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Abstract 
 

A lack of accurate, reliable data on coupled carbon and water fluxes for Earth’s expansive 

ecosystems remains a major barrier to a complete understanding of the terrestrial carbon cycle.  

The remotely sensed Photochemical Reflectance Index (PRI) measures deepoxidation of the 

xanthophyll cycle at wavelength 531nm and is one of the few pigment-based vegetation indices 

sensitive to rapid plant physiological responses.  PRI presents new opportunities to study 

ecosystems on a diurnal time scale, as well as seasonal processes in evergreen systems where 

complex vegetation dynamics are not reflected by small annual changes in chlorophyll content or 

leaf structure.  However, systematic PRI acquisition in conjunction with leaf and ecosystem flux 

measurements are needed in natural, diverse ecosystems.  The growing field of proximal remote 

sensing affords the opportunity to bridge leaf, canopy and ecosystem scales, for a physiological 

inspection of whole ecosystem dynamics.  The Southwest U.S. provides a natural setting for 

examining the influence of environmental drivers on the productivity of drought-sensitive 

forests, as well as for evaluating our ability to track these relationships using optical methods.  

We studied PRI in a semi-arid, sub-alpine mixed conifer forest, in order to assess its ability to 

serve as a proxy for dynamic photoprotection.  We combined canopy spectral measurements with 

eddy covariance flux and sap flow methods to determine the sensitivity of PRI to seasonal 

changes in gross primary productivity (GPP) and the ecohydrological variability of a high stress 

environment.  In addition, we combined top-of-canopy leaf-level gas exchange, chlorophyll 

fluorescence, and hyperspectral measurements to determine the sensitivity of PRI to diurnal 

changes in needle photosynthetic function, and confirm the extent to which canopy diurnal 

patterns reflect leaf physiology.  At the canopy scale we found that the relationship between PRI 

and GPP was inconsistent over the course of the monsoon season, shifting from a negative 
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relationship in July and August (R2=.62), to a positive relationship in September (R2=.48).  

Multiple linear regression with soil moisture and air temperature showed that PRI responded to 

dynamic water and energy limitations of this system (R2=.41).  We report for the first time a 

relationship between seasonal PRI and sap flow in a natural forest (R2=.55).  These results 

suggest that on a seasonal scale PRI is an effective indicator of photosynthetic response to 

ecohydrological constraints.  On a diurnal scale we found that PRI remained constant throughout 

the day at both leaf and canopy scales, and we suggest that saturated light conditions drive 

retention of xanthophylls in a de-epoxidized state.  We contribute evidence that remotely sensed 

PRI has potential to fill a major gap in our ability to distinguish how water availability influences 

forest productivity and associated carbon dynamics. 
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1. INTRODUCTION 
 

1.1  Background 
 

Accurate modeling of the global carbon (C) cycle is critical for understanding and 

predicting a wide range of feedbacks between climate and the terrestrial biosphere.  For example, 

climatic factors are important drivers of ecosystem productivity, which in turn, feeds back to 

influence local and regional climate (Beer et al. 2010; Bonan 2008; Schimel et al. 2015).  

Overall, terrestrial ecosystems are a net C sink, meaning they uptake roughly a quarter of 

anthropogenic carbon dioxide (CO2) emissions (Le Quere et al. 2016), and small variations in 

ecosystem function can have large implications for the strength of the terrestrial C sink (Le 

Quere et al. 2009).  Estimating terrestrial carbon uptake, referred to as gross primary productivity 

(GPP), is a major goal of Earth systems science.  Although significant advancements have been 

made in our ability to model GPP (Beer et al. 2010; Makela et al. 2008; Piao et al. 2013), it 

remains an ongoing challenge for ecologists to provide high-quality data and reduce errors in 

uncontrolled field settings.   

A complete understanding of the terrestrial C cycle depends on our ability to understand 

seasonal changes in photosynthetic function, and how these are correlated with environmental 

constraints across time.  Net photosynthesis can be quantified at the ecosystem level using 

towers with eddy covariance (EC) flux methods (Baldocchi 2008), which have proven especially 

useful because they integrate over spatial heterogeneity within a canopy and take measurements 

continuously through time.  However, while these methods tell us a great deal about CO2 and 

water exchange between the biosphere and atmosphere, many questions remain unanswered due 

to the black-box nature of these fluxes.  To gain a mechanistic understanding of how plant 

function drives these patterns, leaf-level analysis of gas exchange can be performed using 



 8 

chamber enclosure systems (Long and Bernacchi 2003).  In turn, these methods gain 

physiological depth at the expense of spatiotemporal coverage.  While field methods at the leaf 

and canopy scale are irreplaceable in the type of information provided, these are expensive, time 

intensive, and reinforce the problematic data bias towards locations with ease of access.  Thus, 

for decades, remote sensing studies have provided estimates of vegetation productivity from 

ecosystem to global scales (Field et al. 1995; Jung et al. 2011; Prince and Goward 1995; Running 

et al. 2004; Schimel et al. 2015), providing critical input for Earth system models.   

