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Abstract 

Auditory evoked potentials (AEP) are used to evaluate auditory system function from the 

level of the auditory nerve to the auditory cortex and association areas.  For auditory evoked 

potentials to reach their full power as an assay of hearing and brain function, it is important to 

understand stimulus- and subject-related variables. The middle latency response (MLR) is one 

type of auditory evoked potential that reflects the activity of the auditory nervous system at 

levels including the auditory thalamus and primary auditory cortex. Whereas gender and 

laterality-related differences have been found at the level of the inner ear and brainstem, limited 

studies have investigated gender differences at the level of the auditory thalamus and primary 

auditory cortex. Additionally, the use of complex stimuli, such as a consonant-vowel token, and 

presentation of stimuli in noise has been investigated for other evoked potentials, but few studies 

have used this type of stimulus to elicit the MLR. Therefore, the current study was undertaken to 

evaluate the effect of gender and laterality (ear) differences (subject-related parameters), and 

stimulus complexity and masking (stimulus-related parameters), on the MLR. Gender differences 

were found in the current study, revealing shorter MLR component latencies and larger 

amplitudes in females compared to males. No ear-related differences were evident, however.  

The speech token /da/ was effective in evoking an MLR that displayed latency and amplitude 

characteristics like those found in studies that used click or tone-burst stimuli.  Contralateral 

masking noise resulted in reduction of the MLR amplitude, which is the classical definition of 

suppression with respect to this specific AEP.  This study clearly establishes gender as a 

significant subject-related parameter, and the use of complex stimulus paradigms that can be 

applied to clinical applications of MLR.  
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Introduction 

The MLR is a type of auditory evoked potential (AEP) (Müller, Keil, Kissler, & Gruber, 

2001; Picton, 2011). It results from the same raw electroencephalogram (EEG) as the auditory 

brainstem response (ABR), but focuses on a different point in time and different anatomical 

correlates. The MLR occurs within the first 10 to 80 ms following auditory stimulation (Picton, 

2011). Its neural generators are thought to be the auditory thalamus, primarily medial geniculate 

body, and primary auditory cortex, also known as Heschl’s gyrus, or the belt region of the 

superior temporal gyrus. The main components of the MLR are Pa, Nb, and Pb. Wave Pa occurs 

between 25 and 35 ms, Nb 35 to 45 ms, and Pb at 50 to 80 ms (Jerger, Oliver, & Chmiel, 1988) 

(Figure 1). 

Like an ABR, the MLR is stimulus-dependent, which means that the wave 

characteristics, latency, amplitude, and inter-peak intervals are affected by characteristics of the 

auditory stimulus eliciting the response such as: frequency, rate, duration, and rise-time. There 

are also subject-related parameters that can affect the MLR, such as state-dependencies. 

The MLR is known to vary systematically with stimulus parameters such as frequency, 

rate, and level (Picton, 2011), but limited studies have characterized the speech-evoked MLR (J. 

M. Anderson, 2011). One aim of this study was to fill this knowledge gap by using a speech 

token to evoke the MLR and evaluate the effect of masking noise in conjunction with the speech 

token stimulus.  

Stimulus duration and complexity are also important factors to consider for eliciting the 

MLR, as this measure represents more complex auditory processing than earlier responses in the 

central auditory nervous system (CANS), such as the ABR (Kraus & McGee, 1990). One 

example of a long-durations and complex stimulus that can be used to evoke an AEP is a speech 
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token (Agung, Purdy, McMahon, & Newall, 2006). This stimulus type has an additional 

advantage in that it is the closest representation to speech that will evoke a synchronous response 

(Wible, Nicol, & Kraus, 2002). Representing speech is critical, as understanding speech is an 

important part of the human experience. Speech tokens have already been used to elicit the ABR 

(Krizman, Skoe, & Kraus, 2010, 2012; Kumar Neupane, Gururaj, Mehta, & Sinha, 2014; 

Lehmann & Schönwiesner, 2014), and late latency response (LLR) (Prakash, Abraham, 

Rajashekar, & Yerraguntla, 2016; Sharma, Kraus, McGee, & Nicol, 1997; Tremblay, Kraus, 

McGee, Ponton, & Otis, 2001). These studies imply that a speech token can be used at any level 

of the auditory system, especially since this type of stimulus has been used to elicit responses 

from neural generators at lower levels (i.e. ABR) and higher levels (i.e. LLR) than those of the 

MLR. Thus, it seems logical that the speech-evoked MLR should be no different.  

In terms of subject-related parameters that could affect the MLR, gender (J. M. 

Anderson, 2011; Berninger, 2007; Don, Ponton, Eggermont, & Masuda, 1993; Kei, McPherson, 

Smyth, Latham, & Loscher, 1997; Keogh, 2001; Krizman et al., 2012; Liu, Wang, Li, Shi, & 

Wang, 2009; McFadden, 2002; Snihur & Hampson, 2011, 2012; Thornton, Marotta, & Kennedy, 

2003; Tsolaki, Kosmidou, Hadjileontiadis, Kompatsiaris, & Tsolaki, 2015; Tucker, 2002) and 

ear (or laterality) differences (Berninger, 2007; Kei et al., 1997; Keogh, 2001; Liu et al., 2009; 

McFadden, Hsieh, Garcia-Sierra, & Champlin, 2010; Pavlovcinova et al., 2010; Thornton et al., 

2003) are well-established in human audition. Gender and ear differences have been found at the 

level of the peripheral auditory system (Berninger, 2007; Pavlovcinova et al., 2010; Snihur & 

Hampson, 2011, 2012) and brainstem. 

Studies have found gender differences at the level of the brainstem as measured with the 

ABR (Don et al., 1993). Females have been shown to have shorter wave V ABR latencies, by 



 8

about 0.1 ms (Don et al., 1993), and larger amplitudes, approximately 30% greater, when 

compared to males. Larger amplitudes have also been found in the right ear compared to the left 

as measured at the brainstem with the ABR (McFadden et al., 2010). Similarly, Tucker et al. 

(2002) investigated the effect of stimulus rate and gender on the Middle Latency Response 

(MLR) in response to a click stimulus (Tucker, 2002). The investigators found a significant 

effect of gender on Pa latency and amplitude, where Pa latencies were longer in males and Pa 

amplitudes were larger in females. However, another study investigating gender differences in 

the MLR elicited by a click did not find significant differences for the presence of an MLR 

between male and female children (Kraus, Smith, Reed, Stein, & Cartee, 1985). They also did 

not find differences between left and right ears. This possibly points to a disparity between the 

effect of gender on different auditory evoked potentials and various measures of these potentials. 

For example, spontaneous otoacoustic emissions (SOAEs) are present more often in females 

compared to males (McFadden & Pasanen, 1999), but this does not hold true for the presence of 

the MLR (Kraus et al., 1985). 

Another important subject-related parameter to consider is ear or laterality differences. 

Ear differences have been found in OAEs (Keefe, Gorga, Jesteadt, & Smith, 2008; McFadden, 

1993; McFadden, 1998; McFadden et al., 2010) and even as an interactive factor alongside 

gender and sexual orientation (McFadden, 1993; McFadden et al., 2010). Ear differences have 

been identified in the ABR (Keefe et al., 2008; Sininger & Cone-Wesson, 2006) and at the level 

of the MLR/40-Hz ASSR in a limited number of studies (Ross, Herdman, & Pantev, 2005; 

Weihing & Musiek, 2014; Weihing, Schochat, & Musiek, 2012). Ear differences are important to 

determine how much differences in the earlier AEPs of the CANS contribute to a right-ear 

advantage (Haggard & Parkinson, 1971; Porter & Berlin, 1975; Shankweiler & Studdert-
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Kennedy, 1967) and how to interpret differences between ears when assessing central auditory 

function (Musiek, Baran, & Pinheiro, 1992; Roth et al., 1980).  

