusion 

Due to their low cost, ability to image dozens to hundreds of hectares, and extreme portability, 

small UAVs are likely to become a standard tool for rangeland inventory and monitoring. They 

will be integrated with existing field efforts in order to observe larger portions of the landscape 

and to measure indicators not easily measured on the ground. Developing a suite of monitoring 

methods that are useful for supporting management decisions (e.g., accurate, repeatable, and cost-

effective) will require additional exploration to develop best practices for image acquisition and 

workflow specifications that can efficiently estimate multiple indicators. We demonstrated a 

workflow to estimate three rangeland vegetation indicators, reported agreement with their 

counterpart field method, and provided recommendations for workflow improvements. These 

methods could serve as a starting point for rangeland I & M data collection in other sagebrush 

steppe ecosystems. However, the workflow presented in the paper is just one of many possible 

paths to estimate these indicator values. Additionally, the array of choices of hardware, software, 

image acquisition and processing specifications is large and growing. The effort to find the ‘best’ 
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workflows given their vegetation composition and phenology characteristics could be accelerated 

through an online space dedicated to the topic.   
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Figures and Tables 

 

Fig. 1. Study area at the Northern California District (NCD) of the Bureau of Land Management. 

BLM land is highlighted in tan. Red circles indicate sample locations where only Phantom 

imagery was collected, while blue circles are sample locations where Phantom and Sequoia 

imagery were acquired. The background imagery is from Landsat 8, acquired June 2017.  
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Fig. 2. Data for this study were collected at field plots consisting of three 25 m transects (black 

lines). Shown here is plot Tablelands 440. A) Orthomosaic made with Phantom RGB imagery, B) 

false-color composite orthomosaic made with Sequoia multi-spectral imagery, C) an orthomosaic 

thematically classified into plant functional types, D) woody vegetation heights. 
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Fig. 3. Workflow decisions based on a review of 29 published studies using high-resolution aerial 

photography (drone and manned aircraft) to estimate vegetation fractional cover and height. The 

focus was on rangeland type environments (e.g., grasslands, shrublands) but also included some 

research in crop systems. The options used in this project are highlighted with red boxes.  
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Fig. 4. Step-by-step workflow to calculate vegetation fractional cover by plant functional types, 

canopy gaps, and vegetation heights from orthomosaics and point clouds. 
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Fig. 5. Image features used to predict supervised classes in c50 decision tree classification 
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Fig. 6. Scatter plots and linear regression (dotted lines) show the comparison between field and 

imagery estimates of fractional cover (n=16). Solid grey lines represent a 1:1 agreement.  
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Fig. 7. Fractional cover scatter plots and regression lines showing linear relationships between 

Phantom RGB imagery and field methods (n=7), and Sequoia multi-spectral imagery and field 

methods (n=7). Solid lines represent 1:1 agreement.  
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Fig. 8. Canopy gaps comparison between field measurements and imagery. A) Bars indicate mean 

proportion of transect with associated gap sizes. Error bars indicate 95% confidence intervals. B) 

Scatterplots and linear regression (dotted lines) comparing field and imagery estimates of canopy 

gaps. Solid lines represent 1:1 agreement. 
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Fig. 9. Agreement between field and imagery methods of estimating vegetation heights. A) Bar 

graphs show mean and maximum vegetation heights across all plots with 95% confidence 

intervals (n=16), B) Histogram showing proportion of values within height bins with 95% 

confidence intervals, C) scatterplot and linear regression for mean height, D) scatterplot and 

linear regression for height standard deviation, and E) scatterplot and linear regression (dotted 

lines) for maximum vegetation heights. Solid lines represent 1:1 agreement.  
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Table 1. Phantom 3 and 4 camera and Parrot Sequoia sensor specifications 
 

 Spectral 

Characteristics 

Sensor 

Pixels 

Shutter Radiometric 

Resolution 

Image 

Format 

Image 

Overlap 

GSD at  

40 m AGL 

Phantom 

3 & 4 
Red, Green, Blue 

4000 

horizontal x 

3000 vertical 

(12 mpx) 

Rolling 

with 33 

millisecond 

readout 

8 bit (256 

BVs) 
jpeg 75-80% 1.5 cm 

Parrot 

Sequoia 

Green  

 530-570 nm 

Red  

 640-680 nm 

Red-edge  

730-740 nm 

NIR 

770-810 nm 

1280 

horizontal x 

960 vertical 

(1.2 mpx) 

Global 

10 bit 

(1,024 BVs) 

stored as 16 

bit (65,536 

BVs) 

 

Tiff 75-80% 3.7 cm  

 

 

 

 

Table 2. Fractional cover for field data and Phantom RGB imagery. Standard errors are shown in 

parenthesis.  