Interannual variability of the global C sink is dominated by functional variation of arid 

and semi-arid ecosystems (Ahlstrom et al. 2015), which are highly sensitive to precipitation 

inputs and climate anomalies (Scott et al. 2015).  However, remotely sensed data largely fails to 

capture this variability (Biederman et al. 2017), introducing systematic error into C cycle models, 

especially during prolonged dry periods (Keenan et al. 2012).  Therefore, improving the 

capability of remote sensing to monitor C flux response to hydrologic variability is needed.  In 

particular, this is important for monitoring and predicting changes in montane forests across the 

western U.S., which account for the majority of CO2 uptake in the region (Schimel et al. 2002).  

These forests are already sensitive to changing water availability (Monson et al. 2002) and are 

projected to experience severe increases in drought under future climate scenarios (Williams et 

al. 2013).  Yet, we have an incomplete understanding of forest decline due to drought (Allen et 

al. 2010), and our ability to model tree-water relations is limited by a lack of robust methodology 

for measuring coupled C and H2O fluxes on large scales.  These gaps in our knowledge are 

becoming increasingly critical to address, as widespread water stress is projected to increase 

under future warming (Garfin et al. 2013) and has already been shown to drive unprecedented 

reductions in continental scale C sequestration (Ciais et al. 2005).  The ongoing heat-driven 
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drought makes the Southwest U.S. a natural setting for examining the influence of environmental 

drivers on the productivity of drought-sensitive forests (Seager et al. 2007; Udall and Overpeck 

2017), as well as evaluating our ability to track these relationships using optical methods. 

Methods of estimating GPP from remotely sensed products have been predominately 

based on the light use efficiency (LUE) model originally developed by John Monteith (Monteith 

1972, 1977).  The LUE model has been the paradigm in remote sensing to evaluate GPP on 

ecosystem to global scales (Field et al. 1995; Hilker et al. 2008), and is presented as: 

GPP = APAR * LUE 
 

APAR = fAPAR * PAR 
 
Where LUE is the light use efficiency term, and APAR is the absorbed photosynthetically active 

radiation (PAR) – equal to the total amount of PAR times the fraction absorbed by the canopy 

(fAPAR).  For better or for worse, this extremely simple equation attempts to encompass a 

complex tangle of biological processes.  Physiologically, APAR measures the maximum 

potential photosynthesis, while LUE is an adjustment for how much of that potential is actually 

realized due to less-than-ideal environmental conditions (Gamon et al. 2015).  While fAPAR is a 

biophysical term that represents long-term variability in vegetation structure and composition, 

LUE is a functional term that reflects short-term variability in physiological responses to a 

dynamic environment (Porcar-Castell et al. 2014).  Typically, indices based on leaf pigment and 

structure reflectance properties such as the Enhanced Vegetation Index (EVI) and Normalized 

Difference Vegetation Index (NDVI) have been used to estimate changes in the fAPAR term of 

the LUE model (Goward and Huemmrich 1992; Myneni et al. 1997; Myneni and Williams 1994; 

Sellers 1985), while assuming that LUE is constant or making adjustments based on sparse 

meteorological data.  However, it has been shown that LUE is far from constant (Gamon et al. 
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1992; Sinclair and Muchow 1999) – it varies over time and space, and allowing LUE to vary 

improves estimation of GPP (Rossini et al. 2010).   

LUE is controlled by a diverse and complex set of photoprotective processes that work in 

concert to downregulate photosynthesis, and the biology of these processes and their interactions 

are not fully understood even at the thylakoid level. When a plant absorbs light energy in excess 

of what can be used to drive electron transport in the light reactions of photosynthesis, it must 

dissipate energy that would otherwise cause photo-oxidative damage (Barber and Andersson 

1992; Demmig-Adams and Adams 2000).  This energy dissipation can occur through various 

mechanisms, but the primary pathway is through non-photochemical quenching (NPQ) via 

xanthophyll pigments (Demmig-Adams and Adams 1992, 1996; Muller et al. 2001).  

Xanthophylls, a major division carotenoid pigments, regulate flexible NPQ processes, which 

operate on diurnal time scales and reset each night (Demmig-Adams and Adams 2006; Muller et 

al. 2001; Porcar-Castell 2011).  Xanthophyll pigments have three forms – violaxanthin (V), 

antheraxanthin (A), and zeaxanthin (Z) –that can be interconverted through enzymatic reactions 

involving an epoxy group.  During times of excess light energy, V is de-epoxidized into Z + A, 

resulting in a higher ratio  𝑍𝑍+𝐴𝐴
𝑉𝑉+𝐴𝐴+𝑍𝑍

 .  During times of limited light energy, the opposite occurs and 

Z +A is epoxidized into V (see Fig 1).  On the other hand, over longer, seasonal time scales 

sustained forms of NPQ work to downregulate photosynthesis in response to prolonged 

environmental stress.  Sustained NPQ is associated with changing pigment pools, overnight 

retention of zeaxanthin, as well as photoinhibition and other xanthophyll-independent 

mechanisms (Verhoeven 2014).   