  

Suppression 

Suppression reflects the activation of the medial olivary cochlear (MOC) reflex and 

auditory efferents (de Boer, Thornton, & Krumbholz, 2012; Garinis, Glattke, & Cone, 2011; 

Giraud et al., 1997; Matas, Silva, Leite, & Samelli, 2010). Suppression is measured as the 

difference in amplitude or latency of auditory evoked potentials (AEPs) between two conditions, 

quiet and with contralateral noise.  Activation of the MOC in the presence of noise is thought to 

play a role in speech understanding in noise (Giraud et al., 1997), although, some studies have 

found no correlation between suppression/inhibition and speech understanding in noise (Garinis, 

Werner, & Abdala, 2011; Scharf, Magnan, & Chays, 1997; Wagner, Frey, Heppelmann, Plontke, 

& Zenner, 2008). Thus, the role of suppression/inhibition is still up for debate. One hypothesis is 

that suppression of auditory evoked potentials correlates with increased attention and speech 

understanding in noise (de Boer et al., 2012; Giraud et al., 1997). Suppression effects appear to 

differ with age: older (> 41 years old) individuals have been shown to have smaller amplitudes 

and a longer inter-wave interval (Lavoie, Mehta, & Thornton, 2008). Even though the role of 

suppression of AEPs in speech-in-noise understanding is still controversial, suppression has been 

shown to result from the central auditory nervous system efferents and not a byproduct of the 

acoustic reflex (Harkrider & Smith, 2005). 

Gender differences in suppression have been observed in otoacoustic emissions (OAEs) 

(Berlin, Hood, Hurley, Wen, & Kemp, 1995; Durante & Carvallo, 2002; McFadden, 1993) and 

the auditory brainstem response (ABR) (Elkind-Hirsch, Wallace, Malinak, & Jerger, 1994; 
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Sininger & Cone-Wesson, 2006). Effects of contralateral suppression of the MLR have also been 

found, but gender differences in the suppression of the MLR have yet to be investigated 

(Ozdamar & Bohórquez, 2008).  

Purpose 

Gender effects and the speech-evoked middle latency response (MLR) have not 

previously been investigated. The aim of this study was to investigate gender differences and 

characterize the speech-evoked MLR. Firstly, the main objective of the study was to determine if 

gender and/or ear differences exist in the speech-evoked MLR. The second main purpose was to 

characterize the speech-evoked MLR with respect to the effects of noise and whether 

suppression effects and release from suppression effects are evident. 

 

Questions and Hypotheses 

The purpose of this study was to experimentally investigate three main questions: 

1)  Are gender differences seen in the speech-evoked middle latency response? 2) How do 

different noise conditions affect the amplitudes and latencies in the speech-evoked middle 

latency response? Specifically, is contralateral suppression evident in the speech-evoked MLR 

with the introduction of contralateral, low-level white noise? Is release from suppression also 

evident when presenting noise bilaterally? 3) Are ear differences evident in the speech-evoked 

MLR? 

 The hypotheses proceeding this study were: 1) females will have shorter latencies 

compared to males, 2) females will have larger amplitudes compared to males, 3) suppression 

with the introduction of noise will be evident, 4) release from suppression will be apparent. 5) 
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there will be differences between ears, and 6) differences between ears will be related to 

handedness. 

Methods 

Subjects 

Forty-five subjects were recruited for the study, all but one of which were college age, 

(18-24 years). Participants were recruited from the university using convenience sampling. To be 

included, participants had to pass otoscopy and a hearing screening, have acoustic reflexes at 70 

dB SPL or greater for a broadband noise stimulus (Guinan, 2006), and confirm that they were 

healthy enough to qualify to participate in the research study. Otoscopy was considered a pass if 

eardrums were visible and no perforations, redness, bulging, or drainage were observed. To pass 

the hearing screening, participants had to respond to pulsed pure tones at 20 dBHL for 

frequencies 1000-6000 Hz and at 25 dBHL for 500 Hz. Thresholds 25 dBHL or greater are 

considered to be abnormal and evidence of hearing loss (Clark, 1981). For most frequencies, 20 

dBHL is used as a conservative criterion. However, 500 Hz is more susceptible to environmental 

masking, so the criteria of 25 dBHL is used instead. Additionally, pure-tone thresholds are in 

good agreement with those estimated using MLR (Kankkunen & Rosenhall, 1985), and so 

appropriate for eliminating participants from the study with a hearing loss at all or some 

frequencies who would likely not have a normal MLR. 

Two participants were excluded because they did not pass the hearing screening. Four 

participants did not qualify for the study because they had acoustic reflexes below 70 dB SPL. 

Participants were also excluded if their MLR recordings did not meet low-noise criteria within a 

2-hour recording period.  Eight participants were excluded on this basis. One participant 

removed themselves from the study, because they indicated that they did not qualify for the study 
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based on the experimental criteria. Two other participants did not return for the second half of 

the experiment and one participant was excluded because they did not have discernable right 

waveforms, so data from these three participants were not included in the analysis. In total, data 

from twenty-seven subjects were included in the study, 14 females and 13 males. 

 

Handedness 

In addition to the measures above, participants also completed a handedness 

questionnaire to see if handedness influenced ear differences, if present, as differences due to 

handedness have previously been found in the MLR (Mohebbi et al., 2014). Participants were 

asked to read ten items from the modified Edinburgh Handedness Inventory (mEHI) and indicate 

with a plus (+) whether they performed the task with their right hand, left hand, or both 

(Dragovic, 2004; Milenkovic & Dragovic, 2013). Items included: ‘writing’, ‘drawing’, 

‘throwing’, ‘scissors’, ‘toothbrush’, ‘knife’, ‘spoon’, ‘broom’, ‘matches’, ‘opening box-lid’. A 

laterality quotient was then calculated from the responses by summing the number of responses 

for the right hand (RH) and the number of responses for the left hand (LH), then calculating the 

quotient with the equation LQ = [(RH – LH)/(RH + LH)] x 100 (Dragovic, 2004). A score of 60 

or greater strongly indicated a preference for using the right hand and a score of -60 or less 

strongly indicated a preference for the left hand (Milenkovic & Dragovic, 2013).  No participants 

were excluded based on LQs. The average LQ was 54.46 suggesting that most participants were 

right-handed. Additionally, only seven participants had LQs, trending towards left dominance, 

only one of which was considered significant at -75 (Kreutzer, DeLuca, & Caplan, 2011). All 

other subjects (20) had LQs that trended towards right handedness, 15 of which were significant.  
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Stimuli  

All stimuli used were generated with the Intelligent Hearing Systems SMART-EP (IHS) 

system. The speech token, /da/,  had a 40 ms duration (Krizman et al., 2010) and was presented 

at 60 dBA SPL at a rate of 11.7/s.  White noise was presented at 65 dB dBA SPL as the 

contralateral stimulus. Ipsilateral noise was also white noise presented at 50 and 40 dBA SPL for 

10 and 20 dB signal-to-noise-ratio (SNR) conditions respectively. All stimuli were calibrated 

using the Larsen Davis System 824 Sound Pressure Level (SPL) Meter. Output from ER-3A 

headphones were configured with a 2cc coupler and steady-state root-mean-squared (RMS) SPL 

of the stimuli were measured.  

