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ABSTRACT 

 Neuroprosthetics are devices that substitute or supplant motor, sensory or cognitive 

modalities damaged as a result of spinal cord injury or stroke.  Functional electrical stimulation 

(FES) neuroprosthetics  utilize artificial stimulation to restore motor function in paralyzed 

muscles, where control exerted by higher nervous system centers over muscle may be impaired. 

Although promising, FES has failed to gain widespread acceptance due in part to weak 

contraction strength and rapid fatigue observed with artificial stimulation. This dissertation 

documents an attempt to create an upper limb FES neuroprosthetic and subsequently to address 

the issues of weakness and fatigue. To exploit the capabilities of the musculoskeletal system the 

neural drive to muscle first must be decoded. Decoding the neural drive for specific movements 

has been approached using either a deterministic  (engineering) or machine learning model. 

While a deterministic model accounts for all components of a limb, number of joints, degrees of 

freedom, limb length, muscle length, etc, machine learning characterizes the relationship 

between select variables, in this case whole muscle electromyographic data (EMG) and limb 

kinematics. Ultimately, the output of both approaches is used to predict the neural drive required 

to generate movements.  In this study we first attempt to build an upper limb FES 

neuroprosthetic. Utilizing machine learning, we characterize the relationship between limb 

kinematics and EMG. Then, predict EMG based solely on limb kinematics. Finally, stimulation 

pulses were generated and delivered via intramuscular electrodes to produce movement. 

Additionally, to address force generation we hypothesized that due to the distributed nature of 

motor axons within a muscle stimulating with multiple spatially distributed electrodes would 

activate a larger muscle volume thus generating additional force.  This in turn would facilitate 
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load sharing among muscle fibers, and reduce fatigue. To evaluate fatigue we compared 

interleaved and synchronous patterns of stimulation as well as single electrode vs multiple 

electrode stimulation. We approached these questions and aims with a combination of strategies 

and techniques including machine learning, implantation of stimulating electrodes in a non-

human primate model and finally human subjects. While machine learning provided EMG 

predictions with high R values, we were unable to generate substantive movements activating all 

the muscle in a complete joint system. However, we were able to generate movements 

stimulating a single muscle in an intact joint system.  We found that single electrode force could 

be augmented with multiple electrodes. Additional results indicate that multiple electrode 

stimulation was less fatiguing than single electrode stimulation. Interleaved stimulation however, 

did not result in less fatigue than synchronous stimulation. 
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 SPINAL CORD INJURY 

 

People rarely stop to think about the communication superhighway that is their spinal 

cord or its role in facilitating communication between the periphery of their body and their brain. 

Even fewer people are aware of the neuronal computations that take place within the spinal cord. 

Indeed, communication enabled by the spinal cord is pivotal to life itself. Therefore, any event or 

condition that compromises signaling between the brain and the body has devastating effects, 

including loss of sensory or motor function and paralysis. Only when this ability is impaired to 

some degree is awareness and perhaps an appreciation gained for the spinal cord.  

The information and studies discussed in this work focus on the development of an upper-limb 

neuroprosthetic for the restoration of movement following paralysis. Broadly, the goal of this 

work was to address three problems facing such neuroprosthetics: (1) determining the patterns of 

muscle activation needed to elicit complex motor behaviors, (2) increasing the contractile forces 

generated using artificial stimulation and (3) reducing the high degree of fatigue associated with 

artificial stimulation. 

 In order to understand the scope and challenges of treating spinal cord injury with an 

upper limb neuroprosthesis (as proposed in this dissertation), it is important to consider the 

complex biological environment that develops following spinal cord injury. The following 

sections briefly addresses this. 
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1.2: Mechanism of injury and paralysis: 

 

 Spinal cord injury (SCI) results from an insult inflicted on the spinal cord that 

compromises either completely or incompletely its major functions of communication and 

processing of motor, sensory, and autonomic signals. Trauma to the spinal cord is secondary to a 

mechanical injury to the surrounding bony structure. The National Spinal Cord injury Statistical 

Center (NSCISC, 2018) reports that approximately 17,000 people suffer a SCI of varying 

magnitude each year. While the average age of injury has increased from 29 in 1970 to 43 

between 2015 and 2017, men continue to be the prominent group affected. A bimodal 

distribution occurs, however, with a second group of individuals with an average age 60 being 

affected primarily by falls (Dobkin & Havton 2004; Jain et al., 2015; Tator & Fehlings 1991). 

 Injuries are often a result of trauma caused by some external force exerted on the brain, 

spinal cord or body. External causes include falls, a subset of which includes falls from standing 

in the elderly (~60 years) (Jain et al., 2015; Dobkin & Havton 2004), motor vehicle crashes, 

firearms (acts of violence), and striking against or being struck accidentally by an object or 

person (NSCISC 2018; Jain et al., 2015). Non-traumatic causes of SCI includes chronic 

degenerative disorders, spinal cord compression as a result of disc pro-lapse, bone metastasis that 

results from cancer, as well as multiple sclerosis (Lee & Thumbikat 2015; Lassman 2015).  

 The mechanism of injury to the spinal cord includes distraction, laceration, transection, 

shearing forces, and compression (including axial compression while the neck is slightly flexed). 

Distraction occurs when the bony spinal components are hyper-extended as often occurs in rapid 

acceleration or deceleration injuries (Schwartz & Fehling 2002; Winter & Pattani, 2011). 
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Laceration and transection are often due to missiles penetrating the spinal cord (e.g. gunshot 

wounds). Sharp bony fragments dispersed by the missile impact disrupts the soft tissue 

components of the spinal cord resulting in varying degrees of damage. It should be noted 

however that instances of traumatic injury resulting in complete transection of the spinal cord are 

extremely rare (Tator & Fehlings 1991). Compression, the most common mechanism of injury 

results when bony fragments generated from the initial impact compresses the cord (Tator 1983; 

Tator 1996; DeVivo et al., 2002). Indeed, the efficacy and timing related to resolving persistent 

compression of the spinal cord is highly debated and will be discussed later (Wilson et al., 2017; 

Dimar et al., 1999; Ramer et al., 2014). Regardless of the mechanism of traumatic injury to the 

spinal cord, it results in some degree of motor, sensory, and autonomic impairment  (Tsintou et 

al., 2015;  Lee & Thumbikat 2015; Ramer et al., 2014), ranging from transient deficits to 

complete and permanent paralysis (Kwon et al., 2004). 

 Empirical and experimental evidence suggest that the severity of the mechanical 

disruption is directly proportional to the amount of energy transferred to the bony structures in 

the acute insult (Blight & DeCrescito 1986).  In turn, transfer of this energy into the soft tissue 

determines the severity of the lesion and resultant impairments.  

 Accordingly, Wolman (Wolman 1965), proposed that soft tissue damage is 

disproportionately greater in gray matter compared to white matter tissue due, in part, to the 

greater vascularity of gray matter and its softer consistency (Wolman 1965; Dumont et al., 

2001).  Additionally, because gray matter has a higher metabolic demand, damage typically is 

irreversible within the first hour following injury, whereas white matter has a 72-hour window 

before damage is considered permanent (Dumont et al, 2001; Blight & Young 1989).  Thus, 
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injury to neural elements is largely mediated by disruption of blood flow to and within the cord. 

Hypoxia, driven by disrupted blood flow results in local infarctions and an inflammatory 

response which leads to the cord swelling and compressing against the rigid spinal canal. 

 Clinically, the extent of the SCI is assessed as complete of incomplete. Absence of motor 

and sensory function below the level of the lesion signifies a complete injury.  Partial 

preservation of neurological function below the level of the injury is designated an incomplete 

injury.  

The American Spinal Injury Association (ASIA) impairment scale further stratifies the 

severity of the SCI between grades A through E as follows; ASIA grade A – Complete, no motor 

or sensory function present, ASIA grade B – Incomplete, sensory but not motor function is 

preserved, ASIA grade C - Motor function is preserved below the lesion and half of the key 

muscle groups have a muscle grade less than 3, ASIA grade D – Incomplete, preserved motor 

function below the lesion and key muscle below the lesion have a muscle grade greater than 3, 

ASIA grade E – motor and sensory functions are normal.  Muscle grades refer to active 

movement, where grade 3 is active movement against gravity, while grade 4 and 5 includes 

movement against some resistance and full resistance respectively.  

 Other quantitative and qualitative measures are also used to assess the severity of the 

acute injury. For example, Miyanji et al. (2007) reviewed MRI measures of SCI including: 

maximum spinal cord compression (MSCC), maximal canal compromise (MCC), and lesion 

length. Additionally, six qualitative measures used included: intramedullary hemorrhage, edema, 

cord swelling, soft tissue injuries, canal stenosis, and disk herniation (Miyanji et al., 2007).  
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Taken together, these measures along with the ASIA impairment scale provide assessment 

indices characterizing the extent of SCI.   

 

1.3 Secondary Injury 

 

 While the acute mechanical insult associated with SCI results in a wide range of 

outcomes and neurological deficits, SCI also has systemic ramifications affecting all organs 

systems.  More threatening, however, is an array of cellular and biochemical processes triggered 

by the acute mechanical trauma, known as secondary injury. First proposed by Allen (1911), 

secondary injury is now known to involve a number of pathophysiological mechanisms 

including, but not limited to, hemorrhage, edema, neurogenic shock, systemic hypotension, 

vasospasm, post traumatic ischemia, inflammation, excitotoxicity, calcium mediated injury, 

demyelination, fluid electrolyte disturbances, neurotransmitter and ionic disturbances, 

immunological injury, mitochondrial function disturbances, free radical production, lipid 

peroxidation, axonal and  neuronal necrosis, apoptosis, and channel and receptor impairment 

(Dumont et al, 2001; Tator et al., 1991; Tsintou et al 2015; Silva et al., 2014; Bareyre & Schwab 

2003; Springer et al., 1999; Schwartz & Fehlings 2002; Silva et al. 2014). Occurring on a time 

course of minutes, hours, weeks, months and even years, this biological cascade extends the 

development of injury leading to further neurological damage and a chronic injury state (Gensel 

& Zhang 2015). 

 An aggressive pathophysiology exists following SCI, initiated and exacerbated by the 

initial mechanical disruption of neural tissue and the vascular system in and around the spinal 
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cord (Tator et al., 1991). The normal physiological responses following injury fall into three 

progressive and overlapping phases; (1) an inflammatory phase, (2) a proliferative phase and (3) 

a remodeling phase (Gensel & Zhang 2015; Novak & Koh 2013; Gurtner et al., 2008). The 

inflammatory phase is initiated in response to the mechanical damage and loss of tissue 

homeostasis. Activated inflammatory cells including microglia, macrophages, leukocytes and 

neutrophils migrate to the injury site with the primary function of removing damaged tissue 

(Gensel & Zhang 2015; Donnelly & Popovich 2008).    

 Kwon, (Kwon et al., 2004) along with others assert that the stereotypical inflammatory 

response should be considered in two phases, an early neurotoxic phase and late phase 

neuroprotectic properties (Chan 2008; Donnelly & Popovich 2008; Kwon et al., 2004). One side 

of the inflammatory response contains a cellular component, which includes neutrophils, 

macrophages and T-cell, while the other  is comprised of molecular components containing pro-

inflammatory molecules, including cytokines, upregulated chemokines, along with the 

production of free radicals and oxidative stress (Donnelly & Popovich 2008; Siddiqui et al., 

2015). Neutrophils, first on the scene, recruit other inflammatory cell types  but also secrete lytic 

enzymes, which further damage local tissue (Gonzalez et al., 2003; Donnelly & Popovich 2008; 

Dumont et al., 2001; Fleming et al., 2006).  Blood borne monocytes and macrophages, along 

with resident microglia serve to phagocytose injured tissue. Cytokines including tumor necrosis 

factor (TNF-α) and interleukins mediate the inflammatory response and contribute to additional 

tissue damage (Dumont et al., 2001; Gensel & Zhang 2015). Indeed, the role cellular and 

molecular components serve, either deleterious or advantageous, depend on their targets and 
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timing of expression. The immediate and continue consequence is cell death at the lesion site and 

beyond, resulting in the formation of a fluid filled cyst and a glial scar.  

 Gensel and Zhang proposed that macrophages, important in all phases of  repair, are of 

particular importance in the inflammatory phase due to their ability to regulate the transition 

through different stages of the healing process (Gensel & Zhang 2014). Indeed, it is proposed 

that the functional adaptability of macrophages to change phenotypes in response to 

environmental and tissue specific stimuli results in the SCI environment resembling a chronic 

non-healing wound state (Gensel & Zhang 2014). Thus, a maladaptive macrophage response to 

the milieu of environmental cues maintains the inflammatory response. This and other factors 

result in the creation and maintenance of the inflammatory environment.  

 

 1.4: The Inflammatory Environment & Excitotoxicity 

 

Vascular alterations leading to ischemia are cited as critical to the secondary injury 

cascade (Tator et al., 1991; Kwon et al., 2004). Ischemia, defined as a local deficiency of blood 

supply secondary to vasoconstriction or obstruction of arterial blood flow, leads to the 

production of oxygen-derived free radicals and other high energy oxidants (Dumont et al., 2001). 

The presence of high energy oxidants, reactive oxygen, and nitrogen species contribute to 

oxidative stress leading to pathogenesis (Gensal & Zhang 2015).  

 Included in the large number of factors released following SCI, glutamate, the most 

prevalent excitatory neurotransmitter, has perhaps the most profound and deleterious effect 

(Kwon et., al 2004; Dumont et al., 2001). The effects of excess glutamate on its receptors and 
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resultant processes that lead to neuronal cell death are referred to as excitotoxicity (Choi 1992; 

Dumont et al., 2001).  Glutamate receptors include ionotropic, N-methyl-D-aspartate (NMDA) 

and metabotropic, alpha-amino-3-hydroxy-5-methyl-isoxazolapropionate (AMPA)/kainate 

receptors. Activation of NMDA receptors by glutamate release allows extracellular calcium and 

sodium to move via a concentration gradient into cells (Kwon et al., 2004).  Elevated cytosolic 

calcium can trigger alterations in cellular metabolism with lethal results (Kwon et al., 2004, 

Dumont et al., 2001).  Excitotoxicity also contributes to neuronal cell death via inhibition of Na+ 

-K+ ATPase activity, lipid peroxidation, altered calcium homeostasis; inhibition of 

mitochondrial respiratory chain enzymes, oxidative modifications to proteins, along with 

activation of lytic enzymes (Dumont et al., 2001; Kwon et al., 2004; Sekhon & Fehlings 2001; 

Hulseboch 2002). 

 

 2.0: Therapeutic Approaches to Spinal Cord Injury 

 

The primary injury along with the resultant cascade of cellular and biochemical processes 

creates a therapeutically challenging environment. Due to the dynamics of the environment and 

the large number of potential targets, a single therapeutic solution to SCI is unlikely. Instead, 

complex multifaceted approaches must be undertaken. 

 Therapeutic strategies proposed can be categorized into general areas aimed at restoring 

function to the injured spinal cord; rescue, rewire, and reactivate ((Ramer et al., 2014; Dell’Anno 

& Strittmatter 2017; Ribotta et al., 2002; Hulsebosch 2002; Ramer et al., 2005).  
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Preventing the spread of damage from the initial site of the mechanical injury is the focus of 

strategies aimed at rescuing the spinal cord (Ramer et al., 2014). These early interventions 

include surgical decompression and stabilization, cooling and hypothermia, neuroprotection and 

strategies aimed at specific biological processes that are a direct result of the primary injury, such 

as inflammation and ischemia (Ramer et al., 2014; Wilson et al., 2017; Siddiqui et al., 2015; 

Collis 2017; Cappuccino et al., 2017; Alkabie & Boileau 2015; Dietrich et al, 2011; Levi et al., 

2010; Dimar et al., 1999; Batchelor et al., 2013; Ramer et al., 2005; Schwartz & Fehlings 2002).  

Rewiring the injured spinal cord includes refers to strategies aimed at regrowth of injured 

axons or repurposing spared axons (Dell’Anno & Strittmatter 2017; Ramer et al., 2014; 

McDonald & Howard 2002; Ribotta et al., 2002). These strategies seek to stimulate the intrinsic 

growth/regenerative capacity of neurons and reduce inhibitor of growth present in the SCI 

environment (Ohtake & Li 2015; Schwab 2002; Gimpe & Silver 2002).  

Reactivation of neural elements involves strategies that seek to use spared systems 

through rehabilitation, pharmacological intervention, and electrical stimulation (Ramer et al., 

2017; Stein et al., 2002).  A major component of this strategy includes artificial activation of 

neural elements that can no longer be engaged by the injured spinal cord. 

 

 2.1 Rescuing the spinal cord 

 

 Rescuing the spinal cord is the initial step in any therapy strategy seeking to restrict the 

deleterious effects of secondary damage. Techniques such as surgical decompression, therapeutic 

hypothermia, and drug treatments seek to targeted inflammation and excitotoxicity. The 



22 
 
 

requirement for, and timing of, surgical decompression, however has been debated (Dimar et al., 

1999, Wilson et al, 2017). In the earliest recorded treatment of spinal cord injury, contained in 

the Edwin Smith surgical papyrus, SCI are referred to as, “an ailment not to be treated (Donovan 

2007). A shift from this early conservatism has occurred, perhaps driven by research data, 

improvement in technology, techniques and the availability of hardware (Dimar et al., 1999; 

Fehlings et al., 2012). As a result, surgical intervention is used to decompress the spinal cord, 

remove obstructive bone, and stabilize the fractured vertebrae. A longitudinal study by Perkins 

and Deane showed complete recovery in 3 of 6 patients following surgical decompression 

(Perkins and Deane 1988). Additional evidence supporting early versus late decompression was 

provided in a meta- analysis completed by Liu et al. (2016) along with a multicenter cohort study 

by Fehling et al. (2012). Liu et al. (2016) reported that surgery within 24 hours of the acute 

spinal cord injury improves neurologic outcomes (Liu et al., 2016). Fehlings et al. (2012) 

reported a minimum of 2 grade AIS improvement at 6 months in SCI patients who underwent 

decompression within 24 hours of SCI (Fehlings et. al., 2012). 
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 2.2: Therapeutic Hypothermia 

 

First introduced in 1940 by the pioneering work of Dr. Temple Fay, therapeutic 

hypothermia (TH),  or refrigeration can be used as a therapeutic and neuroprotective strategy 

following acute SCI. Fay (1940) reported on an anesthetized patient undergoing refrigeration 

using surface cooling for 18 hours recovering without knowledge of the procedure or any 

discomfort (Smith & Fay 1940). More recently, a comparative study by Levi et al. (2010) 

between hypothermia treated and control patients, showed an encouraging trend for improvement 

in function compared to control. The findings were encouraging enough to warrant a phase 2 and 

phase 3 multicenter trial (Levi et al. 2010).  

 

 3.0: Rewiring the Spinal Cord 

 

The adult CNS does not easily regenerate, and as a result, individuals who experience 

SCI show only marginal amounts of spontaneous recovery. However, a highly variable amount 

of recovery can be experienced between the first 3 to 6 month post injury (Fawcett et al., 2007; 

Kirschblum et al., 2004). Steeves et al. (2011) indicated that among ASIA complete SCI patients, 

only 10% regain some degree of motor function and only 10% regain sensory function in the 

absence of motor recovery (Steves et al, 2011).  

Historically, research on axonal regeneration has focused on two approaches; remove or reduce 

inhibitors of axonal growth in the SCI environment or increase the limited intrinsic regenerative 

capacity of neurons (Ramer et al., 2005). The intent is to regrow neurons, repurpose neurons 
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spared in the initial trauma and secondary destruction, or reduce inhibitor to growth present due 

to the interaction of local cells with molecular participants. 

Cellular properties including the potential to form myelin, promote and guide axonal growth, as 

well as the ability to bridge the injury site are considerations for cell types and cell based 

therapies aimed at restoring function. The cell types of most interest include: Schwann cells, 

embryonic stem cells, induced pluripotent stem cells, neural stem cells, mesenchymal stem cells, 

and olfactory ensheating cells (Tetzlaff et al., 2011; Ruff et al., 2012; Assinck et al., 2017). 