The deepoxidation of the xanthophyll cycle and formation of Z+A reduces reflectance at 

wavelength 531 (see Fig 1), forming the theory behind the remotely sensed Photochemical 
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Reflectance Index (PRI) (Gamon et al. 1997).   PRI measures the reflectance in the blue 

(chlorophyll and carotenoid absorption) at 531nm, normalized to reflectance in the red at 570nm 

(chlorophyll only absorption) (Gamon et al. 1992).  Therefore, in contrast to indices which 

approximate fAPAR, PRI is theoretically a proxy of LUE.   

The amount of APAR a plant can use safely in photosynthesis depends on the 

physiological state of the plant (Papageorgiou and Govindjee 2014), and the presence of any 

environmental stress that slows C assimilation can cause light energy to be absorbed in excess 

(see Fig 1; Demmig-Adams et al. 2012).  For example, under water-limited conditions stomata 

close and photosynthesis becomes limited by CO2 diffusion, causing photochemical quenching to 

slow and NPQ to rise (Medrano et al. 2002).  In accordance, PRI has been shown to vary with 

changing environmental conditions across spatiotemporal scales, such as altered nutrient status 

(Gamon et al. 1997; Magney et al. 2016), water status (Filella et al. 2004; Inoue and Penuelas 

2006), and temperature (Dobrowski et al. 2005; Porcar-Castell et al. 2012).  As a result, the 

relationship between PRI and LUE has been thus far ecosystem or site specific, and a universal 

relationship remains elusive (Goerner et al. 2011). 
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Fig 1:  Conceptual diagram of the xanthophyll cycle and how it relates to PRI.  Under excess 
light, produced by sunny or stressed (dry/cold) conditions, violaxanthin is de-epoxidized into 
zeaxanthin and R531 decreases, making PRI more negative.  Under limiting light, such as in 
cloudy or unstressed (wet/warm) conditions, zeaxanthin is epoxidized into violaxanthin and R531 
increases, making PRI less negative.  Figure adapted from (Gamon 2015). 
 

The xanthophyll cycle is therefore related to stress mediated reductions in photosynthesis, 

operating on a timescale of minutes, and PRI is one of the only pigment-based vegetation indices 

sensitive to rapid plant physiological responses (Gamon et al. 1992; Penuelas et al. 1995).  This 

is in contrast to other pigment-based indices such as NDVI, which operate mostly on seasonal 

timescales and were designed based on the pigment and structural dynamics of deciduous and 

herbaceous ecosystems. We have known for many years that NDVI is a poor indicator of 

dynamic C fluxes in slow growing evergreen species that persist through prolonged periods of 

environmental stress (Gamon et al. 1995; Garbulsky et al. 2008; Running and Nemani 1988), but 
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solutions to this challenge have been slow to develop.  In addition, even the most advanced 

remotely sensed products, such as GPP derived from Moderate Resolution Imaging 

Spectroradiometer (MODIS) product (modGPP), are insensitive to drought induced reductions in 

forest productivity (Vicca et al. 2016).  Therefore, PRI presents new opportunities to study 

ecosystems on a diurnal time scale, as well as seasonal processes in evergreen systems that are 

more dynamic than the small annual changes in chlorophyll content.  Development of a robust 

PRI could lead to improvements in the remote sensing of evergreen phenology (Ulsig et al. 2017; 

Wong and Gamon 2015), as well as drought detection from space (Vicca et al. 2016).  Therefore, 

PRI has the potential to fill a major gap in our ability to distinguish how water availability 

influences forest productivity and associated C dynamics at broad scales and high temporal 

resolution.    

To aid in this development, systematic PRI acquisition in conjunction with EC flux and 

leaf photosynthesis measurements are needed across diverse ecosystems (Gamon et al. 2010).  

One of the greatest barriers to a complete understanding of the global C cycle is the difficulty in 

reconciling estimates obtained across different spatiotemporal scales.  Unlike gas exchange 

methods which are restricted to the specific spatial domain for which they were developed, 

optical data can be sampled at the leaf, canopy and ecosystem scales using multiple handheld, 

tower-mounted, airborne and satellite sensors that measure reflectance data at different 

resolutions.  Therefore, the growing field of proximal remote sensing affords the unique 

opportunity to bridge leaf, canopy, and ecosystem scales, for a physiological inspection of whole 

ecosystem dynamics (Gamon 2015).  For decades studies have measured PRI using hand held 

and tower mounted spectrometers, hyperspectral imaging, unmanned aerial platforms, as well as 

MODIS satellite data (for reviews and metanalyses, see Garbulsky et al. 2011; Zhang et al. 
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2016).  However, the great majority of these studies have been performed in broadleaf, crop, or 

herbaceous systems, and only a small fraction have analyzed the use of PRI in natural conifer 

forests or semi-arid ecosystems.  