 
Data 

Annual 

Herb/Grass 

Perennial 

Herb/Grass 
Woody Bare-ground Shadow 

Mean 

Field 0.37(0.05) 0.06(0.01) 0.12(0.02) 0.43(0.04) 0 

Phantom 0.39(0.08) 0.05(0.02) 0.15(0.02) 0.36(0.07) 0.017 

Difference 0.02(0.04) 0.00(0.02) 0.03(0.01) -0.06(0.04) 0.017 

Absolute 

Mean  
Difference 0.13(0.02) 0.05(0.01) 0.04(0.00) 0.14(0.02) 0.017 
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Table 3. Comparing fractional cover estimated with Phantom RGB and Sequoia multi-spectral 

imagery (n=7). Standard errors shown in parenthesis.  

 

 
Data 

Annual 

Herb/Grass 

Perennial 

Herb/Grass 
Woody Bare-ground Shadow 

Mean 

Field 0.37(0.09) 0.08(0.03) 0.08(0.02) 0.44(0.08) 0 

Phantom 0.36(0.14) 0.05(0.03) 0.10(0.02) 0.44(0.12) 0.01 

Sequoia 0.35(0.13) 0.04(0.02) 0.09(0.02) 0.46(0.11) 0.02 

Mean 

Difference 

with Field 

Methods 

Phantom -0.00(0.07) -0.02(0.01) 0.01(0.01) -0.00(0.07) 0.01 

Sequoia -0.01(0.06) -0.03(0.01) 0.01(0.01) 0.01(0.06) 0.02 

Absolute 

Mean 

Difference 

with Field 

Methods 

Phantom 0.14(0.04) 0.02(0.01) 0.03(0.00) 0.14(0.03) 0.01 

Sequoia 0.13(0.04) 0.03(0.01) 0.02(0.00) 0.11(0.04) 0.02 

 

 

 

 

Table 4. Comparison of canopy gap data as measured by field and imagery (Phantom) methods.  

 Data 25-50 cm 51-100 cm 101-200 cm >200 cm 
All Gaps 

>25 cm 

Mean 

Field 0.07(0.00) 0.09(0.01) 0.11(0.02) 0.21(0.06) 0.49(0.06) 

Phantom 0.03(0.00) 0.04(0.01) 0.071(0.01) 0.18(0.05) 0.33(0.06) 

Difference -0.04(0.00) -0.04(0.01) -0.04(0.01) -0.03(0.03) -0.16(0.04) 

 Phantom/Field 0.42 0.44 0.63 0.85 0.67 

Absolute 

Mean 
Difference 0.04(0.00) 0.04(0.00) 0.06(0.01) 0.08(0.02) 0.16(0.04) 
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Supplemental Material  

Table S1. Location and description of each sampling plot in the Bureau of Land Management 

Northern California District.  

Plot Date 

Acquired 

Coordinates 

Elevation 

Ecological Site 

Eco Clusters 

Precip 

(mm) 

1.5 cm 

Phantom 

3.7 cm 

Sequoia 

Bare 149 7/1/2017 

41.05865° N 

119.86897° W 

1453 m 

R024XY020NV  

DROUGHTY LOAM 8-10 

P.Z. 

Loamy Slope 6-12” 

230 
 
 

 

Bull Creek 

143 
6/30/2017 

41.46002° N 

119.99275° W 

1380 m 

R024XY003NV  SODIC 

TERRACE 6-8 P.Z. 

Arid/Sodic 
178  

 
 
 

Crest 436 6/22/2017 

40.69162° N 

120.37149° W 

1651 m 

R023XF093CA  

SHALLOW CLAY 9-16" 

Vertisol 

330 
 
 

 

Lower Lake 

437 
7/1/2017 

41.29594° N 

119.98383° W 

1602 m 

R024XY002NV  LOAMY 

5-8 P.Z. 

Arid/Sodic 

165 
 
 

 

North Ft. 

Sage 148 
6/18/2017 

40.11316° N 

120.05794° W 

1226 m 

R026XF022CA  

GRANITIC SAND 9-12" 

Sandy 
236  

 
 

Observation 

388 
6/20/2017 

40.57118° N 

120.04896° W 

1476 m 

R023XF081CA  

SHALLOW STONY 

LOAM 9-12" 

Claypan 

360  
 

 

Sand Creek 

190 
6/30/2017 

41.55683° N 

119.96850° W 

1664 m 

R024XY020NV  DROUG

HTY LOAM 8-10 P.Z 

Loamy Slope 6-12” 
322  

 
 

Shaffer 243 6/18/2017 

40.39770° N 

120.33855° W 

1391 m 

R023XF081CA  

SHALLOW STONY 

LOAM 9-12" 

Claypan 

350 
 
 

 

Shaffer 435 6/23/2017 

40.50501° N 

120.3654° W 

1397 m 

R023XF084CA  CLAY 

UPLAND 9-16" 

Vertisol 

266 
 
 

 

Snowstorm 

394 
6/22/2017 

40.59154° N 

120.36804° W 

1651 m 

R023XF081CA  

SHALLOW STONY 

LOAM 9-12" 

Claypan 

270 
 

 

 
 

Snowstorm 

441 
6/28/2017 

40.56508° N 

120.41406° W 

1441 m 

R023XF084CA  CLAY 

UPLAND 9-16" 

Vertisol 
330  

 

 
 

