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Abstract

Low-Density Parity-Check (LDPC) codes have gained popularity in communication

systems and standards due to their capacity approaching error correction perfor-

mance. Among all the hard-decision based LDPC decoders, Gallager B (GaB), due

to simplicity of its operations, poses as the most hardware friendly algorithm and an

attractive solution for meeting the high-throughput demand in communication sys-

tems. However, GaB suffers from poor error correction performance. In this work,

we first propose a resource efficient GaB hardware architecture that delivers the best

throughput while using fewest Field Programmable Gate Array (FPGA) resources

with respect to the state of the art comparable LDPC decoding algorithms. We

then introduce a Probabilistic GaB (PGaB) algorithm that disturbs the decisions

made during the decoding iterations randomly with a probability value determined

based on experimental studies. We achieve up to four orders of magnitude better

error correction performance than the GaB with a 3.4% improvement in normalized

throughput performance. PGaB requires around 40% less energy than GaB as the

probabilistic execution results with reducing the average iteration count by up to

62% compared to the GaB. We also show that our PGaB consistently results with

an improvement in maximum operational clock rate compared to the state of the art

implementations.

In this dissertation, we also present a high throughput FPGA based framework

to accelerate error characterization of the LDPC codes. Our flexible framework al-

lows the end user adjust the simulation parameters and rapidly study various LDPC

codes and decoders. We first show that the connection intensive bipartite graph based

LDPC decoder hardware architecture creates routing stress for longer codewords that

are utilized in today’s communications systems and standards. We address this prob-

lem by partitioning each processing element (PE) in the bipartite graph in such a



11

way that the inputs of a PE are evenly distributed over its partitions. This allows

depopulating the Loo Up Table (LUT) resources utilized for the decoder architecture

by spreading the logic across the FPGA. We show that even though LUT usage in-

creases, critical path delay reduces with the depopulation. More importantly, with the

depopulation technique an unroutable design becomes routable, which allows longer

codewords to be mapped on the FPGA. We then conduct two experiments on error

correction performance analysis for the GaB and PGaB algorithms, demonstrate our

framework’s ability to reach a resolution level that is not attainable with general pur-

pose processor (GPP) based simulations, which reduces the time scale of simulations

to 24 hours from an estimated 199 years. We finally conduct the first study on iden-

tifying all possible codewords that are not correctable by the GaB for the case where

a codeword has four errors. We reduce the time scale of this simulation that requires

processing 117 billion codewords to 4 hours and 38 minutes with our framework from

an estimated 7800 days on a single GPP.
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Chapter 1

Introduction

1.1 Overview

Error correction codes have been utilized in several communication systems to ensure

reliable transmission of information. Claude Shannon established theoretical limit at

which information can be transmitted reliably over a noisy channel in 1948 [1]. Trans-

mitting information reliably with a rate close to this theoretical limit is known as the

channel capacity. Research efforts in decoding Low-Density Parity-Check (LDPC)

codes have led to design and implementation of a myriad iterative decoding algo-

rithms approaching channel capacity [2], [3], [4], [5]. LDPC codes offer performance

improvement and implementation cost saving for long codeword lengths compared to

Reed-Solomon (RS) [6] and Bose-Chaudhuri-Hocquenghem (BCH) [7], [8] codes as

they are theoretically proven to be asymptotically good family of codes [9]. There-

fore, for a sufficiently high codeword length, LDPC will outperform a BCH or RS

code of a comparable rate. Binary LDPC codes have been widely adopted in several

standards and applications [10], such as mobile communications [11], 10 Gigabit Eth-

ernet (10GBase-T) [12], [13], digital video broadcasting (DVB-S2) [14], wireless local

area network (WiFi IEEE 802.11n) [15], WiMAX (IEEE 802.16e) wireless commu-

nications [16], deep-space communications [17], as well as data storage systems [18].

LDPC codes have also been selected as the data channel coding scheme for the 3GPP

new radio access technology of the fifth generation (5G) mobile communication stan-

dard [19], [20]. In addition, LDPC codes handle soft channel outputs which is essential

in numerous applications even in optical communications and data storage channels,

especially in flash memories [21], [22].

LDPC decoding algorithms mainly differ based on the nature of iterative opera-
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tions applied over the received messages. Complexity level of these operations deter-

mine the trade-off between hardware performance and decoding performance. Here

we note that, throughout this dissertation, with the hardware performance, we refer

to the operational clock rate and throughput as well as the resource requirements

of the decoder algorithm, and with the decoder performance, we refer to the error

correction capability of the decoder algorithm measured based on the frame error rate

metric. In the literature, we have seen soft-decision and hard-decision decoders as

two main classes of LDPC decoding algorithms. Soft-decision decoders such as Belief

Propagation (BP) [23],[24], Sum Product (SP) [25], Min-Sum (MS) [26], and Offset

Min-Sum [27] offer high error correction performance with the cost of high compu-

tation complexity. On the other hand, hard-decision decoders such as Gallager B

(GaB) [28],[29], Bit-Flipping (BF) [30], Gradient Descent Bit-Flipping (GDBF) [31],

and Probabilistic Gradient Descent Bit-Flipping (PGDBF) [32] have much less hard-

ware requirements than soft-decision decoders, and achieve higher throughput with a

trade-off in the error correction performance.

1.2 Problem Statement and Aims

Research efforts to this date for improving the error correction performance of LDPC

decoding algorithms have inevitably faced the trade off on increased computational

complexity. From hardware implementation and practical use perspectives, the in-

crease in computational complexity results with increased demand for hardware re-

sources. Therefore, these implementations, even though algortihmically efficient and

highly parallelizable, become less scalable and harder to deploy as a component in sys-

tems designed for emerging standards that require longer codewords [33], [34], [35], [36].

We believe that there is a need for algorithms that target resource efficiency, scalabil-

ity and error correction performance metrics concurrently. Among the hard-decision

class of LDPC algorithms, hardware realization of the GaB has not been favorable due
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to its poor decoding performance. On the other hand, GaB is an ideal candidate for

designing a high-throughput decoder due to its simplicity of computations requiring

combinational circuits at the scale of only 2-bit multiplication operations [28], [37].

Rapid evaluation of the LDPC algorithms and decoders while maintaining the trade-

off between the hardware implementation efficiency and error correction performance

becomes critical during this research. Therefore, this dissertation is concerned with a)

improving the error correction performance of the GaB algorithm through algorithmic

contributions without sacrificing its hardware efficiency, b) improving the scalabality

of the GaB hardware architecture to make it feasible to implement for longer code-

words, and c) implementation of a general purpose Field Programmable Gate Array

(FPGA) based framework to accelerate the simulations of hard-decision decoders for

error correction performance analysis.

1.3 Summary of Contributions

1.3.1 Algorithmic Contribution

In this dissertation, our aim is to answer the question of whether it is feasible or not

to bridge the gap between GaB and better performing hard-decision (bit flipping)

based algorithms in terms of decoding performance without sacrificing its suitability

for hardware implementation. We introduce a new algorithm called Probabilistic

Gallagher B (PGaB) by applying a probabilistic stimulation function over the iterative

decoding process, conduct detailed experimental evaluations with respect to other

decoders and show that our algorithm not only improves the decoding performance

with respect to GaB by four orders of magnitude, but also requires fewest amount

of hardware resources with respect to other comparable decoding algorithms GDBF

and PGDBF while achieving equivalent or better decoding performance. We present

the details of our incremental approach to designing and implementing the GaB and

PGaB hardware architecture.
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1.3.2 Architecture Specific Contribution

The connection intensive bipartite graph based LDPC decoder hardware architecture

creates routing stress when implemented on the FPGA for longer codewords that

are utilized in today’s communications systems and standards. From FPGA point

of view, even though there is sufficient amount of computing resources that would

match the degree of parallelism desired by the design, implementation is less likely

to pass the routing stage of the synthesis as the number of connections in the imple-

mentation increase with the code length, which in turn increases the stress on FPGA

routing resources. Another contributor to the routing stress is the number of parity

bits used by the communication medium, which has direct impact on the number of

connections between each iteration of the decoding process since increasing the ratio

of parity bit to data from 0.5 to 0.75 would mean increasing number of connections

by a factor of 4 for a given codeword. Therefore for implementations of longer code-

words and/or higher code rates, designers resort to reducing the degree of parallelism

in their implementations. We address the routability problem by partitioning each

processing element (PE) in the bipartite graph based LDPC decoder hardware archi-

tecture in such a way that we distribute inputs of a PE evenly over its partitions.

This allows depopulating the Look Up Table (LUT) resources available on the FPGA

fabric utilized for the decoder architecture by spreading the logic across the FPGA.

Spreading the logic across the FPGA allows reducing the stress on routing. We use

the GaB decoder as a case study and show that even though LUT usage increases,

critical path delay reduces with the depopulation. More importantly, with the de-

population technique, an unroutable design becomes routable, which allows longer

codewords to be mapped on the FPGA.
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1.3.3 FPGA Based Framework

Evaluating the decoding performance of an LDPC code on a general purpose pro-

cessor based single node requires extremely long simulation times, scaling to months

and even years [38]. A typical simulation involves generating codewords (frames),

injecting random errors to each, and measuring the ratio of codewords that are not

recovered (frame error) to the total number of codewords tested. This ratio is re-

ferred to as the Frame Error Rate (FER). Many LDPC codes today reach to FER

of 10−12, which indicates that 1014 codewords have been tested and a benchmark of

100 codes were not corrected within a predefined number of iterations per codeword

(typically 100 iterations). Therefore such simulations involve well beyond hundreds of

millions of iterative error correction processes, and in most cases, the iteration count

exceeds the billion mark for a conclusive evaluation at a resolution of 10−12. Further-

more, in parallel to the technological advances in communication systems, the length

of codewords have been steadily increasing. The need for extremely high resolution

simulations combined with growing codeword length trends lead to excessively long

simulation times, which makes software based simulations unpractical for the infor-

mation theory researchers. From this regard, we propose to design and implement a

flexible FPGA based framework to rapidly evaluate a given decoder algorithm with

user defined simulation parameters. Our aim is to reduce the time scale of simulations

and further allow researcher to conduct analysis such as error pattern, trapping set,

and absorbing set. We present our approach for implementing the entire simulation

flow on the FPGA as a self contained testbed.

The technical contributions of this dissertation are as follows:

• We propose a resource efficient GaB architecture for widely used quasi-cyclic

(QC)-LDPC codes, implement it on the FPGA, and evaluate its hardware per-

formance.
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• We analytically study the cases for which a message bit received from the chan-

nel becomes the determining factor in GaB for a decision made during the

iterative decoding process. We introduce an algorithm that disturbs those deci-

sions with a predefined probability, and experimentally identify the probability

value that results with optimal decoder performance.

• We experimentally show that a simple hardware-friendly random number gen-

erator based on linear feedback shift register (LFSR) is sufficient to disturb the

decoder and improve the decoding performance.

• We propose a heuristic that allows switching to PGaB only after when GaB is

not able to correct the errors in predetermined number of iterations.

• We investigate the impact of switching from GaB to PGaB at a specific itera-

tion, and experimentally identify the iteration number that results with optimal

decoder performance.

• We design and implement GaB and PGaB along with two hard decision based

algorithms (GDBF and PGDBF) on the Xilinx Virtex- 6 FPGA (vc6vlx240t-

2ff1156).

• We conduct a detailed robustness analysis that involves evaluating the impact

of a change in code rate and codeword length over the FPGA based implemen-

tations of GaB, PGaB, GDBF and PGDBF covering 12 hardware implementa-

tions.

• We show that GaB architecture delivers the best throughput while using fewest

FPGA resources, however performs the worst in terms of decoding performance.

The PGaB results with up to four orders of magnitude decoding performance

improvement over the GaB, exceeding the performance of GDBF over the codes
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studied in this dissertation, with a negligible loss (less than 1%) in throughput

performance compared to the GaB.

• We analyze the critical path delay and resource usage trends for hardware im-

plementations of the GaB algorithm with respect to the increase in codeword

length.

• We show that routability becomes a bottleneck as the codeword length in-

creases and adapt design partitioning technique to depopulate the logic across

the FPGA and reduce congestion.

• We present an experimental analysis through resource usage, delay, and resource

usage-delay product trends with respect to the amount of partitioning. We also

correlate these trends with fracturable LUT utilization based on the level of

partitioning and number of occupied paths.