 

MLR Recording Parameters 

MLRs were recorded using a 6-channel montage.  The channels were: Cz-Ai, Cz-Ac, C3-

Ai, C3-Ac, C4-Ai, C4-Ac. An electrode located on the forehead served as the ground. The EEG 

was filtered from 10-1500 Hz and amplified with a gain of 100 dB. The evoked potentials were 

averaged using an epoch of 76.8 ms. The amplitude-based artifact reject-criteria was set to reject 

recordings greater than 20 µV. Each waveform comprised two 2000 artifact-free averages for a 

total of 4000 samples. Two-thousand sweeps were made for each accepted recording to eliminate 

as much myogenic noise as possible. Averaging two different recordings for the total 4000 

sweeps, further eliminated noise that would not be attributed to the anatomical generators of the 

MLR. 
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Procedure 

Two test sessions were required to obtain MLRs for right and left ears for all stimulus 

and noise conditions. Subjects’ left and right ears were recorded on separate days except for one 

participant whose right and left ears were tested on the same day. There was an average 26.8-day 

interval between recording sessions. Four individuals had testing intervals greater than 60 days. 

The order of ear and noise conditions were randomized across subjects, which included 

two runs per condition and ear. The experimental conditions included a) Quiet—speech stimuli 

only, b) Ipsilateral 10 dB SNR—speech stimuli and noise in the same ear at 10 dB SNR, c) 

Ipsilateral 20 dB SNR—speech stimuli and noise in the same ear at 20 dB SNR, d) 

Contralateral—speech stimuli and noise in opposite ears, e) Contralateral/Ipsilateral 10 dB 

SNR—noise in both ears with speech stimuli and noise in one ear at 10 dB SNR, and f) 

Contralateral/Ipsilateral 20 dB SNR—noise in both ears with speech stimuli and noise in the 

other ear at 20 dB SNR.  

Participants sat in a reclining chair and were asked to preoccupy themselves with 

something on their phone/tablet or read a book for enjoyment in order to ensure that they 

remained awake for the recording and asked to move as little as possible. Participants were able 

to take a break whenever they requested and were offered a break halfway through the 

recordings. 

 

Data Analysis 

 Waveform data from the IHS system was saved in ASCII files, which were uploaded to 

Igor Pro to compare raw waveforms. ABR and MLR components of individual waveforms to be 

included were marked, saved into PDF format, then manually entered into Excel. The lead 

investigator (HS), trained by the principle investigator (BC) marked all subject waves using a 
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rule-governed procedure to identify the most likely ABR and MLR peaks and troughs without 

referencing subject information. Peak latency was measured at the most prominent peak or 

trough for a given component within an expected time range (Picton, 2011). As peaks could 

sometimes be difficult to identify, either due to noise and/or the presence of a frequency 

following response (FFR), earlier or later components and components in other noise conditions 

were used as a reference as to where the peak was most likely to occur. If there was no 

discernable peak, then the peak latency was estimated, but given an amplitude of zero to indicate 

no peak. Amplitude was measured by taking the difference between V-V’, Na-Pa, Pa-Nb, Nb-Pb, 

and Pb-N1. 

Data from excel was arranged into a format consistent with Statview, then copied into 

Statview to be analyzed. First, descriptive statistics were generated. Prior to hypothesis testing 

with analyses of variance (ANOVA), correlations were performed to see if and which individual 

ABR/MLR components correlated with one another. Components that were correlated with 

respect to either latency or amplitude were analyzed together using a repeated measures 

ANOVA. With respect to latency, Na/Nb and Pa/Pb were found to be correlated respectively. As 

a result, negative latencies (Na/Nb) and positive latencies (Pa/Pb) were calculated together rather 

than as individual components. Alternatively, with respect to amplitude, Na/Pa and Nb/Pb were 

correlated, thus they were calculated together (i.e. Na with Pa and Nb with Pb). Significance for 

gender, ear, and condition were investigated using one and two-tailed ANOVAs. The 

significance level was set to p<.05.  
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Results 

MLR to Speech Tokens in Quiet and Noise 

Figure 1 shows a set of representative MLR waveforms obtained from an individual in 

each condition (see figure legend).  As can be seen, wave V and Na were not discernable in all 

noise conditions. Additionally, many waves included an FFR (figure component G) to the 

sustained vowel portion of the speech token, which made it difficult at times to mark the Pa 

component. 

       Appendices A-J provides tables of all ABR and MLR component latencies and amplitudes 

divided by gender, ear and condition.  

   
 

 
Figure 1. Waveforms from a representative subject (male, left ear) in response to the /da/token. 
ABR component wave V, and MLR components Na, Pa, Nb, and Pb are marked. Wave 
conditions are as follows: A) Quiet, B) Ipsi 10 dB SNR, C) Ipsi 20 dB SNR, D) Contralateral, E) 
Contra/Ipsi 10 dB SNR, and F) Contra/Ipsi 20 dB SNR. A frequency following response can also 
be seen in the contralateral waveform (G). 
 

G 
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 Gender Effects 

The first question asked was whether gender effects exist in the speech-evoked ABR 

wave V and MLR components. Analyses of variance revealed that there were significant effects 

of gender on ABR wave V latency and amplitude (Table 1).  These gender differences are 

illustrated in Figures 2a and 2b.  Females had larger amplitudes and shorter latencies when 

compared to males, consistent with results found in studies using click-stimuli (Don et al., 1993). 

   

 

 

 

 

Table 1. ANOVA ABR Component Latencies and Amplitudes 

ANOVA Table for V Latency ANOVA V Amplitude 

  DF 
F-
Value 

P-
Value   DF 

F-
Value 

P-
Value 

Gender 1 15.643 <.002 Gender 1 3.877 <.058 

Condition 5 10.889 <.001 Condition 5 21.756 <.0001 

Residual 26   Residual 26   
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Figure 2a, 2b. ABR component, wave V latency (2a) and amplitude (2b). Latencies and 
amplitudes are averaged over ear (right and left) and noise conditions. Error bars indicate 
standard deviation. 
 

Gender differences were also found for MLR components.  Figure 3 graphs the latency 

differences as a function of gender. Females had significantly shorter latencies than males for 

MLR components Na, Pa, and Pb, but not for Nb. (Table 2).  MLR component amplitudes 

showed a high correlation with one another (.040-0.76).  For this reason, a repeated measures 

ANOVA was used.  MLR amplitudes also showed a gender effect with females having larger 

amplitudes than males (Figure 4). However, there was a significant interaction between MLR-

component and gender, because the Na-Pa amplitude was larger in males than females. The 

results of the repeated-measures ANOVA can be found in the Table 3. 

 

Table 2. ANOVA MLR Component Latencies. 

ANOVA Table for Pa Latency ANOVA Table for Na Latency 

  DF 
F-
Value 

P-
Value   DF 

F-
Value 

P-
Value 

Gender 1 48.457 <.0001 Gender 1 49.983 <.0001 

Residual 26     Residual 26     

        

ANOVA Table for Pb Latency ANOVA Table for Nb Latency 

  DF 
F-
Value 

P-
Value   DF 

F-
Value 

P-
Value 

Gender 1 39.529 <.0001 Gender 1 .008 .9276 

Residual 26     Residual 26   

 

Table 3. ANOVA MLR Amplitude 

ANOVA MLR Amplitude (Total) 

  DF F-Value P-Value 

Gender 1 24.294 <.0001 

Condition 5 9.527 <.0001 

Subject(Group) 26   



 19

 

 
Figure 3. Average MLR component latencies. Latencies were significantly shorter for females, 
compared to males, for components Na, Pa, and Pb. No significant differences were found for 
component Nb. Error bars indicate standard deviation. 
 