 Schwann cells, the myelinating glia of the peripheral nervous system (PNS), form the 

basis of many research programs, among them the Miami project to cure paralysis (Bunge & 

Wood 2012). Schwann cells are multifunctional, able to support and encourage growth of new 

axons, guide regeneration following injury, as well as secrete trophic factors and growth 

promoting matrix (Guest et al., 2013; Bunge & Wood 2012; Hulseboch 2002). As a result, 

Schwann cells have been the focus of rewiring research more than any other cell-based therapy 

(Bunge & Wood 2012).  

 Stem cells (SC) have been proposed as the solution to many medical problems including 

SCI (Ramer et al., 2014). Stem cells show potential to bridge the lesion, replace lost neurons, 

glia, and other cells (Ramer et al., 2014). Such enthusiasm has surrounded SC that in 2009, a 

phase 1 clinical trial was undertaken by the Geron company (Menlo Park California). A cohort of 

thoracic SCI patients were transplanted with oligodendrocyte precursor cells derived from 

human embryonic SC (Ramer et al., 2014). Unfortunately, in 2011 the study was halted (Ramer 

et al., 2014; Pollack 2011).  Geron cited a change in research focus to cancer therapies as the 

reason for halting the trial (Pollack 2011).  SC therapies remains one of the most highly 
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investigated therapies for SCI (Hulseboch 2002; Kanno et al., 2015; Deng et al., 2013; Guest et 

al., 2013). 

 Induced pluripotent stem cells (IPSC) provide a way to obtain stem cells directly from 

adult tissue for autologous transplantation.  This reduces the ethical dilemma associated with 

embryonic stem cells (Cohen & Melton 2011). Pioneering work by Yamanuka in 2006 

demonstrated that using 4 transcription factors, differentiated adult cells could be made to revert 

to pluripotent cells (Takahashi & Yamanaka 2006). IPSC could offer an unlimited supply of 

autologous cells because they can be derived directly from adult tissue (Cohen & Melton 2011) 

and would allow cell transplantation back into the host without risk of immune rejection. Indeed 

studies have shown that transplanted progenitor cells derived from IPSC survive and differentiate 

into neurons, oligodendrocytes, and astrocytes (Kobayashi et al., 2012, Nori et al., 2011). 

Other cell-based treatments include olfactory ensheating cells (OEC), a glia cell found in 

the olfactory system (Richter & Roskams 2008; Ramer et al., 2014; Assinck et al., 2017). OEC 

are extremely plastic and are able to retarget across the PNS (Richter & Roskams 2008). OEC 

are easily accessible in many model systems, and because of properties like remyelination of 

axons, and the ability to enhance growth in intact and lesioned axons, they hold promise as 

therapeutic tools (Richter & Roskams 2009). Results of a phase 1 clinical trial in 2013 

demonstrated that human OECs can be isolated, purified, and safely transplanted into the human 

spinal cord (Tabakow et al. 2013). 

In 2014, Tabakow and colleagues published a case report demonstrating the result of 

transplanting bulbar olfactory ensheathing cells in a 38 year old patient who had sustained a 

traumatic transection of the thoracic spine resulting in paralysis (ASIA-A).  Cultured OEC were 
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transplanted into the lesion site following resection of the glial scar (Tabakow et al., 2014). 

Tabakow et al. (2014) reported that the patient improved from ASIA-A to ASIA-C. Improved 

trunk stability, along with partial recovery of voluntary movements was reported (Tabakow et al. 

2014).  

Yet, in a letter to the editor of the Journal of Neurotrauma, Guest and Dietrich (2014) 

suggested, claims made by Tabakow et al. were potentially overstated and merited cautious 

examination of the evidence presented (Guest & Dietrich 2014).  Others have asserted that the 

research on OEC often contains claims that are unable to be independently confirmed Tetzlaff et 

al., 2011). The reasons for these discrepancies are not often clear but certainly suggest some 

experimental bias.  

 

3.1: Bio-materials  

 

 Biomaterials offer an alternative approach to rewiring the injured spinal cord by 

providing a medium in which endogenous or transplanted cells can grow (Assuncao-Silva et al., 

2015). Biomaterial must meet specific criteria to be clinical applicable outside of simply being 

biocompatible.  This includes mechanical and physiochemical properties, attachment and growth 

properties, and degradation (Assuncao-Silva et al.; 2014; Slaughter et al., 2009; Foyt et al., 

2018). Indeed, among biomaterials, hydrogels meet these criteria while mimicking the soft tissue 

of the CNS (Foyt et al., 2018). Slaughter et al. (2009) defines hydrogels as three-dimensional 

networks formed from hydrophilic homopolymers, copolymers, or macromers cross-linked to 

form insoluble polymer matrices. Derived from natural polymers for biocompatibility, hydrogels 
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mimic macromolecular compounds found in the body (Slaughter et al., 2009; Assuncao-Silva et 

al., 2014).  

Classes of hydrogels include; natural based hydrogels, synthetic biodegradable hydrogels, 

and non-biodegradable methacrylate based hydrogels. Natural based hydrogels are based on 

substances that occur naturally in the extracellular matrix with properties that are recognized by 

cells (Pego et al., 2012; Assuncao-Silva et al., 2014). Natural based hydrogels include: alginate, 

agarose, collagen, fibronectin, fibrin, matrigel, chitosan and hyaluronic acid, to name a few (Foyt 

et al., 2018).  

In a rat subacute spinal cord injury model, Johnson et al., (2010), using a fibrin scaffold 

implantation, showed that fibrin is conducive to regeneration and cellular migration (Johnson et 

al., 2010). While this study did not show any functional recovery, the authors postulate that a 

fibrin scaffold could enhance host cell proliferation and axonal regeneration.   

In contrast to natural based hydrogels, synthetic biodegradable hydrogels offer the 

advantage of being tailored for specific applications.  For example, Patist et al. (2004) tested the 

effects of poly (D, L - Lactic acid) macroporous guidance scaffold impregnated with brain-

derived neurotrophic factor (BDNF) in a model of transected rat spinal cord.  Patist et al. (2004) 

reported that cells and axons more rapidly invaded the BDNF foam when compared to control, 

demonstrated increased vascularization, and that the foam was tolerated well within the cord 

(Patist et al., 2004). In a recent non-human primate study of acute spinal cord injury Slotkin et al. 

(2017) reported that SCI monkeys exhibited significantly improved recovery and locomotion in 

response to implantation of a biodegradable  scaffold (Slotkin et al., 2017). Additionally, the 
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authors stated that even though their results were modest, support was offered for the efficacy 

and safety of polymer scaffolds as a potential therapy in spinal cord injury (Slotkin et al., 2017).  

Finally, non-biodegradable methacrylate based hydrogels remain stable upon 

implantation but suffer the disadvantage of being non-biodegradable (Assuncao-Silva et al., 

2014). Additionally these hydrogels retain large amounts of water without dissolving. These 

hydrogel are of particular interest because they are moldable into tubular shapes that might 

facilitate axonal growth (Dalton et. al., 2002).  Indeed, hydrogels hold promise but require 

additional testing to validate their efficacy. 

 

 4.0: Reactivating the spinal cord and peripheral nerves 

 

 The chronic SCI environment presents a myriad of challenges that, to date, are not easily 

addressed by any one solution. Another potential therapeutic approach utilizes neural elements 

beyond the lesion site to restore function. These strategies include artificial stimulation of 

circuits and/or peripheral nerves to restore function. 

 

 4.1: Functional electrical stimulation 

 

Functional electrical stimulation (FES) is defined as the artificial activation of paralyzed 

muscle to perform a functional task. FES has been used in patients who have sustained a SCI, 

where control from higher nervous system centers is impaired (Doucet et al., 2012; Ducko 2011; 

Rupp & Gerner 2004). FES has been used successfully for the restoration of some degree of 
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control over bladder and bowel, diaphragm pacing, and to restore limited function to paralyzed 

limbs, trunk, and legs (Ragnarsson 2008; Peckham & Knutson 2005; Ducko 2011, Handa et al., 

1989; Keith et al., 1987). As a rehabilitative technology, FES has been used in FES cycling and 

body weight supported treadmill walking (BWST) to ameliorate muscle atrophy and build 

muscle endurance and strength (Kralj & Bajd 1989; Nataraj et al., 2017; Dutta et al., 2011; 

Popovich et al., 2003).  

To restore function to paralyzed muscles, artificial stimulation is delivered via surface, 

percutaneous, intramuscular, or nerve cuff electrodes placed in the periphery to activate nerves 

supplying muscles. An electric field centered at the electrode tip activates nerves that reach 

threshold due to the stimulating current.  Action potentials generated as a result of the artificial 

stimulation propagate via afferent and efferent (sensory and motor) axons (Collins 2007; Popovic 

2014). Activation of efferent axons results in muscle activation while activation of afferent 

pathways have the potential to generate reflexes and deliver ascending sensory information to the 

brain, but only if ascending sensory pathways are intact. 

Electrical stimulation can be delivered anywhere along the length of a nerve, proximally near (or 

even within) the spinal cord to its dispersed distal innervations within the muscle.  Motor axons, 

rather than muscle fibers are activated by the current field due to a markedly lower activation 

threshold of axons compared to muscle fibers (Mortimer 1981; Jacobs & Nash 2004; Peckham 

1995; Peckham et al., 2005). 

 Electrode types are often chosen based on their functional objectives, the effort required 

to implant or use them and duration of use.  While nerve cuff electrodes enable high contraction 

forces to be developed using relatively low stimulus intensities, they require surgery to implant 
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and typically lack single muscle selectivity. Surface electrodes, on the other hand, are easy to use 

but are prone to movement with the skin and do not have access to deep muscles.  Intramuscular 

electrodes offer a compromise, allowing access to deeper muscles, selectivity of individual 

muscles and when used percutaneously are easily removed. 

 The components of an FES system are relatively simple and typically include a power 

source, a controller or processing unit, stimulator, wire leads, and electrodes (Ragnarsson 2008; 

Bajd & Munih 2010).  Three stimulation parameters determine the strength of the evoked 

contraction; pulse duration, pulse amplitude, and pulse frequency (Bajd & Munih 2010; Atrens et 

al., 1979, Peckham & Knutson 2005, Kesar et al., 2007). Modulation of these three parameters 

control contraction strength. Pulse amplitude and duration govern the recruitment of motor axons 

(and thereby their innervated muscle fibers) while pulse frequency modulates force by varying 

the rate at which muscle fibers are activated. Stimulus pulses are typically rectangular in shape 

and monophasic or biphasic. Biphasic pulses provide charge balance, helping to reverse the 

electrochemical processes that lead to electrode deterioration and tissue damage (Mortimer 1981; 

Gorman & Mortimer 1983; Badj & Munih 2010). 

 Control schemes for FES systems vary. Handa et al. (1989) and Kameyama et al. (1999) 

used intact respiratory function (puff & sip sensor) to activate pre-programmed stimulus patterns 

to excite muscles in quadriplegic patients (Handa et al., 1989; Kameyama et al., 1999). Keith et 

al. (1989) used an external movement sensor placed on the contralateral shoulder (over which the 

patients had voluntary control) to select and activate preprogrammed stimulus patterns in 

tetraplegic patients (Keith et al., 1989). Nathan (1989) used voice control to deliver stimulation 

to surface electrodes placed over muscles of the arm (Nathan 1989).  Myoelectric control and 
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brain machine interfaces (BMI) have also been explored as control methods for FES (Hart eat al., 

2001; Ajiboye et al., 2017). Myoelectric control uses electromyographic (EMG) signals 

produced by voluntary muscle contraction (Hart et al., 2001; Ambrosini et al., 2013) to trigger 

stimulation. Alternatively, BMIs interpret signals directly from the brain and use these signal to 

activate FES systems (Moritz et al. 2007; Ethier et al., 2012; Bouton et al., 2016; Ajiboye et al., 

2017). Additional control schemes could include eye tracking, head, or tongue movements.  All 

the control methods described function by selecting and activating pre-preprogrammed and 

stored patterns of muscle stimulation and as a result, offer a limited repertoire of movements that 

can be evoked.  

 

 4.2: Example of FES upper limb motor prosthesis 

 

 The following are examples of FES systems that have been developed to restore motor 

behavior in paralyzed individuals. There are, however, no commercially available implantable 

upper-limb FES systems. The Freehand system was developed at Case Western Reserve 

University, first implanted in 1986 and approved by the Food and Drug Administration in 1997 

(Keith et al., 1989; Cornwall & Hausman 2004). Prior to being withdrawn from commercial 

availability in 2001, 250 patients with C5 and C6 tetraplegia were implanted (Ragnarsson 2008). 

Eight intramuscular electrodes were implanted into the muscles of the hand and forearm to 

provide lateral and palmar grasp (Keith et al., 1989; Taylor et al., 2002). A radio frequency 

transmitter was attached to the skin directly above a stimulator implanted in the chest wall. The 

control unit was activated by voluntary contraction of the contralateral shoulder. This selected 
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preprogrammed patterns that allowed the user to open and close the hand (Keith et al, 1989, 

Taylor et al., 2002). 

 In reporting on the functional impact of the Freehand System, Taylor et al. (2002) 

indicated that subjects were able to produce reasonably function grips. These subjects lacked grip 

strength prior to the implantation of the neuroprosthetic. Additionally, the Freehand system 

improved the ability of C5 and C6 tetraplegics to complete activities of daily living (Taylor et al., 

2002). Additional support for increased in grip strength and improved activities of daily living 

were reported by Malcahey et al. (2004), Memberg et al. (2003), Smith et al. (2001). 

 Memberg et al. (2014) described a study involving 2 high-level tetraplegia patients who 

were implanted with 24 intramuscular and nerve-cuff electrodes. Stimulators were implanted into 

the abdomen were used to activate the upper extremity electrodes. With this system, subjects 

were able to produce different motor behaviors including hand opening/closing, shoulder 

abduction–adduction, and internal rotation of the shoulder (Memberg et al., 2014). While one 

subject demonstrated a significant improvement in activities of daily living (ADL), the second 

subject was only able to partially complete two ADL task (Memberg et al., 2014). This FES 

system required multiple surgeries to complete the implantation of all the required hardware yet 

it was only able to demonstrate functional improvements in one subject. 

 Ajiboye and colleagues described an upper limb motor prosthesis implanted in a high 

level tetraplegia that allowed the subject to control the motor prosthesis using signals from an 

intracortical brain computer interface (iBCI) (Ajiboye et al, 2017). Two micro-electrode arrays 

were implanted into the hand and arm areas of the subject’s motor cortex, while 31 percutaneous 

electrodes were implanted into muscles of the upper and lower arm (Ajiboye et al., 2017). The 
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subject was able to command single joint and coordinated multi-joint movements with this 

system (Ajiboye et al., 2017).  

This system, combining iBCI and chronically implanted muscle electrodes is perhaps the 

current state of the art in FES neuroprosthetics.  While very impressive, it is important to be 

circumspect as to what was accomplished with respect to the control of FES with that system. 

The iBCI in that study served primarily as a switch box to select one of a few fixed sequences of 

stimulation to be played out. Furthermore, the subject could only activate one sequence at a time 

resulting in sequential (rather than concurrent) movements at each involved joint.  

 

 4.3: Problems with FES 

 

Despite significant advances in technology, materials, and surgical techniques, upper 

limb FES systems continue to experience low acceptance and translation into clinical settings. A 

major reason for low acceptance is that FES systems can only produce a few simple movements. 

Indeed the difficulty in generating motor behaviors lies in identifying the patterns of stimulation 

needed to generate complex movements. Indeed, even simple movements often involve many 

muscles working across multiple joints and with complex timing of their activations.  

 Several strategies have been deployed to resolve this challenge. Hoshimiya et al. (1989) 

used EMG signals recorded from heathy subjects to create stimulus templates needed to active 

muscles in SCI patients. This approach, while important, was only able to produce a few 

movements because EMG activities were only recorded for a few simple tasks.  
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 The Freehand system developed by Case Western Reserve University, used an alternative 

approach by defining the functional outcomes and tuning that activity pattern for each muscle to 

produce the results. This approach involved trial and error until the desired motor behavior was 

produced and then the associated stimulation pattern was stored.  Again, only a limited number 

of simple movements could be generated using this labor-intensive method (Keith et al., 1989; 

Taylor et al., 2002).  

Another approach was to develop a deterministic musculoskeletal model of the limb in 

order to predict activation patterns for each muscle using inverse dynamics (based on Newtonian 

mechanics) and the biophysical properties of each muscle (Blana et al., 2008). When tested in 

healthy subjects, this highly sophisticated model, however, predicted EMG patterns that poorly 

fit actual EMG (Blana et al., 2008).  

Therefore, a primary goal of this dissertation was to use machine-learning methods to 

predict patterns of stimulation need to produce a wide range of complex, multi-joint movements. 

This issue is addressed in Chapter 3 of this dissertation.  

Another obstacle limiting the utility of FES is weak contraction strength elicited with artificial 

stimulation. Such weak contraction strength is not simply the result of muscle atrophy or fiber 

type conversion following paralysis. Indeed, the maximum force that can be evoked in healthy 

subjects using artificial stimulation is markedly less than that produced with voluntary 

contractions (Enoka & Fuglevand 1991; Kramer et al, 1984; Maffiuletti et al., 2014).  One reason 

for this weakness may be related to the widespread distribution of motor nerve branches within 

muscle. As such, a single stimulating electrode (as conventionally used) may be incapable of 
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activating the entire array of motor axons supplying a muscle. This possibility is addressed in 

Chapter 4 of this dissertation.   

Finally, the rapid onset of muscle fatigue is also identified as a major obstacle to the 

effectiveness of FES systems (Doucet et al. 2012; Nguyen et al., 2011; Sayenko et al. 2014; Wise 

et al. 2001; Yoshida & Horsch, 1993). A reason often cited is that the normal size principle of 

motor unit recruitment (Henneman 1957, Henneman et al., 1965) is reversed such that large 

more fatiguable motor units are recruited prior to small, less fatiguable units (Bickel et al. 2011; 

Yoshida & Horch, 1993; Bajd & Munih, 2010; Peckham & Knutson 2005).  We believe, 

however, that excessive fatigue comes about primarily because of an inherent inability of 

conventional electrode systems to access the entire pool of motor units within a muscle.   This 

issue is addressed in Chapter 5 of this dissertation 
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CHAPTER 2 

EFFORTS TOWARDS DEVELOPMENT OF AN UPPERLIMB NEUROPROSTHETIC 
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1.0: INTRODUCTION 

 

 The work presented in this dissertation was aimed at the development of an upper-limb 

neuroprosthetic for the restoration of movement in individuals paralyzed as a result of spinal 

cord injury or stroke. While functional electrical stimulation (FES) systems have been developed 

and deployed to restore motor function, the number of patients that utilize these systems is 

limited. This is due in part to the difficulty associated with identifying the patterns of muscle 

activity needed to produce desired motor behaviors. Indeed, even the simplest movements often 

require coordination of many muscles across multiple joints, involving multiple degrees of 

freedom (Schieber 1995; Valero-Cuevas et al. 2000; Fuglevand 2011).  

 Previous studies have used sophisticated biomechanical models in an attempt to predict 

muscle activity patterns (e.g Blana et al. 2008).  Such approaches use inverse dynamics based on 

classical mechanics (e.g. Winter 1990) to predict the net torques generated at each joint needed 

to produce some desired trajectory of the limb.  Because multiple muscles typically cross any 

joint, the net torques need to be resolved into individual muscle forces using various 

optimization strategies (Crowninshield 1978; Pedotti et al. 1978; Zajac & Gordon 1989; 

Anderson & Pandy 2001).  Once individual muscle forces are predicted, the patterns of 

activation of those muscles can be estimated taking into account a variety of biophysical 

properties of skeletal muscle contraction (e.g. force-length, force-velocity relations)(Hatze 1978; 

Delp et al. 2007; Kosterina et al. 2013).  The resulting patterns of muscle activation then can 

serve as templates for time-varying electrical stimulation delivered to the muscles in order to 

evoke the desired movement (Yamaguchi & Zajac 1990).  Unfortunately, such approaches have 
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performed relatively poorly in predicting muscle activity patterns associated with even simple 

arm movements (Blana et al., 2008).  This may be because such complex systems do not lend 

themselves to structured analytic solutions. 

 Work in our laboratory, however, has demonstrated that non-deterministic machine 

learning methods can be used to predict muscle activity with good fidelity associated with 

complex movements (Seifert & Fuglevand 2002; Anderson & Fuglevand 2008; Johnson & 

Fuglevand 2009; Tibold & Fuglevand 2015). These studies, however, involved predictions of 

activities of only a small number of muscles, for example, those needed to control movements of 

a single finger (Siefert & Fuglevand 2002). In order to control movements of an entire limb, 

electrical stimulation needs to be delivered through intramuscular electrodes to several muscles. 