• We propose a depopulation based hardware implementation technique and show

that designs for the codewords that are not routable with the regular implemen-

tation become routable with the depopulation approach, while reducing the

critical path delay by up 32% and increasing the LUT usage by 9%.

• We propose an FPGA based framework to accelerate the study of error correc-

tion performance analysis for LDPC codes. We present our approach to imple-

menting the entire simulation flow on the FPGA as a self contained framework

in order to reduce the timescale of our simulations.

• Finally we present two case studies on investigating the error correction perfor-

mance and the types of error patterns that are not recoverable by a given LDPC

algorithm. We show that our testbed reduces the timescale of error correction

performance simulations from an estimated time scale of 199 years on a CPU
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to less than a day, and four error pattern analysis from an estimated time of

7800 days to less than five hours.

We believe that our self-contained FPGA based framework [39] is a valuable tool

for information theorists to expose the weaknesses of a decoder algorithm under in-

vestigation through rapid error analysis and study ways to improve that decoding

algorithm [40], [41]. The rest of this dissertation is organized as follows. In Chap-

ter 2, we fist provide the background necessary for the discussions LDPC code, and

then give an overview of the baseline GaB LDPC algorithm, along with the GDBF

and PGDBF decoding algorithms. In Chapter 3, we present our methodology for

introducing the probabilistic behavior to the GaB and determining the critical pa-

rameters for the PGaB implementation. In Chapter 4 we first discuss the hardware

implementations for GaB, PGaB, GDBF, and PGDBF, and then we we evaluate the

decoding performance and hardware performance of PGaB after giving an overview

of our simulation environment. In Chapter 5, we investigate the congestion problem

experimentally, introduce the partitioning approach for depopulating the logic, and

conduct resource usage and path delay trend analysis to quantify the benefits of the

depopulation strategy from FPGA implementation point of view. After discussing

the details of our FPGA based framework in Chapter 6, we present our error cor-

rection performance and error pattern analysis case studies based on the proposed

framework. Finally, in Chapter 7, we present our conclusions and future work.



20

Chapter 2

Preliminaries

In this chapter, we provide the background information necessary for discussion of

the LDPC code.

2.1 Overview of Decoding Algorithms

An LDPC code is defined by a sparse parity-check matrix H [2], with size (M,N),

where N > M . A codeword is a vector x = (x1, x2, . . . , xN) ∈ {0, 1}N , which satisfies

HxT = 0. We denote by r = {r1, r2, . . . , rN} ∈ {0, 1}N the output of a Binary

Symmetric Channel (BSC), in which the bits of the transmitted codeword x have

been flipped with crossover probability α. The graphical representation of an LDPC

code is a bipartite graph called Tanner graph [42], [43] composed of two types of nodes

including N number of Variable Node Units (VNUs, vn, n = 1, . . . , N) and M number

of Check Node Units (CNUs, cm, m = 1, . . . ,M ). In the Tanner graph, a VNU vn

is connected to a CNU cm when H(m,n) = 1. An example Tanner graph and its H

c0       c1          c2      c3          c4 

v0        v1    v2     v3       v4    v5     v6        v7       v8        v9

H =

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 0 1 1 0

1 0 1 1 1 1 1 0 1 1 

0 1 1 1 1 0 1 1 1 1 

1 1 1 1 0 1 1 1 0 1 

Figure 2.1. Tanner graph (left) and its parity check matrix (right).
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matrix are shown in Figure 2.1. Let us also denote N (vn) the set of CNUs connected

to the VNU vn, with a connection degree dv = |N (vn)|, and denote N (cm) the set of

VNUs connected to the CNU cm, with a connection degree dc = |N (cm)|. Based on a

decision function applied over the received messages from each adjacent vertex, each

CNU and VNU sends a message back to its adjacent vertices. This iterative message

processing between nodes recover the original data, which may have been exposed to

channel noise.

2.1.1 Gallager B (GaB)

Binary messages are exchanged between CNUs and VNUs during each iteration of the

decoding process and new messages are computed in an extrinsic manner. A VNU

excludes the message received from a CNU, when the VNU is calculating the message

to be sent back to that specific CNU. This is valid for the message calculation for

the CNU as well. Each message represents an estimation on the correctness of the

received word from the channel. Eventually, VNUs and CNUs accumulate gradually

more information with each new iteration, which increasingly improves the codeword

correction capacity. The estimation of the codeword is called posteriori decision

information and is represented by d
(i)
n,m. Let E(x) represent a set of edges connected

to a node x in the Tanner graph. The v
(i)
n,m(e) denotes the extrinsic messages sent

on edge e from a VNU vn to a CNU cm at iteration i and the c
(i)
m,n(e) represents

the extrinsic messages sent on edge e from a CNU cm to a VNU vn at iteration i.

The received word from the channel at a VNU vn is denoted as rn. We express the

operation of VNU and CNU using Equations 2.1.1 and 2.1.2 respectively.

v(i)n,m(e) =


1, if rn + (

∑
e′∈N (vn)\e c

(i)
m,n(e′)) > bn

0, if rn + (
∑

e′∈N (vn)\e c
(i)
m,n(e′)) < bn

rn, otherwise

(2.1.1)
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where i is the iteration count, e′ is the set of extrinsic edges, and bn is the threshold

calculated as bn = dv/2.

c(i)m,n(e) = (
∑

e′∈N (cm)\e

v(i)n,m(e′))mod2 (2.1.2)

At each iteration, a new value of posteriori decision d
(i)
n,m is computed as follows

d(i)n,m =


1, if rn + (

∑
e∈N (vn)

c
(i)
m,n(e)) > bn

0, if rn + (
∑

e∈N (vn)
c
(i)
m,n(e)) < bn

rn, otherwise

(2.1.3)

The GaB decoding process is shown in Algorithm 1. This iterative decoding pro-

cess begins with sending the received message bit from each VNU to its CNUs defined

by the H matrix. In a series of iterations CNUs and VNUs exchange information till

a satisfaction criteria is met, which indicates successful recovery of the original data

transmitted over a channel, which may have been exposed to errors due to noise.

The CNU and VNU functions, satisfaction criteria, and connection topology among

CNUs and VNUs determine nature of the LDPC algorithm. The VNU for GaB can

be implemented using Majority gates (based on and and or logic functions only),

and does not require complex operations such as the maximum finder required by the

GDBF and PGDBF, along with the additional random number generator required by

the PGDBF, which will be described in the following subsection.

2.1.2 GDBF and PGDBF Analysis

The Gradient Descent formulation of Bit Flipping (BF) algorithm for the Binary

Symmetric Channel (BSC) [31] sets a threshold for each VNU unit to determine

whether the output of the VNU should be flipped or not based on an energy objective

function. Energy objective is an integer value that varies between 0 and dv + 1

and results with fewer number of flips in the successive iterations of the decoding
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Algorithm 1 Gallager B

Initialization i = 0, v
(0)
n,m(e)e∈N (vn) ← rn, n = 1, . . . , N .

d
(0)
n,m ← rn, n = 1, . . . , N .
s = Hv(0)T mod 2
while s 6= 0 and i ≤ imax do

for n = 1, . . . , N do
Compute

c
(i+1)
m,n (e)e∈N (cm) using Equation 2.1.3

v
(i+1)
n,m (e)e∈N (vn) using Equation 2.1.1

d
(i+1)
n,m using Equation 2.1.2

end for
s = Hv(i+1)T mod 2
i = i+ 1

end while
Output: v(i)

process. Due to the integer representation of energy function, several VNUs may share

the same maximum of energy value resulting with several bits to be flipped in one

iteration. This may induce a negative impact on the convergence of the algorithm [32].

The Probabilistic GDBF (PGDBF) has been proposed to flip the outputs of only a

random number of those VNUs with the maximum energy value. Energy calculations

for the GDBF and PGDBF are governed by expressions similar to Equations 2.1.1

and 2.1.2 [31], but they involve finding the maximum value across all VNUs in each

iteration of the decoding process as illustrated in Figure 2.2. This gradient descent

algorithm used in the PGDBF increases hardware complexity of PGDBF. On the

other hand, the VNU for GaB can be implemented using majority logic and xor

gates and does not require complex operations. Later in section 4.1.2, we will show

that the maximum energy computation is the main bottleneck on the throughput

performance of GDBF and PGDBF implementations.

In Figure 2.3, the evolution of hard decision LDPC decoding algorithms is pre-

sented in term of error correction performance. Figure 2.3 shows the FER perfor-

mance of three decoding algorithms, GaB, GDBF, and PGDBF, based on simulations
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Figure 2.2. General architecture of VNUs for (a) GaB, (b) PGaB, (c) GDBF, and
(d) PGDBF for dv = 4 and N = 1296. (e) Maximum finder unit for GDBF and
PGDBF decoders.

conducted for codeword length N of 1296 bits. In this figure, we show FER curve of

the MinSum (MS) and Offset MinSum (OMS) [27] based decoder even though they

are different class of decoder algorithm, where CNUs and VNUs exchange messages

of multi-bit granularity, as opposed to the bit flip class of algorithms with single-bit

granularity that are considered in this dissertation. We include the MS and OMS

in the figure to set the stage on where the hard-decision (bit flip) based algorithms

stand with respect to this best performing soft-decision decoder. As shown from

the Figure 2.3, GaB is the worst performing among the four algorithms. Based on

the scale and nature of the arithmetic operations involved during each iteration of

the decoding process, GaB method is the most hardware friendly among the three

algorithms, requiring combinational circuits at the scale of only 2-bit multiplication

operations. Given the codeword length is N, the GDBF design requires N number of

3-bit maximum finder components, which returns the maximum of all. Additionally,

the PGDBF design incorporates a 32-bit LFSR-based (Linear Feedback Shift Regis-

ter) random number generator. We observe that as the complexity of the computa-

tion units increases, the performance of the decoding algorithm improves significantly

compared to GaB. Unlike other methods, hardware realization of GaB has not been
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Figure 2.3. The evolution of decoding algorithms in term of error correction perfor-
mance. GaB, GDBF, PGDBF, MS, and OMS FER comparison: FER vs. probability
of error introduced to each bit of the 1296-bit codeword with dv = 4, dc = 8, M = 648,
and Code Rate = 0.5.

desirable due to its poor decoding performance, and its application is limited to en-

vironments that require fast execution. Given that GaB offers speed advantage over

the other methods, in this dissertation our aim is to answer the question of whether

it is feasible or not to bridge the gap between GaB and better performing algorithms

without sacrificing its throughput performance.
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Chapter 3

Probabilistic GaB Algorithm

In this chapter, we introduce a Probabilistic GaB (PGaB) algorithm by applying a

probabilistic stimulation function over the iterative decoding process. We present

the details of our incremental approach to designing and implementing the PGaB

hardware architecture.

In order to improve the GaB decoding performance, we first analytically study

the cases for which a message bit received from the channel becomes the determining

factor in GaB for a decision made during the iterative decoding process. We then

introduce an algorithm that disturbs those decisions with a predefined probability,

which we refer to as pv. We experimentally identify the pv that results with preferable

decoder performance.

In order to reduce the hardware cost and improve the throughput of the imple-

mentation, we first show that, rather than using a complex and hardware demanding

random number generator, using a less sophisticated random number generator based

on the linear feedback shift register (LFSR), which requires fewer hardware resources,

is sufficient to improve the decoding performance. We then propose a heuristic that

allows switching to PGaB only when GaB is not able to correct the errors in prede-

termined number of iterations. We investigate the impact of switching from GaB to

PGaB at a specific iteration, which we refer to as si. We experimentally identify the

si that results with preferable decoder performance, and show that when si is set to

fifteen, we also drastically reduce the average iteration count by up to 62% compared

to GaB.
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3.1 Probabilistic GaB Algorithm Methodology

During the decoding process, the interactions between CNUs and VNUs may result

in an oscillation phenomena due to the nth order dependencies between CNUs and

VNUs. In such cases, the decoding process may get trapped in a cyclic behavior. For

example, in the Tanner graph [43] given in Figure 2.1, c0 transmits message to v1 and

v3. After receiving their inputs from all CNUs, v1 and v3 send their messages back to

their designated CNUs. In this example, there is a third order dependency between

c0 and v0 based on the message passing in the order of (v0−c0−v5−c4−v3−c3−v2).

If we count each CNU-VNU interaction as one iteration, then it would take three

iterations for the message of c0 to propagate to v0. Similarly, there is also a second

order dependency in the order of (c0 − v1 − c1 − v0). During each iteration, CNUs

and VNUs update their states. The sequence of states observed for a given VNU may

show repeating pattern, which is called a trapping set [44]. Trapping means that the

decoder cannot correct the error, and then it remains in the cyclic sequences of states.