  
Figure 4. Average MLR component amplitudes for females and males. Error bars indicate 
standard deviation. Gender differences can be seen in amplitude with respect to gender, 
particularly with the Na and Pb components with amplitudes being larger in females when 
compared to males. Error bars indicate standard deviation. 
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Suppression  

Suppression was defined as a change in amplitude or latency (compared with the quiet 

condition) with the introduction of contralateral noise at 65 dB SPL.  There were no significant 

effects of contralateral noise on ABR or MLR component latencies. There was a decrement in 

ABR wave V-V’ and MLR component Pa-Nb amplitude when contralateral noise was introduced 

(Figure 5).  There was, on average a 0.058-uV change in ABR and 0.109-uV change in MLR Pa-

Nb. These amplitude decrements were significant for wave V and for MLR component Pa-Nb 

(Table 4). 

 

 
Figure 5. Amplitude differences for wave V, ABR component, and MLR components between 
the quiet and contralateral condition, averaged over all components, showing 
inhibition/suppression. Amplitudes are averaged across all subjects for each component. As can 
be seen by a reduction in amplitude between the quiet and contralateral conditions, suppression 
was evident in the ABR component (wave V) and for Pb. Error bars indicate standard deviation. 
 
 
Table 4. ANOVA Contralateral Suppression V Amplitude 
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ANOVA Table for V Amplitude: Quiet 
and Contra 

ANOVA Table for Pa Amplitude: 
Quiet and Contra 

  DF F-Value 
P-
Value   DF 

F-
Value P-Value 

Condition 1 8.654 <.01 Condition 1 6.885 <.03 

Residual 26     Residual 26     

 

 
Figure 6. Plot of the difference between the quiet condition and five noise conditions. These 
differences are also broken down by component. Some differences show growth with the 
addition of noise, such as Nb-Pb for Ipsi 20 dB SNR and Pb-N1 for Ipsi 20 dB SNR, Contra, and 
Contra/Ipsi 20 dB SNR. 

 

Noise Condition  

In addition to evaluating the effects of contralateral noise for suppressive effects, the 

effects of ipsilateral noise at 10 and 20 dB SNR and contralateral noise presented with ipsilateral 

noise were measured. The results are illustrated in Figures 6, 7 and 8 and ANOVA results in 

Table 2. There were no statistically significant effects of noise condition on MLR component 

latencies (Figure 9). In general, the addition of noise, ipsilateral or contralateral, decreased 

amplitudes, with a greater reduction in amplitude in the presence of ipsilateral noise compared to 
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contralateral noise, as well as with a lower signal-to-noise ratio (SNR) compared with a higher 

SNR. This is illustrated in Figure 7. The degree to which various noise conditions reduced 

amplitudes also varied based on component. For example, Na-Pa and Pa-Nb amplitude seemed 

to be most affected by noise condition, whereas Nb-Pb and Pb-N1 were the least affected (Figure 

9). Lack of suppression with certain components, might represent a difference in how efferents 

function at the corresponding anatomical generators. 

 

 
Figure 7. Amplitude changes as a function of condition, averaged over all peaks. As can be seen 
with the bar graphs, amplitude varies with differing noise condition for the speech-evoked MLR. 
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Figure 8. Amplitude changes with condition for each individual MLR component. As is evident 
by bar graphs, amplitude changes with noise condition also vary by MLR component. 
 
 

 
Figure 9. Mean latency for each component are indicated for each noise condition.  Component 
is the parameter.  
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Ear 

There were no ear-related differences in ABR or MLR latencies or amplitudes when 

measured from the ipsilateral electrode montage (Cz-A1 for the left ear and Cz-A2 for the right 

ear). There were also no interactions between ear and gender or ear and noise-condition.  

 

Summary of Results 

Gender differences in the ABR component wave V and MLR components were found. 

Females had shorter wave V latencies and larger amplitudes compared to males.  Females also 

had larger MLR amplitudes compared to males, but there were no latency differences. Effects of 

contralateral noise on amplitudes of the MLR components were found, indicating suppression. 

Noise condition significantly affected wave V amplitudes and MLR component amplitudes. 

Latencies also varied with differing noise conditions. Finally, there were no ear differences in 

either ABR or MLR latencies/amplitudes.  

 

Discussion 

In audiology, clinical applications of the MLR include measuring estimations of hearing 

thresholds (Lenarz, Gülzow, Grözinger, & Hoth, 1986) and evaluating central auditory 

processing disorders (Kraus & McGee, 1990). Because the MLR is used to evaluate central 

auditory processing disorders, it is important not only to know how gender might affect the 

amplitudes and latencies of the MLR, but also how ear and noise conditions possibly affect these 

component values. Handedness was identified as an important subject characteristic to control 

for. Mohebbi et al. (2014) found that right-handers had a left hemisphere dominance in Pa 

amplitude, whereas left-handers did not demonstrate hemisphere dominance. Handedness was 
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not analyzed as a factor due to the low number of left-handers in the study. Only one subject out 

of 27 had a significant left-hand score according to the Edinburgh Handedness Inventory 

(Dragovic, 2004). Additionally, it is also important to understand how suppression with low-

level noise affects these components compared to a loud noise that might trigger an acoustic 

reflex, consequently affecting MLR amplitude (Musiek, Charette, Kelly, Lee, & Musiek, 1999), 

thus altering how any deviations in absolute and inter-peak latencies, and primarily amplitudes 

are to be interpreted in the diagnosis of CAPD. 

 

Gender Differences in the Auditory System 

The results of the current experiment support gender differences in the speech-evoked 

MLR, that are consistent with previous research using click stimuli for the level of the inner ear 

(Berninger, 2007; Kei et al., 1997; Keogh, 2001; Liu et al., 2009; Thornton et al., 2003), 

brainstem (Don et al., 1993; Morlet et al., 1995; Snihur & Hampson, 2011), and auditory 

thalamus/primary-auditory cortex (Tucker, 2002; Zakaria, Jalaei, & Wahab, 2016). This is in 

contrast to one other study investigating gender differences in the MLR (Kraus et al., 1985). 

Unlike other studies, Kraus et al. investigated gender differences in the detection of the MLR 

between females and male children, while other studies investigated gender differences in the 

MLR itself. 

Gender differences found in other studies, suggest that sex hormones have an influence 

on the development of the human auditory system (McFadden, 2009). Although there are gender 

differences in head size and peripheral auditory structures, such as basilar membrane length, 

these structural differences cannot account for the size of gender differences in auditory evoked 
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potentials. This suggests that underlying auditory neuroanatomy is different for females 

compared to males and that hormone levels after birth may also play a role. 

Previous studies have found differences in cortical white matter between males and 

females (Kanaan et al., 2012). It is possible that there may be some evolutionary reason as to 

why the central auditory nervous system differs between genders, resulting in the differences 

seen in this study and previous studies. These differences are likely triggered by hormone 

exposure in utero (Swaab, 2007). The extent of functional gender differences in auditory 

function is debatable (Hyde & Linn, 1988), but research suggests that females may have better 

hearing sensitivity (Dreisbach, Kramer, Cobos, & Cowart, 2007) and are better at speech reading 

words when compared to males (Strelnikov et al., 2009), which may be related, at least in part, to 

the gender differences found in this study to a speech token. Interestingly, despite evidence 

suggesting that females have a small advantage in speech perception, including speech reading, 

one study found that females had a higher incidence of disability, related to hearing loss, 

compared to males (Alexandre et al., 2014). 

As seen in animal studies, the hormone of main concern is androgen or estradiol (the 

converted form of androgen). Since all fetus’ begin in a similar state, androgen exposure is what 

likely determines gender differentiation (Jost, Vigier, Prépin, & Perchellet, 1973). Gender 

differences are likely not exclusively limited to the categories of male and female, although 

gender differences outside of these categories might not always be statistically significant. 