Such a requirement precludes testing in human subjects at this time. Therefore, we sought to 

determine whether machine-learning based control of functional electrical stimulation could be 

used to evoke complex movement of the upper limb in temporarily paralyzed rhesus monkeys, 

an animal with an upper-limb anatomy similar to that of humans.  

 

2.0: METHODS 

 

 Two separate experimental phases were undertaken as part of this study (figure 1). In 

phase one, we sought to determine whether patterns of muscle activity could be predicted from 

30 upper limb muscles associated with complex free movements of the upper limb using 

machine-learning algorithms.  Predicted muscle activity is compared to the actual recorded EMG 

to evaluate the machine learning algorithm. In the second phase, figure 1(B), stimulus pulses 
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were generated from predicted muscle activity and delivered to paralyzed muscles to evoke 

kinematics. Likewise, evoked kinematics is compared to desired kinematics to determine if 

evoked kinematics compared to desired kinematics.  

 

 

Figure 1.  (A) Phase 1 – Kinematics & EMG are used to train a machine learning 

algorithm (B) Kinematics are evoked in a paralyzed limb using artificial stimulation. 
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Subjects: Three adult male rhesus monkeys (Macaca mulatta) ages 11, 13, 14 were 

included in this study in accordance with IACUC guidelines and approved by the University of 

Arizona institutional review board.  

Training: Monkeys were trained to sit in a primate chair with their left arm restrained and 

their right hand positioned in a start box in front of them. The correct start position was signaled 

by a low-frequency audible tone when the monkey’s hand interrupted the beam of a photodiode 

switch inside the start box. At the start of each trial, a food morsel was positioned at different 

locations within the monkey’s reach space.  To increase the complexity of the movements 

completed, the experimenter moved the food morsel through complex trajectories, changing 

direction and speed of the morsel as the monkey tracked the morsel with his hand.   The monkey 

grasped the food morsel, placing it into his mouth and then returning his hand to the start 

position. The monkeys typically performed this task for 15 to 30 minutes until satiated. To 

ensure that the reach space was fully sampled, these procedures were repeated over several 

training sessions.   

Electrodes: In the first monkey tested, implanted muscle electrodes were Teflon coated, 

multi-stranded, low corrosion, biocompatible, stainless steel wires (Crooner wire AS633 – 36 

gauge) (Fig. 2A).  

Because there was some evidence suggesting that some of the electrodes migrated out of 

their muscle targets, in the second and third monkeys implanted, the simple stainless steel 

electrodes were replaced by electrodes designed for chronic implantation in human, (Ardiem 

Medical Inc.)(Fig. 2B). These electrodes had the following characteristics to improve their 

resilience: 1. polypropylene barbs that served to anchor the detection/stimulating surface within  
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the muscle. 2. the electrode leads were helically twisted along their length and housed within an 

elastic sleeve, allowing the electrodes to stretch, relieving potential strain on the leads. 3. the 

electrodes were custom-designed to have two independent uninsulated spiral areas that were used 

for bipolar recording and stimulating surfaces.  

In all cases, electrode leads were soldered to a small board (Neuralynx pcb board ADPT-

HS-36PSR).  The board included connectors for cables that interfaced with differential 

A 

B 

Figure 2. (A) Crooner wire electrode inserted into a hypodermic needle, insulation has been 

removed from the distal end, which is folded back against the needle shaft. (B) Ardiem 

bipolar electrode, 2mm uninsulated spiral segments are used to stimulating and recording 

electromyographic signals . Polypropylene barbs serve as anchor to maintain position 

within the muscle. Individualized electrode code corresponds to specific muscles.  
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amplifiers (for EMG recording associated with stage 1 of the experiment) or to multichannel 

stimulators (for delivering current pulses for stage 2).  The board and connectors were protected 

within a Delrin plastic encasement that was mounted on the monkey’s skull (see below).   

Muscles: To generate complex three-dimensional arm movements requires simultaneous 

activation of muscles controlling the scapula, shoulder, elbow, and wrist. We implanted 30 

muscles, including 3 scapular muscles (rhomboids, trapezius, serratus anterior), 9 shoulder 

muscles (supraspinatus, infraspinatus, subscapularis, teres major, anterior deltoid, middle deltoid, 

posterior deltoid, latissimus dorsi, pectoralis major), 8 elbow muscles (long head of the triceps, 

lateral triceps, medial triceps, short head of the biceps, long head of the biceps, brachialis, 

brachioradialis, corocobrachialis medius), 7 wrist and forearm muscles (flexor carpi ulnaris, 

extensor carpi ulnaris, flexor carpi radialis, extensor carpi radialis,  palmaris longus, pronator 

teres, supinator) and 3 extrinsic finger muscles, capable of generating significant wrist torque 

were also implanted (flexor digitorum profundus, extensor digitorum communis, and flexor 

digitorum superficialis).  

Surgery: The surgery to implant electrodes was completed in two phases, mounting of the 

electrode encasement on the skull, followed by implantation of 30 intramuscular electrodes. 

Using sterile surgical conditions and under isoflurane gas anesthesia, a coronal incision was 

made in the skin on the dorsal surface of the monkey’s skull. Periosteal tissue was removed once 

the skin was retracted. The electrode encasement was affixed to the skull surface using acrylic 

cement anchored to approximately 12 bone screws (Fig. 3).  
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Electrodes were then tunneled subcutaneously from the encasement on the skull to a mid-

line incision between the scapulae and externalized. The electrodes were then separated into 

dorsal and ventral bundles. Electrodes were passed subcutaneously from the midline incision to 

specific incisions overlying the target muscles. Unique color codes identified each electrode to 

their target muscle (Fig. 4). An optimal insertion site was determined for each muscle using a 

small probe that delivered brief trains of stimulus pulses of fixed current amplitude into the 

target muscle.  The probe was placed in different locations in the muscle and the evoked 

contractions were observed visually.  The location that appeared to evoke the strongest 

contraction was then targeted for implantation with the electrode.  

Figure 3. Dorsal surface of the skull exposed, bone screws 

will serve as the anchor for the electrode encasement. 
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Two insertion methods were used for the two types of electrodes.  For the simple 

stainless-steel electrodes, the wire was passed through the eye of a curved needle and pulled 

through the targeted region of the muscle. Double knots were tied near the distal end of the lead 

and approximately 3 mm of insulation was removed from the end of the wire using a thermal 

wire stripper. The double knots and the denuded end were then pulled back into the muscle with 

the knots serving to help anchor the electrode in the muscle.  

 For the Ardiem electrodes, a custom-built insertion tool was fabricated from 14-gauge 

needle to accommodate insertion of the electrodes. The insertion tool was built to hold the 

polypropylene barbs over the edge of the needle opening. The insertion tool holding the Ardiem 

electrode was inserted into the muscle and retracted, leaving the electrode embedded in the 

muscle. A slot within the insertion tool allowed the lead to be separated from the tool. Once the 

electrode was placed, brief trains of stimuli were delivered through each lead of the Ardiem 

bipolar electrode and the evoked responses/movements observed. If stimulation failed to evoke a 

Figure 4. Color-coded crooner wire electrodes externalized. 

Electrode bundles are separated into dorsal and ventral 

bundles. 

 



45 
 
 

robust contraction, the electrode was removed and reinserted. Large surface area ground 

electrodes were placed under the skin near the midline incision.  

All incisions were closed with sutures, treated with antimicrobial cream, and covered 

with gauze. The arm was immobilized before the monkey recovered from anesthesia. 

Immobilization remained in place for 5 days following surgery to encourage electrode anchorage 

within the muscle (Bhadra & Mortimer 2006).  

 Figure 5 shows X-ray images of the implanted electrode system.  Figure 5A shows the 

electrode connector and bone screws on the skull and the bundle of electrodes extending down 

from the encasement under the skin of the dorsal neck region. Figure 5B depicts Cooner wire 

electrodes with knotted terminations in muscles near the elbow in one monkey.  Figure 5C shows 

bipolar Ardiem electrodes in muscles near the elbow in a different monkey. 

 

 

Figure 5. Panel A. Skull mounted encasement and Neuralynx board. Panel B. Crooner 

wire electrodes. Panel C. Ardiem bipolar electrodes. 
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Phase 1 - Predicting Muscle Activity Patterns 

EMG & Kinematics: Approximately two weeks post surgery, kinematics and EMG 

signals were recorded while monkeys made complex reaching movements (Fig. 6). 

Electromagnetic tracking (120 Hz/channel, Liberty Systems, Polhemus, Inc.) was used to record 

six degrees-of-freedom (X, Y, Z positions, as well as pitch, roll and yaw orientations) motion of 

the hand.  Small sensors (0.7 cm x 0.5 cm) were attached to the hand and shoulder using elastic 

wrap and medical tape.  Shoulder position was used to represent the origin of a reference frame 

for measuring hand position.  

 

 

To record EMG activity, two lightweight cables with local head stages were attached to 

the connectors inside the encasement on the skull (see Fig. 6).  The EMG signals detected with 

Figure 6. Training session to record EMG and Kinematic data used to 

train the machine learning algorithm. Electromagnetic Sensor were 

placed at the shoulder, elbow and back of the hand. EMG data is 

recorded via the head stage. 
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the intramuscular electrodes were routed by the cables to four, 8-channel differential amplifiers 

(Lynx 8, Neuralynx Inc.). EMG signals were amplified (gain = 1000), band-pass filtered (100 – 

475 Hz), and digitally sampled (2500 Hz/channel) using a computerized data acquisition system 

(Power 1401, Spike 7, Cambridge Electronics Design, UK). To synchronize the kinematic and 

EMG data, a TTL pulse generated by the Polhemus system was recorded in the data acquisition 

system. Additionally, a signal generated by the photodiode switch mounted in the start box 

indicated when the limb was in the starting position.  

Signal Processing: All data were processed offline using custom-designed Matlab scripts 

(Mathwork, Natick, MA). Hand position (x -anterior/posterior; y - medial/lateral; z - vertical) 

data were expressed relative to the shoulder position and normalized to the maximal 

displacement of the hand recorded during each experimental session. Additionally, pitch, roll and 

yaw orientations of the hand were expressed relative to an earth-based reference frame.  

Kinematic data were then low-pass filtered (6Hz cut-off, six order Butterworth, zero phase). 

 EMG signals were full-wave rectified and low pass filtered at 2 Hz (sixth order, Butterworth, 

zero phase). EMG signals were then down-sampled to 120 Hz/signal and synchronized with the 

position data. EMG magnitude was normalized to a percentage of the peak EMG recorded over 

all training sessions.  

Training Data: Data used to train the machine-learning algorithm and data used to test 

the algorithm were either from the same monkey (within-subject analysis) or from different 

monkeys (across-subject analysis). Within-subject analysis represents the best-case scenario for 

predictions because subject differences in the relationship between EMG and kinematics do not 

contaminate predictions (Johnson & Fuglevand 2009). Across-subject analysis (where data 
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collected from one monkey was used to train the algorithm, while data from a different monkey 

was used to test the predictive ability of the algorithm) represents a more realistic evaluation of 

machine learning as a means to develop an FES controller (Johnson & Fuglevand 2009).  When 

applied to actual patients, able-bodied subjects would be needed to provide the data to train the 

algorithm to be deployed in paralyzed individuals. 

Machine Learning: Machine learning refers to a host of computational methods (artificial 

neural networks, Bayesian probability, support vector machines, etc.) that use existing data (both 

input and outputs from some system of interest) to learn associations among the variables (in a 

process called “training”).  The training in turn generates computer algorithms that can be use 

make predictions based on a new set of inputs.  Previously, our lab has demonstrated the utility 

of using machine learning to predict EMG from desired kinematics (Siefert & Fuglevand 2002, 

Anderson & Fuglevand 2008, Johnson & Fuglevand 2009, Tibold & Fuglevand 2015).  Here we 

use an artificial neural network (ANN) as our machine-learning algorithm based on its slightly 

better performance and computational efficiency compared to other algorithms for this type of 

data (Johnson & Fuglevand 2009).  

For each time point, six kinematic parameters were used as inputs to the ANN (X, Y, Z 

position of the hand relative to the shoulder, pitch, roll and yaw orientations of the hand). In 

addition, the kinematic values from the two immediately preceding time points were also 

included as inputs.  In previous work it was demonstrated that additional kinematic features such 

as velocities, accelerations, and other joints positions (e.g. the elbow), had only a limited effect 

on the predictions of EMG patterns, as a result we did not include these features (Anderson & 
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Fuglevand 2008).  The ANN was a multilayer perceptron involving a feed-forward network 

created in the Neural Networks Toolbox of Matlab (Mathworks, Natick, MA).  

After the network was trained, new predictions were made from data not included in the 

training.  These testing data were processed in the same way as the training data. Predictions 

were low-pass filtered with a 10-point moving average filter to remove high-frequency 

deflections. 

Analysis of predicted EMG signals:  Once the ANN was trained, EMG signals were then 

predicted from the kinematics recorded for a set of 16 test movements, each ~ 10 s in duration.   

The EMG and kinematic data recorded from the test movements, which involved a variety of 

movements including simple and complex trajectories, were not used to train the ANN.  EMG 

signals here refer to the rectified, low-pass filtered, and amplitude normalized EMG recorded 

from any muscle.  The main metric used to measure the quality of predictions was the coefficient 

of determination (R
2
). The coefficient of determination is based on the correlation between the 

actual and predicted EMG signals for each muscle. It is an indication of the amount of variance 

in the recorded EMG signals explained by the predicted EMG signals and indicates how closely 

the predicated and actual activity patterns are matched. 

Phase 2 - Evoking Desired Movements With Multi-Muscle Stimulation 

Conversion of EMG to Stimulus Pulses: Predicted EMG signals associated with a set of 

test movement trajectories were converted off-line into trains of current-regulated stimulus 

pulses (0.5 ms duration)  to be delivered to the 30 implanted muscles in temporarily paralyzed 

monkeys (see Stage 2, Figure 1). To do this, we used a ‘transfer function’ described by Johnson 

and Fuglevand (2011) that converted EMG signals into amplitude and frequency modulated 
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stimulus pulse trains.  Increasing pulse amplitude increases the number of motor axons recruited 

to the contraction.  Increasing pulse frequency increases the contraction intensity by temporal 

summation of contractile impulses (i.e. rate coding).   The transfer function modulated pulse 

amplitude and pulse frequency both as sigmoid functions of EMG amplitude.  As such, as 

predicted (or actual) EMG increased, both pulse amplitude and pulse frequency increased 

monotonically and in parallel with one another.  Such co-modulation of amplitude and frequency 

approximates natural activation of muscle wherein motor unit recruitment and rate coding 

operate in parallel over much of the force range of typical muscles (Johnson & Fuglevand 2011).  

For each muscle, the pulse amplitudes were normalized from the minimum current needed to 

evoke a detectable response to the pulse amplitude above which no further increase in 

contraction strength could be discerned.  Stimulus frequencies were normalized between 10 and 

60 Hz.  These frequencies represent the typical range of firing rates recorded in human motor 

units.  Little such data exists for firing rate ranges in monkeys. 

Stimulation Experiments: Once stimulus patterns had been generated for each test 

movement using the transfer function, we then played out those patterns to the 30 muscles in 

experimental sessions during which the monkeys were anesthetized.  Monkeys were first sedated 

in their home cage with Ketamine HCL (10 – 15 mg/kg IM) and transported to the procedure 

room.  Atropine (0.04 mg/kg IM) was given to reduce hyper-salivation common with Ketamine 

sedation.  Carprofen (2.2 mg/kg SQ) was also given to reduce inflammation associated with 

endotracheal intubation.  A 22-gauge intravenous catheter was placed in the saphenous or 

cephalic vein to deliver lactated Ringers (5-10 ml/kg/hr) to maintain hydration.  Anesthesia was 

induced with isoflurane (1.5 – 2% in 100% oxygen, ~ 1 L/min) via mask insufflation.  Following 
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induction, an endotracheal tube was inserted to maintain airway patency and deliver anesthesia 

(1 – 2% isoflurane in 100% oxygen, ~1 L/min).  

 Monkeys were then placed into a modified infant car seat in a seated position. A neonatal 

cervical collar was used to maintain the head in an upright position.  The cervical collar was 

fixed in place to the car seat with cable ties passed through holes drilled in the car seat and 

through slots in the back of the collar.  Straps situated midway between the neck and shoulder 

and across the torso secured the animal to the chair.  The right (test) arm was placed in a position 

that approximated placement of the hand was in the start box during the training phase.  

 Monkeys were instrumented with an esophageal thermometer to measure core 

temperature and a SpO2 monitor placed on one of the digits of the left hand.  Heart rate, 

respiratory rate, electrocardiogram, end-tidal CO2, and non-invasive blood pressure (cuff over 

radial artery) signals were monitored throughout the experiment. Core temperature of ~ 98 º F 

was maintained via a forced warm air blanket and bubble wrap placed over the torso. Physiologic 

parameters were noted every 5 – 10 minutes.  

 With the monkey anesthetized and positioned in the modified car seat, the four 8-channel, 

STG-4008 stimulators were attached by two cables to the electrode connectors mounted on the 

skull. Muscle thresholds, (minimum current to evoke a detectable response) established 

previously was verified with 0.1 mA steps and compared to previous measures. The Polhemus 

liberty system was used to record motions of the hand relative to the shoulder position, using 

sensor placed on the hand. Six degrees of freedom (X,Y,Z positions, as well as pitch roll and 

yaw orientation) were recorded. Trains of stimulus pulses associated with each of the test 

movements were delivered to all muscles in separate trials with about 1 minute of rest between 
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trials. The evoked movements were recorded and compared to the desired test movements using 

R
2
 measures. 

 

3.0: RESULTS  

 

Examples of hand trajectory tracked during a single training session are shown in Figure 

7. Figure 7A shows a single reach to a food morsel and then to the mouth, while figure 7B shows 

all trajectories recorded during a single training session.  It can be seen from Figure 7B that a 

relatively wide expanse of the reach space was sampled during this session.  Likewise, Figure 8 

shows a brief sample of the rectified low-pass filtered EMG signals recorded for a number of 

example muscles during a training session.  The example data shown in Figures 7 and 8 

represent the type of data used to train the ANN. 

 

       

Figure 7. (A). Trajectory of the arm during a single reach. (B). Trajectories 

recorded during a single training session. Red arrow indicates the direction the 

monkey is facing.  Monkey’s mouth in 7(A) is approximately at X-2, Y-2, Z-1.  

A . B  
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Figure 9 shows representative examples of EMG signals predicted by the trained ANN.  

The inputs to the trained network were hand kinematics from movement trials that were not used 

to train the network. The black traces indicate the actual EMG recorded while the red trace 

indicates the predicted EMG signals. The predictions match the actual EMG signals quite well in 

both amplitude and temporal specificity.  

 

Figure 8. Example Electromyographic (EMG) recorded during a 

single training session. EMG is rectified and low pass filtered. 
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 In one monkey (the only monkey in whom we were able to record sufficient data for 

analyses), the coefficient of determination (R
2
) between actual and predicted EMG averaged 

across a set of 64 test-movement trials and across all muscles was 0.56. The predictions, 

however, varied across muscles.  For example, large prime movers like the anterior deltoid 

(0.74), Triceps (0.73), and posterior deltoid (0.52) were fit best. Muscles of the forearm, 

however, such as brachiradialis (0.15), flexor carpi radialis (0.18) and flexor digitorum 

profundus (0.12) showed poorer fits.  These differences likely reflect the degree to which 

individual muscles contributed to the actual movement. Nevertheless, given these promising 

results for the prime movers of the arm, we were encouraged to use these predicted signals as 

templates for electrical stimulation in an attempt to evoke targeted movement trajectories. 

Figure 9. Predicted EMG (Black) overlaid on actual EMG (Red). 
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Stimulation.  We delivered the stimulus-pulse patterns (Fig. 10) derived  from our FES transfer 

function (Johnson & Fuglevand 2011, see Fig. 1, Stage 2) and based on the ANN predictions of 

EMG activity to the muscles of  anesthetized monkeys in an attempt to generate test movements. 