One way to break this cyclic behavior is to disturb the VNU when such a pattern is

detected. One may introduce large memory to keep track of the states, but that would

not be hardware friendly, since the trapping set size is unknown and there can be many

thousands of different trapping sets. Therefore, we randomly disturb the state of each

VNU to be able to escape from the trapping set. Of course, one may question that such

disturbance could adversely affect the normal behavior of the VNU, but theoretical

results indicate that this side effect does not significantly increase the number of

iterations [45], [46], [47]. If the GaB decoder does not converge within user-defined

number of (k) iterations, then we apply this probabilistic strategy (Probabilistic GaB)

to escape from trapping set. We modify Equation 2.1.1 by introducing a probability

function p
(i)
n as shown in Equation 3.1.1. The PGaB flow is shown in Algorithm 2.
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v(i)n,m(e) =


1, if p

(i)
n ⊕ rn + (

∑
e′∈N (vn)\e c

(i)
m,n(e′)) > bn

0, if p
(i)
n ⊕ rn + (

∑
e′∈N (vn)\e c

(i)
m,n(e′)) < bn

rn, otherwise

(3.1.1)

Algorithm 2 Probabilistic Gallager B

Initialization i = 0, v
(0)
n,m(e)e∈N (vn) ← rn, n = 1, . . . , N .

d
(0)
n,m ← rn, n = 1, . . . , N .
s = Hv(0)T mod 2
while s 6= 0 and i ≤ imax do

Generate p
(i)
n , n = 1, . . . , N , from B(pv).

for n = 1, . . . , N do
Compute

c
(i+1)
m,n (e)e∈N (cm) using Equation 2.1.3

v
(i+1)
n,m (e)e∈N (vn) using Equation 3.1.1

d
(i+1)
n,m using Equation 2.1.2

end for
s = Hv(i+1)T mod 2
i = i+ 1

end while
Output: v(i)

3.1.1 Determining How to Disturb the VNU

The truth table shown in Table 3.1 captures how we propose to modify the VNU

function with an example on calculating only one of the output messages (v
(i)
n,m(4)). In

this example we assume that the dv is four where each VNU has five inputs including

the received word (rn) and four CNU messages (c
(i)
m,n(1, 2, 3, 4)). Since in this example

we are calculating the message for the fourth output of the VNU, message (c
(i)
m,n(4))

received from CNU is not used in the calculation.
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Table 3.1. Truth Table for PGaB Algorithm

Inputs for VNU GaB PGaB

rn c
(i)
m,n(1) c

(i)
m,n(2) c

(i)
m,n(3) v

(i)
n,m(4) v

(i)
n,m(4)

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 1

1 1 0 0 1 0

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1

In GaB algorithm, v
(i)
n,m(e) is calculated by Equation 2.1.1 and is illustrated in

Table 3.1. CNU messages (c
(i)
m,n(1, 2, 3)) represent whether the previous decision of

VNU is correct or not. We take a close look at the GaB VNU logic for the cases

where there is a tie over the three inputs (c
(i)
m,n(1), c

(i)
m,n(2), c

(i)
m,n(3)) and the received

message (rn). In such cases, shown with rows in bold in Table 3.1, the VNU output

is determined by the rn input. We argue that when the decoder is stuck in the

trapping set, we should not use the rn as a determining factor. Looking closely,

when we express v
(i)
n,m(4) for the PGaB (column 5) of Table 1, we see that function

is equivalent to c
(i)
m,n(2).c

(i)
m,n(3) + c

(i)
m,n(1).c

(i)
m,n(3) + c

(i)
m,n(1).c

(i)
m,n(2), and shows that we
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ignore the received message for all input scenarios. If we ignore the received messages

completely, decoder will fail. If we force all VNUs to rely on the received messages

from the channel for the tie cases, then for the trapping set cases the decoder may

not converge. The decoder cannot ignore the received messages, however during the

decoding we do not know which VNU is in the trapping set. For this we introduce

a mechanism that selects a predefined percentage of VNUs to ignore the received

message and operate as the PGaB column of Table 3.1. We refer to predefined

percentage of VNUs as the pv term in our implementation. The subset of VNUs

that ignore the received message is randomly chosen based on the pv value. In the

following section we present our experimental approach for determining the value

of pv. The probability function can be applied to the decoder in various positions.

For example, in the PGDBF decoder [48], [49] the probabilistic function is applied

randomly during the final output decision of a VNU to decide whether to flip the

channel value or not. In the Noisy GaB [50], the randomness effect acts arbitrarily

on both messages exchanged mutually between VNU and CNU. The main objective

of these these studies is to distract the decoder by adding noise. Our approach

to utilization of randomness is different from these studies as we attempt to use

randomness in a more deterministic way. Rather than disturbing the outcome of

decisions made during each iteration, we incorporate randomness directly into the

message computation only for the cases when a tie occurs among the received messages

of a VNU. Our Monte-Carlo simulations show better decoding performance, for the

studied LDPC codes, when we introduce randomness as a tie-breaker for the VNU

function when computing only messages sent from VNU to CNU. In the following

subsection we present our approach for determining the pv value.
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3.1.2 Determining the pv Value

Before proceeding to the hardware implementation, we need to determine Bernoulli

distribution pv, which represents the probability of p
(i)
n taking the value of 1 ( P (p

(i)
n =

1) ). This will indicate the proportion of VNUs that will be disturbed in the hardware

architecture. In this case, setting pv to 0 would mean no disturbance for all VNUs.

We conduct experiments, as shown in Figure 3.1, for four values of channel crossover

probability α (0.025, 0.02, 0.03, and 0.035) by sweeping the pv between 0 and 1. We

choose four α values in order to check the consistency on the FER performance. In

the figure, x-axis shows the range of pv being 1 and y-axis shows the frame error rate

for the LDPC codeword length of 1296 with degrees of VNU and CNU set to 4 and 8

respectively. As shown in Figure 3.1, for the case of alpha 0.02, the simulation point

labeled with A indicates no stochastic behavior (GaB) where pv is 0 and the point

labeled with B shows the case where all VNUs operate as PGaB where pv is 1.

Based on the plots in Figure 3.1, we conclude that disturbing all VNUs results

with an improvement over the GaB (point B). We observe two trends in the figure

that reveal important insights for determining the pv. As the pv value reduces to

0.4, the FER is almost insensitive to this change for both α values. We also observe

a flood region between 0.1 and 0.2 where FER performance is the best for both

α values. Based on this observation we set the pv value to 0.2 for the hardware

implementation. This leads us to selecting a random number generator (RNG) for

generating the pv with Bernoulli distribution. Random number generators have been

studied in terms of their quality and complexity in the literature extensively [51]. For

example, the Park-Miller [52] algorithm is one of the high quality random number

generators that relies on linear congruential method, which would require complex

hardware components. Therefore this type of RNG even though generates strong

random numbers is not hardware friendly. Our design choice favors simplicity with

the objective of a light-weight decoder architecture in terms of its hardware resource
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Figure 3.1. Frame Error Rate versus pv (α = 0.02, 0.025, 0.03, and 0.035). LDPC
code (dv = 4, dc = 8, Z = 54), (N = 1296,M = 648) when switching iteration si is
set to 15.

requirement. We argue that, in our case there is no need for a sophisticated RNG

in the hardware implementation that gives precise distribution for a given pv. This

is because, for all cases where pv is set to a non-zero value, we observe improvement

over the GaB and the preferable performance occurs in a window ranging between 0.1

and 0.2. We use this conclusion as basis for choosing a simpler and hardware friendly

linear feedback shift register (LFSR) based RNG.

3.1.3 Determining the si Value

In section 3.1.1 we discussed the way we introduce probabilistic behavior to GaB

to overcome trapping sets. Based on our simulations, we observe that GaB when

successfully decodes a code, typically resolves the errors in less than ten iterations.

Therefore we believe that a hybrid implementation that switches to PGaB only when

GaB is not able to correct the errors in predetermined number of iterations would
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Figure 3.2. Frame Error Rate and Average iteration versus iteration number to
switch from GaB to PGaB (QC-LDPC codes with (N , dv, dc, R) configurations of
(155, 3, 5, 0.5), (1296, 3, 6, 0.5) and (1296, 4, 8, 0.5)).

be a better approach than executing only PGaB in terms of FER performance. We

conduct two experiments to validate our claim.

In the first experiment, we evaluate the impact of switching from GaB to PGaB

after a specific number of iterations ( si) for three regular LDPC codes with (N , dv,

dc, R) configurations of (155, 3, 5, 0.5), (1296, 3, 6, 0.5) and (1296, 4, 8, 0.5). We vary

the switching point from 5 to 50 and show the FER performance for different α values

for each code shown in Figure 3.2. In the same plot we also plot the average number

of iterations for three α values. For all experiments, we set the maximum number of

iterations to 300. We evaluate the impact of change in codeword length on switching

iteration using codeword length of 155 and 1296; and the impact of change in VNU

and CNU degree using codes with connection degree dv set to 3 and 4, and dc set to 5,

6, and 8. All of these experiments indicate that setting the switching point between

15 and 20 iterations would be preferable for achieving better FER performance. Since
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Figure 3.3. Comparison of average number of iterations for PGaB, GaB, PGaB
Hybrid (GaB for the first 15 iterations, and PGaB onwards) (dv = 4, dc = 8, N =
1296,M = 648).

the average number of iterations for three α values show an increasing trend as the

switching point moves from 5 to 50, we conclude that 15 is the ideal point to make

the switching from GaB to PGaB. A side benefit of switching after 15 iterations is

the reduced power consumption since we dont use PGaB for all iterations and in

hardware implementation we turn on the the RNG unit only after iteration count 15

has been reached.

In the second experiment, we set the switching point to 15 and pv value to 0.2,

and evaluate the impact of disturbing VNUs on average number of iterations. In Fig-

ure 3.3, we compare average number of iterations for the baseline GaB, the PGaB,

and the hybrid implementation that relies on the execution of GaB for the first 15 it-

erations of the decoding process and PGaB afterwards. In the figure, x-axis shows the

α range and y-axis shows the average number of iterations for three simulations. Fig-

ure shows that when we start using the PGaB after 15 iterations, the average number
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of iterations is always better than the deterministic GaB. We reduce the average iter-

ation count by 40%, 56%, 62%, 54%, and 26% compared to the GaB for the α values

studied in this experiment respectively. The PGaB only approach consistently results

with larger number of iterations compared to the GaB only method. Disturbing the

decoder starting with the first iteration results with adding more noise and therefore

leads to increase in the average number of iterations. The hybrid PGaB on the other

hand reduces the average number of iterations consistently with respect to the GaB

only method. We believe that disturbing the GaB decoder after 15 iterations helps

resolve some of the trapping set cases as shown theoretically by Ivanis and Vasic [50],

which contribute to the increase in average number of iterations for the GaB only

method. Reducing the maximum iteration count has also direct impact on the power

consumed by the decoder. By reducing average iteration number, we also increase

the throughput of the decoder. PGaB spends fewer iterations in average compared

to the GaB to correct the errors.

In the following chapter we will present our hardware results and decoding perfor-

mance based on the hybrid PGaB implementation where we set pv value to 0.2 and

the si to 15. For the remainder of the this dissertation we refer to the hybrid PGaB

as the PGaB. We will compare the decoding performance of the PGaB with GaB,

GDBF, PGDBF, and MinSum based on the FER performance for each code studied

in this dissertation. We will show that the PGaB results with up to four orders of

magnitude decoding performance improvement over the GaB.
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Chapter 4

Hardware Design of LDPC Decoders

In this chapter, we present the details of hardware implementations for GaB, PGaB,

GDBF, and PGDBF LDPC decoders. We show that GaB architecture delivers the

best throughput while using fewest FPGA resources, however performs the worst in

terms of decoding performance. We compare the decoding performance of the PGaB

with GaB, GDBF, and PGDBF based on the FER performance. We show that the

PGaB results with up to four orders of magnitude decoding performance improvement

over the GaB, exceeding the performance of GDBF over the codes studied in this dis-

sertation, with a negligible loss (less than 1%) in throughput performance compared

to the GaB. We conclude that the PGaB is able to bridge the gap between GaB

and complex decoding algorithms such as GDBF and PGDBF without sacrificing the

throughput advantage of the GaB by consistently exceeding FER performance of the

GDBF.