McFadden et al. (1999) found that homosexual females had more masculinized cochlea, which 

resulted in fewer and weaker spontaneous SOAEs, trending more towards findings for 

heterosexual males (McFadden & Pasanen, 1999). This is also paralleled in click evoked 

otoacoustic emissions (CEOAEs) (McFadden, Loehlin, & Pasanen, 1996). There may also be 
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masculinization of the central auditory nervous system for homosexual females. However, the 

investigators did not find differences between homosexual and heterosexual males. This might 

be due to the auditory system already being masculinized for homosexual males, reducing 

significant differences between the two groups. 

McFadden (2009) summarized findings regarding gender differences in spotted hyenas, 

rhesus and marmoset monkeys, and sheep. McFadden found a reduction in the robustness of 

CEOAEs was associated with high exposure to androgen in utero (McFadden, 2009). Snihur et 

al. (2012) also showed an effect of testosterone levels on CEOAEs in men and women. ABR 

latency can change depending on time course of the menstrual cycle in females, also indicating 

the influence of hormones on auditory nervous system function.  Serra et al. (2003) found that 

absolute and inter-peak latencies were shorter during the periovular stage of the menstrual cycle.  

Taking account of fluctuating testosterone levels in men and hormonal changes during 

the menstrual cycle, it seems that gender differences are not fixed or simple. Gender differences 

may result from a combination of permanent peripheral and central differences based on gender 

differences from androgen exposure in utero, and current levels of testosterone in both males and 

females. This multifaceted gender effect on auditory measures may explain why studies have 

found gender differences where others have not, especially when not controlling testosterone 

levels, other hormonal changes, medication, and even gender expression. To date, no study 

investigating gender difference has considered if these gender differences still exist in 

transgender individuals and to what extent. 

The MLR also changes with increasing hearing loss (Hesse & Gerken, 2002; Van 

Maanen & Stapells, 2009). Hesse and Gerken (2002) investigated the effect of hearing loss on 

the amplitude and latency of the MLR and found a significant group difference, resulting in 
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larger Pa-Nb amplitudes and significantly greater Pb-N1 slope, as a function of stimulus level in 

individuals with hearing loss. In contrast, ABR amplitudes are diminished with increasing 

hearing loss (Verhulst, Jagadeesh, Mauermann, & Ernst, 2016). 

Considering the findings of this study and previous research on MLR with increasing 

hearing loss, it is possible that gender differences seen in the MLR with normal-hearing subjects 

may be further exacerbated with various degrees of hearing loss and health conditions, such as 

chronic smoking, which has been associated with larger Nb-Pb amplitudes and shorter Nb 

latency (Ramkissoon & Beverly, 2014). Considering that gender differences are greater with 

older populations and hearing loss greatly affects the amplitude of the MLR, it seems that gender 

differences found in this paper might be larger amongst older individuals with hearing loss than 

the general population, thus making it more important to take into account when interpreting 

audiologic findings. Not considering how individual differences (i.e. gender) affect the latency of 

the MLR might lead to misdiagnosis in cases where variations in absolute and inter-peak 

latencies are borderline normal. 

Additionally, gender differences in noise exposure from recreation or work may also 

exacerbate these gender differences (McFadden, 1998), thus it is important to control for noise 

exposure when investigating gender differences among older individuals and/or individuals with 

hearing loss. Gender differences in the middle latency response among elderly individuals are 

unknown, as only two studies, the current study and one other paper, have investigated gender 

differences in the MLR in adults (Kraus et al., 1985; Tucker, 2002). However, gender differences 

have been investigated in the MMN, P300, and N400 among elderly participants, revealing that 

gender differences were maintained in older participants, other than the N400, but were not as 

robust compared to younger participants (Tsolaki et al., 2015). Tlumak et al. (2015) found that 
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although the long-latency steady-state response remained stable with age, the 40 Hz ASSR, 

which corresponds to the MLR, was affected after about 40 years of age. It is possible that 

greater variability of AEPs in general, due to differences in neural integrity (S. Anderson, 

Parbery-Clark, White-Schwoch, & Kraus, 2012), might reduce overall gender differences in 

older populations (Tsolaki et al., 2015). In other words, gender differences may exist, but may 

not be measurable due to high inter-subject variability and difficulty controlling for noise 

exposure, real-world performance with speech recognition and understanding, and etiology of 

hearing loss, if any. 

The findings of this study impact clinical decision making. Assessments using the MLR 

should take into consideration gender differences when determining whether deviations from 

normal peak-to-peak, inter-peak latencies, and amplitudes are significant. Additionally, this 

study has shown that the MLR can be reliably produced with a speech token for use in objective 

assessment of hearing at the level of the auditory thalamus and primary auditory cortex. 

 

Suppression and Effects of Noise 

 Human beings are rarely in quiet situations, so it is important to understand how noise 

impacts speech understanding. Therefore, this study also investigated contralateral suppression. 

Additionally, there is rarely a situation when an individual would only have noise in the opposite 

ear. As a result, the effect of ipsilateral noise alone was also investigated. This was done for two 

reasons: 1) contralateral/ipsilateral acoustic stimulation is more realistic, and 2) it was also 

important to investigate whether the addition of ipsilateral noise would improve neural encoding 

of the speech token. The addition of ipsilateral noise may reduce some of the suppressive effects 

of the contralateral noise (Chintanpalli, Jennings, Heinz, & Strickland, 2012; Guinan, 2006). 
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This is sometimes called “release from suppression” or “unmasking”. For this reason, both 

ipsilateral and contralateral/ipsilateral conditions were included in addition to the contralateral 

noise condition. 

This study showed an effect of contralateral noise, when compared to the quiet condition, 

for waves V and Pa. However, release from suppression was not evident. Earlier it was 

mentioned that some studies have found that suppression is beneficial for speech in noise 

understanding, but that others found that there was no correlation between suppression and the 

ability to understand speech in noise. The practical implications of release from suppression are 

also up for debate (Kumar & Vanaja, 2004). Some studies have found no evidence of release 

from suppression with binaural noise (Berlin et al., 1995). Aside from the practical application of 

a measure of release from suppression, it is difficult to say why a release from suppression was 

not evident in the current study, as there are not many studies that investigate using this measure. 

Suppression effects are very small (although statistically significant) and a “release from 

suppression”, unless it brought the response back to the unsuppressed condition, would be very 

difficult to measure using the methods used in this study.  

 

Ear/Laterality 

In contrast to previous research on click-evoked OAEs and ABRs, no significant ear 

differences in MLR latency or amplitude were found. Although, previous studies have 

demonstrated ear differences for MLR or 40 Hz ASSR. A trend of right hemisphere dominance 

was found for the 40 Hz ASSR as measured by magnetoencephalography (MEG) using a 

sinusoidal tone as the carrier frequency (Ross et al., 2005). Weihing and Musiek (2014) found 

ear-test order more greatly impacted subject variability in older adults. The ear-effect was 
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calculated by categorizing waves as either lower-amplitude or higher-amplitude, rather than 

focusing on left versus right, as this might vary between individuals. For the MLR evoked by a 

1000 Hz tone-pip, differences were significantly larger in older adults compared to young adults. 

In both studies, tones, rather than a complex speech-token were used. Anderson (2011) 

investigated lateralization of the MLR to the speech token /da/ finding no differences between 

left and right sides for the whole token. The paper went on to discuss the possibility that at the 

level of the MLR (i.e. auditory thalamus and primary auditory cortex) auditory information is 

coded spatially rather than comparing right and left ears. It may be that ear differences were 

eliminated by eliciting the MLR with a speech token, either due to its complexity or its 

resemblance of speech, as both the present study and one other study (J. M. Anderson, 2011) did 

not find differences between ears in the speech-evoked MLR. 