Disappointingly, stimulation during these experiments failed to generate all but minor 

displacements of the limb. Stimulation was unable to elevate the arm from the starting position; 

instead the arm typically flexed slightly at the elbow and was associated with oscillations of the 

wrist and fingers. Even the simplest trajectory sought with artificial stimulation was not attained. 

It should be noted that in a single trial in one monkey, the arm did elevate modestly. However, 

we were unable to duplicate those results during this experiment or any other.  

 

Figure 10. Example filtered and smoothed EMG. Lower part of the figure 

shows amplitude and frequency modulated stimulus patterns derived from 

predicted EMG.  
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4.0: DISCUSSION 

 

 At present, upper-limb neuroprosthetic systems can evoke only a small number of motor 

behaviors in paralyzed individuals (Kilgore et al., 1989; Memberg et al. 2014; Ajiboye et al. 

2017).  A key factor that limits the production of a broader repertoire of movements with FES is 

the difficulty in identifying the patterns of muscle stimulation needed to evoke desired 

movements.  Previously, we have shown that EMG signals can be predicted from desired 

kinematics with good fidelity for relatively simple movements (Siefert & Fuglevand 2002; 

Anderson & Fuglevand 2008).  Here, we sought to markedly increase the types of movements 

available through FES systems.  We showed that EMG patterns associated with complex, multi-

joint, three-dimensional movements can be predicted with good accuracy using machine 

learning.  

Unfortunately, while the machine-learning algorithm performed well, we were unable to 

generate robust movements of the limb using artificial stimulation.  Our inability to generate 

clear movements could have been due to a number of problems.  For example, electrode 

migration (confirmed in post-mortem evaluation for some electrodes) may have partially 

contributed to deficits in the efficacy of stimulation in the first monkey who was implanted with 

simple hook-wire electrodes.  However, electrode migration was unlikely to have accounted for 

the inability to evoke movements in the other two monkeys implanted with Ardiem electrodes.  

The Ardiem electrodes possess a barb-like collar specifically designed to prevent electrode 

migration when implanted in human patients.  It should be noted, however, that the Ardiem 

electrodes inexplicably led to breakdown of the skin overlying the path of the electrodes and had 
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to be removed.  Once the electrodes were removed the lesions healed.   However, we were not 

able to actually confirm that the electrodes had remained in the target muscles.   

 After ensuring that the failure to evoke robust movements was not due to other technical 

problems, we speculated that the most likely cause was associated with an intrinsic inability of 

electrical stimulation to evoke strong muscle contractions. Indeed weak force generation along 

with rapid fatigue had been cited previously as primary problems of FES systems (Enoka and 

Fuglevand 1991; Maffiuletti et a. 2014; Bhadra & Peckham 1997; Mizrahi 1997; Kesar et al. 

2008; Doucet et al. 2012; Guiraud et al. 2014; Ibitoye et al. 2016; Barss et al. 2018; Naess & 

Storm-Mathisen 1955; Binder-Macleod & Snyder-Mackler 1993; Nyugen et al. 2010). In 

particular, it has been shown in a few studies that maximum electrical stimulation evoked only 

modest force compared to that produced voluntarily in able-bodied subjects (Vanderthommem & 

Duchateau 2007; Milner et al. 1969; Kramer et al. 1984).  

 To evaluate this possibility, we initiated pilot experiments to compare force generated as 

a result of voluntary contractions to that evoked with artificial stimulation in human subjects (N 

=2). We first tested flexion of the interphalangeal joint of the thumb because this is an action that 

is controlled by a single muscle (flexor pollicus longus, FPL). 

The force generated by intense percutaneous intramuscular stimulation of the FPL 

produced values that were only about 60% of that which could be produced during a maximum 

voluntary contraction.   It was noted, however, that in the one subject on whom this was tested, 

substantial involuntary co-activation of other muscles of the arm and torso occurred during the 

electrical stimulation.  This seemed to be largely associated with the pain caused by the strong 

electrical stimulation.  Such co-contraction of antagonist muscles will reduce the external force 
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detected by a transducer.  These finding were replicated when testing another muscle, the 

anterior deltoid.  Therefore, because of the substantial pain and inadvertent co-contraction of 

other muscles, these studies were stopped.      

Nevertheless, these pilot studies led us to develop experimental models where; (1) the 

effects of the discomfort and associated co-contraction caused by electrical stimulation could be 

removed and (2) the target muscle could be isolated for study. The studies described in the 

following two chapters of this dissertation used these experimental models to help understand the 

causes of weak contraction and fatigue that severely undermine the utility of functional electrical 

stimulation to restore movement in paralyzed individuals.  
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CHAPTER 3 

DISTRIBUTED STIMULATION INCREASES FORCE ELICITED WITH FUNCTIONAL 

ELECTRICAL STIMULATION 

 

 

 

 

The work contained within this chapter has been published in the Journal of Neural Engineering. 

It is now copyrighted material, the paper has been included in this dissertation as Appendix A. A 

summary of the work and a contribution summary has been included within this chapter.  
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Study summary 

 The work contained in this chapter is presented as a published article in Appendix A. 

Here, we compared the maximum isometric force that could be evoked in the anterior deltoid 

using one or two intramuscular electrodes. We also examined whether temporarily interleaving 

stimulation between two electrodes might reduce fatigue compared to simultaneously stimulating 

through two electrode.  

 To test this idea we selected a non-human primate as our model animal, due to 

comparable musculoskeletal systems and upper limb anatomy. The two primates participated in a 

total of 29 trials. We compared the maximum isometric forces that could be evoked with two 

intramuscular electrodes. In separate trials we evaluated whether temporally interleave 

stimulation might reduce fatigue as opposed to synchronized stimulation. 

We found that two electrode stimulation produced greater force than maximal stimulation 

with only one electrode. In our evaluation of fatigue using interleaved or synchronous 

stimulation we found no reduction in fatigue with interleaved stimulation.  

Contribution Summary: This work was completed in conjunction with the authors listed on the 

title page of the publication manuscript in Appendix A. As first author, I completed all the 

experiments and was responsible for the analyzing the data, compiling figures and writing the 

manuscript. Dr. Andrew Fuglevand provided additional analysis of the experimental results. I 

received undergraduate assistance from Danielle Lockwood in completing the experiments.  
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CHAPTER 4 

MITIGATION OF EXCESSIVE FATIGUE ASSOCIATED WITH FUNCTIONAL 

ELECTRICAL STIMULTATION 

 

 

 

 

The work contained within this chapter has been published in the Journal of Neural Engineering. 

It is now copyrighted material, the paper has been included in this dissertation as Appendix B. A 

summary of the work and a contribution summary has been included within this chapter.  
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Study summary  

 The work contained in this chapter is presented as a published article in Appendix B.  In 

this portion of the study, we examined how multi-electrode stimulation could affect the fatigue 

due to functional electrical stimulation. We compared endurance time in three scenarios 

including multi-electrode stimulation and peri/intra-neural stimulation, compared to voluntary 

contraction. The impetus for this study arose from our desire to address the second major 

problem effecting Functional electrical stimulation, that of fatigue. Rapid fatigue is a hallmark of 

artificial stimulation and is well documented in the research literature. Traditionally, a single 

electrode is used to activate muscles with FES. We hypothesized that due to the highly 

distributed branching of intramuscular motor axons, a single electrode may be insufficient to 

activate the entire nerve array supplying a muscle. Stimulating with multiple spatially distributed 

electrodes however, should enable access to a larger volume of muscle fibers. This in turn, 

facilitates contractile load-sharing among muscle fibers, reducing fatigue.  

Additionally, FES indirectly evokes reflex contractions, confounding measurements of 

the directly activated muscle response. Removing the reflex component of the evoke contraction 

would provide a more accurate measure of fatigue resulting from artificial stimulation. The aim 

of this study therefore, is to compare endurance time, in the absence of reflex contractions, using 

a single percutaneous electrode, multiple percutaneous electrodes, or a single intra-neural 

electrode.  

Reflex contribution to the contractile force measured was removed, using a localized 

nerve block, applied to the peroneal nerve, proximal to the knee.  Tungsten microelectrodes were 

inserted into the Tibialis Anterior (TA) of human subjects (n=4). Using one voluntary and three 
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artificial stimulation tasks, we compared endurance time while subjects dorsiflexed their foot 

against a force transducer. A target force of 20% of the subject’s maximum voluntary contraction 

(MVC) was used for all trials. Baseline endurance time was measured with a voluntary 

contraction of the TA. In artificial stimulation trials, continuous stimulation was delivered at 25 

Hz until the evoked force could no longer be maintained within 5% of the target force. The 

stimulus intensity was automatically adjusted using a feedback control algorithm to maintain the 

target force at 20% of each subject’s MVC. Only one fatigue trial was tested per experimental 

sessions with 48 hours rest between sessions.  

Overall, our findings show that endurance times were significantly increased in all 

scenarios. Specifically, multiple electrode endurance time was 139% greater than single 

electrode time. Additionally, nerve stimulation was 952% and 341% greater than single and 

multiple electrode stimulation respectively. Thus, it appears that endurance time can be increased 

using multiple electrodes and an intra-neural electrode. 

Contribution Summary: This work was completed in conjunction with the authors listed on the 

title page of the publication manuscript in Appendix B. As first author, I completed all the 

experiments and was responsible for the analyzing the data, compiling figures and writing the 

manuscript. Dr. Andrew Fuglevand provided additional analysis of the experimental results. I 

received assistance from Tapas Arakeri in completing the experiments. He programmed the 

control algorithm used to maintain the target force and would control the stimulator as we probed 

the muscle for electrode placement. 
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CHAPTER 5 

DISCUSSION 
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Functional electrical stimulation offers the potential to restore movement in paretic limbs 

by artificially activating skeletal muscle. However, this potential has not been realized due in 

part to the difficulty associated with predicting the patterns of muscle stimulation needed to 

evoke all but the simplest motor behaviors. Additionally, weak contraction strength and rapid 

fatigue are major problems limiting the development and deployment of FES systems. 

Therefore, the primary goal of this work was to advance the development of an upper 

limb neuroprosthetic capable of generating an unrestricted range of complex motor behaviors. 

Three challenges associated with this goal were addressed in this dissertation: 1) accurate 

prediction of the patterns of muscle stimulation required to generate complex motor behaviors, 2) 

increasing the force evoked by electrical stimulation, and 3) increasing endurance time (reducing 

fatigue) of electrically-evoked contractions.  

To determine whether we could estimate the muscle activation patterns associated with 

complex multi-joint behaviors, we employed a machine learning algorithm involving an artificial 

neural network. Inputs used to train the algorithm included arm kinematics and EMG signals 

from ~ 30 muscles that were recorded while monkeys made complex reaching movements.  

Once trained, the neural network was able to predict the activation patterns associated a new set 

(i.e. not used to train the algorithm) of arm movements.   The predicted patterns were temporally 

and spatially similar to the actual EMG signals recorded during these new movements.  

Therefore, in principle, one could use these predicted patterns of muscle activity as templates for 

electrical stimulation needed to evoke a wide range of movements in paralyzed individuals.  

However, when we attempted to demonstrate this   in temporarily paralyzed monkeys by 
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converting those patterns into amplitude and frequency modulated stimulus pulses, our attempts 

were unsuccessful because of weak contractions and rapid fatigue.   

 As is the convention in FES, we delivered stimulus current to single electrodes in each 

muscle.  In attempting to understand why evoked muscle contractions were so weak, we 

recognized (based on relatively new findings in the literature; Won et al. 2011; 2012; 2015) that 

innervation of skeletal muscle involves a highly diffuse network of nerve fibers distributed 

throughout a muscle rather than a singular and centrally-located motor point, as has been largely 

presumed. On this basis, we hypothesized that a single electrode may be insufficient to activate 

all nerve branches innervating a muscle even when using high currents. We carried out 

experiments to test this hypothesis in anesthetized non-human primates by comparing the 

maximum muscle force exerted in a test muscle in response to stimulation with one electrode to 

that evoked with multiple electrodes. In all cases, greater forces were elicited when using 

multiple electrodes, indicating that a greater volume of muscle fibers was activated when using 

multiple electrodes.  This finding suggests that FES can be made more efficacious in terms of 

force generation by using more than one site of stimulation, particularly for large muscles. 

It also seemed to follow that weakness associated with conventional FES was itself a 

primary cause of rapid fatigue with FES.  Indeed, if only a fraction of muscle fibers within a 

muscle can be enlisted with a single electrode, then a smaller reserve of fresh muscle fibers will 

be available to be activated to compensate for force loss in those muscle fibers initially activated 

during a sustained contraction to a given target level.  This would mean that the target force 

should not be maintained as long as compared to a situation where more muscle fibers can be 

called upon as in the case of multiple electrodes or direct stimulation to the muscle nerve.    
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To test this idea, we compared endurance times using a single intramuscular electrode, 

multiple intramuscular electrodes, and direct nerve stimulation. Additionally we measured the 

voluntary contraction time for comparison. We demonstrated that endurance time was greater 

when using multiple electrodes compared to single electrodes.  Furthermore, endurance time 

using nerve stimulation was substantially longer than that using intramuscular stimulation and 

could even exceed voluntary endurance time.  Therefore, future implementations of FES systems 

to restore movement in paralyzed limbs should attempt to include multiple intramuscular 

electrode or nerve-based electrodes to help mitigate fatigue. 

While the work presented in this dissertation may help advance the utility of FES 

systems, there remain a number of other challenges that should be addressed in the future.  For 

example, actual deployment of an upper limb neuroprosthetic would require real-time predictions 

(rather than off-line, as done in this dissertation) from artificial neural networks to generate 

patterns of muscle stimulation needed to produce desired movements.  Importantly, there will 

also need to be some efficient means by which the user provides the desired limb trajectory as 

the input to the trained artificial neural network.  This might be accomplished with detection of 

gaze direction when fixating on target objects, verbal commands, or even brain-machine 

interfaces that decipher desired trajectories from neural activity recorded in the cerebral cortex.   

Additionally, future upper limb neuroprosthetics systems must be intelligent and 

adaptable enough to account for interactions with objects in the environment (not just free 

movement as done here). Systems must include provision for on-line feedback adjustments to 

stimulus parameters, accommodating for unexpected perturbations of the limbs, muscle fatigue 

or even errors in the algorithm. Longevity of such implanted systems necessitates that subjects 
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be untethered from external cables, utilizing instead wireless technology, and that implanted 

components including electrodes not illicit an immune response, are robust but reduced in size 

and most importantly remain at their optimal implantation site. 

 Indeed, such advances would move upper limb neuroprosthetic and the restoration of 

paralysis out of the laboratory and into daily lives, allowing paralyzed individuals to regain an 

increased degree of freedom and autonomy, even normalcy.  
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ABSTRACT 

  

Objective:  The maximum muscle forces that can be evoked using functional electrical 

stimulation (FES) are relatively modest.  The reason for this weakness is not fully understood but 

could be partly related to the widespread distribution of motor nerve branches within muscle.   

As such, a single stimulating electrode (as is conventionally used) may be incapable of activating 

the entire array of motor axons supplying a muscle.  Therefore, the objective of this study was to 

determine whether stimulating a muscle with more than one source of current could boost force 

above that achievable with a single source.  

Approach: We compared the maximum isometric forces that could be evoked in anterior deltoid 

of anesthetized monkeys using one or two intramuscular electrodes.  We also evaluated whether 

temporally interleaved stimulation between two electrodes might reduce fatigue during 

prolonged activity compared to synchronized stimulation through two electrodes. 

Main Results: We found that dual electrode stimulation consistently produced greater force 

(~50% greater on average) than maximal stimulation with single electrodes.  No differences, 

however, were found in the fatigue responses using interleaved versus synchronized stimulation. 

Significance: It seems reasonable to consider using multi-electrode stimulation to augment the 

force-generating capacity of muscles and thereby increase the utility of FES systems. 
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INTRODUCTION 

 Functional electrical stimulation (FES) involves artificial activation of muscles to restore 

some measure of motor function in paralyzed individuals.  One vexing problem undermining the 

utility of FES is that the maximum forces exerted with stimulation are relatively weak.  Indeed, 

even in healthy subjects, the largest forces that can be evoked with electrical stimulation are 

inexorably less than that produced during maximum voluntary contraction (Milner et al. 1969; 

Marsh et al. 1981, Kramer et al. 1984; Enoka and Fuglevand 1991; Koh and Herzog 1995; 

Vanderthommen and Duchateau 2007; Maffiuletti et a. 2014).  Many factors likely contribute to 

this weakness in individuals with spinal cord injuries, including muscle atrophy and muscle 

denervation.  As a consequence, most FES systems applied to high-level tetraplegics, for 

example, require an external frame to support the arm because muscle stimulation alone is 

insufficient to elevate the limb against gravity (Hoshimiya et al. 1989; Nathan 1989; Schill et al. 

2011; Memberg et al 2014).  

 In addition, it seems possible that single site stimulation (as typically used in implanted 

FES applications) may simply be insufficient to fully activate most muscles, particularly larger 

muscles controlling more proximal joints like the shoulder.  A widely held view is that if 

isometric force saturates with escalating stimulating current delivered by a single electrode, then 

the maximal force capacity of the muscle has likely been achieved (e.g. Merton 1954; Bigland-

Ritchie et al. 1979; Rutherford et al. 1986).   However, the highly distributed branching of motor 

nerves in human muscle (Sunderland and Hughes 1946; Amarali et al. 2007; Mu and Sanders 

2010; Won et al. 2011; 2012; 2015) combined with the steep decay in the electric field strength 

with distance from a stimulating electrode (McIntyre and Grill 2002; Rattay 2004) may preclude 
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activation of the entire array of motor axons within a muscle with a single intramuscular 

electrode (Memberg et al. 2014).   

 Therefore, the aim of this study was to determine whether stimulating a muscle using 

intramuscular electrodes but with more than one source of current could boost force above that 

achievable with a single source.  An additional potential benefit of such distributed stimulation is 

that some degree of load sharing among the muscle fibers activated by different electrodes might 

help minimize fatigue during prolonged activity (Mortimer 1981; Yoshida and Horch 1993; Wise 

et al. 2001; McDonnall et al. 2004; Nguyen et al. 2011; Sayenko et al. 2014; Lou et al. 2017; 

Wiest et al. 2017).  Because of the relatively prolonged force response to each stimulus pulse, it 

seems feasible that a target force could be maintained by alternating stimuli among the electrodes 

using lower rates than would be needed by a single electrode.  In turn, lower rates of muscle fiber 

activation might lessen the overall degree of muscle fatigue.  Therefore, a secondary aim of this 

study was to determine whether temporally interleaved stimulation between stimulation sites 

might reduce fatigue compared to synchronous stimulation. 

METHODS  

 Subjects. Two adult male rhesus monkeys (Macaca mulatta), ages 11 and 13 years, were 

included in this study in accordance with IACUC guidelines and approved by the University of 

Arizona institutional review board.  Subjects were anesthetized during the experiments (see 

details below).  We initially attempted these experiments in awake healthy human subjects but 

the discomfort (Merton 1954; Edwards 1984, Vanderthommen and Duchateau 2007; Maffiuletti 

et al. 2014) and inadvertent co-contraction (Marsden et al. 1983) associated with intense 

stimulation precluded valid assessments.  Because macaques have relatively large skeletal 
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muscles and an upper limb anatomy similar to that of humans (Cheng & Scott 2000), they 

provide a reasonable experimental model for testing FES.   Furthermore, because we were 

interested in the practical implementation of FES operating within intact joint systems, we opted 

not to surgically isolate the test muscle, the anterior deltoid.  The anterior deltoid was selected 

for study because it is a key contributor to arm elevation particularly for reaching movements 

(Soechting & Flanders 1997; Gronley et al. 2000).  In macaques, the proportion of the anterior 

deltoid composed of slow twitch oxidative fibers is about 33% (Singh et al. 2002) whereas it is 

about 50% in humans (Tesch and Karlsson 1985).  As such, the anterior deltoid of the macaque 

may be slightly faster and somewhat less resistant to fatigue than in humans. To minimize the 

number of animals tested, we carried out repeated testing of the two subjects across multiple 

sessions. The data reported here were obtained from 28 sessions, 15 for monkey S and 13 for 

monkey R. A minimum of seven days recovery were allowed between testing sessions for both 

monkeys. 

 Subject preparation.  Prior to each experimental session, monkeys were sedated in their 

home cage with Ketamine HCL (10 – 15 mg/kg IM) and transported to the procedure room.  