4.1 Hardware Design

4.1.1 GaB and PGaB Hardware Design

We first show the generic architecture for GaB and PGaB with VNUs, CNUs and the

H matrix based on a regular QC-LDPC code for codeword length (N) in Figure 4.1(a).

The Compute Syndrome unit in the figure checks whether all of the CNUs are satisfied

or not.

We show the details of the VNU architecture for dv equals to 4 in Figure 4.1(c).

The colored arrows along with the and and xor gates in the VNU architecture are

used by the PGaB implementation. When dv is set to 4, besides the control input
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Figure 4.1. Overall decoder architecture (a) for PGaB, VNU architecture for dv4
(c) and LFSR-32bits based Random Number Generator (b).

(ctrl), there are six 1-bit inputs for each VNU. The first two inputs from top to

bottom are 1-bit data received from the channel (rn) and 1-bit random value (P
(i)
n )

generated by the LFSR based RNG. Remaining four inputs (c
(i)
m,n(1), c

(i)
m,n(2), c

(i)
m,n(3),

c
(i)
m,n(4)) are the 1-bit messages received from CNUs (as dv = 4). There are four

4-input majority voter units (labeled as 1-4) and one 5-input majority voter unit

(labeled as 0). The majority voter generates a 2-bit output representing majority of

1s, majority of 0s, or tie cases. The select unit acts as a selection of the majority

output, which generates 1 for the majority of 1s case, and 0 for the majority of 0s

case. In the case of a tie, the select unit passes the received word to its output. In

this generic architecture, if the dv changes than the number of Majority Voters and

the number of inputs need to be adjusted properly. For example, when dv is set to

three, the input (c
(i)
m,n(4)), output (v

(i)
n,m(4)), and components (Majority Voter 4 and

Select for v
(i)
n,m(4) output) marked with dotted lines are excluded from the VNU. We

implement a regular majority voter based on Table I. We do not show the details of

the Majority Voter architecture, since it is straightforward to implement. The VNU
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operation is modified with the red marked lines and glue logic to adopt its function to

PGaB. The control bit (ctrl) sets the first input of the xor gate to 0 if the algorithm

is GaB, in which the xor gate passes the rn input to its output, otherwise the output

becomes a function of rn and the P
(i)
n for implementing the PGaB. A state machine

controls switching between GaB and PGaB. After iteration number 15, if the decoder

does not converge, the control bit (ctrl) is set to 1 by the state machine to switch

to PGaB. The controller allows us to use VNU architecture of GaB to implement

PGaB. Based on our conclusion about the RNG type to utilize in Section III.B, we

implement a regular LFSR based RNG, shown in Figure 4.1(b) to feed a 1-bit random

value to each VNU. We implement 32-bit LFSR to generate a 32-bit random number.

The 32 bits Logic Comparator compares 32-bit random number with the user defined

Threshold value determined in Section 3.1.2. Finally, the output of the comparator,

a one bit random number, is stored in the shift register. If the codeword length is N,

then the RNG will take N number of cycles to generate the bits needed by all the

VNUs. This N cycle overhead is applied only once during the first iteration of the

decoding. During the subsequent iterations between the CNUs and VNUs, we simply

generate one bit and use a shift register of size N to distribute the values to each

VNU.

We do not show the details of the CNU architecture, since it is straightforward

to implement. When dc is set to 8, inputs are eight bit messages v
(i)
n,m(e), and eight

bit decision information (d
(i)
n,m) received from the VNUs. The outputs of a CNU are

an eight bit message (c
(i)
m,n(e)) and one bit decision information (d

(i)
m,s). The d

(i)
m,s is

the output of the xor operation on the 8-bit input d
(i)
n,m. Decision information is

sent to the ComputeSyndrome unit to decide whether the decoder has converged or

not. Message calculation is different than decision information calculation as it is

executed in an extrinsic manner. The c
(i)
m,n(e) is calculated by Equation 2.1.2. For

instance, c
(i)
m,n(1) is determined by calculating the xor of messages v

(i)
n,m(2),..,v

(i)
n,m(8)

and excludes the v
(i)
n,m(1). In summary, the CNU implementation requires one 8-bit
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xor gate and eight 7-bit xor gates.

4.1.2 GDBF and PGDBF Hardware Design

In order to present a comprehensive analysis on the decoding and hardware per-

formance of PGaB, we implement two hard-decision based algorithms (GDBF and

PGDBF). In this section, we present hardware implementations for these two algo-

rithms. High level architectures for the GDBF and PGDBF decoders are shown in

Figure 4.2 for a QC-LDPC code with codeword length of 1296 bits (dv = 4 , dc = 8).

The only difference between GDBF and PGDBF architectures is the binary RNG

indicated with the dotted lines in Figure 4.2. The RNG generates 1296 binary 1-bit
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Table 4.1. Hardware Resource Utilization, Throughput and Clock Rate of Decoding
Algorithms Implemented for Tanner Code on Virtex6 FPGA

Algorithm
1-bit

register

Slice

LUTs

Fmax

(MHz)

Throughput

(Mbps)

GDBF* [48] 946 2151 132.7 4114.3

PGDBF* [48] 9161 3545 135.6 4202.5

MinSum [48] 13694 15350 237.2 197.5

GDBF 502 1630 137.5 4263.4

PGDBF 687 1802 138.2 4285.8

random numbers (P
(i)
n ) to distribute to each VNU. Detailed architecture for the VNU

is shown in Figure 4.3. The 1-bit received message (rn) from the channel, the 1-bit

decision estimations from the four CNUs (dm,n(e)), and the 3-bit maximum energy

value for the current iteration (MaxEn) are common inputs for the VNU in GDBF

and PGDBF. The summation operation in the VNU calculates the output energy

value (En), which can be between zero and five. Therefore bit-width for the En and

MaxEn are set to three bits. The Maximum Finder unit shown in Figure 4.2 com-

putes the maximum of the En values received from each VNU in the current iteration

i labeled as MaxEn in the figure. Each VNU uses the MaxEn and En to generate a

1-bit decision value (dn). In the same iteration, if the En of a VNU is equal to the

MaxEn, then the output message dn is flipped. If the En is less than the MaxEn,

then the dn is not flipped. Additionally, for the PGDBF, a VNU receives a 1-bit

random value generated by the LFSR based RNG (P
(i)
n ). The dn is a new message

for all CNUs connected to the VNU. This iterative process continues till all CNUs

are satisfied. A 1-bit message is sent by CNU to Compute Syndrome unit indicating

whether a CNU it is satisfied or not. A state machine controls the Compute Syndrome

unit to make a decision on whether the decoder has converged or not.

The hardware implementations for the GDBF and PGDBF have been studied
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Algorithm 3 Simulation flow for generating FER plots

Input : Decoding Algorithm (GaB, PGaB, GDBF, PGDBF), Codeword
length of 1296 (code rate 0.5 and 0.75) and Codeword length of
2212 (code rate 0.857) and Crossover Probability (α)

Output : FER plot of each algorithm over α
1 foreach Decoding Algorithm do
2 foreach Code do

FrameCounter = 0;
3 foreach α do

# α ∈ [0.001, 0.07] for N = 1296, rate 0.5
# α ∈ [0.02, 0.03] for N = 1296, rate 0.75
# α ∈ [0.005, 0.6] for N = 2212, rate 0.857
ErrorCount = 0;

4 while (ErrorCount < 100) do
Generate a random codeword (Frame);
FrameCounter = FrameCounter + 1;
Add noise to Frame using α;
V alue = Decoding Algorithm();
# V alue from Compute Syndrome
if (V alue == 0) then
ErrorCount = ErrorCount + 1;

end
if ErrorCount == 100 then

FER = 100/FrameCounter;

end

end
Mark FER for α on FER plot;

end

end

end
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based on the Tanner code (N = 155,M = 93 , dv = 3 , dc = 5) in [48]. We first

implement these two algorithms based on the same code and compare their hardware

resource usage and throughput performance with the published results (indicated as

* in the table) on the Xilinx Virtex6 FPGA using Table 4.1. With this compari-

son, our aim is to show that our implementations form a credible baseline for our

extensive performance evaluations in the following section across GaB, PGaB, GDBF

and PGDBF over various code lengths and code rates. We include MinSum in the

table just to highlight the hardware efficiency of the hard-decision based algorithms

with respect to this best performing soft-decision decoder. As shown in the table, we

reduce the 1-bit register usage significantly by 92% compared to the PGDBF*. We

also reduce the Slice LUT usage by 24% and 49% with our implementations of the

GDBF and PGDBF respectively. The study by Le et. al. [48] reveals limited amount

of information about the hardware implementation approach for the GDBF* and

PGDBF*. We believe that there are two factors contributing to significant reduction

on resource usage for our implementations. First, our CNU implementation does not

require any register, as we implement it as a combinatorial logic and each CNU sends

its output message dm,n(e) back to the VNU without having to store it. Secondly,

we take advantage of a resource efficient implementation of maximum finder logic as

shown by [53] based on parallel tree structure for calculating the MaxEn. Earlier we

claimed that maximum finder unit was a critical factor on throughput performance of

the GDBF. When we replaced the ”Maximum Finder” logic with a hard coded max-

imum value in our version of the GDBF implementation, we observed a reduction in

logic block resource usage by 14.7% and an increase in the maximum clock rate by

a factor of 2.99x for this hypothetical implementation. Nevertheless, with our imple-

mentation by reducing the resource usage for GDBF and PGDBF significantly with

a slight improvement in the maximum clock rate, we are setting a tighter constraint

on measuring the hardware performance in terms of resource usage and throughput

for the PGaB implementation.
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4.2 Simulation Environment

Our simulation environment includes the GaB, PGaB, GDBF, and PGDBF imple-

mentations in C programming language. The simulation flow is shown in Algorithm

3. We evaluate the impact of change in code rate on performance using codeword

length of 1296 [54] with rates of 0.5 and 0.75; and the impact of change in codeword

length using codeword length of 2212 [55]. For all algorithms, the dv is equal to

4. For the FER analysis we include the FER performance of the flooding schedul-

ing MinSum (MS) [26] and Offset MinSum (OMS) based decoders even though they

belong to a different class of decoder algorithm, where CNUs and VNUs exchange

messages of multi-bit granularity, as opposed to the bit flip class of algorithms with

single-bit granularity that are considered in this dissertation. We include MS and

OMS just to set the stage on where the hard-decision (bit flipping) based algorithms

stand with respect to these best performing soft decision decoders. The MS and

OMS used in this work are the quantized decoders with 4 bits for passed messages

and 6 bits for A posteriori Log Likelihood Ratios (AP-LLR). We set the number of

iterations to 20, the channel gain factor to 2, and the offset factor to 1 for OMS. We

design and implement each decoder for each code (total of 12 architectures) on the

Xilinx Virtex-6 FPGA (vc6vlx240t-2ff1156) and conduct post placement and rout-

ing analysis over hardware cost in terms of logic and register usage, and hardware

performance in terms of maximum clock rate, and throughput. For each algorithm,

FER curves are plotted as a function of the cross-over probability (α) over the BSC

channel based on the simulation flow shown in Algorithm 3. Similar to other studies

([26], [48]), we calculate the system throughput using Equation 4.2.1. All designs

have been implemented in VHDL. Functional verification is conducted by validating

iteration by iteration post-routing CNU and VNU values against the C equivalent

bit accurate implementation. We implemented the PGaB hardware architecture after

completing a preliminary analysis and confirming the decoding performance of the
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Figure 4.4. GaB, PGaB, GDBF, PGDBF, MS, OMS FER comparison: FER vs.
probability of error introduced to each bit of the 1296-bit codeword with dv = 4, dc =
8, M = 648, and Code Rate = 0.5.

PGaB based on the FER plots generated using the C simulation. We measured the

total simulation time for PGaB on codeword length of 1296 (code rate 0.5) as 116

days on the Intel Xeon (2.33GHz, 8GB RAM) processor. The same simulation takes

slightly over 5 minutes on our FPGA based testbed. Therefore, for certain cross-over

probability values, since the simulation times for the C code are extremely long, we

used the FPGA based simulations to generate the points on the FER plots. For ex-

ample, in the case of cross-over probability value of 0.01, we reached up to processing

1010 codewords with PGaB to generate the point that represents the 10−8 frame error

rate.