 

1.2  Objectives 

In this study, we measured PRI in conjunction with C and H2O fluxes in a semi-arid, sub-alpine 

mixed conifer forest, in order to assess its ability to serve as a proxy for dynamic photoprotection 

across spatiotemporal scales.  The specific objectives of this study were: 

 

1) at the canopy level determine the sensitivity of PRI to a) diurnal and seasonal changes in 

GPP in a mature conifer forest with an atypical, bimodal growing season; and b) rapid 

changes in a high stress, semi-arid environment subject to monsoonal precipitation 

pulses; and 

 

2) at the leaf level a) determine the sensitivity of PRI to diurnal changes in needle 

photosynthetic function; and b) confirm the extent to which canopy diurnal patterns 

reflect leaf physiology. 

 

2.  PRESENT STUDY 
 
2.1  Study Site 
 

The site is a semi-arid sub-alpine mixed conifer forest in the Coronado National Forest on 

Mt. Bigelow, north of Tucson, Arizona, and is part of the Santa Catalina-Jemez River Basin 
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Critical Zone Observatory.  The site is at 2573m elevation in an area considered to be 

topographically complex.  The climate is semi-arid: mean annual temperature is 9.4 °C and mean 

annual precipitation is 750mm, though interannual variability is notably high.  Of this, ~50% 

falls during the North American Monsoon in late summer, when a large portion may become 

surface runoff.  The composition of the site is mature second-growth Douglas Fir (Pseudotsuga 

menziesii), Ponderosa Pine (Pinus ponderosa), and Southwestern White Pine (Pinus 

strobiformis), with little to no understory vegetation.  The forest exhibits a complex and atypical 

bimodal pattern of production, with an initial spring peak following snow melt, a dry pre-

monsoon mid-season depression (May-June), and a second peak of productivity during the wet 

monsoon (July-Sept), remaining active through fall (see Appendix B, Fig 8).  Unlike many 

montane forests which undergo complete winter dormancy, there is evidence that trees remain 

photosynthetically active during winter months due to mild temperatures and unfrozen soils (J. 

Knowles, unpublished data).  Few other studies have been done in systems which exhibit a 

bimodal pattern of production, or in conifer forests that retain winter photosynthetic capacity.   

 

2.2  Summary of Methods 
 

2.2.1 Canopy Scale:  We combined tower-mounted canopy spectral measurements with 

eddy covariance flux and sap flow methods to determine the sensitivity of PRI to seasonal 

changes in GPP and the ecohydrological dynamics of a high stress environment.  An eddy 

covariance flux tower was used to measure ecosystem-scale CO2, water vapor, and energy fluxes 

at 30-minute temporal resolution.  The EC flux method measures net ecosystem exchange 

(NEE), which was partitioned into its components GPP and ecosystem respiration (Lasslop et al. 

2010), and LUE was calculated as GPP per unit photosynthetic photon flux density (PPFD).  The 



 16 

flux footprint was seasonally consistent, and 80% of flux originated from within approximately 

750 horizontal meters of the tower (J. Knowles, unpublished data; Kljun et al. 2015).  In 

addition, sap flow was measured every 30 minutes using the thermal dissipation probe method 

(Granier 1985; Granier 1987) on 5 individual trees.  Briefly, this method measures the 

temperature difference between an upper heated probe and a lower reference probe implanted in 

the sapwood of the tree, and as sap flow increases due to transpiration, the temperature 

difference between the two probes is reduced.  Therefore, sap flow serves as an estimate of 

whole tree transpiration.  In addition, soil volumetric water content (VWC) was measured 

continuously using three sets of water content reflectometers buried at 5cm and 15cm depth.   

We installed a Spectral Reflectance Sensor (SRS, METER Group, Inc., Pullman, WA, USA) at 

24m height, roughly 12m above the canopy to collect PRI data every 10 minutes.  The field of 

view (FOV) of the sensor is ~50m2, and slightly biases eastern facing needles of P. ponderosa 

and P. strobiformis.  We restrict canopy scale analysis to a) the monsoon season in July-

September, b) times when sun-sensor angle <40° following Mottus et al. (2015), and c) data 

where PPFD >1000µmol m-2s-1.  Data were then summarized into a single daily value by taking 

the morning average from 10:00 -12:00.  These restrictions were to maximize sunlit canopy 

surface viewed by the sensor and minimize effects of changing solar geometry.   

2.2.2. Leaf Scale:  Leaf gas exchange with simultaneous chlorophyll fluorescence and 

spot hyperspectral measurements were taken to determine the sensitivity of PRI to diurnal 

changes in needle function, and confirm the extent to which canopy diurnal patterns reflect leaf 

diurnal physiology.  Leaf level measurements were taken on September 13-14 for one P. 

ponderosa and one P. strobiformis mature tree on attached top of canopy needles (13m height) 

using a canopy access crane.  We measured 4 sunlit branches on each tree every hour from 9:00-
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16:00.  These data were averaged to give hourly data for each species, however some data were 

excluded due to cloudiness.  Gas exchange with simultaneous pulse amplitude modulated (PAM) 

fluorescence was accomplished using the Li-6800 Portable Photosynthesis System infrared gas 

analyzer (LICOR Inc., Lincoln, NE, USA).  Gas exchange measurements are the most 

established and commonly used field technique in plant ecophysiology and these methods have a 

high degree of confidence (Long and Bernacchi 2003).  Point measurements were taken to obtain 

net photosynthesis (Anet), stomatal conductance (gsw), and LUE.  PAM fluorometry measured 

quantum yield of photosystem II (ΦPSII), NPQ, and maximal photochemical efficiency of ΦPSII 