Atropine (0.04 mg/kg IM) was given to reduce hyper-salivation common with Ketamine 

sedation.  Carprofen (2.2 mg/kg SQ) was also given to reduce inflammation associated with 

endotracheal intubation.  A 22-gauge intravenous catheter was placed in the saphenous or 

cephalic vein to deliver lactated Ringers (5-10 ml/kg/hr) to maintain hydration.  Anesthesia was 

induced with isoflurane (1.5 – 2% in 100% oxygen, ~ 1 L/min) via mask insufflation.  Following 

induction, an endotracheal tube was inserted to maintain airway patency and deliver anesthesia 

(1 – 2% isoflurane in 100% oxygen, ~1 L/min).  
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 Monkeys were then placed into a modified infant car seat in a seated position (Fig. 1). A 

neonatal cervical collar was used to maintain the head in an upright position.  The cervical collar 

was fixed in place to the car seat with cable ties passed through holes drilled in the car seat and 

through slots in the back of the collar.  Straps situated midway between the neck and shoulder 

and across the torso secured the animal to the chair.  The right (test) arm hung in a pendant 

position, free of obstruction.  

 Monkeys were instrumented with an esophageal thermometer to measure core 

temperature and a SpO2 monitor placed on one of the digits of the left hand.  Heart rate, 

respiratory rate, electrocardiogram, end-tidal CO2, and non-invasive blood pressure (cuff over 

radial artery) signals were monitored throughout the experiment. Core temperature of ~ 36.7 º C 

was maintained via a forced warm air blanket and bubble wrap placed over the torso. Physiologic 

parameters were noted every 5 – 10 minutes.  

 Force measurements.  Once the animal was positioned in the chair, a custom-built force 

transducer was attached to the pendant arm by a strap that encircled the wrist and was used to 

measure shoulder flexion force. The transducer position was adjusted to pull the limb slightly in 

extension and thereby maintain a resting tension of ~ 2 N.  The force transducer signal was 

amplified (x 1000, Transbridge, World Precision Instruments, Sarasota FL, USA) and digitally 

sampled (1000 Hz, Spike2, Cambridge Electronics Design, Cambridge England). 
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Electrical stimulation.  Hair was removed from the skin overlying the right deltoid and 

surrounding areas. The skin surface was then cleaned with sterile alcohol and gauze.  

Intramuscular cathode electrodes (tungsten, 250 m shaft diameter, 1 – 5 m tip diameter, 2 – 4 

mm of insulation removed from the tip) were then inserted through the skin and into the anterior 

deltoid along the proximal-distal axis of the muscle.  Individual electrodes were placed ~ 2 cm 

apart.  In preliminary experiments using up to four intramuscular electrodes, the preponderance 

of force summation was achieved with two electrodes.  As such, two independent intramuscular 

Figure 1.  Experimental set up.  Anesthetized monkeys were positioned and 

secured upright in a modified infant car seat.  Two intramuscular electrodes were 

inserted percutaneously into the right anterior deltoid muscle.  Current-regulated 

pulses were delivered independently through each electrode and the evoked 

isometric shoulder-flexion forces were recorded with a transducer attached to the 

wrist.  Surface electrodes placed over the clavicle served as return electrodes for 

each stimulation channel. 
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electrodes were used for the experiments reported here.  Surface electrodes (1.5 cm diameter) 

placed over the clavicle and acromion process served as the return electrodes.  

 A programmable multi-channel stimulator (STG4008 MultiChannel Systems, Reutlinger, 

Germany) generated current-regulated rectangular pulses (0.5 ms duration).  Given a compliance 

voltage of 160 V, and an approximate electrode/skin impedance (at 1000 Hz) of 8 kΩ, we 

estimated the maximal controlled current available for these experiments to be ~ 20 mA.   

 Initially, 1 Hz pulses (2 mA amplitude) were delivered to each electrode while the depth 

position of the electrode was manually adjusted in small increments until the largest twitch 

forces were elicited.  The electrode was then left in that position for the remainder of the 

experiment.  A more comprehensive mapping of the entire anterior deltoid to determine the 

optimal sites for stimulation was not undertaken primarily for the sake of expediency, as we tried 

to minimize the time monkeys were under anesthesia.  The threshold current needed to elicit a 

detectable force response was then determined for each electrode.  One-second trains of pulses 

(35 Hz, 4 s inter-train intervals) were delivered in 0.1 mA steps up until a force response was 

detected on the transducer.  The magnitude of the current associated with the first detected 

response was deemed the threshold current. 

 Force-frequency relationship.  In some of the sessions (10 for monkey R, 12 for monkey 

S), we characterized the relation between stimulus frequency and isometric force for the anterior 

deltoid.  One-second trains of stimuli (0.5 ms, 6 mA) were delivered at 10, 20, 30, 40, 50, 60, 80, 

and 100 Hz with 4 s between trains.  This was done using one electrode only.  As far as we are 

aware, no previous studies have characterized the force-frequency relationship in limb muscles 
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of non-human primates.  Therefore, this procedure helped us to determine stimulation 

frequencies needed to evoke maximum force.  Furthermore, because there is growing use of non-

human primates as model systems for FES and motor neuroprosthetics (e.g. Moritz et al. 2008; 

Pohlmeyer et al. 2009; Ethier et al. 2013; Capogrosso et al. 2016; Ethier et al. 2017), such force-

frequency data could be useful for identifying suitable stimulation frequencies for specific 

applications. 

 Force–current relationship.  The relationship between current-pulse amplitude and 

evoked force was assessed using 1-s trains of pulses delivered at 35 Hz first to one electrode then 

to the other.  Trains were delivered repeatedly with pulse amplitude incremented in 1 mA steps 

from 1 mA to 10 – 20 mA with 4-s delay between trains.   During this procedure, we observed 

the evoked actions of the limb for any signs (e.g. shoulder adduction, abduction) indicating that 

neighboring muscles were being recruited at higher stimulus intensities.  If activation of other 

muscles was detected, stimulation was halted.  On the few occasions when this did occur, the 

most common added action was shoulder abduction, suggesting activation of the middle head of 

the deltoid.  In these cases, the position of the electrode was changed which usually involved 

removing the electrode and reinserting at different location farther away from the muscle that 

was unintentionally recruited.   After a few minutes of rest, the procedure for evaluating the 

relationship between current-pulse amplitude and force was repeated for the new electrode 

position.   The entire procedure was then repeated for the second electrode.   For each electrode, 

the minimum current above which no clear increment in force was observed over the entire range 

of currents tested was identified and referred to as the ‘maximum’ current. 
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 Force Summation.  We then sought to compare the force exerted during ’maximal‘ 

stimulation delivered by each electrode individually to that generated by simultaneous 

stimulation through both electrodes.  For this procedure, we stimulated using the maximum 

current identified for each electrode.  Stimulus trains were 2-s in duration.  Because we were also 

interested to estimate the overall maximum force that could be evoked in anterior deltoid, for 

these procedures we stimulated at 60 Hz.  In preliminary experiments, 60 Hz was the most 

common frequency associated with the initial plateau in the force-frequency relation.  ‘Maximal’ 

stimulation was delivered first to one electrode, then to the other, followed by two trials in which 

maximal current was delivered simultaneously to both electrodes.  This was then followed by 

stimulation to the second electrode by itself and finally to the first electrode by itself.  The 

duration between stimulus trains for this procedure was 10 s.   

 Fatigue.  As mentioned in the Introduction, a possible advantage of using multiple 

electrodes is that force might be better maintained during prolonged activity by interleaving 

stimulation to each of the electrodes.  In this way, the stimulus frequency delivered to any one 

electrode (and the muscle fibers it activates) can be lessened, while the net frequency delivered 

to the muscle is maintained at a higher level enabling larger target forces to be achieved.  This in 

turn might help minimize fatigue that is associated with high-frequency stimulation of muscle 

fibers (Naess and Storm-Mathisen 1955; Jones et al. 1979; Metzger and Fitts 1986).  To test this 

idea, we recorded the force evoked by repetitive stimulation of anterior deltoid using 2-s trains, 

with a 50% duty cycle, for 4 minutes.   Stimuli were delivered to both electrodes using one of 

three distinct patterns outlined below.  Only one pattern was tested during a given session.  
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 In some sessions, stimuli were delivered at 35 Hz synchronously to both electrodes.  

Thirty-five Hz was selected because at this rate, force was relatively well fused yet did not 

produce full tetanic tension.   In other sessions, stimuli were delivered at 17.5 Hz but with stimuli 

interleaved between the electrodes (i.e., 180 degrees out of phase with one another) such that the 

net stimulus frequency was 35 Hz.  And to partially evaluate the effect of interleaved versus 

synchronous stimulation but using the same stimulus frequency, in a third set of sessions stimuli 

were delivered in an interleaved fashion at 35 Hz per electrode.  Prior to each fatigue run, 

stimulus intensity (current amplitude) was adjusted individually on each electrode such that the 

forces produced by each electrode were similar to one another and that the total initial force (due 

to the combined actions of both electrodes) detected at the wrist was approximately 2 N above 

the resting level and was same across all sessions.  Finally, to assess recovery following the 

fatigue protocols, we recorded force responses to 2-s stimulus trains (using the same stimulus 

patterns for that session) at 1, 2, 4, 8 and 16 minutes following the end of the fatigue protocol.  

 Data analysis – For each train of stimuli, force was averaged over two 0.5 s windows 

registered to the beginning and end of the peak force. The larger of the two averages was taken 

as the force measurement.  For force summation experiments, in each session the mean force for 

the 2 trials involving dual-electrode stimulation was normalized as a percentage of the mean 

force evoked during the 4 trials of single-electrode stimulation.  A one-sample t-test was 

performed on normalized dual-electrode forces (using a hypothesized mean of 100%) to 

determine whether force exerted with dual-electrode stimulation was greater than that evoked by 

single-electrode stimulation.   
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 For each fatigue trial, we made three measurements:  endurance index (ratio of force of 

last train to that of the first train), normalized force area (summation of all force responses during 

the trial divided by the sum of all force responses had no fatigue occurred, i.e. all force response 

the same as the first), and slowing index (ratio of the half-relaxation times of last train to that of 

the first train).  Half-relaxation time (1/2 RT) was calculated as the time required for force to 

decay from the peak value measured immediately following the last stimulus pulse in a train to 

50% of that value.  A one-way ANOVA was performed on each these fatigue measures with 

stimulation pattern (35-Hz synchronous, 17.5 interleaved, and 35-Hz interleaved) as the factor.  

Data are reported as means ± standard deviation (SD) with P < 0.05 considered significant.  

RESULTS 

 Both animals underwent several sessions of general anesthesia, each lasting about 2 

hours.  No adverse events occurred in any of the sessions.  The animals recovered within ~ 45 

minutes following cessation of anesthesia, exhibiting fully coordinated movements, eating and 

drinking.  The animals remained healthy throughout the entire testing period (~ 4 months) and 

showed no long-term effects of repeated anesthesia.  As such, this method can be used to 

repeatedly and safely evaluate aspects of FES delivered with percutaneous or chronically 

implanted electrodes in macaque monkeys.   

 Examples of anterior deltoid force responses to varying stimulus frequencies delivered 

through a single electrode are shown in Figure 2A.  Force increased progressively with increased 

frequencies up to about 60 Hz beyond which there was little additional force increase.  Unfused 
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ripple can be observed at frequencies up through ~ 30 Hz with the contraction becoming almost 

completely fused at 40 Hz.  

 A similar profile was observed for all force-frequency trials carried out on the two 

monkeys across 22 sessions (10 for monkey R, 12 for monkey S).  Figure 2B shows mean (SD) 

force versus frequency relationships for the two monkeys separately.  The responses were very 

similar across the two subjects with force increasing steeply from 10 – 30 Hz, increasing 

modestly from 40 – 60 Hz, and not further increasing at frequencies greater than 60 Hz.  

 

 

 

 

 

 

 

 

  

Figure 2. (A) Example set of isometric force responses to 1-s trains of stimulus pulses 

(0.5 ms, 6 mA) at increasing frequencies from 10 – 100 Hz delivered through one 

electrode.  (B) Mean (SD) force as a function of stimulus frequency for monkey R (10 

sessions) and monkey S (12) sessions.  
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Force– current relationship.  Figure 3A shows an example trial of isometric force responses to 

progressively increasing pulse amplitudes using 35 Hz trains delivered through one of two 

electrodes.  Note that for stimulus currents from 2 to 5 mA, force appeared to saturate 

(highlighted by red line above force traces).   However, above 6 mA, force increased markedly 

for increments in current up to 15 mA when force again appeared to saturate.  Because we did 

not stimulate above 16 mA in this experiment, we could not be certain whether another 

escalation in force would have occurred at higher stimulus intensities.  There was no detectable 

activation of neighboring muscles even for the highest currents delivered.  For purposes of these 

experiments, the minimal current associated with ‘maximal’ force (dashed horizontal line) was 

deemed to be 15 mA for this trial.  
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Figure 3B shows the force responses to incrementing current pulses obtained in the same 

experiment as for Figure 3A but for the other electrode (electrode 2) that was placed about 2 cm 

distal to the one used in Figure 3A (electrode 1).  The pattern of force increases to incrementing 

current delivered through electrode 2 was roughly similar to that for electrode 1.  An 

Figure 3.  Examples of force response to 1-s trains of stimulus pulses (0.5 ms, 35 Hz) 

with increasing current amplitudes from 1 – 16 mA delivered to (A) electrode 1 (E1) and 

(B) to electrode 2 (E2).  Red horizontal lines indicate intermediate plateaus in force 

responses to increasing current.  The dashed horizontal lines indicate force saturation 

for highest current levels tested. 
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intermediate plateau was observed for currents from 3 to 5 mA followed by a ~ linear increase in 

force with current up to about 14 – 15 mA at which point force appeared to saturate.  The 

stimulus current needed to elicit 50% of ‘maximal’ force was only about 3 mA for electrode 2 

(Figure 3B) whereas it was about 10 mA for electrode 1 (Figure 3A).  The most striking 

difference, however, between the responses elicited with the two electrodes was the absolute 

magnitude of the forces.  The ‘maximal’ force evoked by electrode 1 (13.5 N) was twice as large 

as that for electrode 2 (6.7 N).   That disparity, in itself, indicates that the force evoked by 

electrode 2 was not maximal despite the presence of the plateau in force at the highest currents 

tested with that electrode.  

 False plateaus.  The average current at which force responses were first detected was 0.9 

± 0.4 mA.  The average current associated with maximal force was 11.8 ± 3.4 mA.  It should be 

noted, however, that in about half of the sessions (mainly the initial sessions), we did not always 

allow current to reach the maximum capacity of the stimulator (~20 mA).  Often we halted the 

current steps once we observed what appeared to be a plateau in the force responses.  We later 

noticed the presence of intermediate plateaus, wherein force would appear to saturate for two or 

more 1-mA increments in current (see Figs. 3A, 3B).  Consequently, it is possible that when we 

halted current steps before reaching the maximum current capacity, we had actually encountered 

an intermediate or ‘false’ plateau. 
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 To quantify the incidence of such false plateaus, we calculated the change in force 

associated with each increment in current for all of the current-force sequences.  Figure 4A 

shows an example of the relation between force and current for one sequence while Figure 4B 

shows the associated change in force for each current step.  Based on plots like that shown in 

Figure 4B, we then determined the number of cases for which the change in force fell below 5% 

for two or more steps in current and which was then followed by increases in force above 5%.  

Figure 4B shows one such case of a false plateau (highlighted in red) for which little change in 

force was detected for increments in current from 2 – 5 mA but was then followed by clear 

increases in force at higher current levels.  In total, 42% of the current-force sequences recorded 

had one or more such false plateaus.  We believe that this percentage would have been even 

Figure 4.  (A) Example force – stimulus 

current relationship for one electrode 

showing little increase in force for three, 1-

mA step increments in current above 2 mA 

(red circles).  (B) Percentage change in 

force for each increment in current depicted 

for the force – current relation shown in in 

panel A.  Three consecutive increments in 

current (to 3, 4, and 5 mA – red circles) 

evoked less than a 5% increase in force 

(dashed horizontal line), and which were 

then followed by a greater than 5% increase 

in force (at 6 mA).  Such a sequence was 

deemed a ‘false’ plateau. 
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higher had we tested up through the maximum current capacity in all trials.  The physiological 

and practical significance of such false plateaus will be addressed in the Discussion. 

 Force Summation.  Figure 5A shows example force responses to 60-Hz trains of stimuli 

using ‘maximal’ current pulses delivered first to one electrode, then to the other electrode, and 

then to both electrodes together (first three trials). The order of stimulation was then reversed for 

the last three trials.  Sixty-Hz stimulation was used in these experiments in an attempt to elicit 

the overall maximum force capacity of the anterior deltoid.  The recordings shown in Figure 5A 

were taken from the same experimental session as that used for Figure 3.   For the first trial, 

‘maximal’ stimulation to electrode 1 (E1) produced a force of 12.8 N while ‘maximal’ 

stimulation to electrode 2 (E2) produced only 7.0 N of force. Simultaneous ‘maximal’ 

stimulation to both electrodes, however, produced a force of 16.5 N.  A reduction in the evoked 

forces for the last three trials suggests some development of fatigue.   

 The average force for the two trials using dual-electrode stimulation in the experiment 

shown in Figure 5A was 15.2 N whereas the average force across the four trials using single 

electrode stimulation was 8.6 N.  In this case, dual-electrode stimulation produced 177% of the 

force generated by single electrode stimulation.  

 Figure 5B shows the mean (SD) and individual values of isometric force resulting from 

dual-electrode stimulation, measured as a percentage of single electrode ‘maximal’ force, across 

all 28 sessions for the two subjects.  In every case, dual-electrode stimulation produced greater 

force than single-electrode stimulation.  On average, dual-electrode force produced 147.0 ± 22.3 

% of single-electrode force (P < 0.001 compared to 100%).  These results strongly indicate that 
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using two (or more) sites of intramuscular stimulation enables activation of a greater volume of 

muscle than that which can be readily achieved with single site stimulation.    

  

 

 

 

 

 

 

 

 

 

 

Figure 5. (A) Example force responses (top trace) to ‘maximal’ stimulation delivered at 

60 Hz to electrode 1 (E1), electrode 2 (E2), or to both simultaneously.  Forces produced 

in response to stimulation through single electrodes were exceeded with simultaneous 
stimulation through both electrodes.  (B)  Mean (SD) isometric force resulting from dual 

electrode stimulation expressed as a percentage of single electrode “maximal” force 

across all 28 sessions for the two monkeys. Individual values are shown separately for 

each session and for each monkey (open and closed symbols).  
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Fatigue. Another possible advantage of multiple-site stimulation is that interleaving 

stimulation between electrodes might enable a given target force to be maintained for longer 

durations by using lower stimulus frequencies at each electrode than if stimulation were 

delivered synchronously to all the electrodes.  Figure 6 shows example recordings made in three 

separate sessions from one monkey in response to repetitive 2-s trains of pulses using: A) 

synchronous stimulation at 35 Hz/electrode, B) interleaved stimulation at 17.5 Hz/electrode, and 

C) interleaved stimulation at 35 Hz/electrode. The insets show one-second segments of force and 

stimulus pulses at the outset of the tenth train from the end of each fatigue protocol to help 

illustrate differences in the stimulus patterns across sessions.    

 In all three sessions, the initial force was slightly greater than 2 N.  For synchronous 35-

Hz stimulation (Fig. 6A), after an initial relatively stable period of force production, force 

declined progressively over the remaining stimulus trains.  The force produced by the last train 

was 36% of that produced by the first train.  The force profile associated with interleaved 17.5 

Hz stimulation (Fig. 6B) was very similar to that produced with synchronous stimulation at 35 

Hz (Fig. 6A) with the last train producing 34% of the force of the initial train.  Stimulation using 

interleaved stimulation at 35 Hz (Fig. 6C) had a slightly different profile with force appearing to 

drop a little more quickly at the outset of stimulation and with the last train producing 29% of the 

force of the initial train. 

 Figures 7A and 7B show the averaged force profiles for the three fatigue tasks for 

monkey R  and monkey S, respectively.  The averages in Figure 7A included 4 trials of 
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synchronous 35-Hz stimulation, 4 trials of interleaved 17.5-Hz stimulation, and 5 trials of 35-Hz 

interleaved stimulation.  The averages in Fig. 7B included 5 trials for each pattern of stimulation.  