SystemThroughput =
CodeLength×MaxClockRate

AvgIteration×CyclesPerIteration (4.2.1)
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Figure 4.5. GaB, PGaB, GDBF, PGDBF, MS, OMS FER comparison: FER vs.
probability of error introduced to each bit of the 1296-bit codeword with dv = 4, dc =
16, M = 324, and Code Rate = 0.75.

4.3 Performance Analysis

Figure 4.4 shows the FER performance comparison between the GaB, PGaB, GDBF

and PGDBF algorithms as a function of the cross-over probability over the binary

symmetric channel (BSC) on LDPC code with the rate 0.5. This chart shows that,

with the probabilistic execution, we are able to bridge the gap between the GaB

and the better performing decoding algorithms through PGaB. Another remarkable

conclusion is our ability to perform better than the GDBF with the PGaB. The

gap between PGaB and GaB in the error floor region where α is 0.01 quantifies

the dramatic improvement (up to four orders of magnitude) achieved by disturbing

randomly the state of the decoder.

In Table 4.2, we present the resource usage, maximum clock rate, and throughput
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Table 4.2. Resource usage of GaB, PGaB, GDBF, and PGDBF based on
the FPGA implementations for QC-LDPC (N, dv, R)=(1296, 4, 0.5), QC-LDPC
(N, dv, R)=(1296, 4, 0.75), and QC-LDPC (N, dv, R)=(2212, 4, 0.857). (% indicates
the difference with respect to GaB)

1-bit Register Slice LUTs

Codeword R=0.50 R=0.75 R=0.857 R=0.50 R=0.75 R=0.857

GaB 7812 4596 13308 11784 6097 23292

PGaB 9141 5601 15552 14605 (24%) 7133 (17%) 28895 (24%)

GDBF 3923 3923 6871 14822 (26%) 12024 (97%) 25037 (7%)

PGDBF 5251 5251 8915 16091 (37%) 15224 (150%) 29613 (27%)

Table 4.3. Maximum clock rate and throughput of GaB, PGaB, GDBF, and
PGDBF based on the FPGA implementations for QC-LDPC (N, dv, R)=(1296, 4,
0.5), QC-LDPC (N, dv, R)=(1296, 4, 0.75), and QC-LDPC (N, dv, R)=(2212, 4,
0.857). (% indicates the difference with respect to GaB)

FMax (MHz) Throughput (Gbps)

Codeword R=0.50 R=0.75 R=0.857 R=0.50 R=0.75 R=0.857

GaB 147 114 59 38224 29575 26410

PGaB 146 (-0.8%) 113 (0%) 59 (0%) 37900 (-1%) 29471 (0%) 26281 (0%)

GDBF 44 (-70%) 43 (-62%) 32 (-46%) 11423 (-70%) 11270 (-62%) 14322 (-46%)

PGDBF 45 (-70%) 41 (-62%) 32 (-46%) 11583 (-70%) 10765 (-64%) 14348 (-46%)
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Figure 4.6. GaB, PGaB, GDBF, PGDBF, MS, and OMS: FER vs. crossover
probability for the QC-LDPC code with (dv = 4, dc = 28, N = 2212,M = 312, and
Code Rate = 0.857).

for the GaB and PGaB based on their FPGA implementations with 0.5 code rate.

The percentage sign (%) in Table 4.2 and Table 4.3 indicates the change in resource

usage, FMax, and Throughput for PGaB, GDBF, and PGDBF with respect to the

GaB implementation. It takes 2 clock cycles to complete one iteration of the de-

coder, one cycle for VNU and one cycle for CNU. Average number of iterations and

throughput of the decoder vary at different FERs. Throughput values in Table 4.3 are

calculated based on the average number of iterations set to 2.5. With the probabilistic

execution, the improvement in the error floor over the GaB comes with a negligible

amount (0.85%) of loss in throughput performance. Even though modification to

GaB involved including a RNG and an additional input to each VNU, the clock rate

difference between the two designs is negligible. However, the decoding performance

improvement is achieved with an increase on register and slice LUT usage by 17%

and 24% respectively. Register overhead of the PGaB implementation includes the
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1296 bits to store the 1-bit random number for each VNU and the 32-bit shift reg-

ister to implement the random number generator. The increase in resource usage is

a reasonable tradeoff for improving the decoding performance. The maximum clock

rate for the PGaB is 3.3 times better than GDBF and PGDBF for this code rate.

Since our optimized versions of the GDBF and PGDBF implementations do not use

registers for the CNUs, PGaB has larger register foot print. However, the slice LUT

(logic block) usage is comparable with PGDBF.

4.4 Robustness Analysis

In the following series of experiments we evaluate the impact of changes in code

rate and codeword length on decoding performance and hardware cost over the four

algorithms, and demonstrate that PGaB consistently outperforms the GDBF and

PGDBF in terms of throughput. Code rate indicates the ratio of data to the length

of the codeword that includes the data and parity bits. The higher the code rate,

the higher the probability of noise over the communication medium effecting the data

portion of the codeword. This increases the stress on the decoding algorithm on

correcting errors. As the bandwidth for communications systems increase, the packet

lengths (codewords) become longer. Therefore ability to process longer codewords

encoded with higher code rates are important criteria for evaluating the efficiency

of a decoding algorithm. Furthermore, a change in code rate or codeword length

involves modification to the decoder hardware architecture and imposes routability

and critical path delay constraints from FPGA implementation point of view. In this

section, we summarize the hardware modifications, present performance analysis, and

correlate resource requirement and throughput trends with respect to changes in code

rate and codeword length.
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4.4.1 Effect of Code Rate

In this experiment, we change the code rate from 0.5 to 0.75 when the codeword length

remains as 1296 bits and the degree of a VNU is four. From hardware implementation

perspective, the number of VNUs depend on the codeword length, whereas the number

of CNUs and the number of connections per CNU (degree of CNU) depend on the code

rate. With fewer number of CNUs, the number of connections per CNU increases.

As the code rate increases from 0.5 to 0.75, based on Table 4.2, we observe that the

register and Slice LUT resources are reduced by 39% and 51% respectively for the

PGaB. Similar hardware resource usage trend can be noticed for the GaB. Cost of

a single CNU implementation increases with 8 additional inputs to the summation

operation (xor in Equation 2.1.2) since the degree of a CNU increases from 8 to 16.

However, increasing the code rate to 0.75 reduces the number of CNUs from 648 to

324. Since the VNU operations are at and and or logic gate levels, the increase in CNU

complexity is compensated by the reduction in the CNU count, which is the primary

reason for reduction in the total logic block usage. Interestingly, the maximum clock

rate for the new PGaB design is 113 MHz, which is 22% slower. We believe that the

degree of the CNU is the primary reason for this performance loss. Placement and

routing attempt to reduce the total wire length for a design by positioning the logic

blocks closer and utilizing the flexibility of connection boxes and switch boxes on the

FPGA to establish short paths for each net. Code rate of 0.75 results with a design

that doubles the number of connections for each CNU. This in turn creates additional

stress on routability, and the shorter wire segments available for the code rate of 0.5

are no longer available for the code rate of 0.75 due to congestion in regions that are

densely populated with logic blocks. Therefore, nets take longer paths for routability

and the critical path delay increases due to congestion.

Figure 4.7(a) and Figure 4.7(b) show the layouts obtained for PGaB over the two

code rates. The area expansion of the design for code rate of 0.75 is due to the router
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(a) Code rate 0.5 (b) Code rate 0.75

Figure 4.7. Post-routing layout for the PGaB designs with two code rates. a) PGaB
decoder on the QC-LDPC code with (dv = 4, dc = 8, N = 1296, M = 648, and Rate
= 0.5). b) PGaB decoder on the QC-LDPC code with (dv = 4, dc = 16, N = 1296,
M = 324, and Rate = 0.75).

ripping up and rerouting nets through longer paths to avoid congestion. Even though

the maximum clock rate is slower with the higher code rate, the user throughput

shows 16% improvement over 0.5 code rate.

Based on Table 4.2, PGaB results with an increase in 1-bit register and Slice LUT

usage by 17% and 24% respectively over GaB. Similarly, from Table 4.2, PGaB at

0.75 code rate shows an increase in 1-bit register and Slice LUT usage by 22% and

17% respectively over GaB.

Each signal that is generated by the CNU for GaB and PGaB implementations are

stored in a register. On the other hand, in our GDBF and PGDBF implementations,

the CNU does not include any register. Given that the number of connections per

VNU remains the same, even though the code rate changes, there is no additional



51

Table 4.4. Throughput-to-area ratio (TAR) and Normalized Throughput (Tp) for
GaB, PGaB, GDBF, and PGDBF when the crossover probability is fixed. Based on
the FPGA implementations for QC-LDPC with (N, dv, R)=(1296, 4, 0.5), QC-LDPC
(N, dv, R)=(1296, 4, 0.75), and QC-LDPC (N, dv, R)=(2212, 4, 0.857).

N, dv , R=(1296,4,.5) N, dv , R=(1296,4,.75) N, dv , R=(2212,4,.857)

Iave (α = 0.02) Tp (Mbps) TAR Iave (α = 0.002) Tp (Mbps) TAR Iave (α = 0.001) Tp (Mbps) TAR

GaB 3.37 28362 2.41 1.14 64857 10.64 1.12 58954 2.53

PGaB 2.78 34078 2.33 1.09 67594 9.48 1.09 60272 2.07

GDBF 3.70 7723 0.52 1.18 23888 1.99 1.16 30892 1.23

PGDBF 5.78 5011 0.31 1.62 16600 1.09 1.44 24885 0.84

register demand. Therefore the number of registers used by these implementations

remain the same. We observe less than one percent reduction in Slice LUTs for the

GDBF and PGDBF implementations with code rate of 0.75 over code rate of 0.5. This

results with slight change in maximum clock rate and throughput performance. In

overall, the PGaB implementation results with a maximum clock rate that is around

2.6 times better than GDBF and PGDBF.

In Figure 4.5, we compare the FER performance of the GaB and PGaB for the

code rate 0.75. The PGaB consistently outperforms the GaB decoder especially in

the error-floor region (more than two orders of magnitude at crossover probability of

2x10−3). The PGaB catches the GDBF at α value of 0.04 and performs better than

GDBF beyond this point. Considering the FER performance in the error floor region

shown in Figure 4.5, and the negligible loss (0.004%) in throughput performance, we

conclude that PGaB decoding and throughput performance is consistent across two

code rates.

4.4.2 Effect of Codeword Length

Next, we implement the GaB, PGaB, GDBF, and PGDBF for the QC-LDPC code

constructed by [55], which has a length of 2212 bits and (dv = 4, dc = 28) with

a higher code rate of 0.857. Each CNU has a degree of 28 for all four hardware
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implementations. Note that the total number of inputs per CNU for the GaB and

PGaB implementations are 56 as illustrated in Figure 4.1.

As shown in Table 4.2, resource usage for all design increases significantly com-

pared to the implementations based on the codeword length of 1296 primarily due

to the increase in the VNU count. The size of LDPC code affects the complexity

of interconnection network [56]. This is reflected in the maximum clock rate for the

PGaB implementation, which drops from 113.7MHz to 59.4MHz. However, the rate

of the throughput loss is much smaller (by 10.8%), because, throughput is linearly

proportional to the length of the codeword as shown in Equation 4.2.1 independent

from the design. The longer codeword compensates for the reduction in clock rate.

In overall for the longer codeword we observe that PGaB achieves higher clock rate

and throughout performance with respect to the GDBF and PGDBF.

The slice count for an implementation is widely used as the area metric by FPGA

researchers. In Table 4.4, we show the throughput-to-area ratio (TAR) based on

slice count for each algorithm for each code rate. The PGaB consistently results

with better TAR performance than both GDBF and PGDBF. Even though GaB and

PGaB throughput performances are similar for each code rate, due to higher resource

usage of the PGaB, the TAR performance is worse than the GaB. In Table 4.4, we

also compare the normalized throughput (Tp) that is calculated based on fixing the

α value for each code rate studied in this dissertation and using the average number

of iterations for that α value. As seen in Table 4.4, average number of iterations

for the PGaB implementation is consistently lower than GaB, GDBF and PGDBF

implementations for each code rate. In Table 4.3, we notice that GaB resulted with

better throughput than the PGaB implementation. However when we take the actual

iteration number into account we observe that the PGaB achieves better throughput

than the GaB and the throughput gap between PGaB implementation with respect

to GDBF and PGDBF further improves.