(Fv/Fm) according to Bilger and Bjorkman (1990) and Genty et al. (1989).  To obtain NPQ and 

Fv/Fm, dark-adapted fluorescence measurements were also taken at pre-dawn for a minimum of 

8 samples per branch.  In addition, leaf level hyperspectral reflectance measurements were taken 

with an ASD FieldSpec3 (ASD Inc., Boulder, CO, USA) spectroradiometer with an artificial 

light source, calibration surface and a leaf clip.  Within ten seconds of measurement, needles 

were detached and preserved in liquid nitrogen for future biochemical pigment analysis. 

 

2.3  Summary of Results 

2.3.1 Inconsistent PRI-GPP seasonal relationships:  At the canopy scale we found that 

the relationship between PRI and GPP changed over the course of the monsoon season, shifting 

from a significant negative relationship in July and August (R2=.62), to a significant positive 

relationship in September (R2=.48).  These results agree with the few other studies that have 

been conducted under a monsoon climate, which also reported inconsistent and weaker 

relationships with estimates of productivity (Nakaji et al. 2014; Nakaji et al. 2006; Zhang et al. 

2015).  The breakdown of the PRI-GPP relationship in July-August could be due to a) high 
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frequency rain events b) changing carotenoid/chlorophyll pigment pools following the transition 

out of pre-monsoon sustained suppression, or c) a footprint mismatch between EC flux and 

optical data. 

2.3.2 Seasonal PRI responds to ecohydrological dynamics:  Daily average PRI was 

significantly, albeit weakly, correlated with VWC (p<0.05, R2=0.17), as well as with Tair 

(p<0.05, R2=0.10).  Multiple linear regression (MLR) with VWC and Tair show that PRI is 

responding to dynamic water and energy limitations of this system (R2=.41, 5-fold cross-

validated R2=.35).  These results agree with long-term EC records which indicate that this forest 

can be both water and/or energy limited depending on prevailing conditions (unpublished data, J. 

Knowles).  The results of the MLR are strengthened by a sap flow analysis where we showed 

that PRI was significantly related to transpiration from late July through mid-September 

(R2=.55).  In addition, PRI performed more strongly than GPP at tracking the three-month time 

course of sap flow.  Because the SRS sensor measured the full or partial canopy of the same 5 

trees used to measure sap flow, the spatial scales of PRI and sap flow measurements were nearly 

identical, which we believe contributes to their close correlation.  This is the first study to our 

knowledge to report a relationship between PRI and sap flow in a natural mature forest, the first 

to do so using canopy PRI, and the first to show this relationship on a seasonal time scale with 

continuous, daily resolution.  These sap flow results, combined with the MLR relationship to 

VWC and Tair, suggest that on a seasonal scale PRI is an effective indicator of photoprotective 

response to ecohydrological constraints.   

2.3.3 Suppressed Diurnal PRI response:  Rather than parallel irradiance conditions of the 

diurnal cycle, we found that PRI remained constant throughout the day, both at the canopy and 

leaf scales.  We hypothesize that in this high light, high temperature environment, retention of 
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zeaxanthin through day and night keep top of canopy needles poised for flexible engagement.  

This hypothesis is supported by very high NPQ and very low ΦPSII values, but with no 

concurrent reductions in Fv/Fm.  Agreement between leaf-level measurements, which are not 

subject to structural and geometrical effects, and canopy-level measurements that integrate over 

leaf heterogeneity, strengthen our confidence that the demonstrated lack of PRI diurnal response 

is in fact rooted in physiology.  

2.4 Conclusions 

Remotely sensed PRI holds potential to fill a major gap in our ability to distinguish how 

water availability influences productivity and associated C dynamics, particularly in evergreen 

systems.  However, spectral data in conjunction with C and H2O flux measurements are needed 

to provide a functional examination of PRI as a proxy for dynamic photoprotection.  At the 

canopy scale we found that the relationship between PRI and GPP changed over the course of the 

monsoon season.  Despite a seasonal decoupling, we report for the first time a relationship 

between PRI and sap flow in a natural forest, and contribute evidence that PRI is sensitive to 

ecohydrological dynamics.  Because photosynthetic function is linked more directly to stomatal 

conductance than to foliar water status (Medrano et al. 2002), and because reductions in leaf 

water content occur only after advanced stages of drought, PRI represents an improved capacity 

over foliar water content indices to serve as an early indicator of water stress (Inoue and 

Penuelas 2006).  Remote sensing has proven to be a powerful tool for monitoring past and 

ongoing ecosystem disturbances such as drought induced forest mortality, however to harness 

the full potential of these technologies, progress should be made in our ability to predict when 

ecosystems will be vulnerable to future degradation prior to visible manifestations (Smith et al. 
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2014).  PRI has potential as an a priori approach for predicting plant response to future changes 

in hydroclimate.   