 

Conclusion 

Investigating gender differences are important to understanding the central auditory 

system and what patient characteristics impact differences in hearing in quiet and in noise. The 

current study has found gender differences in the speech-evoked MLR, evidence of contralateral 

suppression, and an effect of noise condition on ABR/MLR component amplitudes. The gender 

differences found in this study agree with previous studies that have found gender differences at 

the level of the inner ear, brainstem, and auditory thalamus in the click-evoked MLR. However, 

ear differences and release from suppression were not evident, which may reflect a difference 

between the MLR evoked by a speech-token and a simple stimulus, such as a click. Further 

research is needed to confirm gender differences found in the click-evoked and speech-evoked 

MLR and investigate how more complex manifestations of gender, such as transgender 

identities, influence these differences.  
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Appendices 
 
Appendix A: Descriptive statistics of group average for wave V latency by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 8.479 0.868 0.034 4.8 11.7 

F Contra 8.084 0.515 0.097 7.2 9.6 

F 
Contra/Ipsi 10 dB 
SNR 8.791 1.069 0.202 6 11.25 

F 
Contra/Ipsi 20 dB 
SNR 8.62 0.858 0.162 6.75 10.8 

F Ipsi 10 dB SNR 8.341 1.265 0.239 5.4 10.65 

F Ipsi 20 dB SNR 8.266 0.817 0.154 5.55 9.45 

F Quiet 8.014 0.317 0.06 7.5 8.85 

M Contra 8.308 0.457 0.09 7.5 9.15 

M 
Contra/Ipsi 10 dB 
SNR 8.625 1.108 0.217 5.55 10.95 

M 
Contra/Ipsi 20 dB 
SNR 8.325 1.119 0.22 4.8 9.45 

M Ipsi 10 dB SNR 9.185 0.801 0.157 7.05 10.8 

M Ipsi 20 dB SNR 8.55 0.5 0.098 7.65 9.75 

M Quiet 8.244 0.468 0.092 7.2 9 

Right 

F Contra 7.977 0.462 0.087 6.9 9.15 

F 
Contra/Ipsi 10 dB 
SNR 8.7 1.164 0.22 5.85 11.25 

F 
Contra/Ipsi 20 dB 
SNR 8.679 1.02 0.193 6.9 11.4 

F Ipsi 10 dB SNR 8.502 0.799 0.151 7.05 9.9 

F Ipsi 20 dB SNR 8.416 0.669 0.126 7.5 11.25 

F Quiet 7.875 0.687 0.13 6 9.45 

M Contra 8.44 0.436 0.085 7.5 9.15 

M 
Contra/Ipsi 10 dB 
SNR 8.908 1.095 0.215 6.75 11.7 

M 
Contra/Ipsi 20 dB 
SNR 8.74 0.519 0.102 7.65 9.75 

M Ipsi 10 dB SNR 8.833 1.087 0.213 6.45 10.95 

M Ipsi 20 dB SNR 8.787 0.769 0.151 7.65 11.7 

M Quiet 8.394 0.578 0.113 7.35 9.75 
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Appendix B: Descriptive statistics of group average for wave V amplitude by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 0.22 0.152 0.006 0 1.05 

F Contra 0.246 0.155 0.029 0.06 0.61 

F 
Contra/Ipsi 10 dB 
SNR 0.168 0.196 0.037 0 0.92 

F 
Contra/Ipsi 20 dB 
SNR 0.159 0.165 0.031 0 0.84 

F Ipsi 10 dB SNR 0.191 0.127 0.024 0.03 0.58 

F Ipsi 20 dB SNR 0.29 0.221 0.042 0 1.05 

F Quiet 0.353 0.155 0.029 0.12 0.77 

M Contra 0.253 0.117 0.023 0.05 0.48 

M 
Contra/Ipsi 10 dB 
SNR 0.143 0.089 0.017 0.01 0.33 

M 
Contra/Ipsi 20 dB 
SNR 0.163 0.114 0.022 0.02 0.44 

M Ipsi 10 dB SNR 0.162 0.079 0.015 0.01 0.3 

M Ipsi 20 dB SNR 0.224 0.103 0.02 0.07 0.41 

M Quiet 0.32 0.152 0.03 0.06 0.7 

Right 

F Contra 0.29 0.136 0.026 0.08 0.59 

F 
Contra/Ipsi 10 dB 
SNR 0.17 0.109 0.021 0.02 0.45 

F 
Contra/Ipsi 20 dB 
SNR 0.228 0.139 0.026 0 0.59 

F Ipsi 10 dB SNR 0.169 0.133 0.025 0 0.58 

F Ipsi 20 dB SNR 0.205 0.12 0.023 0 0.56 

F Quiet 0.302 0.163 0.031 0.04 0.71 

M Contra 0.262 0.121 0.024 0.05 0.56 

M 
Contra/Ipsi 10 dB 
SNR 0.172 0.164 0.032 0.01 0.88 

M 
Contra/Ipsi 20 dB 
SNR 0.177 0.169 0.033 0.02 0.88 

M Ipsi 10 dB SNR 0.132 0.067 0.013 0 0.27 

M Ipsi 20 dB SNR 0.195 0.098 0.019 0.01 0.44 

M Quiet 0.309 0.16 0.031 0.08 0.66 
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Appendix C: Descriptive statistics of group average for wave Na latency by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 18.955 2.074 0.081 12.75 25.2 

F Contra 18.793 2.227 0.421 12.75 21.15 

F 
Contra/Ipsi 10 dB 
SNR 18.198 2.38 0.45 13.5 22.2 

F 
Contra/Ipsi 20 dB 
SNR 18.332 2.408 0.455 12.9 22.05 

F Ipsi 10 dB SNR 18.745 1.882 0.356 14.85 21.6 

F Ipsi 20 dB SNR 18.295 1.884 0.356 12.75 21.45 

F Quiet 18.177 1.966 0.372 12.9 21 

M Contra 19.615 1.945 0.381 15.6 22.5 

M 
Contra/Ipsi 10 dB 
SNR 19.765 1.985 0.389 15.6 25.2 

M 
Contra/Ipsi 20 dB 
SNR 19.385 1.642 0.322 16.35 21.6 

M Ipsi 10 dB SNR 19.863 1.582 0.31 16.5 22.5 

M Ipsi 20 dB SNR 19.8 1.652 0.324 16.05 22.05 

M Quiet 19.644 1.771 0.347 14.85 22.05 

Right 

F Contra 18.027 2.531 0.478 13.5 24.15 

F 
Contra/Ipsi 10 dB 
SNR 18.332 2.232 0.422 14.25 22.2 

F 
Contra/Ipsi 20 dB 
SNR 18.22 1.695 0.32 14.7 21 

F Ipsi 10 dB SNR 18.67 2.271 0.429 13.65 21.45 

F Ipsi 20 dB SNR 18.605 1.701 0.321 13.5 21.6 

F Quiet 18.643 1.669 0.315 5 21.6 

M Contra 19.477 2.173 0.426 14.4 22.05 

M 
Contra/Ipsi 10 dB 
SNR 18.773 2.287 0.449 13.95 22.35 

M 
Contra/Ipsi 20 dB 
SNR 19.327 2.009 0.394 14.4 22.05 

M Ipsi 10 dB SNR 20.071 1.785 0.35 16.05 22.5 

M Ipsi 20 dB SNR 19.229 2.231 0.437 15.45 22.5 

M Quiet 19.425 1.889 0.37 15.9 22.65 
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Appendix D: Descriptive statistics of group average for wave Na amplitude by condition 
 