The overall average current amplitudes used for the three tasks were: 2.0 ± 1.1 mA, 4.8 ± 2.6 

mA, and 2.9 ± 1.2 mA for the 35-Hz synchronous, 17.5-Hz interleaved, and 35-Hz interleaved  

 

 

 

Figure 6.  Examples of 

isometric force responses 

generated by anterior deltoid 

of one monkey during four 

minutes of repetitive 

stimulation using two 

electrodes across three 

sessions involving: (A) 

synchronous stimulation at 35 
Hz, (B) interleaved stimulation 

at 17.5 Hz, and (C) 

interleaved stimulation at 35 

Hz.  In all cases, stimulus 

trains were 2-s in duration 

with a 2-s inter-train interval.  

Insets show stimulus pulses 

and the initial portion of the 

force response for the 51
st
 

train in each sequence. 
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protocols, respectively.  The higher currents for the 17.5 Hz stimulation were needed to offset the 

weaker forces produced with lower stimulus rates in order to achieve the target force. 

 

 

 

For monkey R (Fig. 7A), the pattern of force loss over time was very similar across the 

three fatigue protocols.  The main difference was a slightly steeper force loss at the outset of the 

35-Hz interleaved stimulation protocol, similar to that shown for the example recording in Figure 

5C.  Likewise, for monkey S (Fig. 7B), the patterns of force loss were similar across stimulation 

Figure 7.  Averaged force as a function of time for three fatigue tasks involving two 

electrodes: 35-Hz synchronized, 17.5 Hz interleaved, and 35-Hz interleaved in monkey R 

(A) and monkey S (B).  Averaged force responses to 2-s trains of stimuli delivered at 1, 2, 

4, 8, and 16 minutes after the three fatigue tasks in monkey R (C) and monkey S (D). 
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protocols and were also similar to that of monkey R (Fig. 7A).  However, for monkey S, the 

initial steep force loss with 35-Hz interleaved stimulation was sustained throughout the entire 

protocol.  

 One-way ANOVAs run on endurance index and normalized force area for monkey R 

yielded no significant effects (Table 1) of stimulation pattern.  For monkey S, while there was no 

significant effect of stimulation pattern on endurance index, there was a significant effect (p = 

0.04) on normalized force area.  Post-hoc analysis indicated that normalized force area for 35-Hz 

interleaved stimulation was significantly less than that of either 35-Hz synchronous or 17.5-Hz 

interleaved stimulation.  Such a tendency for greater fatigue with interleaved 35-Hz stimulation 

might be due to the higher net frequency delivered (70 Hz) to muscle fibers that happened to be  

 

activated by both electrodes. Such high-frequency stimulation can promote more rapid fatigue 

than stimulation at lower (and more natural) frequencies (Naess and Storm-Mathisen 1955; Jones 

et al. 1979; Metzger and Fitts 1986; McDonnall et al. 2004).   

Table 1.  Mean (SD) values of endurance index, normalized force area, and slowing 

index (change in ½ relaxation time) in response to three types of fatigue protocols 

involving dual electrode stimulation.  
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In addition to force loss, sustained activity can lead to slowing in muscle contraction and 

relaxation.  For all stimulus patterns and for both monkeys, one-half relaxation time (½   

RT) doubled over the course of the fatigue trials (Table 1).  There was no significant effect, 

however, of stimulus pattern on ½ RT for either monkey individually or with data from both 

monkeys combined. 

 Following the fatiguing contractions, single brief (2 s) trains of stimuli were delivered at 

various intervals to evaluate recovery from fatigue.   Figures 7C and 7D show the mean force 

(normalized to that of the first train at the outset of each fatigue protocol) during the recovery 

period for each of the three fatigue protocols for monkeys R  and S, respectively.  For both 

animals, force recovered steeply with one minute of rest, then continued to recover more slowly 

out to 4 minutes of rest up to 60 – 80% of the pre-fatigue force.  Interestingly, for both animals, 

force then progressively diminished beyond 4 minutes out to 16 minutes (longest duration 

tested).  Such delayed fatigue has been observed previously in fast twitch motor units in cat 

(Jami et al. 1983; Bevan et al. 1993), in rat motor units (Lannergren et al. 1989), and in whole 

human muscle (Edwards et al. 1977; Fuglevand et al. 1993).  A two-way ANOVA using the 

combined data from the two monkeys with stimulus pattern and recovery time as factors yielded 

a significant effect of recovery time (P < 0.001) but no effect of stimulus pattern (P = 0.07) and 

no significant interactions.  Post-hoc analysis indicated that force was significantly (P < 0.001) 

greater at all recovery times compared to that immediately after the fatigue test (i.e. at time 0), 

and that the force at 16 min recovery was significantly (P <0.001) less than that at 2 and 4 

minutes of recovery.  
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 Evoked Movements with Multi-electrode Stimulation.  As a simple test of the efficacy of 

multi-electrode stimulation to evoke movements, in one monkey we delivered stimuli 

synchronously to two intramuscular electrodes inserted into the anterior deltoid and recorded the 

evoked displacement of the hand using electromagnetic position sensors (Liberty, Polhemus) 

placed on the hand and shoulder (Figure 8A).  Stimuli consisted of constant amplitude pulse 

trains (4 mA, 0.5 ms pulse duration, 3-s trains, 30 Hz).  The limb hung pendant at the side of the 

monkey before each trial.  Dual electrode stimulation evoked strong flexion at the shoulder 

causing the hand to briskly rise (peak speed ~ 250 cm/s) above the shoulder before settling and 

holding for ~ 2-s just below shoulder height (Fig. 8B).  After each trial, the hand was 

repositioned to approximately the same starting position.  The time between successive trials was 

about 3 s.  The evoked trajectory was quite similar across 10 repeated trials (Fig. 8C) and was 

almost entirely in the sagittal plane. We then strapped a 100 g load in the hand of the monkey 

and delivered the same stimulus sequence 3 times (Fig 8D).  While the extent of arm movement 

was not as great as for the unloaded case (as expected for uncompensated stimulus strength), the 

arm reliably lifted and held the load against gravity.  On numerous occasions (not shown), single 

electrode stimulation using high currents evoked only modest movements, often advancing the 

hand only a few centimeters forward of the starting position.   
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DISCUSSION 

 Here we have shown that stimulation of muscle with more than one intramuscular 

electrode clearly produces greater forces than can be readily produced with single electrodes.  

This occurred even when force responses to single electrodes appeared to saturate – traditionally 

considered a sign that the maximum force capacity of the muscle was achieved by the 

stimulation.  It seems reasonable, therefore, to consider using multi-electrode stimulation to 

augment the force-generating capacity of muscles (particularly large proximal muscles) to 

increase the utility of chronically implanted FES systems.  Indeed, we showed in a single case 

that such multi-electrode stimulation of one muscle (anterior deltoid) was sufficient to briskly 

Figure 8. Movements evoked by stimulation of anterior deltoid in anesthetized monkey using 

two intramuscular electrodes. (A) Image captured from video depicting arm being elevated in 

anesthetized monkey in response to stimulation (4 mA, 0.5 ms pulse duration, 3-s trains, 30 

Hz) of anterior deltoid with two electrodes synchronously.  The start position of the hand is 

indicated.  Polhemus sensors were placed on the hand and shoulder to record the evoked 

movements.  Image was retouched to remove extraneous physiological-monitoring equipment 

in the background.  B) Displacement of hand during a single trial.  Each dot indicates 

sampled position of hand relative to shoulder (sampling interval ~ 8 ms) C) evoked hand 

trajectory for 10 trials superimposed, D) evoked trajectory for 3 trials with 100 g load in 

strapped in the hand. 
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and repeatedly elevate the arm against gravity, an action that, as far as we are aware, has not 

previously been realized using FES alone.     

 Limitations.  A limitation of the present study was that the maximum output capacity of 

the stimulator used was about 20 mA/channel.  It should be pointed out, however, that the 

maximum current capacity of the most advanced implanted FES systems presently used in 

human patients is 20 mA (Memberg et al. 2014).  Nevertheless, it is possible that had greater 

currents been delivered through single electrodes in the present experiments, greater forces might 

have been evoked and thereby diminished the relative advantage of using dual-electrode 

stimulation.  However, with increased current intensity delivered at a single site, the radius of the 

effective current field could exceed the boundaries of the targeted muscle and begin to activate 

neighboring muscles while leaving distant portions of the target muscle un-activated.  As such, 

perhaps an additional benefit of multi-electrode stimulation is that the activating current fields 

can be more readily sculpted to the oblong shape of most muscles.   

 Another limitation of the present study is that the test subjects were monkeys, not 

humans, and we only tested two subjects.  As such, we had no ready way to determine the 

magnitude of the evoked forces relative to the maximum voluntary force capacity, as is 

commonly done in healthy human studies.  On the other hand, because we were interested to 

examine the maximum force capacity produced by electrical stimulation, the pain associated 

with the high stimulation currents makes it practically intolerable for intact human subjects and 

also provokes complex nociceptive reflexes leading to inadvertent co-activation of other muscles 

that could compromise force measurements (Marsden et al. 1983; Martin et al. 2008).  Therefore, 
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we used general anaesthetics in macaque monkeys to enable fully reversible, functional paralysis 

while eliminating pain perception associated with high stimulation currents.  In addition, we did 

not detect overt signs of spinal reflexes triggered by the stimulation, viz. co-activation of other 

muscles or sustained contraction of the target muscle following cessation of stimulation 

(Lagerquist et al. 2009).  We cannot, however, rule out activation of brief reflexes (such as H-

reflexes) under isoflurane anaesthesia (Leis et al. 1996).  Another important feature of this 

method was that the animal was maintained in an upright, seated position, akin to its natural 

posture enabling relatively unrestricted motion of the upper limb.  As such, this method would 

seem to be one that could be used to repeatedly and safely evaluate aspects of FES delivered 

with percutaneous or chronically implanted electrodes in macaque monkeys.   

 We used only two animals in keeping with ethical concerns to reduce the number of non-

human primates tested in experiments.  Each animal was tested during multiple sessions and the 

data from each session were more or less treated as independent samples from the set of all 

possible responses to stimulation of a given muscle.  As such, some caution is warranted in 

extrapolating the results beyond the individual monkeys.  However, the consistency of responses 

within monkeys and similarity of responses across the two monkeys provides some confidence 

that the results are likely generally representative.   

 The fatigue tests used in the present investigation involved target forces that were 

relatively weak (perhaps 10 – 15% of maximum capacity).  While such low forces might seem 

too weak to be functionally practical, most natural muscle activity in healthy subjects rarely 

exceeds 15% of maximum voluntary capacity (Klein et al. 2010).  Therefore, force levels in this 
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range are critical to the performance of activities of daily living.  In a spinal-cord-injured 

individual, however, typical daily activities (e.g. lifting a coffee cup) would likely require 

substantially higher percentages of force capacities because of muscle atrophy.  Nevertheless, if 

fatigue is evident at these low force levels (as shown in the present study) then this will 

significantly impact the utility of FES systems.  Consequently, understanding the nature of 

fatigue in response to electrical stimulation even at low forces will be important for advancing 

the effectiveness of FES.  While such heightened fatigue with FES has been ascribed to reverse 

recruitment (i.e., selective recruitment of high-threshold, fatiguable motor units, Kubiak et al. 

1987; Trimble and Enoka 1991), a number of investigations have shown that orderly activation is 

more likely than reverse with electrical stimulation (Knaflitz et al. 1990; Feiereisen et al. 1997; 

Thomas et al. 2002; Farina et al. 2004).  

 False Plateaus.  A widely used method to elicit putative maximal responses of human 

skeletal muscle using electrical stimulation is to progressively increment stimulus intensity 

delivered to a single electrode until a plateau is observed in the evoked responses.  Stimulus 

strength is then typically increased by 20 – 50% above this level to ensure stimuli are 

‘supramaximal’  (Merton 1954; Bigland-Ritchie et al. 1979; Rutherford et al. 1986; Stein et al. 

1992; Fuglevand et al. 1993; Bilodeau 2006; Parise et al 2001; Lagerquist et al 2009; Seigler et 

al. 2016; Millet at al 2011, Maffiuletti et al 1994).  In some instances, however, this approach 

may lead to stimulation at submaximal levels because of the presence of false plateaus as often 

encountered in the present study.  Indeed, emergence from a false plateau often required stimulus 

strengths 250% higher than that just needed to reach the plateau.  We assume that such false 

plateaus were mainly due to the activation of a subset of nerve branches close to the stimulating 
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electrode and that substantially higher currents were then needed to activate more distant nerve 

branches.  The validity of this assumption, however, warrants investigation. 

 Interestingly, in an important previous study, Crago et al. (1980) did not observe clear-cut 

plateaus in the current-force relationship of denervated soleus in the anesthetized cat.  Some 

reduction in the slope of the current-force relationship was occasionally seen at intermediate 

intensities but not to the degree observed in the present investigation (see Figs. 3 and 4).  This 

discrepancy could be due to differences in the masses (and associated volumes) of the two 

muscles tested (~ 3 g for cat soleus, Nelson 1968,  ~7.5 g for macaque anterior deltoid, Cheng 

and Scott 2000). Notably, however, Crago et al. (1980) often showed saturation of force output 

at the highest intramuscular stimulus intensities tested that were below the maximum force 

capacity of the muscle (measured in response to whole nerve stimulation).  Those results are 

consistent with the overall observations of the present study.     

 Fatigue.  Somewhat contrary to our expectations, interleaving stimulus pulses to two 

intramuscular electrodes at relatively low rates to each electrode (17.5 Hz) did not improve force 

maintenance during prolonged stimulation compared to synchronous stimulation at a higher rate 

(35 Hz).  Both methods led to about a 70% decline in force, a 50% reduction in force area, and 

about a doubling in relaxation time over 4 minutes of intermittent stimulation.  There would 

seem to be at least two theoretical reasons why lower frequencies of stimulation, by itself, should 

tend to lessen fatigue during prolonged activity for tasks that involve an initial submaximal target 

force (as was used here).  First, because of the force-frequency relation, the forces exerted by the 

activated muscle fibers using lower stimulus frequencies will be less than that occurring with 
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higher frequencies.  Therefore, in order to achieve the initial target force, more muscle fibers will 

need to be recruited (using higher stimulus currents), and consequently, the load will be more 

broadly shared across a greater number of muscle fibers.  Conversely, with higher frequencies of 

stimulation, the load burden is carried by fewer muscle fibers, all of which must contract more 

intensely in order to achieve the initial target force.  This latter situation would seem likely to 

promote more rapid fatigue.   

 Second, at the extreme, high stimulation frequencies can lead to impairment of 

excitation-contraction coupling and cause relatively rapid fatigue (Naess and Storm-Mathisen 

1955; Jones et al. 1979; Metzger and Fitts 1986, McDonnall et al. 2004).  The slightly greater 

fatigue in one monkey to 35-Hz interleaved stimulation might have occurred due to a high net 

frequency of 70 Hz imposed on the subset of muscle fibers activated by both electrodes.  While 

we did not quantify the degree of overlap in activation of muscle fibers by the two electrodes for 

the fatigue experiments, the results of the force summation experiments (Fig. 5B) suggests an 

upper limit of ~ 50% overlap in fibers activated by the two electrodes. 

 Previous studies that have used interleaved stimulation to assess fatigue have yielded 

results not entirely consistent with the present investigation.  For example, in the noteworthy 

work by Yoshida and Horch (1993), fatigue responses in the cat gastrocnemius were studied in 

response to single- or dual-electrode intraneural stimulation.  Stimulation at 60 Hz, either with a 

single electrode or synchronously delivered to two electrodes, led to substantially greater fatigue 

than with interleaved stimulation to two electrodes at 30 Hz.  Unfortunately, no tests were 

performed using synchronous stimulation at 30 Hz.  As such, it is unclear whether the enhanced 
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fatigue resistance seen in the Yoshida and Horch (1993) study with 30-Hz interleaved 

stimulation was due to interleaving the stimulation per se or was simply due to the use of lower 

stimulus frequencies.   

 Similarly, McDonnall et al. (2004) compared fatigue responses in cat gastrocnemius to 

stimulation with single or four intraneural electrodes.  Stimulation at 60 Hz synchronously to all 

four electrodes caused greater fatigue than with interleaved stimulation to four electrodes at 15 

Hz.  Importantly, they also showed that interleaved stimulation at such low frequencies (15 Hz) 

markedly attenuated the unfused ripple evident with single electrode stimulation at 15 Hz.  

Puzzlingly, however, the degree of fatigue was greater with interleaved stimulation at 15 Hz 

compared to that associated with single electrode stimulation at 15 Hz. 

 In a number of recent studies using human subjects, fatigue resistance during FES has 

been shown to be consistently and significantly enhanced using low frequency stimuli delivered 

in an interleaved way to multiple surface electrodes compared to higher frequency stimuli 

delivered to a single electrode (Popović and Malešević 2009; Malešević et al. 2010; Nguyen et 

al. 2011; Popovic ́ Maneski et al. 2013; Sayenko et al. 2014; Lou et al. 2016; Bergquist et al. 

2016; Bergquist et al. 2017; Laubacher et al. 2017).  These impressive results clearly 

demonstrate that distributed stimulation is more efficacious in maintaining muscle output than 

single site stimulation. Yet, it is not entirely clear from these studies as to whether interleaving of 

stimulation by itself helps to minimize fatigue or whether it is primarily the use of lower stimulus 

frequencies during interleaved stimulation.  Nevertheless, interleaving stimulus pulses across 

multiple electrodes using low stimulus frequencies will help minimize the large force 
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fluctuations that otherwise would occur using synchronized stimulation.  This is an important 

benefit in terms of output stability for FES. 

 In the present study, we observed little difference in fatigue resistance using interleaved 

versus synchronous stimulation.  Indeed, when using the same stimulus frequency (35 Hz), 

interleaved stimulation caused slightly greater fatigue than synchronous stimulation in one 

animal.  Importantly, the lack of an effect on fatigue using interleaved stimulation at 17.5 Hz 

versus synchronous stimulation at 35 Hz is at variance with some of the previously mentioned 

studies.  There are perhaps two factors that might account for this discrepancy.  First, the relative 

difference in stimulation frequencies used here for interleaved vs. synchronous stimulation (17.5 

Hz) was modest compared to that in other studies (30 – 45 Hz) (Yoshida and Horch, 1993; 

McDonnall et al. 2004; Nguyen et al. 2011).  And second, as pointed out by Yoshida and Horch 

(1993) and Wiest et al. (2017), the benefits in terms of fatigue resistance using interleaved multi-

electrode stimulation diminishes as the degree of overlap in muscle fibers activated by the 

electrodes increases.  Here the degree of overlap may have been substantial in comparison to the 

previous investigations.  

 Force Augmentation with Multiple Electrodes.  And finally, despite relatively wide 

recognition that single electrode stimulation is unlikely to activate all motor units within a 

muscle (e.g. Vanderthommen and Duchateau 2007; Memberg et al. 2014), there are few previous 

studies that have evaluated the force-generating capacity of multisite versus single-site 

intramuscular stimulation.  In one study, Maffiuletti et al. (2014) found that the maximum 

evoked force in healthy human quadriceps using three surface electrodes was greater (44% of 
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maximum voluntary contraction force) than that produced by a more conventional dual-electrode 

configuration for the quadriceps (36% of maximum voluntary contraction force).  Part of the 

increased force was due to the higher tolerance in the subjects for larger current intensities using 

the three-electrode configuration possessing a larger overall electrode surface area than the 

conventional configuration.  In the present investigation, where stimulation discomfort was not a 

complicating factor, we found dual-electrode stimulation produced about 50% greater force than 

single-electrode stimulation.   

 Practical Implications.  Given the greater force output achieved with dual-electrode 

compared to single-electrode stimulation in the present study, it would seem appropriate to 

consider including multiple electrodes per muscle in chronically implanted FES systems.  