Characterization of diurnal PRI is needed if snapshot satellite data can ever serve as a 

robust representation of photosynthetic processes (Sims et al. 2005), yet at present, information 

of diurnal PRI is limited in natural systems, particularly in mature conifer forests (Gamon and 

Bond 2013; Mottus et al. 2018).  This is the first study to analyze diurnal needle PRI and its 

relationship with combined gas exchange, fluorescence, and NPQ parameters in top of canopy 

needles of a montane conifer forest.  We found that an instantaneous measurement of canopy 

PRI would not be representative of instantaneous photosynthesis in this system.  Suppressed 

diurnal PRI dynamics in conifers may reflect a long-term retention of zeaxanthin or upregulation 

of alternative photoprotective mechanisms when canopies experience prolonged stress. 

 

2.5 Future Directions 

Overall, we found that the ability of PRI to serve as a proxy for seasonal and diurnal 

environmental stress response in a semi-arid conifer forest was inconsistent through time.  

Therefore, more work is needed to probe into the mechanistic drivers of these results. We 

suggest that to investigate further, this analysis should be repeated multiple times throughout the 

season: during active winter periods, spring peak, pre-monsoon shutdown, and again during 

senescence, paying particular attention to the transition between pre-monsoon drought and 

monsoon re-wetting.  Seasonally iterated diurnal analysis should be paired with biochemical 

pigment characterization to help discern if PRI is representing xanthophyll cycle activity versus 

larger pigment pool changes.  We hypothesize that because the influence of precipitation pulses 

in semi-arid ecosystems causes functional processes to decouple over relatively short time scales 
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(Huxman et al. 2004), temporal phase misalignments may complicate the relationships between 

PRI, transpiration, GPP, and pigment composition in this semi-arid forest (Ruehr et al. 2012) as 

compared to more mesic sites.   

Though a number of studies have explored the extent to which seasonal PRI is mediated by 

water stress (He et al. 2016; Magney et al. 2016; Moreno et al. 2012; Nestola et al. 2018; 

Penuelas et al. 1998; Ripullone et al. 2011; Soudani et al. 2014; Zhang et al. 2017), its presence 

seems to complicate seasonal PRI-LUE relationships in ways that are not yet understood.    

While some studies report that PRI is more sensitive to LUE under moderately stressed 

conditions (Zhang et al. 2015), research also suggests that the sensitivity of PRI to atmospheric 

water demand has a threshold (Zhang et al. 2017), and the relationship between PRI and LUE 

has been observed to break down during severe water stress (Guarini et al. 2014; Sims et al. 

2006; Tsonev et al. 2014).  This suggests that while PRI is related to stress mediated reductions 

in LUE, it becomes less informative after a threshold in which photosynthesis becomes 

increasingly limited by metabolic factors causing xanthophyll retention of Z+A, and the use of 

additional zeaxanthin-independent enhancements of NPQ.  Little work has been done to explore 

the extent to which these processes effect the seasonal PRI relationship to LUE or GPP.  

Extending our analysis into the pre-monsoon season will aid in understanding how PRI responds 

to severe, prolonged drought.  The tendency for PRI to break down under severe water stress will 

be important to understand moving into the future as periods of prolonged drought are expected 

to increase across vast areas. 
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ABSTRACT 
 

A lack of accurate, reliable data on coupled carbon and water fluxes for Earth’s expansive 

ecosystems remains a major barrier to a complete understanding of the terrestrial carbon cycle.  

The remotely sensed Photochemical Reflectance Index (PRI) measures deepoxidation of the 

xanthophyll cycle at wavelength 531nm and is one of the few pigment-based vegetation indices 

sensitive to rapid plant physiological responses.  PRI presents new opportunities to study 

ecosystems on a diurnal time scale, as well as seasonal processes in evergreen systems where 

complex vegetation dynamics are not reflected by small annual changes in chlorophyll content or 

leaf structure.  However, systematic PRI acquisition in conjunction with leaf and ecosystem flux 

measurements are needed in natural, diverse ecosystems.  The growing field of proximal remote 

sensing affords the opportunity to bridge leaf, canopy and ecosystem scales, for a physiological 

inspection of whole ecosystem dynamics.  The Southwest U.S. provides a natural setting for 

examining the influence of environmental drivers on the productivity of drought-sensitive 

forests, as well as for evaluating our ability to track these relationships using optical methods.  

We studied PRI in a semi-arid, sub-alpine mixed conifer forest, in order to assess its ability to 

serve as a proxy for dynamic photoprotection.  We combined canopy spectral measurements with 

eddy covariance flux and sap flow methods to determine the sensitivity of PRI to seasonal 

changes in gross primary productivity (GPP) and the ecohydrological variability of a high stress 

environment.  In addition, we combined top-of-canopy leaf-level gas exchange, chlorophyll 

fluorescence, and hyperspectral measurements to determine the sensitivity of PRI to diurnal 

changes in needle photosynthetic function, and confirm the extent to which canopy diurnal 

patterns reflect leaf physiology.  At the canopy scale we found that the relationship between PRI 

and GPP was inconsistent over the course of the monsoon season, shifting from a negative 
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relationship in July and August (R2=.62), to a positive relationship in September (R2=.48).  