Gender Condition Mean Std. Dev. 
Std. 
Error Minimum Maximum 

Left 

TOTAL 0.414 0.24 0.009 0 1.83 

F Contra 0.478 0.292 0.055 0.08 1.27 

F Contra/Ipsi 10 dB SNR 0.449 0.331 0.063 0.06 1.44 

F Contra/Ipsi 20 dB SNR 0.446 0.34 0.064 0.08 1.77 

F Ipsi 10 dB SNR 0.365 0.233 0.044 0.01 0.87 

F Ipsi 20 dB SNR 0.564 0.309 0.058 0.18 1.47 

F Quiet 0.554 0.276 0.052 0.12 1.36 

M Contra 0.426 0.183 0.036 0.09 0.9 

M Contra/Ipsi 10 dB SNR 0.322 0.123 0.024 0.01 0.64 

M Contra/Ipsi 20 dB SNR 0.374 0.127 0.025 0.15 0.63 

M Ipsi 10 dB SNR 0.306 0.122 0.024 0.05 0.49 

M Ipsi 20 dB SNR 0.402 0.152 0.03 0.08 0.72 

M Quiet 0.432 0.126 0.025 0.24 0.63 

Right 

F Contra 0.53 0.307 0.058 0.16 1.7 

F Contra/Ipsi 10 dB SNR 0.367 0.202 0.038 0.1 0.97 

F Contra/Ipsi 20 dB SNR 0.405 0.236 0.045 0.12 1.46 

F Ipsi 10 dB SNR 0.297 0.169 0.032 0.02 0.67 

F Ipsi 20 dB SNR 0.51 0.346 0.065 0.14 1.83 

F Quiet 0.532 0.338 0.064 0 1.61 

M Contra 0.382 0.146 0.029 0.2 0.68 

M Contra/Ipsi 10 dB SNR 0.309 0.105 0.021 0.09 0.56 

M Contra/Ipsi 20 dB SNR 0.34 0.154 0.03 0.09 0.55 

M Ipsi 10 dB SNR 0.282 0.117 0.023 0.04 0.64 

M Ipsi 20 dB SNR 0.355 0.139 0.027 0.13 0.63 

M Quiet 0.463 0.166 0.033 0.19 1.04 
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Appendix E: Descriptive statistics of group average for wave Pa latency by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 30.924 1.709 0.067 25.65 39.75 

F Contra 30.664 1.556 0.294 26.85 34.2 

F 
Contra/Ipsi 10 dB 
SNR 30.337 2.01 0.38 26.25 34.35 

F 
Contra/Ipsi 20 dB 
SNR 30.787 1.645 0.311 25.95 32.25 

F Ipsi 10 dB SNR 31.029 1.861 0.352 27.15 33.75 

F Ipsi 20 dB SNR 30.37 1.426 0.269 27.6 32.25 

F Quiet 30.632 1.427 0.27 27.15 33.15 

M Contra 31.327 1.031 0.202 27.3 32.55 

M 
Contra/Ipsi 10 dB 
SNR 31.108 1.905 0.374 27.9 33.3 

M 
Contra/Ipsi 20 dB 
SNR 31.517 1.33 0.261 26.25 33.45 

M Ipsi 10 dB SNR 30.837 2.102 0.412 26.85 34.05 

M Ipsi 20 dB SNR 31.575 0.905 0.178 28.35 33 

M Quiet 31.194 1.296 0.254 27.15 32.7 

Right 

F Contra 30.541 1.271 0.24 26.7 31.65 

F 
Contra/Ipsi 10 dB 
SNR 30.702 1.807 0.341 27.3 33.45 

F 
Contra/Ipsi 20 dB 
SNR 30.455 1.5 0.284 27.15 32.7 

F Ipsi 10 dB SNR 29.871 1.974 0.373 27 32.7 

F Ipsi 20 dB SNR 30.648 1.44 0.272 27.45 32.2 

F Quiet 29.829 1.898 0.359 26.1 33.75 

M Contra 31.91 2.054 0.403 26.55 39.75 

M 
Contra/Ipsi 10 dB 
SNR 31.338 1.827 0.358 27.3 33.45 

M 
Contra/Ipsi 20 dB 
SNR 31.16 1.963 0.385 26.1 33.45 

M Ipsi 10 dB SNR 31.892 1.742 0.342 27.3 34.65 

M Ipsi 20 dB SNR 31.287 1.748 0.343 25.65 34.5 

M Quiet 31.558 0.846 0.166 28.35 32.7 
  



 37

Appendix F: Descriptive statistics of group average for wave Pa amplitude by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 0.671 0.273 0.011 0.1 2.84 

F Contra 0.704 0.395 0.075 0.22 1.65 

F 
Contra/Ipsi 10 dB 
SNR 0.554 0.253 0.048 0.24 1.35 

F 
Contra/Ipsi 20 dB 
SNR 0.646 0.292 0.055 0.25 1.32 

F Ipsi 10 dB SNR 0.526 0.182 0.034 0.01 0.83 

F Ipsi 20 dB SNR 0.776 0.303 0.057 0.39 1.61 

F Quiet 0.832 0.318 0.06 0.22 1.44 

M Contra 0.723 0.202 0.04 0.24 1.16 

M 
Contra/Ipsi 10 dB 
SNR 0.514 0.179 0.035 0.13 1.08 

M 
Contra/Ipsi 20 dB 
SNR 0.657 0.18 0.035 0.33 1.02 

M Ipsi 10 dB SNR 0.586 0.134 0.026 0.35 0.81 

M Ipsi 20 dB SNR 0.726 0.189 0.037 0.42 1.27 

M Quiet 0.846 0.227 0.044 0.5 1.33 

Right 

F Contra 0.773 0.301 0.057 0.24 1.6 

F 
Contra/Ipsi 10 dB 
SNR 0.513 0.21 0.04 0.17 1.07 

F 
Contra/Ipsi 20 dB 
SNR 0.709 0.266 0.05 0.37 1.45 

F Ipsi 10 dB SNR 0.541 0.232 0.044 0.13 1.23 

F Ipsi 20 dB SNR 0.71 0.311 0.059 0.01 1.63 

F Quiet 0.83 0.474 0.09 0.39 2.84 

M Contra 0.688 0.212 0.042 0.29 1.15 

M 
Contra/Ipsi 10 dB 
SNR 0.505 0.101 0.02 0.33 0.71 

M 
Contra/Ipsi 20 dB 
SNR 0.612 0.195 0.038 0.32 1.15 

M Ipsi 10 dB SNR 0.578 0.163 0.032 0.35 0.97 

M Ipsi 20 dB SNR 0.723 0.203 0.04 0.4 1.11 

M Quiet 0.82 0.206 0.04 0.47 1.27 
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Appendix G: Descriptive statistics of group average for wave Nb latency by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 38.312 3.3 0.13 31.05 48 

F Contra 37.939 3.856 0.729 33.3 45 

F 
Contra/Ipsi 10 dB 
SNR 39.225 3.882 0.734 32.85 46.8 

F 
Contra/Ipsi 20 dB 
SNR 39.032 3.957 0.748 34.2 45.3 

F Ipsi 10 dB SNR 38.936 3.07 0.58 35.1 45.45 

F Ipsi 20 dB SNR 38.861 3.362 0.635 34.8 45.75 

F Quiet 39.98 3.887 0.735 32.85 46.5 

M Contra 39.26 4.063 0.797 33.75 46.8 

M 
Contra/Ipsi 10 dB 
SNR 37.587 1.935 0.379 34.65 43.35 

M 
Contra/Ipsi 20 dB 
SNR 38.36 3.553 0.697 33.6 45.9 

M Ipsi 10 dB SNR 37.437 0.709 0.139 36.3 38.85 

M Ipsi 20 dB SNR 37.373 1.791 0.351 33.75 42.9 

M Quiet 38.746 3.232 0.634 35.4 45 

Right 

F Contra 37.323 3.442 0.651 31.05 43.05 

F 
Contra/Ipsi 10 dB 
SNR 37.623 2.407 0.455 34.65 45.6 

F 
Contra/Ipsi 20 dB 
SNR 37.859 3.263 0.617 34.05 45.6 

F Ipsi 10 dB SNR 37.436 2.034 0.384 34.35 44.55 

F Ipsi 20 dB SNR 37.189 2.894 0.547 31.2 45.9 

F Quiet 38.202 3.603 0.681 32.55 43.8 

M Contra 38.602 4.179 0.82 33.45 46.95 

M 
Contra/Ipsi 10 dB 
SNR 38.833 3.737 0.733 34.2 46.8 

M 
Contra/Ipsi 20 dB 
SNR 39.363 4.728 0.927 33.15 48 

M Ipsi 10 dB SNR 37.408 1.57 0.308 34.05 39.75 

M Ipsi 20 dB SNR 37.102 1.384 0.271 33.9 39.15 

M Quiet 39.819 3.349 0.657 35.85 46.8 
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Appendix H: Descriptive statistics of group average for wave Nb amplitude by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 0.571 0.278 0.011 0.12 2.92 