Tablelands 

440 
6/16/2017 

40.48091° N 

120.44641° W 

1373 m 

R023XF084CA  CLAY 

UPLAND 9-16" 

Vertisol 

266 
 

 

 
 

Twin Peaks 

195 
6/20/2017 

40.68550° N 

119.75954° W 

1439 m 

R023XY006NV  LOAMY 

8-10 P.Z. 
Loamy Slope 6-12” 

230 
 
 

 
 

Twin Peaks 

236 
6/20/2017 

40.47117° N 

120.11642° W 

1474 m 

R023XF082CA  STONY 

LOAM 9-12" 

Loamy Slope 6-12” 

266 
 
 

 

Twin Peaks 

237 
6/23/2017 

40.33000° N 

120.06989° W 

1636 m 

R023XF082CA  STONY 

LOAM 9-12" 

Loamy Slope 6-12” 
266  

 
 
 

West Ft. 

Sage 197 
6/19/2017 

40.07272° N 

120.06603° W 

1541 m 

R026XF052CA  

GRANITIC UPLAND 9-

12" P.Z. 

Sandy 
246  

 
 
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Table S2. Importance of predictor features in c50 decision tree classifications 

 

Feature Mean Usage % Feature Mean 

Usage % 

1 GLA mean  94.57 10 Rededge mean 72.15 

2 NDVI mean 94.55 11 NIR SD  64.53 

3 Blue mean 93.06 12 Compactness  58.71 

4 Red mean  90.59 13 Green SD  57.97 

5 GLA SD  89.27 14 Red SD  57.80 

6 NDVI SD  88.96 15 Blue SD  56.95 

7 Green mean  87.90 16 Rectangularity  51.14 

8 NIR mean  85.69 17 Rededge SD  49.91 

9 Pixel count 83.77 
  

 

 

 

Table S3. Classification confusion matrix for Phantom imagery with 1.5 cm ground sampling 

distance.  

 Annual 

herb/grass 

Perennial 

herb/grass 

Bare-

ground 
Woody Shadow Total 

User's 

Accuracy 

Annual herb/grass 190 8 16 5 1 220 0.86 

Perennial 

herb/grass 
10 83 6 14 1 114 0.72 

Bare-ground 11 2 269 15 4 301 0.89 

Woody 9 6 8 293 7 323 0.90 

Shadow 3 0 1 4 96 104 0.92 

Total 223 99 300 331 109 1062  

Producer's 

Accuracy 
0.85 0.83 0.90 0.88 0.88  0.87 
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Figure S1. R code for using c50 decision tree classification with segmented objects 

setwd("F:\\gillan_sfm\\Norcal_aim_SfM\\projects_products\\lowerlake437_40agl_stuff\\exploration") 

library(C50) 

library(partykit) 

library(mvtnorm) 

library(raster) 

library(shapefiles) 

library(sp) 

library(rgdal) 

library(caret) 

library(class) 

library(e1071) 

library(maptools) 

library(doParallel) 

registerDoParallel(cores = 20) 

library(snow) 

### Read in the raster images(the feature predictor variables)  

 img<- stack("segment_pixelcount.tif","segment_CHM_SD.tif", "segment_CHM_mean.tif", 

"segment_GLA_SD.tif", "segment_GLA_mean.tif", "segment_red_SD.tif", "segment_red_mean.tif", 

"segment_green_SD.tif", "segment_green_mean.tif", "segment_blue_mean.tif", "segment_blue_SD.tif") 

##Read in the training shapefiles, one for each class. The file names must end with 'train.shp' 

train.files <- list.files(pattern="*train.*shp") 

train.full <- NULL 

for (x in seq_along(train.files)) { 

  ### Read in the a shapefile 

  train.locations <- readShapePoints(train.files[x]) 

  ### Extract values from the rasters at the shapefile point locations. 

  train.predictors <- extract(img, train.locations, df = TRUE) 

  ### Add a column for the class type and populate it.  

  train.by.class <- cbind(train.predictors, "types" = substr(train.files[x], 1, nchar(train.files[x])-9)) 

  ### Combine the data with data from previous loops. 

  train.full <- rbind(train.full, train.by.class) 

} 

#Training the c50 model with the training data 

X <- train.full[,2:12] 

Y <- train.full[,13] 

testmodel<- C5.0(X, Y, trials = 20, rules = FALSE, control = C5.0Control(winnow=FALSE, 

sample=0.75)) 

summary(testmodel) 

#Predict classes on raster image 

beginCluster(20) 

#NAvalue(img) <- x 

clusterR(img,raster::predict, args=list(model=testmodel), 

         filename="rgb_classified", format="HFA", datatype="INT1U" , 

         overwrite=TRUE, na.action=na.omit) 

endCluster() 

#Describe Predictor Variable importance 

importance_usage <- C5imp(testmodel, metric = "usage", pct = TRUE) 

importance_splits <- C5imp(testmodel, metric = "splits", pct = TRUE) 

importance_usage 

importance_splits 

#Visualize the decision trees 

plot(testmodel, trial = 19, subtree = NULL) 

 