Multiple linear regression with soil moisture and air temperature showed that PRI responded to 

dynamic water and energy limitations of this system (R2=.41).  We report for the first time a 

relationship between seasonal PRI and sap flow in a natural forest (R2=.55).  These results 

suggest that on a seasonal scale PRI is an effective indicator of photosynthetic response to 

ecohydrological constraints.  On a diurnal scale we found that PRI remained constant throughout 

the day at both leaf and canopy scales, and we suggest that saturated light conditions drive 

retention of xanthophylls in a de-epoxidized state.  We contribute evidence that remotely sensed 

PRI has potential to fill a major gap in our ability to distinguish how water availability influences 

forest productivity and associated carbon dynamics. 

 

Keywords:  conifer, semi-arid, eddy covariance flux, sap flow, gas exchange, 

chlorophyll fluorescence, non-photochemical quenching (NPQ), xanthophyll cycle, 

photochemical reflectance index (PRI), seasonal, diurnal 
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1.  INTRODUCTION 
 

Accurate modeling of the global carbon (C) cycle is critical for understanding and 

predicting a wide range of feedbacks between climate and the terrestrial biosphere.  Estimating 

terrestrial gross primary productivity (GPP) is a major goal of Earth systems science (Beer et al. 

2010; Makela et al. 2008; Piao et al. 2013; Smith et al. 2016), yet major uncertainties persist and 

it remains an ongoing challenge for ecologists to provide high-quality data and reduce errors in 

uncontrolled field settings (Ryu et al. 2019).  A complete understanding of the terrestrial C cycle 

depends on our ability to understand seasonal changes in photosynthetic function, and how this is 

correlated with environmental constraints across time.  Net fluxes of C and water can be 

quantified at the ecosystem level using eddy covariance (EC) flux towers (Baldocchi 2008), and 

at the leaf level using chamber enclosure systems (Long and Bernacchi 2003).  While field 

methods at the leaf and canopy scale obtain irreplaceable mechanistic information, they are 

expensive, time intensive, and reinforce a problematic data bias towards locations with ease of 

access (Schimel et al. 2015).  Thus, for decades, remote sensing studies have provided estimates 

of terrestrial productivity from ecosystem to global scales (Field et al. 1995; Jung et al. 2011; 

Prince and Goward 1995; Running et al. 2004; Schimel et al. 2015), providing critical input for 

Earth system models.   

However, Biederman et al. (2017) showed that models based on MODIS satellite 

observations largely fail to capture the high degree of C and H2O flux temporal variability in 

semi-arid ecosystems, which are highly sensitive to precipitation inputs and climate anomalies 

(Scott et al. 2015).  Therefore, improving the capability of remote sensing to monitor C flux 

response to hydrologic variability is needed.  In particular, this is important for monitoring and 

predicting changes in montane forests across the western U.S., which account for the majority of 
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carbon dioxide (CO2) uptake in the region (Schimel et al. 2002).  These forests are already 

sensitive to changing water availability (Monson et al. 2002) and are projected to experience 

severe increases in drought under future climate scenarios (Williams et al. 2013).  Yet, we have 

an incomplete understanding of forest decline due to drought (Allen et al. 2010), and our ability 

to model tree-water relations is limited by a lack of robust methodology for measuring coupled C 

and water fluxes on large scales.  The ongoing heat-driven drought makes the Southwest U.S. a 

natural setting for examining the influence of environmental drivers on the productivity of 

drought-sensitive forests (Seager et al. 2007; Udall and Overpeck 2017), as well as evaluating 

our ability to track these relationships using optical methods. 

The light use efficiency (LUE) model (equation 1), originally developed by John 

Monteith (Monteith 1972, 1977), has been the paradigm in remote sensing to evaluate GPP on 

ecosystem to global scales (Field et al. 1995; Hilker et al. 2008b) and is expressed as: 

GPP = APAR * LUE    

   APAR = fAPAR * PAR       

Where LUE is the light use efficiency term, and APAR is the absorbed photosynthetically active 

radiation (PAR): equal to the total amount of PAR times the fraction absorbed by the canopy 

(fAPAR).  For better or for worse, this simple equation based on first principles attempts to 

encompass a complex tangle of biological processes.  While fAPAR can be seen as a biophysical 

term that represents long-term variability in vegetation structure and composition, LUE is a 

functional term that reflects short-term variability in physiological response to less-than-ideal 

environmental conditions (Porcar-Castell et al. 2014).  Typically, indices based on leaf pigment 

and structure reflectance properties such as the normalized difference vegetation index (NDVI) 

have been used to estimate changes in the fAPAR term (Goward and Huemmrich 1992; Myneni 

Equation 1 
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et al. 1997; Myneni and Williams 1994; Sellers 1985), while adjusting for LUE based on 

parameterized responses to coarse meteorological data (e.g. VPD and temperature) and assuming 

LUE response to these drivers remains constant (Running et al. 2004).  However, it has been 

shown that LUE is far from constant (Gamon et al. 1992; Sinclair and Muchow 1999; He et al. 