F Contra 0.636 0.236 0.045 0.28 1.25 

F 
Contra/Ipsi 10 dB 
SNR 0.518 0.186 0.035 0.24 1.03 

F 
Contra/Ipsi 20 dB 
SNR 0.648 0.244 0.046 0.32 1.26 

F Ipsi 10 dB SNR 0.534 0.19 0.036 0.26 0.98 

F Ipsi 20 dB SNR 0.646 0.307 0.058 0.16 1.38 

F Quiet 0.605 0.251 0.047 0.2 1.05 

M Contra 0.521 0.204 0.04 0.16 1.03 

M 
Contra/Ipsi 10 dB 
SNR 0.475 0.179 0.035 0.21 1 

M 
Contra/Ipsi 20 dB 
SNR 0.537 0.256 0.05 0.25 1.18 

M Ipsi 10 dB SNR 0.539 0.191 0.037 0.3 1.04 

M Ipsi 20 dB SNR 0.622 0.277 0.054 0.22 1.42 

M Quiet 0.577 0.332 0.065 0.16 1.64 

Right 

F Contra 0.66 0.275 0.052 0.29 1.52 

F 
Contra/Ipsi 10 dB 
SNR 0.544 0.236 0.045 0.27 1.45 

F 
Contra/Ipsi 20 dB 
SNR 0.608 0.222 0.042 0.34 1.27 

F Ipsi 10 dB SNR 0.574 0.17 0.032 0.31 0.84 

F Ipsi 20 dB SNR 0.712 0.413 0.078 0.3 2.4 

F Quiet 0.67 0.505 0.095 0.26 2.92 

M Contra 0.506 0.291 0.057 0.22 1.39 

M 
Contra/Ipsi 10 dB 
SNR 0.404 0.169 0.033 0.14 0.75 

M 
Contra/Ipsi 20 dB 
SNR 0.492 0.268 0.053 0.23 1.12 

M Ipsi 10 dB SNR 0.53 0.273 0.054 0.19 1.15 

M Ipsi 20 dB SNR 0.597 0.32 0.063 0.12 1.39 

M Quiet 0.525 0.303 0.059 0.18 1.33 
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Appendix I: Descriptive statistics of group average for wave Pb latency by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 49.552 2.08 0.082 42.75 59.1 

F Contra 48.761 1.755 0.332 45.3 53.85 

F 
Contra/Ipsi 10 dB 
SNR 49.618 1.705 0.322 46.65 53.85 

F 
Contra/Ipsi 20 dB 
SNR 49.371 1.329 0.251 47.4 52.35 

F Ipsi 10 dB SNR 49.591 1.922 0.363 45.15 53.1 

F Ipsi 20 dB SNR 49.13 1.447 0.273 46.05 52.05 

F Quiet 49.227 2.866 0.542 42.75 55.05 

M Contra 49.465 1.34 0.263 47.85 52.5 

M 
Contra/Ipsi 10 dB 
SNR 50.065 1.76 0.345 46.2 54.3 

M 
Contra/Ipsi 20 dB 
SNR 49.748 1.67 0.327 46.8 54.6 

M Ipsi 10 dB SNR 50.579 1.838 0.36 46.95 54.15 

M Ipsi 20 dB SNR 49.904 1.453 0.285 47.1 52.8 

M Quiet 49.852 2.544 0.499 47.1 56.1 

Right 

F Contra 48.487 1.957 0.37 45.3 54.3 

F 
Contra/Ipsi 10 dB 
SNR 49.066 1.507 0.285 45.6 51.9 

F 
Contra/Ipsi 20 dB 
SNR 48.729 1.382 0.261 45 52.2 

F Ipsi 10 dB SNR 49.023 2.273 0.43 45 53.1 

F Ipsi 20 dB SNR 48.739 2.143 0.405 44.7 52.95 

F Quiet 49.109 3.081 0.582 42.75 53.85 

M Contra 50.048 2.269 0.445 47.4 57.3 

M 
Contra/Ipsi 10 dB 
SNR 49.967 1.778 0.349 45.9 53.7 

M 
Contra/Ipsi 20 dB 
SNR 50.256 2.403 0.471 47.25 59.1 

M Ipsi 10 dB SNR 50.515 1.899 0.372 46.5 52.95 

M Ipsi 20 dB SNR 50.365 2.452 0.481 45 57.15 

M Quiet 50.071 2.549 0.5 46.35 55.65 
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Appendix J: Descriptive Statistics- Group average for wave Pb amplitude by condition 
 

Gender Condition Mean Std. Dev. Std. Error Minimum Maximum 

Left 

TOTAL 0.559 0.291 0.011 0.1 2.98 

F Contra 0.648 0.263 0.05 0.24 1.32 

F 
Contra/Ipsi 10 dB 
SNR 0.548 0.218 0.041 0.21 1.21 

F 
Contra/Ipsi 20 dB 
SNR 0.672 0.28 0.053 0.3 1.31 

F Ipsi 10 dB SNR 0.616 0.243 0.046 0.31 1.1 

F Ipsi 20 dB SNR 0.638 0.236 0.045 0.32 1.22 

F Quiet 0.545 0.18 0.034 0.19 0.92 

M Contra 0.543 0.271 0.053 0.18 1.25 

M 
Contra/Ipsi 10 dB 
SNR 0.45 0.15 0.029 0.12 0.79 

M 
Contra/Ipsi 20 dB 
SNR 0.519 0.226 0.044 0.1 1.07 

M Ipsi 10 dB SNR 0.487 0.158 0.031 0.28 0.94 

M Ipsi 20 dB SNR 0.564 0.281 0.055 0.12 1.33 

M Quiet 0.477 0.344 0.068 0.11 1.49 

Right 

F Contra 0.691 0.283 0.053 0.35 1.48 

F 
Contra/Ipsi 10 dB 
SNR 0.627 0.294 0.056 0.36 1.78 

F 
Contra/Ipsi 20 dB 
SNR 0.698 0.243 0.046 0.24 1.22 

F Ipsi 10 dB SNR 0.575 0.263 0.05 0.24 1.23 

F Ipsi 20 dB SNR 0.63 0.387 0.073 0.22 2.29 

F Quiet 0.614 0.551 0.104 0.15 2.98 

M Contra 0.53 0.304 0.06 0.14 1.23 

M 
Contra/Ipsi 10 dB 
SNR 0.374 0.166 0.033 0.19 0.82 

M 
Contra/Ipsi 20 dB 
SNR 0.475 0.284 0.056 0.11 1.17 

M Ipsi 10 dB SNR 0.435 0.245 0.048 0.19 1.16 

M Ipsi 20 dB SNR 0.518 0.325 0.064 0.22 1.46 

M Quiet 0.483 0.3 0.059 0.15 1.29 
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