Furthermore, an advantage of using simultaneous stimulation with two (or more) electrodes is 

that distant muscle regions that are below threshold for activation by any one electrode can be 

brought above threshold due to summation of the otherwise sub-threshold electric fields 

(Mortimer 1981).   Practical factors, however, must also be taken into account including the 

increased surgical complexity, hardware needs, and power requirements for a multi-electrode 

approach.  Nerve cuff, rather than intramuscular electrodes, would seem a viable alternative 

(Sweeney et al. 1990; Tyler and Durand, 2002; Schiefer et al. 2013) but these also have some 

drawbacks including lack of muscle selectivity and possibility of nerve damage (Grill and 

Mortimer, 2000).  Perhaps the most efficacious approach at present would be to use a 

combination of electrode designs (single intramuscular electrodes for small muscles, multiple 

intramuscular electrodes for large muscles, and cuff electrodes where applicable), , similar to that 
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recently used in implanted upper limb (Memberg et al. 2014) and lower limb neuroprostheses 

(Guiraud et al. 2014).  
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ABSTRACT 

Restoration of motor function in paralyzed limbs using functional electrical stimulation (FES) is 

undermined by rapid fatigue associated with artificial stimulation. Typically, single electrodes 

are used to activate muscles with FES.  However, due to the highly distributed branching of 

muscle nerves, a single electrode may not be able to activate the entire array of motor axons 

supplying a muscle. Therefore, stimulating muscle with multiple electrodes might enable access 

to a larger volume of muscle and thereby reduce fatigue. Accordingly, we compared the 

endurance times that ankle dorsiflexion could be sustained at 20% maximum voluntary force 

using feedback controlled stimulation (25 Hz) of human tibialis anterior (TA) using one or four 

percutaneous intramuscular electrodes.  In addition, we measured endurance times in response to 

direct stimulation of the nerve supplying TA and during voluntary contraction.  In all sessions 

involving electrical stimulation, an anesthetic nerve block proximal to the site of stimulation was 

used to isolate the effects of stimulation and alleviate discomfort.  Endurance time associated 

with stimuli delivered by a single intramuscular electrode (84 ± 19 s) was significantly smaller 

than that elicited by four intramuscular electrodes (232 ± 123 s).  Moreover, endurance time in 

response to nerve stimulation (787 ± 201 s) was not significantly different that that produced 

during voluntary contraction (896 ± 272 s).  Therefore, excessive fatigue associated with FES is 

probably due to the inability of conventional FES systems to enlist the full complement of motor 

axons innervating muscle and can be mitigated using multiple electrodes or nerve-based 

electrodes.  
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INTRODUCTION  

Functional electrical stimulation (FES) is a rehabilitative technology that serves to restore 

motor function in paralyzed individuals.  FES takes advantage of the retained excitability of 

motor axons that innervate most paretic skeletal muscles.  This enables induction of muscle 

contraction through artificial electrical stimulation delivered by surface electrodes, intramuscular 

electrodes, or by electrodes that encircle peripheral nerves supplying muscles.  The utility of 

FES, however, is undermined because of the rapid muscle fatigue that occurs during FES 

(Bhadra & Peckham 1997; Mizrahi 1997; Kesar et al. 2008; Doucet et al. 2012; Guiraud et al. 

2014; Ibitoye et al. 2016; Barss et al. 2018).  While a component of this accelerated fatigue is 

due to peripheral adaptations that occur in chronically paralyzed muscle (Grimby et al. 1976; 

Stein et al. 1992; Martin et al. 1992; Shields 1995; Butler & Thomas 2003; Thomas et al. 2003), 

FES-induced contractions also fatigue rapidly in able-bodied subjects (Naess & Storm-Mathisen 

1955; Binder-Macleod & Snyder-Mackler 1993; Karu et al. 1995).  

One reason proposed to account for rapid fatigue with FES is that the normal recruitment 

order of motor units, from weakest and most fatigue resistant toward the strongest and most 

fatigable, is disrupted.  This is thought to occur because extracellular stimulation favors 

activation of the larger diameter axons (Blair & Erlanger 1933; McNeal 1976; Rattay 1986; Fang 

& Mortimer 1991; Grill & Mortimer 1995) that innervate strong, fatigable motor units (Wuerker 

et al. 1965; Jami & Petit 1975; Zajac & Faden 1985).  In addition, everything else being equal, 

axons closest to the stimulating electrode are those most readily activated by electrical 

stimulation (Mortimer 1981; Grill & Mortimer 1995).  Because axons of varying diameters 
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appear to be intermingled within motor nerves and muscle, there would be no particular spatial 

bias favoring activation of one type of motor unit over another (Thomas et al. 2002).  As a 

consequence, investigators have suggested that electrical stimulation tends either to invert the 

normal recruitment order (Parker et al. 1986; Kubiak et al. 1987, Sinacore et al. 1990; Trimble & 

Enoka 1991; Binder-Macleod & Snyder-Mackler 1993, Yoshida & Horch 1993; Heyters et al. 

1994; Mizrahi 1997; McDonnall et al. 2004; Navarro et al. 2005; Sheffler & Chae 2007; 

Malešević et al. 2010) or to activate motor units in a relatively random way (Knaflitz et al. 1990; 

Binder-Macleod et al. 1995; Feiereisen et al. 1997; Bickel et al. 2011; Barss et al. 2018).  It 

should be noted, however, that some studies have shown little disruption in normal recruitment 

order with electrical stimulation (Thomas et al. 2002; Farina et al. 2004).  

A second reason often cited as a possible cause for rapid fatigue with FES is related to 

the synchronized discharge of motor units induced by peripheral electrical stimulation (Binder-

Macleod & Snyder-Mackler 1993; Karu et al. 1995; Mizrahi 1997; Chou et al. 2008; Downey et 

al. 2015; Popović & Malešević 2009; Malešević et al. 2010; Rohm et al. 2013; Sayenko et al. 

2014; Lou et al. 2017; Barss et al 2018; Zheng & Hu 2018).  Such synchronization can lead to 

marked fluctuations in evoked force, which in turn, can itself provoke fatigue because of the 

additional work required by the contractile apparatus repeatedly shortening against series elastic 

elements in muscle (Garland et al. 1988; Sandercock 2006).   To minimize force fluctuations 

(which also compromises force control), stimulus frequencies can be increased.  Yet excessively 

high stimulus frequencies can also promote rapid fatigue (Naess & Storm-Mathisen 1955; Jones 

et al. 1979; Metzger & Fitts 1986; Jones 1996, McDonnall et al. 2004).   Therefore, some FES 

investigators have turned to asynchronous stimulation (Lind & Petrofsky 1978; Yoshida & 
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Horch 1993; Wise et al. 2001; McDonnall et al. 2004; Malešević et al. 2010; Nguyen et al. 2011; 

Maneski et al. 2013; Sayenko et al. 2014; Downey et al. 2015; Bergquist et al. 2016, 2017; 

Laubacher et al. 2017; Lou et al. 2017), an approach originally described by Rack and Westbury 

(1969), wherein different sets of motor units are activated sequentially at relatively low rates 

using multiple electrodes.  Such asynchronous (or interleaved stimulation) can produce 

reasonably smooth muscle force despite low stimulus rates delivered to each set of motor units 

that, on their own, would cause markedly unfused contractions (Rack & Westbury 1969; Wise et 

al. 2001, Sandercock 2006).  

What is puzzling, however, is that the advantage of asynchronous over synchronous 

stimulation practically disappears for stimulus rates above ~10 Hz (Rack and Westbury 1969; 

Sandercock 2006).  And while those studies involved cat soleus, the average contraction time of 

cat soleus (76 ms, Nelson 1969) is briefer (and hence, the fusion frequency higher) than that 

found in many lower limb muscles of humans (e.g. 81 ms for tibialis anterior, Marsh et al. 1981; 

87 ms for quadriceps, Bergstrom & Hultman 1990; 104 ms for triceps surae, Marsden & 

Meadows 1970).  Yet, many interleaved FES protocols involve frequencies  10 Hz (Malešević 

et al. 2010; Nguyen et al. 2011; Maneski et al. 2013; Sayenko et al. 2014; Bergquist et al. 2016, 

2017; Lou et al. 2017).  Indeed, we have recently shown that there was no difference in the 

degree of fatigue induced with interleaved versus synchronous stimulation when delivered to two 

different locations in a muscle using stimulus frequencies > 15 Hz at each electrode (Buckmire et 

al. 2018).  Therefore, it seems possible that the documented improvement in fatigue resistance 

using interleaved stimulation compared to single site stimulation (Malešević et al. 2010; Nguyen 

et al. 2011; Sayenko et al. 2014; Downey et al. 2015; Bergquist et al. 2016, Laubacher et al. 



151 
 
 

2017; Lou et al. 2017) was not primarily because of the asynchronous activation per se.  Rather, 

given the widespread distribution of motor nerve branches within human muscle (Amarali et al. 

2007; Mu and Sanders 2010; Won et al. 2011; Yu et al. 2016), multi-site stimulation may simply 

enable access to more of the muscle fibers within a muscle (Buckmire et al. 2018).   

To test this possibility, here we compared the duration that submaximal isometric 

contractions of human tibialis anterior could be sustained when feedback-controlled electrical 

stimulation was delivered through a single intramuscular electrode to that delivered 

synchronously through multiple electrodes.  In addition, in separate sessions we also measured 

contraction duration evoked by direct stimulation of the peripheral nerve proximal to its entry 

into tibialis anterior (i.e. at a site where motor axons are spatially constrained) and during 

voluntary contractions.  

We found that multi-electrode stimulation markedly extended the endurance time of 

submaximal contractions over single-electrode stimulation.  Moreover, the duration of 

contractions induced by electrical stimulation delivered directly to the peripheral nerve was no 

different than, and in some cases longer, than that achieved during voluntary contractions.  These 

findings indicate that the rapid fatigue associated with conventional FES is unlikely to be 

primarily caused by synchronized discharge or disrupted recruitment order of motor units but 

rather because only a fraction of the motor units can be readily enlisted using single electrodes 

placed in or over muscle.   
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METHODS  

 Subjects and Muscle. Five healthy human subjects (1 female, 4 male), ages 20 to 58 were 

included in this study in accordance with human subjects guidelines and approved by the 

University of Arizona institutional review board.  Each subject participated in four experimental 

sessions (separated by  2 days) involving sustained isometric contraction of the tibialis anterior 

muscle. The tibialis anterior (TA) was selected for this study because it is readily accessible for 

intramuscular stimulation and it generates the preponderance of the dorsiflexion torque at the 

ankle.  In addition, the nerve supplying TA (deep peroneal neve) is reasonably accessible for 

stimulation while the major nerve (common peroneal nerve) giving rise to the deep peroneal 

nerve can be anesthetically blocked several centimeters proximal to the deep peroneal nerve, 

thereby isolating TA for study. 

Force and EMG measurements: Subjects were seated in a dental chair with their knee 

extended and their right foot secured to a custom-built footplate instrumented with a transducer 

to measure isometric force during dorsiflexion. The footplate rotated freely about an axis aligned 

approximately co-linear with the talocrural joint axis of the ankle.  Once the foot was secured 

with Velcro straps, the footplate was rotated such that it held the ankle in a plantar-flexed 

position. An isometric force transducer (Grass FT-10, Warwick, RI, USA using custom-built 

heavy-duty springs inserted into the housing of the transducer) was then attached to the distal 

end of the footplate (22.5 cm from the axis of rotation of the footplate) that resisted ankle 

dorsiflexion.  The knee was held in an extended position with a wide strap that ran over the 

anterior surface of the distal thigh and was tightened and secured to the chair.  Bipolar surface 
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electrodes (4 mm diameter, ~ 5 cm inter-electrode separation) were placed on the skin over the 

TA and over the triceps surae to record electromyographic (EMG) activity.  EMG signals were 

amplified (x 1000, band-pass filtered 30 to 1000 Hz., Grass Technologies Product Group, Astro-

Med Inc; West Warwick Rhode Island).  Force and EMG signals were digitally sampled (1000 

and 4000 samples/s, respectively) by a computer-controlled data acquisition system  (Power 

1401, Spike2, Cambridge Electronic Design, Cambridge England). 

Electrical Stimulation: Current-regulated stimuli (0.25 ms duration, rectangular, 

monophasic, cathodic pulses) were delivered to TA or deep peroneal nerve through percutaneous 

tungsten microelectrodes (250 m shaft diameter, 1 – 5 m tip diameter, 2 – 4 mm of insulation 

removed from the tip, 30 mm total length, Frederick Haer, Bowdoin Maine, USA) using a 

programmable multi-channel stimulator (STG4008 MultiChannel Systems, Reutlinger, 

Germany).  Surface electrodes (Covidien/Kendall, Pediatric cloth ECG Hydrogel Electrodes 

H59P, Medtronic, Dublin, Ireland) placed over the tibia or the lateral malleolus of the fibula 

served as common return electrodes for electrical stimulation.  Current pulses delivered by the 

stimulator were digitally sampled (12 kHz) by measuring the voltage drop across an in-series 

resistance (~150 ). 

Anesthetic block: Strong electrical stimulation can be painful.  Such painful stimuli can 

trigger spinal reflexes and descending activity that interferes with measures of force from the 

target muscle.  Furthermore, some subjects may not tolerate the high stimulus intensities 

delivered over prolonged periods needed for tests of muscle endurance.  Therefore, we used an 
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anesthetic block of the common peroneal nerve supplying the TA to largely eliminate sensory 

feedback associated with the stimulation and to fully paralyze the TA.   

Under ultrasound guidance, 10 -15 ml of 1.5% Mepivacaine was administered to the peri-

neural space surrounding the common peroneal nerve at a site  ~ 8 - 10 cm proximal to the head 

of the fibula.  Complete anesthetic block was confirmed by the subject’s inability to voluntarily 

generate detectable dorsiflexion force.  This occurred within ~ 20 min of the injection in all cases 

but one.  In that one case where a complete nerve block was not achieved, the experimental 

session was terminated and the subject returned on a different day during which the nerve block 

was successful.  As a precaution, prior to the nerve block, an intravenous line was placed into a 

peripheral vein in the upper extremity to administer fluids or medications in the unlikely event of 

anesthetic toxicity.  No such events occurred in any of the subjects tested.  Following 

experiments involving the nerve block, subjects wore a plastic ankle cast to prevent foot drop for 

a period of about 4 – 5 hours until the paralysis resolved. 

Procedure: Subjects participated in four experimental sessions in random order, one 

session involving sustained voluntary contraction of the TA and three sessions involving 

sustained stimulation of the TA with a nerve block present.   For sessions using electrical 

stimulation, in one session a single intramuscular electrode was used to deliver stimuli, in a 

second session four intramuscular electrodes distributed throughout TA and each controlled by a 

separate stimulus channel were used to deliver stimuli, and in a third session stimuli were 

delivered by a single electrode placed adjacent to the deep peroneal nerve just distal to the fibular 

head.  
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In each session, subjects first performed three brief  (~ 2 s duration) maximum voluntary 

contractions (MVC) of ankle dorsiflexion with about 60 s between trials.  The largest force 

exerted among the three trials was deemed the MVC force.  For the voluntary fatigue task, 

subjects observed a target force of 20% MVC displayed on a computer screen and matched that 

force by isometric dorsiflexion of the ankle.  To keep subjects motivated, subjects were verbally 

encouraged throughout the contraction to sustain the target force for as long as possible (e.g. 

Fuglevand and Keen 2003).  The task was terminated when the force continuously remained 

below the target force for a period of 5 – 10 s.  

 For sessions involving intramuscular stimulation, sterilized microelectrodes were inserted 

through alcohol cleansed skin and into TA following induction of paralysis by the nerve block.   

For experiments involving a single intramuscular electrode, the initial electrode placement was at 

a proximal site ~ 1/3 of the length of the muscle and ~ 2 cm lateral to the tibial ridge.  This site 

was selected based on nerve dissection (Watt et al. 2014) and surface EMG-array studies 

(Barbero et al. 2012) indicating that this site approximates the location where major branches of 

the deep peroneal nerve typically penetrate the TA.  For experiments involving four electrodes, 

one electrode was inserted at this proximal site, two electrodes were placed at ~ 50% of the 

length of TA with one located ~ 1 cm lateral to the tibial ridge and the other ~ 3 cm lateral to the 

ridge, and the fourth electrode was inserted at a distal site ~ 2/3 of the length of muscle and 

inserted into the midline of TA. 

 Each electrode was initially inserted to a depth of about 5 – 8 mm below the skin.  Brief 

(1 s) trains of stimuli (5 mA, 25 Hz) were delivered and the evoked force recorded. The electrode 
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was then advanced in ~ 2 mm steps to a maximum depth of ~ 30 mm with stimulation repeated at 

each step.  Electrode depth was estimated at each stimulation site by measuring the length of the 

electrode extending above the skin surface.  The insertion site was marked with ink and then the 

electrode was removed and reinserted at sites ~ 1 – 2 cm proximal, distal, medial, and lateral to 

the original insertion site and the process repeated. Following this survey, the electrode was then 

reinserted at the site that evoked the largest force in response to the stimulus train.  Stimulation 

was repeated at this site to confirm similar levels of evoked force as detected originally.  If 

needed, small adjustments to the electrode depth were made to ensure robust force responses 

were evoked.  In cases involving four electrodes, this process was repeated for each electrode.  

The time needed to place all four electrodes was usually about 1 hr.  Because of concerns that the 

anesthetic might begin to wear off, we did not carry out additional procedures to assess the 

degree of independence of each electrode by stimulating each electrode separately and in various 

combinations with other electrodes and measuring the degree of force summation.   

  

 For sessions involving nerve stimulation, a single tungsten microelectrode was inserted at 

an oblique angle to the skin immediately distal to the head of the fibula in order to approach the 

deep peroneal nerve.  The electrode position was manually adjusted until strong dorsiflexion 

forces were elicited in response to 1-s trains of 1 mA pulses delivered at 25 Hz.  We often also 

observed toe extension during stimulation of the nerve indicating activation of extensor hallucis 

longus and extensor digitorum longus.  This was largely unavoidable because axons to those 

muscles are also carried in the deep peroneal nerve. 
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  Once electrodes were in place, single stimulus pulses were delivered to each electrode 

separately and the associated twitch forces were recorded with amplitude incremented in 1 mA 

steps from 1 mA to 32 mA and with a 2-s delay between pulses. The associated current – twitch 

force relationships were evaluated immediately to identify the operating range of currents for 

each electrode for the upcoming fatigue task.  

 Prior to the fatigue test, a few 1-s trains of stimuli (25 Hz) were delivered to identify the 

stimulus pulse amplitudes needed initially to elicit the 20% MVC target force.  For the case 

involving four electrodes, stimulus amplitudes were identified separately for each electrode that 

evoked ~ 5% MVC force (assuming that the forces would sum near linearly).  A custom-

designed Matlab (Mathworks, Natick MA) program was then used to provide on-line feedback 

control of stimulus pulse amplitude during the fatigue task.   

 The inputs to the program included the target force (20% MVC), the starting current 

levels (based on those identified with 1-s trains), the upper current levels (based on the current – 

twitch force relationship), the force exerted by the subject sampled in real time , and a gain 

factor.  Force was sampled in parallel by two data acquisition systems: one dedicated exclusively 

for feedback control (120 samples/s, USB 6001, National Instruments, Austin, TX) and one for 

general data acquisition and storage that was used for off-line analyses (1000 samples/s, CED 

Spike2). The gain factor in this simple proportional feedback system was used to transform the 

detected error between target and a six-point (50 ms) moving average of the actual force into a 

current adjustment scaled to the operating range of the electrode.  We used a nominal gain value 

of 0.25 indicating that 25% of the full current range would be added to the ongoing current in the 
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case of an error representing 100% of the full force range.  In brief tests before the fatigue run, if 

overt force oscillations developed, we reduced the magnitude of the gain.  If, on the other hand, 

evoked force was slow to approach the target, we increased the gain.  For the majority of cases 

tested, however, a gain of 0.25 worked reasonably well. 

   The commanded adjustments in current amplitude were then dispatched   every ~ 240 ms to the 

MultiChannel Systems stimulator that delivered continuous 25 Hz (0.25 ms pulse duration) 

stimuli to the electrode(s).  A stimulus frequency of 25 Hz was selected because it evokes fused 

force responses and is within the upper range of motor unit firing rates of TA recorded during 

voluntary contractions (Connelly et al. 1999; De Luca & Hostage 2010).  In the case of 

multielectrode stimulation, the timing of the pulses were offset by 1 ms across electrodes to help 

prevent summation of otherwise sub-threshold electric fields (i.e. ‘subliminal fringe’) at sites 

relatively distant from the electrodes (Mortimer 1981, Branner et al. 2001).  For example, we 

found in some experiments that precisely synchronized stimulation (i.e. without the 1 ms delay) 

could lead to overt plantar flexion that was not evoked by any electrode alone when stimulating 

using maximal intensities.  Feedback-controlled stimulation was maintained until the evoked 

force was clearly below the target force by at least 10% for ~ 5 – 10 s despite escalating current 

intensities. 