Figure 4.6 shows the FER performance comparison between the GaB, PGaB,
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GDBF, and PGDBF decoders as a function of the cross-over probability on QC-LDPC

(N, dv, dc, R)=(2212, 4, 28, 0.857) code with rate of 0.857. We conclude that for longer

codewords the PGaB can surpass the GaB by more than one order of magnitude

at crossover probability of 2x10−4 without sacrificing the throughput advantage of

the GaB. We observe that, as the code rate increases and as the codeword length

increases, the gap between GaB and PGaB on the FER plots shrinks. This trend is

expected, since each case stresses the decoder. The important observation here is the

superiority of the PGaB for all scenarios considered in this study in terms of decoding

performance without sacrificing the throughput performance of the GaB.
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Chapter 5

Routability Problem of the LDPC Code

The connection intensive bipartite graph based LDPC decoder hardware architecture

creates routing stress for longer codewords that are utilized in today’s communications

systems and standards. In this chapter, we study the routability problem of mapping

LDPC codes on to the FPGA.

5.1 Background

LDPC decoder architectures utilize a large number of processing nodes and excessive

amount of connections between these nodes. Routability can be a major challenge in

the implementation of a decoder depending on the code rate ([33], [28], [57], [58], [59]).

To the best of our knowledge, the routability challenge of error correction algorithm

implementation has been studied in the context of FPGA domain only in [28]. In the

VLSI domain there are studies describing various techniques to improve the routabil-

ity. Even though these are not applicable to FPGA context, for the completeness of

our related work here we give an overview of those techniques.

The study by [28] shows the implementation of decoder architectures for GaB and

PGaB based on codeword length of 1296 over two different code rates. This study

exposes the routability problem with respect to change in code rate through a visu-

alization on the post-routing resource usage and discusses the impact of congestion

on critical path delay.

In the VLSI domain, the study by [60] investigates the routing complexity problem

for the Min-Sum algorithm, and introduces bi-directional routing network to reduce

the number of connections and reorders the data stored in the memory so that a

single connection is used for sending and receiving data. The solution is tailored for
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the highly memory dependent Min-Sum algorithm and is not applicable to other class

of algorithms.

[61] and [62] propose to change structure of the LDPC code for reducing the rout-

ing complexity. In these studies, the positions of the processing nodes are rearranged

iteratively to limit the interconnect length and find a design with improved routabil-

ity. This design space exploration type of approach requires extensive amount of

experiments to identify a better configuration. More importantly, while routability

problem is being addressed, the nature of the algorithm is inevitably modified, which

effects error correction performance of the code.

5.2 Congestion Analysis

Routability can be a major challenge in the implementation of a decoder depending

on the code rate ([33], [28], [57]). For the case of QC-LDPC with code rate of 0.5

(dv = 4, dc = 8) each CNU has eight connections. For a codeword length of 1106 bits

that has a higher code rate of 0.857, there are 8848 input and output connections

(2 ∗ 4 ∗ 1106 since dv = 4). In this case, design requires 158 CNUs. Given that

there are 8848 connections, each CNU has 56 connections. For the code rate 0.5, the

number of input and output connections is 16. The significant amount of increase

in the number of connections per CNU from 16 to 56 as the code rate increases is

the primary source for the congestion problem. Furthermore, the positions of CNUs

in the post-placement layout does not show regularity due to competition between

pulling forces on a CNU by its VNUs and the pulling forces on those VNUs by their

respective CNUs. The congested region is shown in Figure 5.1 “left”). The congestion

problem due to increase in number of connections around a CLB is further amplified

with the increase in codeword length ( [63], [64], [65], [66]).

During packing stage of the FPGA CAD flow where LUT based netlist is trans-

formed into Configurable Logic Block (CLB) based netlist, the synthesis tools attempt
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Figure 5.1. Post-routing layout of GaB decoder for the QC-LDPC code (dv =
4, dc = 28, n = 1106, and code rate = 0.857) on the Xilinx Zynq XC7Z020 FPGA for
Regular (left) and Depopulation based implementation (right).

to pack as much logic as possible into a single CLB to minimize the number of CLBs.

Filling the CLB to its capacity tends to increase the number of inputs per CLB. The

increase in number of connections around a CLB in turn increases the routing demand

in its peripheral region. Depopulation by not filling each CLB to its capacity results

with spreading the logic across the FPGA and improves the routability of a design

[67]. Based on this principle, we apply depopulation by partitioning the function of

each CNU into two CNUs as illustrated in Figure 5.2, where first half of the inputs

to the CNU are processed by the CNU1 and the second half of the inputs are pro-

cessed by the CNU2. In order to realize the CNU function, we merge the outputs

of the two CNUs with an xor operation. In the case of QC-LDPC with code rate of

0.857, instead of implementing a 28-input xor based CNU function, we implement

two 14-input xor based CNU functions along with a 2-input xor function. Figure 5.1

(“right”) shows the layout for the partitioning based implementation. Compared to

Figure 5.1 (“left”), we observe that the congested regions disappear as we spread the

logic across the FPGA.

In order to demonstrate the benefits of the partitioning method, we first study

the impact of increase in codeword length and code rate on resource usage and crit-
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Figure 5.2. Two-way partitioning methodology for CNU with dc = 28.

ical path delay in Sections 5.3.1 and 5.3.2 respectively. We show that two-way

partitioning allows reducing the critical path delay with a negligible increase in LUT

usage. More importantly, the unroutable designs for codeword lengths beyond 1106

becomes routable for the GaB algorithm with the two-way partitioning method. In

section 5.3.3 we quantify the impact of scaling the partitioning level from two to four,

six, and eight on LUT usage - delay product as a case study based on two different

codewords.

5.3 Trend Analysis

In section 5.2, we exposed the congestion issue based on a single codeword length with

a layout comparison between the regular and depopulation based GaB implementa-

tions. In this section, we expand our analysis over GaB to the effect of increasing

the codeword length on critical path delay and resource usage. We show that routing

congestion becomes a bottleneck for longer codewords making the designs not feasible

to implement even on resource rich FPGAs, and depopulation resolves this problem.
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5.3.1 Codeword Length and Code Rate vs. Resource Usage

In the first experiment, we sweep the codeword length from 324 to 1296 for the QC-

LDPC code with degrees of VNU and CNU set to 4 and 8 respectively, where code

rate is 0.5. Figure 5.3 shows the resource usage trend in terms of LUT usage (y-axis)

with respect to the increase in codeword length (x-axis) for regular and depopulation

based implementations. From hardware implementation perspective, as explained in

Section 6.2, the number of VNUs depends on the codeword length and the number of

CNUs depends on both the codeword length and code rate. Therefore in the plot, we

observe that the resource usage increases linearly as the codeword length increases.

For the codeword length of 1296, the decoder consumes 22% of LUT resources

on the Xilinx Zynq XC7Z020 FPGA. As shown in Figure 5.3, resource usage for the

depopulation based implementation is slightly higher than the regular implementa-

tion, and the gap is less than 9% for any codeword length studied in this experiment.

This gap remains the same when we map the decoders onto Virtex-7 XC7VX485T

FPGA. Even though we double the number of CNUs with the depopulation based

implementation, LUT usage by the design increases slightly as the number of LUTs

required to implement the CNU function remains the same. A single CNU implemen-

tation requires 10 LUTs. However, for the two way partitioning , each CNU requires

6 LUTs, resulting with a total of 12 LUTs for the equivalent CNU functionality. This

is the source of increase in LUT usage by 9% with the depopulation technique.

We run a second experiment to evaluate the impact of code rate increase on

resource usage. In this experiment, we choose a QC-LDPC code with degrees of

VNU and CNU set to 4 and 28 respectively, with a code rate increase from 0.5 to

0.857. We evaluate the LUT usage with respect to codeword length up to 1936 bits

based on Figure 5.4, where x-axis shows the range of codeword length and y-axis

shows the resource usage. Similar to the Figure 5.3, we observe a linear increase in

resource usage for both implementations (regular and depopulation) as the length of



59

324 486 648 810 972 1134 1296
2000

4000

6000

8000

10000

12000

14000

Codeword Length

L
U

T
 r

es
o
u
rc

e 
u
sa

g
e

 

 

Regular

Depopulation

Figure 5.3. Resource usage vs Codeword length comparison for the QC-LDPC code
with (dv = 4, dc = 8, code rate=0.5) based on Xilinx Zynq XC7Z020 FPGA.

the codeword increases for the first three points (553, 830, and 1106). The resource

usage for the depopulation based implementation is 1% and 9% higher than the

regular implementation for the codeword lengths of 830 and 1106 respectively. In

parallel to our analysis on Figure 5.3, we attribute the increase in the gap between

the two designs on this code rate from 1% to 9% to the increase in the number of

CNUs coupled with the increase in the number of input connections per CNU.

Compared to the code rate of 0.5, the number of LUTs increase from 10 to 39 with

the code rate of 0.857 due to increase in number of input ports per CNU from 8 to 28.

The increase in LUT count combined with the increased number of connections with

higher code rate, the regular based designs over the codeword lengths of 1383 and

higher are not possible to implement even on the resource rich Virtex7 XC7VX485T

FPGA as the routing stage fails.

In Table 5.1, we show the number of LUTs used as a routing resource for regular

and depopulation based implementations for a QC-LDPC code (dv = 4, dc = 28,

and code rate= 0.857). We observe that fewer LUTs are used as route-through

with the depopulation technique for all codeword lengths. We believe this is a strong

indicator of synthesis tool resorting to LUT resources in order to realize route through
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Figure 5.4. Resource usage vs. Codeword Length comparison for the QC-LDPC
code with (dv = 4, dc = 28, code rate=0.857) based on Xilinx Zynq XC7Z020 FPGA.

Table 5.1. The number of LUTs used as routing resource for different codeword
length on the LDPC code with (dv = 4, dc = 28, code rate=0.857) based on Xilinx
Zynq XC7Z020 FPGA.

Codeword Length 553 830 1106 1383 1659 1936
Regular 53 110 301 308 287 497
Depopulation 25 29 29 70 33 41

functionality when there is stress on the routing resources. This supports our claim

that the depopulation strategy helps reduce the channel width demand of the design,

hence the stress on routing.

In Table 5.2, we show the total number of connections (extracted from post syn-

thesis report) required by the regular and depopulation based implementations with

respect to codeword length. Even though consistently the depopulation based im-

plementation requires more number of connections, the designs that are not routable

with the regular implementation (indicated as ”fails” in the table) become routable

with the depopulation based implementation. This is also a strong indication of the

depopulation based implementation’s ability to reduce the channel width demand.
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Table 5.2. Total number of paths vs. codeword length (n) on the LDPC code with
(dv = 4, dc = 28, rate=0.857).

n 553 830 1106 1383 1659 1936
Regular 124612 233530 372376 fails fails fails
Depopulation 124917 260236 407210 579069 792067 1041652

324 486 648 810 972 1134 1296
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Codeword Length

C
ri

ti
ca

l 
P

at
h
 D

el
ay

 (
n
s)

 

 

Regular

Depopulation

Figure 5.5. Critical path delay (ns) vs Codeword length for the QC-LDPC code
with (dv = 4, dc = 8, code rate=0.5) based on Xilinx Zynq XC7Z020 FPGA.

5.3.2 Codeword Length and Code Rate vs. Critical Path Delay

Based on the resource usage trend analysis, we observe that the LUT usage is not

the main constraint since up to 22% of the LUT resources are needed for the largest

codeword length in our experiments. In this section we study the effect of increase

in codeword length and code rate on critical path delay. We also relate the impact

of increase in LUT usage due to the depopulation technique over the regular imple-

mentation with the critical path delay.

As shown in Figure 5.5, critical path delay increases linearly with the codeword

length for both the regular and depopulation based implementations. However, de-

population allows reducing the critical path delay consistently compared to the regular

implementation by up to 7.3%. When we increase the code rate to 0.857, we observe

that the critical path delay does not increase linearly with the increase in codeword
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Figure 5.6. Critical path delay (ns) vs Codeword length for the QC-LDPC code
with (dv = 4, dc = 28, code rate=0.857) based on Xilinx Zynq XC7Z020 FPGA.

length as shown in Figure 5.6. There is a rapid increase in delay when the codeword

length is higher than 830 bits. This is an indication of the stress on routability as an-

ticipated. Placement and routing stages attempt to reduce the total wire length for a

design by positioning the logic blocks closer and utilizing the flexibility of connection

boxes and switch boxes on the FPGA to establish short paths for each net. Code rate

of 0.857 results with a design that increases the number of connections for each CNU.

This in turn creates additional stress on routability, and the shorter wire segments

available for the code rate of 0.5 are no longer available for the code rate of 0.857

due to congestion in regions that are densely populated with logic blocks. Therefore,

nets take longer paths for routability and the critical path delay increases due to

congestion. Beyond codeword length of 1383, the design is not routable for the regu-

lar implementation. Depopulation based implementation results with shorter critical

path and unroutable designs for the last three codeword lengths become routable.

We observe a saturating trend for critical path with the depopulation based imple-

mentation. Since even for the largest codeword length the design occupies 37% of the

LUTs, the reduction in channel width demand allows router to find feasible paths by

increasing the LUT usage. We believe this leads to the saturating trend.
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5.3.3 Partitioning Amount vs. LUT Usage-Delay Product Analysis

We conducted another experiment to observe the impact of the amount of partitioning

on critical path delay, resource usage and resource-delay product by increasing the

number of partitions from two to four, six, and eight. We ran experiments based on the

GaB implementation on the QC-LDPC code (dv = 4, dc = 28, and code rate= 0.857)

with the codeword length of 1106. We choose 1106, since this is the longest codeword

possible to route on the FPGA for the regular implementation as discussed earlier

over Figure 5.6. With this experiment, our aim is to also identify the most suitable

partitioning strategy based on resource usage-delay product. Figure 5.7 shows the

resource usage trend with respect to the x-way partitioning, in which x-axis shows the

range of partitioning and y-axis shows the Look Up Table (LUT) usage. The zero-way

partitioning represents the regular implementation without partitioning. Compared

to our default two-way partitioning based implementation, interestingly we observe a

reduction in LUT usage by 4.5% with the four-way partitioning . However when we

increase the number of partitions further to six and eight, the LUT usage increases

by 4% and 20% respectively. For the eight-way partitioning, when we distribute the

28 inputs over eight CNUs, half of the CNUs have four inputs and the other half

has three inputs. Since the opportunity of input sharing diminishes compared to

the two or four way partitioning scenarios, the implementation results with larger

number of under utilized LUTs. The four-way partitioning based design results with

a fracturable LUT utilization of 20.7% in which out of 10,784 LUTs, 2,227 are used

as fracturable LUT (O5 and O6 - two outputs generated). On the other hand, the

eight-way partitioning based design results with reduced fracturable LUT utilization

of 11.8%, in which out of 13,066 LUTs, 1,544 of them are utilized as fracturable LUT.

Figure 5.8 shows the critical path delay with respect to the x-way partitioning,

where x-axis shows the range of partitioning and y-axis shows the critical path delay in

nanoseconds. We observe that four-way partitioning results with better critical path
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Figure 5.7. Resource usage trend with respect to the x-way partitioning for the
QC-LDPC code with codeword length of 1106 (dv = 4, dc = 28, code rate=0.857)
based on Xilinx Zynq XC7Z020 FPGA.
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Figure 5.8. Critical path delay trend with respect to the x-way partitioning for the
QC-LDPC code with codeword length of 1106 (dv = 4, dc = 28, code rate=0.857)
based on Xilinx Zynq XC7Z020 FPGA.
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delay among all the partitioning approaches. Critical path delay has a saturating

trend as we increase the partitioning level from four to six and eight. This trend is in

agreement with our earlier analysis on delay versus codeword length discussed over

Figure 5.6, such that the increase in number of LUTs is not stressing the available

LUT resources. Therefore depopulation is able to spread the logic evenly without

increasing the critical path delay. Since four-way partitioning allows the most compact

form due to higher fracturable LUT utilization, we see a reduction in critical path

delay by 6.4% compared to the two-way partitioning scenario.

The throughput to LUT usage ratio is a good indicator of hardware efficiency,

which is captured by the LUT usage − delay product as illustrated in Figure 5.3.3.

We observe that the four-way partitioning results with better performance over the

other partitioning choices. In overall, the four-way partitioning based design reduces

the critical path delay by 32% and increases the LUT usage by 8.5% with respect to

the regular implementation for this code. Here we note that the optimal partitioning

level depends on the codeword length and code rate parameters that play a key role

on resource usage and delay trend lines. This experiment shows that partitioning

method allows resolving the congestion related critical path delay but the amount of

partitioning level has a limit from LUT usage overhead perspective.
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Figure 5.9. LUT usage-delay product trend with respect to the x-way partition-
ing for the QC-LDPC code with codeword length of 1106 (dv = 4, dc = 28, code
rate=0.857) based on Xilinx Zynq XC7Z020 FPGA.
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Chapter 6

FPGA Based Framework

In this chapter we present our FPGA based framework for studying error correction

performance of the target LDPC decoder. After giving an overview of the related

work from FPGA based LDPC testbed implementation point of view, we discuss

the details of the hardware implementation. We then demonstrate our framework’s

ability to reduce the time scale of simulations for two case studies on error correction

performance analysis using Gallager B and Probabilistic Gallager B algorithms and

identifying all possible codewords that are not correctable by Gallager B for codewords

that have four errors.

6.1 Related Work

Evaluating the decoding performance of an LDPC code on a general purpose processor

based single node requires extremely long simulation times based on the targeted

degree of quality in terms of error correction capability. Cluster based computing

systems and more recently fine grained parallel computing platforms such as GPGPUs

have been utilized to reduce the time scale of LDPC simulations with some degree of

success [68]. Because the decoding process is iterative and the data access patterns

are not regular between the iterations, parallelism efforts are limited to iteration

level only, which also incurs significant amount of cycles spent for memory updates

between the iterations. The use of FPGAs allows for substantial acceleration in the

simulation of LDPC codes [69], [10]. Bit-wise intensive operations involved in the

decoding process and the iterative flow that is amendable to loop-unrolling style

execution make the program architecture of the LDPC decoder algorithms overlap

with the fine-grained massively parallel structure of the FPGA architecture. Modern
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FPGAs have particularly become a practical option for reducing the timescale LDPC

simulations as they house more than a million logic cells coupled with rich pool of

memory and DSP resources.

FPGA based implementation of error correction algorithms is a standard way of

studying their hardware characteristics and conducting hardware performance com-

parison in terms of resource usage, critical path delay, energy efficiency, and through-

put metrics [70], [71], [72], [73], [74], [63], [75]. The paper on FPGA based LDPC

decoders by [10] presents a comprehensive analysis. Dominantly, these studies are

limited to extracting hardware characteristics from the FPGA based implementation,

rather than utilizing the FPGA as a testbed for simulating a decoder and studying

its error correction performance.

The literature on FPGA based testbeds, as summarized in Table 6.1, focuses on

a few best performing algorithms in their class to accelerate their simulation based

investigations with speedup values reaching three orders of magnitude. To the best

of our knowledge, the type of algorithms that we investigate in our framework have

not been studied on a completely FPGA based simulation framework. Even though

it is not fair to compare different classes of algorithms in terms of their hardware

performance and resource utilization, for the completeness of our analysis we give an

overview of each by highlighting their key features.

The study by [69] proposes an FPGA based testbed and investigates the impact

of employing various levels of parallelism on resource usage and throughput when

implementing LDPC decoder architecture for the sum-product [64] algorithm with

codeword length of 2048. The testbed allows for the exploration of the low FER

region and provides statistics of the error traces. The testbed is implemented on the

Virtex-II Pro XC2VP70 series Xilinx FPGA achieving the FER resolution of 10−8

within one hour. The decoder implementation reaches a throughput of 240 Mb/s on

the FPGA, while the C based implementation achieves a throughput of 260 kb/s on

an Intel Xeon 2.4 GHz processor.
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Table 6.1. FPGA based LDPC testbeds.

Platforms Algorithms Throughput Codeword length

[69] Virtex-2 Pro XC2VP70 sum-product 240 Mb/s 2048

[76] Virtex-5 XC5VLX155T (4 nodes) belief propagation 380 Mb/s 576

[77] Virtex-2 Pro (6 nodes) Min-Sum NA 4923

[78] Virtex-5 XC5VSX240T-2 Min-Sum 332 Mb/s 3369

[79] Virtex-5 FPGA sum-product 344 Mb/s 2304

The study by [76] proposes an automated design flow for FPGA based LDPC

code simulation. The testbed offers the end user the flexibility of specifying the

LDPC decoder parameters to implement the hardware architecture automatically.

Several LDPC codes for the belief propagation algorithm [24] are implemented with

the codeword lengths ranging from 576 to 2304. The simulation platform employs

four Xilinx Virtex-5 XC5VLX155T devices and achieves throughput from 380 to 950

Mb/s. The testbed allows researchers to reach a FER resolution of 10−11 in less than

one hour.

The study by [77] presents a highly parallel FPGA-based testbed to evaluate the

performance of the Min-Sum [65] algorithm on LDPC code with the codeword length

of 4923. Eight Xilinx Virtex-2 Pro FPGAs are utilized to achieve 100x speed up

over the same class of application specific simulation platforms and achieve the first

exploration for the error floor of LDPC codes at FER resolution of 10−12 in magnetic

recording channel [80], [81], [82]. The testbed reaches a FER of 10−10 in less than six

hours and FER of 10−12 in 24 days. The authors estimate that reaching the scale of

10−12 would take 10 years in software simulation.

The study by [78] proposes a scalable FPGA-based vector decoder implementation

for the Min-Sum algorithm on the LDPC codes with the codeword length of up to

3369. This implementation packs the data used in the subsequent iteration of the

decoding process into the embedded memory blocks to minimize LUT-RAM usage on

the target Virtex 5 XC5VSX240T-2 FPGA, and achieves a maximum throughput of
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332 Mb/s.

[79] propose an FPGA based testbed implementation of sum-product algorithm

for the LDPC code with the codeword lengths of 1056, 1944, and 2304. Design and

implementation of a backtracking scheme to detect error patterns at FER as low as

10−10 is presented. The proposed testbed achieves a throughput of 344 Mb/s for the

codeword length of 2304.

As summarized in Table 6.1, the literature on FPGA-based testbeds target ef-

fective error correction algorithms such as sum-product, Min-Sum, and belief prop-

agation. These algorithms are strong in terms of error correction performance but

require much more hardware resources than the class of algorithms we target.

The motivation behind our PGaB theoretical work [83] was to improve the error

correction performance of the GaB through algorithmic modifications while inheriting

its simplicity from hardware implementation point of view. The GaB and PGaB

class of algorithms we investigate in this dissertation are different from the class of

algorithms listed in Table 6.1. Our implementations outperform all the testbed based

implementations in terms of throughput reaching up to 4780 Mb/s as we will present

in Section 6.3.1. From testbed point of view, these studies are also limited to a single

algorithm. In our work, we introduce a framework that allows studying hard-decision

class of algorithms involving GaB, PGaB, GDBF, and PGDBF.

6.2 Framework and Hardware Implementation

The overall block diagram, shown in Figure 6.1, consists of seven units: controller,

codeword generator, noise generator, LDPC decoder, Random Number Generator

(RNG), statistic and error analysis, and interface units. Our testbed offers flexibility

of changing the decoder type and simulation settings based on the desired resolution

in terms of FER performance. For this, the end-user sets the channel crossover prob-

ability (Alpha), maximum number of iterations (max iter), and maximum number of
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codewords in fail (max cwf), which form the inputs to the Controller in Figure 6.1

as simulation parameters. Alpha defines channel crossover probability, which is the

probability of error introduced to each bit of the codeword. This parameter allows

the end-user to test the decoder for various channel noise scenarios. The higher the

Alpha value is, the harder it is for the decoder to recover the codeword. The max iter

determines the limit of iteration count per codeword, after which the simulation ter-

minates. If the decoder can not correct the codeword before reaching this limit, the

codeword is designated as not recoverable. If the codeword is corrected earlier than

max iter, decoder continues to execute the next codeword. Depending on the LDPC

algorithm, the maximum number of attempts to correct codeword may change. The

simulation stops when the total number of codewords that are not recoverable reaches

the max cwf . Setting max cwf to 100 is a typical choice for a reliable analysis, but

it can be set to larger or smaller values depending on the desired resolution. We keep

track of the total number of codewords tested, number of iterations spent for each

codeword, and the total number of iterations spent over all the codewords tested.

Based on this information, we calculate the average number of iterations and the

FER for a given Alpha.

The controller module in the testbed manages the processes of each component.

The codeword generator unit produces codewords specified by parity check matrix H.

Each time a component completes its task, an enable signal indicated with ” ena”

in the figure triggers controller to activate the next component. In order to emulate

the effect of noise in the communication channel on the transmitted n-bit codeword,

the noise generator unit flips each bit of the codeword with the probability of Alpha.