 Data Analysis: For each fatigue trial, we used a custom-written program (Spike2) to 

measure the endurance time as the duration from when the force initially came within 10% of the 

target force until the time when force fell 10% below the target for more than 5 seconds.  A one-

way repeated-measures analysis of variance (ANOVA) was performed to determine whether 
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endurance time varied significantly with different fatigue protocols.  Mann-Whitney rank sum 

post-hoc test was used to evaluate differences in endurance times between fatigue protocols with 

Bonferroni correction for multiple comparisons. The level of statistical significance was set at P 

< 0.05 and data are reported as means  one standard deviation (SD).  

 

 RESULTS  

  

 Current – Twitch Force Relation.  Figure 1 shows example twitch force responses to 

escalating current-amplitude stimuli delivered during separate trials to each of four intramuscular 

electrodes placed in different locations in TA in one subject during a single session.  In this 

example, a small twitch was detected for the lowest current delivered (1 mA) on electrodes 1, 2, 

and 4, while 3 mA of current was needed to elicit a detectable twitch on electrode 3.  Peak twitch 

forces of 17.4, 17.1, 17.4, and 15.7 N were attained at 31, 32, 29, and 30 mA for electrodes 1 – 4, 

respectively.  The difference in peak forces between the electrode that evoked the largest twitch 

and that which evoked the smallest was 9.8%.  
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Across all subjects and all cases involving one or four intramuscular electrodes, the 

average threshold current for evoking a detectable twitch response was 1.6 ± 1.0 mA while the 

average current associated with peak twitch force was 27.4 ± 5.7 mA (range 9 - 32 mA).  For the 

Figure 1.  Example dorsiflexion twitch force responses (upper four traces) to increasing 

stimulus current pulses (bottom trace) delivered through four intramuscular electrodes 

placed in different locations within tibialis anterior in one subject.  Stimulation through 

each electrode was performed in separate trials but traces have been aligned for 

compact display.  Red horizontal lines indicate intermediate plateaus wherein force 

saturated across a range of increasing stimulus intensities.   
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case of four intramuscular electrodes, the average percent difference across electrodes evoking 

the largest and smallest peak forces was 25.6 ± 18.1% (range 9.8 – 51.6%).  During nerve 

stimulation we did not get clear measures of the threshold currents due to the large increments (1 

mA) used for the current – twitch force assessment.  In all subjects during nerve stimulation, 1 

mA (the smallest value tested) always evoked a strong twitch (> 50% of the peak twitch force) 

while the current associated with peak twitch force was ≤ 5 mA.   

 Intermediate Plateaus.  While twitch forces tended to progressively increase with current 

above threshold up to the current associated with peak force, there were often intermediate 

plateaus wherein evoked force saturated across a range of increasing currents.  Such plateaus are 

highlighted with red horizontal lines in the examples shown in Figure 1.  Force responses to 

stimuli delivered by electrode 1, for example, saturated across a nearly 3-fold increase in 

stimulus intensities (from 5 – 14 mA).   We quantified the prevalence of such intermediate 

plateaus using a method we described previously (Buckmire et al. 2018).  Namely, we calculated 

the percentage change in force associated with each 1 mA increment in current for all of the 

current– twitch force sequences involving intramuscular electrodes.  We then identified the 

number of cases for which the change in force fell below 5% for two or more consecutive steps 

in current and which was then followed by increases in force above 5%.  For all 25 intramuscular 

electrode sequences tested (20 from 4-electrode experiments, 5 from 1-electrode experiments), 

80 % exhibited one or more intermediate plateaus.  The average span of currents over which 

twitches saturated during these intermediate plateaus was 4.7 ± 3.4 mA (range 2 – 14 mA).       
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Fatigue:  The target force for all fatigue trials was set at 20% of the MVC obtained in 

each session.  Across all sessions and subjects, the average MVC force was 218.8 ± 32.2 N (49.2 

± 7.2 N•m of torque).  There was little variation in MVC force across sessions for individual 

subjects (average coefficient of variation = 5.6 ± 3.9%).  Figure 2 shows example force 

responses obtained in a single subject during sustained voluntary effort (Fig. 2A), stimulation of 

TA with a single intramuscular electrode (Fig. 2B), stimulation of TA with four intramuscular 

electrodes (Fig. 2C), and stimulation of the deep peroneal nerve supplying TA (Fig. 2D).  The 

TA surface EMG is shown in Fig. 2A, whereas the feedback controlled stimulus currents are 

shown in Figs. 2B – 2D.  For clarity, only one of the four stimulus-current signals is shown in 

Fig. 2C.  All four panels in Fig. 2 are depicted using the same time base so their durations can be 

directly compared. 

During the voluntary contraction (Fig. 2A), EMG activity progressively increased 

reflecting increased motor unit recruitment and rate coding needed to compensate for 

diminishing force capacities of the active muscle fibers.  Eventually, however, the increased 

drive to the muscle was insufficient to maintain the target force and the contraction was halted. 

Across all five subjects, the average value of the rectified TA EMG signal measured over the last 

10 s of the trial was 71.6 ± 34.5 % (range 47.8 – 132.1%) larger than that measured over the 

initial 10 s.  The endurance time for the voluntary contraction shown in Fig. 2A was 740 s.  

 In the session involving stimulation with a single intramuscular electrode (Fig. 2B), ~ 10 

mA of current was needed at the outset to achieve the target force.  The stimulus current then 

increased rapidly up to its assigned upper limit of 24 mA under feedback control in order to 
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maintain the target force.  Despite the increasing current, force decayed slowly over much of the 

trial and stimulation was halted when the force was < 90% of the target level.  The endurance 

time for this trial was 80 s.  When four intramuscular electrodes were used to deliver stimuli 

(Fig. 2C), force was maintained five times longer (endurance time 448 s) compared to 

stimulation with a single electrode.  At the outset, the evoked force overshot the target but with 

feedback control, the stimulus intensities delivered to the four electrodes were rapidly 

adjusted and the evoked force was then stably maintained at the target force.  Stimulus current 

then increased almost linearly over much of the trial except near the end when current amplitude 

rapidly accelerated in an attempt to maintain the target force in the face of weakening output of 

the active muscle fibers.  Despite this increase in stimulus intensity, additional force was not 

generated and the trial was halted when force dropped below 90% of the target even though 

current had not reached the upper limit on any of the four stimulus channels.  

The most remarkable trial was that associated with nerve stimulation (Fig. 2D).  In this 

case, the endurance time (993 s) far surpassed (by 34 %) that of the voluntary contraction (Fig. 

2A).  The stimulus currents involved were much lower than that used for intramuscular 

stimulation and the amplitude only gradually increased over much of the trial except a sharp 

escalation near the end.  In one other subject, endurance time of nerve stimulation exceeded that 

of the voluntary contraction by 42%.  As can be seen in Fig. 2D, force fluctuations were evident 

throughout the trial but grew in intensity during the latter two-thirds of the trial.  These force 

fluctuations were seen in all subjects and were dominated by a 4.2 Hz oscillation.  It was only 

discovered later that these oscillations were due to an inadvertent lengthening of every 5
th
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Figure 2.  Example force 

responses (bottom traces) 

recorded in a single subject 

during four sessions 

involving A) voluntary 

contraction, B) 

intramuscular stimulation of 

tibialis anterior (TA) with a 

single electrode, C) 

intramuscular stimulation of 

TA with four electrodes, D) 

stimulation of deep peroneal 

nerve.  In A), the top trace 

shows the surface EMG 

signal recorded from TA.  In 

B), C), and D), the top trace 

indicates the feedback 

controlled stimulus current 

delivered to the electrodes.  

In C), only one of the four 

stimulus current signals is 

depicted for clarity.  All four 

stimulus current signals 

associated with the trial 

shown in C) increased 

exactly in parallel but the 

absolute values were 

different.   
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interpulse interval (occurring at cycle period of ~ 240 ms), presumably due to buffering 

delays in the computer – stimulator interface.  As such, the average stimulus rate was ~ 22 Hz 

rather than 25 Hz for all subjects.   

The mean (SD) endurance times for the five subjects across the four fatigue tasks is 

shown in Figure 3.  ANOVA indicated a significant effect of fatigue task on endurance time (P < 

0.001).  Post hoc analysis indicated no significant difference (P = 0.46) in the mean endurance 

times between voluntary (896 ± 272 s) and nerve stimulation tasks (787 ± 201 s).  The mean 

endurance time associated with stimuli delivered by a single intramuscular electrode (84 ± 19 s) 

was significantly (P < 0.01) smaller than that elicited by four intramuscular electrodes (232 ± 

Figure 3.  Mean (SD)  and individual values (dots) of endurance times of ankle dorsiflexion 

at a 20% MVC force target in response to feedback controlled stimulation of tibialis 

anterior with one or four intramuscular electrodes, feedback controlled stimulation of the 

deep peroneal nerve, or during voluntary contraction.  ns – non-significant difference (P = 

0.46).  * - significant difference (P< 0.01).   
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123 s).  All other between-task comparisons were significant (P < 0.01).  

 

DISCUSSION 

 Here we have shown that the rapid fatigue associated with electrical stimulation of 

muscle can be partially mitigated by increasing the number of intramuscular electrodes used to 

activate muscle.  Furthermore, stimulating the nerve proximal to where it enters muscle produced 

a target force that could be sustained as long as, and in some cases longer, than that produced 

during voluntary contraction.  We conclude, therefore, that the excessive fatigue associated with 

FES must primarily be due to the inability of conventional FES systems to enlist the full 

complement of motor units within muscle.  Moreover, these results indicate that neither altered 

motor unit recruitment order nor synchronized motor unit activity can account for much of the 

fatigue seen with FES as both of these factors presumably were in play in the present 

experiments.   

 A likely explanation as to why a single stimulating electrode (as has been the convention 

in many FES systems) is unable to activate all the motor units in a muscle is because of the 

widely distributed arrangement of nerve branches within muscle.  A long-held view is that 

nerves typically enter muscle at a single location to innervate muscle fibers along a constrained 

central region referred to as the innervation zone  (Coërs & Telerman-Toppet 1977; Lee et al. 

2012; Behringer et al. 2014; Jahanmiri-Nezhad et al. 2015).  Yet, many anatomical studies have 

clearly shown extensive and complex ramification of nerve branches prior to entry into 

(Sunderland and Hughes 1946) and throughout large expanses of skeletal muscle (Amarali et al. 

2007; Mu and Sanders 2010; Won et al. 2011; Yu et al. 2016).  Because of the steep decay in the 
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electric field with distance from a stimulating electrode (McIntyre & Grill 2002; Rattay 2004), it 

may be challenging in practice to deliver sufficient current to excite all of the widely dispersed 

nerve branches, particularly in large muscles such as the tibialis anterior.  As such, using more 

electrodes situated in different regions of a muscle should enable electrical access to a larger 

subset of the nerve branches.  In support of this idea, we have recently shown that the maximum 

force that could be evoked using intramuscular electrodes was always greater when using 

multiple compared to a single electrode (Buckmire et al. 2018).  

 Indeed, the prevalence of intermediate plateaus in evoked force responses to increasing 

stimulus intensities observed here (Fig. 1) and previously (Crago et al. 1980; Cameron et al. 

1998; Buckmire et al. 2018) probably reflects the presence of widely separated nerve branches 

within muscle.  Namely, the initial increase in force with increased stimulus intensity likely 

arises due to progressive activation of more motor axons contained within nerve branches in the 

vicinity of the electrode.  Eventually, however, most motor axons in such nearby branches might 

be recruited and thereafter, no additional force would be elicited over a range of increased 

stimulus strengths (Cameron et al. 1998).  At some point, however, sufficient current could be 

delivered such that other distant nerve branches begin to be activated, leading to an additional 

rise in evoked forces with increasing current.  In the present experiment, there was no way to be 

sure that additional intermediate plateaus might have been detected had we delivered currents 

higher than the 32-mA maximum allowed by our stimulator. 

  It is possible that secondary increases in evoked force after a plateau might have been 

due to activation of neighboring synergist muscles, such as extensor hallucis longus or extensor 
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digitorum longus, both of which contribute to ankle dorsiflexion. Yet, we only rarely detected 

toe extension during intramuscular stimulation of tibialis anterior, which would have been 

indicative of activating those synergists.  Furthermore, such intermediate plateaus were observed 

in response to intramuscular stimulation of cat hindlimb muscle when no muscles, other than the 

target muscle, were attached to the force transducer (Crago et al. 1980; Cameron et al. 1998). 

 In the context of fatigue resistance, the ability to engage more motor units with multiple 

electrodes is beneficial.  A larger reserve of motor units that can be called upon (by increasing 

stimulus strength) as force declines in earlier activated motor units will enable a given target 

force to be maintained for a longer duration.   Indeed, when we stimulated the deep peroneal 

nerve (at a site where most of the motor axons supplying tibialis anterior are bundled together), 

no evidence of excessive fatigue was found.  Moreover, in two of the five subjects tested, the 

duration over which the target force could be sustained with such nerve stimulation exceeded 

that associated with voluntary effort.  Although some previous studies have shown that the extent 

of fatigue to be similar during sustained maximum voluntary contractions and maximal nerve 

stimulation (Merton 1954; Jones et al. 1979; Bigland-Ritchie et al. 1979; Marsden et al. 1983), 

we are unaware of previous cases for which fatigue resistance of electrically evoked contractions 

surpassed that of voluntary effort. 

 While caution against over-interpretation of these two cases is certainly warranted, some 

consideration as to why such supra-endurance arose in these cases seems worthwhile.  First, it is 

possible that the two subjects simply did not exert themselves fully to sustain the voluntary 

contraction for as long as possible.  Indeed, those two subjects had the briefest endurance times 
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associated with the voluntary contraction (see Fig 3).  Yet, both subjects showed substantial 

increases in TA EMG during the voluntary fatigue task indicative of increasing exertion.  Indeed, 

the subject who showed the greatest increase in endurance time with nerve stimulation compared 

to voluntary contraction also exhibited the greatest increase (>100%) in TA EMG during the 

voluntary task.   

 Thus, if taken at face value, it is then important to ask why such supra-endurance has not 

been observed previously.  Perhaps one reason is that few other studies have used feedback 

control during electrical stimulation to determine the duration over which a given target force 

can be maintained.  Rather, most fatigue studies involving electrical stimulation measure the 

change in force in response to a fixed stimulus intensity applied over a set duration (e.g. Yoshida 

& Horch 1993; Thomas et al. 2002; Lou et al. 2017; Buckmire et al. 2018).  Because it is 

difficult to ‘clamp’ the intensity of voluntary drive during fatiguing contractions, it is not 

possible to directly compare such electrically evoked contractions to that produced voluntarily.  

On the other hand, voluntary contractions naturally lend themselves to visual feedback control of 

a displayed target force and as such, can be compared to that produced by electrical stimulation 

under force-feedback control, as was done here.  It should be said that under open-loop 

stimulation involving fixed stimulus intensities, the same set of motor units would be activated 

throughout a stimulation bout.  In this case, the tendency of extracellular stimulation to favor 

activation of higher threshold, fatigable motor units would indeed contribute to more rapid loss 

in force than that associated with activation of motor units that mimics that which occurs 

naturally.  
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  A second possible reason for the absence of such observations previously is that few 

such studies have used anesthetic nerve blocks as we used here to isolate the effects of electrical 

stimulation.  Intense electrical stimulation delivered to muscle not only activates motor axons but 

also engages an array of sensory axons including nociceptors.  The associated sensory signals 

can provoke spinal reflexes and perhaps even descending inputs leading to unregulated 

contraction of agonists and antagonists, which in turn contaminates the force signals meant to 

detect the effect of electrical stimulation alone (Lagerquist et al. 2009).  Furthermore, subjects 

may not readily tolerate the pain associated with prolonged intense stimulation and investigators 

may avoid imposing such discomfort on human volunteers.   

 An additional possible reason relates to the fortuitous selection of TA as the target muscle 

in the present study.  The deep peroneal nerve supplying TA arises as one of two main branches 

(the other being the superficial peroneal nerve) of the common peroneal nerve.  From this 

bifurcation point, there typically is about a one centimeter span of the deep peroneal nerve before 

it gives rise to the first of multiple branches destined for the TA along ~ 20 cm of length of the 

nerve (Sunderland and Hughes 1946).  This span of the nerve was targeted for stimulation in the 

present experiments.  What is advantageous about this site is that it also carries axons supplying 

the two other ankle dorsiflexors, extensor hallucis longus and extensor digitorum longus.  

Therefore, stimulation at this site engaged all of the ankle dorsiflexors (as evidenced by toe 

extension as well as ankle dorsiflexion during nerve stimulation), just as would likely occur 

during voluntary dorsiflexion.  Consequently, the total muscle mass involved in voluntary and 

nerve stimulation experiments was reasonably similar. 
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 It should be noted, however, that the branching patterns of the peroneal nerves are highly 

variable across human cadaver specimens (Sunderland and Hughes 1946; Aigner et al. 2004).  

For example, in 6 of 20 specimens, the first branch to the TA arose from the common peroneal 

nerve above its bifurcation to the deep and superficial nerves (Sunderland and Hughes 1946).  

Therefore, a portion of the TA would not have been activated with nerve stimulation in the 

present study in subjects with such a branching arrangement.  In addition, the superficial 

peroneal nerve runs almost adjacent to the deep peroneal nerve in the region targeted for 

stimulation such that the distance between the centers of the two nerves may be as small as 5 mm 

(Aigner et al. 2004).  It is possible, therefore, that with increasing stimulus intensity during the 

fatigue task, some portion of the superficial peroneal nerve supplying the peroneus muscles, may 

have been activated.   Indeed, in some subjects, we visually observed contraction of the peroneus 

muscles during the later stages of the fatigue protocol involving nerve stimulation.  Because the 

peroneus muscles contribute to ankle plantarflexion, their activation would tend to curtail 

dorsiflexion endurance time.  Therefore, these two factors (possibility of not activating all nerve 

branches to TA and possibility of activating antagonists), may have limited the measured 

endurance time in response to nerve stimulation in some of the subjects. 

 The results of the nerve stimulation experiments also bear on fundamental questions 

related to the contribution of the central nervous system (CNS) to voluntary muscle fatigue.  The 

observation that endurance time in some cases was longer with electrical stimulation than during 

voluntary contraction strongly suggests some degree of failure of the CNS to fully engage 

muscle during prolonged activity in those cases.  There is a significant body of work that 
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supports this contention and numerous mechanisms have been proposed to account for such 

fatigue-related impairment of CNS drive (see reviews by Gandevia 2001 and Taylor et al. 2016).   

 Finally, based on the findings of the present study, it would seem appropriate to consider 

using multiple stimulating electrodes (particularly for large muscles), and where possible, to 

stimulate the peripheral nerves supplying muscle for FES applications in paralyzed individuals.  

Of course, this must be weighed against the increased complexity of the control system and 

associated hardware, and added surgical challenges for implanted systems (Memberg et al. 

2014).  For therapeutic interventions involving surface electrodes, using more than one active 

electrode would also seem beneficial.  Indeed, the efficacy of interleaved stimulation among 

multiple surface electrodes suggests this to be the case (Malešević et al. 2010; Nguyen et al. 

2011; Maneski et al. 2013; Sayenko et al. 2014; Downey et al. 2015; Bergquist et al. 2016, 2017; 

Laubacher et al. 2017; Lou et al. 2017).   The results reported here and previously (Buckmire et 

al. 2018) indicate that the improved fatigue resistance associated with interleaved stimulation is 

most likely related to the use of multiple electrodes (providing access to a greater volume of 

muscle) rather than the asynchronous activation induced by the interleaved protocol.   Additional 

studies will need to be performed to determine the degree of improved fatigue resistance using 

multiple electrodes or nerve stimulation for a variety of tasks including intermittent contractions 

and different target forces.  Likewise, it will be especially important to evaluate the degree of 

improved fatigue resistance in individuals with spinal cord injuries given the changes in fiber 

type composition and atrophy that often occur with paralysis.   Nevertheless, we expect such an 

approach to increase both the strength and endurance of electrically evoked contractions and 

thereby enhance the capability of FES to restore movement in paralyzed individuals.  
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