We implement a linear feedback shift register (LFSR) based random number gener-

ator to generate a 1-bit random value with Bernoulli distribution of Alpha, which

represents the probability of each bit in the codeword being flipped or not. After

the decoder receives its enable signal along with the noisy codeword, iterative process

continues until either the error has been corrected or the decoder has failed within the
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Figure 6.1. Overall architecture of FPGA based testbed. Red colored wires indicate
control signals, others indicate internal connections.

predefined maximum iteration count (max iter input). Termination of the decoding

process starts the statistical analysis process, which receives 16 bits of iteration count

(iter cnt) along with 1-bit successful correction (correct cw) and failed correction

(error cw) signals from the decoder. We keep track of total number of codewords

tested (cw tested), number of codewords in fail (cw failed), and total number of

iterations (iter tot) spent with 64 bit registers. Random number generator (RNG)

unit is a special purpose module needed to simulate probabilistic LDPC decoders,

which generates an n-bit random sequence to pair with the n-bit codeword length.

We implement 32-bits LFSR to generate a random number. The controller enables

or disables the RNG with the the signal (ena rng) based on the decoder algorithm

type.
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Table 6.2. Hardware resource utilization of LDPC testbed implementation on
the FPGA. Available resource is based on the Xilinx Zynq XC7Z020 and Virtex-7
XC7VX485T FPGAs.

Resource Usage Utilization (%)
Zynq Virtex-7 Zynq Virtex-7

Slice Luts 11884 11688 22% 4%
1-bit Register 19731 19731 18% 3%
Number of Slices 3086 2775 23% 4%

Table 6.2 shows the resource utilization of the testbed excluding the decoder

block on Xilinx Zynq XC7Z020 and Virtex-7 XC7VX485T FPGAs. We use two

types of FPGAs to show that even a resource rich FPGA based implementation faces

routability problem for longer codewords. Table 6.2 shows that the testbed with its

low resource utilization allows designers to map various decoding algorithms with

different degrees of parallelism to exploit for their decoder.

6.3 Quantifying the Benefits of the FPGA Based Framework

In the following subsections we first quantify the benefit of our testbed based on the

execution time of generating the FER curves for the GaB and PGaB. We show that

the reduction of simulation time from hundred year scale to hours scale makes our

testbed a practical solution for evaluating the error correction quality of the GaB and

PGaB decoders. Our testbed allows the end user to reach resolution levels that has

not been reported before. We then evaluate the utility of our testbed for conducting

error pattern analysis needed by information theorists towards improving the error

correction performance of the decoder. We show that sweeping the combinatorial

search space at a scale of 1012 patterns is completed within hours, which is not

attainable with software based simulations.
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6.3.1 Case Study: Time to Generate FER Analysis

Figure 6.2 shows the FER curves for the GaB and PGaB algorithms on the QC-

LDPC code with codeword length of 1296 (dv = 4, dc = 8, code rate=0.5). The

y-axis indicates the frame error rate (FER) calculated based on number of codewords

processed till a total of 100 code words fail. The x-axis indicate the probability of

error (crossover probability) introduced to each bit of the input codeword. The slope

of the FER curve decreases suddenly beyond certain crossover probability and this

region of the curve is called as error floor [84]. The later this error floor region occurs,

the better the decoding algorithm is. Therefore it is crucial to be able to conduct

simulations with a resolution that reaches the error floor region to be able to make

conclusive comparison on the error correction quality with respect to other decoder

algorithms. To the best of our knowledge, the lowest resolution reported for the

PGaB is for the 0.01 crossover probability. The C based simulation takes 116 days to

complete on the Intel Xeon (2.33GHz, 8GB RAM) processor, while the FPGA based

testbed completed the simulation in four minutes for the PGaB algorithm. With

our testbed we are able to reach to 0.005 resolution at FER of 0.917x10−11. This

simulation takes 24 hours and involves processing 1,090,097,582,683 codewords (4780

Mb/s). On an Intel Xeon processor, the C based simulation of the PGaB algorithm

for the same configuration (dv = 4, dc = 8 , codeword length = 1296, and code

rate = 0.5) takes 1 minute to process 10,396 codewords. Based on this throughput,

we estimate that reaching to 1,090,097,582,683 codewords at crossover probability of

0.005 would take 199 years. Table 6.3 shows the execution time comparison for the

crossover probabilities of 0.005 and 0.01 over GaB and PGaB.

6.3.2 Case Study: Error Pattern Analysis

For information theorists one of the interesting problems to investigate is on under-

standing the error floor region particularly the type of errors that cause a decoder
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Figure 6.2. GaB and PGaB FER comparison: FER vs. probability of error in-
troduced to each bit of the 1296-bit codeword with (dv = 4, dc = 8, code rate =
0.5).

Table 6.3. Execution time for GaB and PGaB on the FPGA based testbed (Xilinx
Zynq XC7Z020 FPGA) for the crossover probabilities of 0.005 and 0.01 where (dv = 4,
dc = 8, n = 1296, code rate=0.5) (* indicates estimated time).

Alpha 0.01 0.005
Environment FPGA PC FPGA PC
GaB 1 min< 2h’ 27 min 1 min< 18h’ 47 min
PGaB 4 min 116 days 24 hours 199 years*

fail [85]. Dominant error patterns, most common and harmful ones, should be de-

tected and removed when a new decoder is designed.

Error Pattern Definition: Before presenting our results, for the completeness of the

study here we give a definition of the error pattern. During the decoding process, the

interactions between CNUs and VNUs may result in an oscillation phenomena due

to the nth order dependencies between CNUs and VNUs. In such cases, the decoding

process may get trapped in a cyclic behavior. For example, in the Tanner graph given
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Figure 6.3. 4-error pattern for GaB algorithm. Black/white denotes erro-
neous/correct VNU, and unsatisfied/satisfied CNU.

in Figure 2.1, v0 transmits message to c0, c1, and c2. After receiving their inputs from

all VNUs, c0, c1, and c2 send their messages back to their designated VNUs. In this

example, there is a third order dependency between v0 and v2 based on the message

passing in the order of (v0− c0− v5− c4− v3− c3− v2). If we count each VNU-CNU

interaction as one iteration, then it would take three iterations for the message of v0

to propagate to v2. During each iteration, CNUs and VNUs update their states. The

sequence of states observed for a given VNU may show repeating pattern, which is

called a trapping set [44]. Trapping means that the decoder cannot correct the error,

and then it remains in the cyclic sequences of states.

Rather than conducting exhaustive sweeping based experiments, researchers avoid

the computation time barrier through analytical studies. For example, the study
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by [50] analytically shows that the error pattern indicated in Figure 6.3 makes the

GaB decoding algorithm fail. The figure represents a subgraph of LDPC code where

circles denote VNUs and squares denote CNUs. For the sake of simplicity, we do not

include all connections for VNUs and CNUs. An error is denoted by black filling for

VNUs and CNUs. Assume that the codeword initially has four errors represented with

received message r1, r2, r3, and r4 (Figure 6.3a - Iteration 0). When each VNU receives

its message bit from the channel, the v1, v2, v3, and v4 are in error as illustrated in

Figure 6.3(b). All VNUs send message to their designated CNUs. After receiving their

inputs from all VNUs, c5, c6, c7, and c8 generate a message as unsatisfied since each

of them has one error message from their designated VNUs (Figure 6.3(c)). In the

second iteration, v1, v2, v3, and v4 receive one error message from their designated

CNUs and receive one error message from channel. Since the function of VNU is

finding majority of the inputs, v1, v2, v3, and v4 continue to generate error message.

In such cases, the decoder cannot correct this 4-error pattern. Therefore it remains

in the cyclic sequences of error states.

Analysis: The decoding algorithm under investigation may be failing to correct the

received codeword when ”k” number of bits in a codeword are in error (bit flipped)

and these ”k” error bits appear in certain patterns. In such cases, the designer goes

through a massive exploration space to understand which error patterns cause the

decoding algorithm fail. After discovering these patterns, then the designer establishes

a path for modifying the LDPC code to address this problem.

A typical design space exploration starts with 2-error patterns. This involves

studying all possible error bit positions in a codeword length of ”n” with only two

errors, and identifying the patterns that the decoder fails to correct. The exploration

incrementally may go up to six error patterns based on the application [85]. Let ”n”

be the length of the codeword, and ”k” be the number of error bits in a codeword.

In this case we can formulate the number of all possible error patterns as shown in
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Equation 6.3.1.

C(n, k) =

(
n

k

)
=

n!

(n− k)!k!
(6.3.1)

where C(n, k) refers combination of k bits in error out of codeword length of n.

In order to evaluate all 4-bit error patterns for a codeword length of 1296, based

on Equation 6.3.1, we need to test 117,002,820,060 codewords. When ”k” is 5, this

value is in the order of 30 (30,233,528,703,504) trillion.

We choose the GaB algorithm for this case study as it has been extensively studied

in terms of error patterns [45]. For the GaB algorithm the throughput on the Intel

Xeon (2.33GHz, 8GB RAM) processor is 10,396 codewords per minute on the QC-

LDPC code with codeword length of 1296 (dv = 4, dc = 8, code rate=0.5). Based on

this, we estimate the 4-bit error pattern experiment to take 7,803 days. We conducted

the same experiment to simulate all possible 4-error patterns for the GaB algorithm

on our FPGA based testbed, and discovered all 4-error patterns, including the ones

published in [50] that make the codeword uncorrectable. Total execution time for this

FPGA based simulation is 4.5 hours. For verification purpose, we ran the GaB in C

based simulation for those 4-error patterns and verified that the decoder could not

correct these errors. The entire source code for the FPGA based testbed is available

at [39].
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Chapter 7

Conclusions and Perspectives

7.1 Summary and Contributions

In this dissertation we propose probabilistic GaB algorithm and quantified the hard-

ware cost and performance of the GaB and PGaB decoder. We showed that without

a performance loss in throughput, we improved the decoding performance of the GaB

significantly and bridged the gap between GaB and other hard decision bit flipping

decoding algorithms. Our simulation results showed that the PGaB now even has a

better decoding performance than GDBF. In our current designs, we are generating

a 1296-bit random number register. We will investigate ways to reduce this register

footprint by sharing 1-bit register among a cluster of VNUs. This would reduce the

size of the shift register on the datapath and have considerable impact on resource us-

age. Our evaluations rely on implementation of a new architecture for each codeword

and core rate combination. Ability to switch the context from one implementation

to another at runtime would allow us to evaluate multi-rate LDPC codes. For fu-

ture work we plan to expand the capabilities of our FPGA based simulation testbed

with partial reconfiguration and run time configuration to conduct a run-time flexible

analysis.

We showed that the depopulation strategy spreads the logic across the target

FPGA resources. We analyzed the resource usage, critical path delay, and resource

usage delay product trends with respect to the degree of partitioning applied to the de-

sign. We concluded that even though resource usage increases with respect to regular

implementation, depopulation reduces the path delay of the implementations for all

codewords studied in this dissertation. We showed that the depopulation strategy re-

duces congestion and allows unroutable designs become routable for longer codeword
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sizes, that is needed by today’s applications and standards in mobile communications,

video broadcasting, and wireless communications.

In this dissertation we also presented an FPGA based framework for accelerating

the simulations of LDPC codes. With its tunable parameters, the testbed allows the

end user to conduct experiments based on the desired resolution for the target decoder

algorithm. We conducted a series of experiments based on GaB and PGaB algorithms

and show that our testbed reduces the time scale of simulations from years scale to

hours scale, which allows analysis of error correction performance at a resolution

that is not attainable with CPU based simulations. We conducted an error pattern

analysis study to detect all possible 4-bit error patterns in a codeword, identified

all 4-bit error patterns patterns that are not correctable by the GaB algorithm in

less than five hours that is estimated to be completed in over 7800 days on a CPU

based testbed. An error pattern discovered on specific CNUs and VNUs (subgroup

in the architecture) may repeat itself with other CNU and VNU subgroups due to

quasi cyclic nature of the LDPC codes. Therefore next step in our investigation will

be to categorize these error patterns into groups. We will be in a position to rank

and prioritize these patterns and incrementally modify the GaB algorithm to address

each pattern group. We also plan to expand supporting other classes of decoder

algorithms such as the sum-product algorithm. The entire source code for the FPGA

based simulation framework along with the generated data is available as open source

for the community [39].
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