2016) – it varies over time and space, and allowing LUE to vary improves estimation of gross 

ecosystem production (Rossini et al. 2010).   

LUE is controlled by a diverse set of photoprotective processes working in concert, and 

the biology of these processes and their interactions are not fully understood even at the 

thylakoid level.  When a plant absorbs radiant energy in excess of what it can use to drive 

electron transport, it must dissipate energy that would otherwise cause photo-oxidative damage 

(Barber and Andersson 1992; Demmig-Adams and Adams 2000).  This energy dissipation 

occurs through various mechanisms, but the primary pathway is through non-photochemical 

quenching (NPQ) via xanthophyll pigments (Demmig-Adams and Adams 1992, 1996; Muller et 

al. 2001).  Xanthophyll pigments regulate flexible NPQ processes, which operate on diurnal time 

scales and reset each night (Demmig-Adams and Adams 2006; Muller et al. 2001; Porcar-Castell 

2011).  Three forms – violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z)—are 

interconverted through enzymatic reactions involving an epoxy group.  During times of excess 

light energy, V is de-epoxidized into Z + A, resulting in a higher ratio  𝑍𝑍+𝐴𝐴
𝑉𝑉+𝐴𝐴+𝑍𝑍

 .  During times of 

limiting light, the opposite occurs and Z +A is epoxidized into V.  On the other hand, over 

longer, seasonal time scales sustained forms of NPQ work to downregulate photosynthesis in 

response to prolonged environmental stress.  Sustained NPQ is associated with changing pigment 

pools, overnight retention of zeaxanthin, as well as photoinhibition and other xanthophyll-

independent mechanisms (Verhoeven 2014).   
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The deepoxidation of the xanthophyll cycle and formation of Z+A reduces reflectance at 

wavelength 531, forming the theory behind the remotely sensed Photochemical Reflectance 

Index (PRI) (Gamon et al. 1997).  PRI measures reflectance in the blue (chlorophyll and 

carotenoid absorption) at 531nm, normalized to reflectance in the red at 570nm (chlorophyll only 

absorption) (Gamon et al. 1992).  Therefore, in contrast to indices which approximate fAPAR, 

PRI represents an estimate of LUE.   

The amount of APAR a plant can use safely in photosynthesis depends on the 

physiological state of the plant (Papageorgiou and Govindjee 2014), and the presence of any 

environmental stress that slows C assimilation can cause light energy to be absorbed in excess 

(Demmig-Adams et al. 2012).  The xanthophyll cycle is therefore related to stress mediated 

reductions in photosynthesis, operating on a timescale of minutes, and PRI is one of the only 

pigment-based vegetation indices sensitive to rapid plant physiological responses (Gamon et al. 

1992; Penuelas et al. 1995).  In accordance, PRI has been shown to vary with changing 

environmental conditions, such as altered nutrient status (Gamon et al. 1997; Magney et al. 

2016), water stress (Filella et al. 2004; Inoue and Penuelas 2006), and temperature (Dobrowski et 

al. 2005; Porcar-Castell et al. 2012).  As a result, the relationship between PRI and LUE has been 

thus far ecosystem or site specific, and a universal relationship remains elusive (Goerner et al. 

2011). 

To aid in its development, systematic PRI acquisition in conjunction with EC flux and 

leaf photosynthesis measurements are needed (Gamon et al. 2010).  One of the greatest barriers 

to a complete understanding of the C cycle is the difficulty in reconciling estimates obtained 

across different spatiotemporal scales.  Therefore, the growing field of proximal remote sensing 

affords the unique opportunity to bridge leaf, canopy, and ecosystem scales, for a physiological 
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inspection of whole ecosystem dynamics (Gamon 2015; Shiklomanov et al. 2019).  For decades 

studies have measured PRI across spatiotemporal scales using hand held and tower mounted 

spectrometers, hyperspectral imaging, unmanned aerial platforms, as well as MODIS satellite 

data (for reviews and metanalyses, see Garbulsky et al. 2011; Zhang et al. 2016).  However, the 

great majority of these studies have been performed in broadleaf, crop, or herbaceous systems, 

and only a small fraction have analyzed the use of PRI in natural conifer forests or semi-arid 

ecosystems.  In this study, we measured the PRI in conjunction with C and H2O fluxes in a semi-

arid, sub-alpine mixed conifer forest, in order assess its ability to serve as a proxy for dynamic 

photoprotection.  At the canopy scale, our specific objectives were to: 1a) determine the 

sensitivity of PRI to diurnal and seasonal changes in GPP in a mature conifer forest with an 

atypical growing season; and 1b) determine the sensitivity of PRI to climatic variability in a high 

stress, semi-arid environment subject to monsoonal precipitation pulses.  At the leaf scale, our 

objectives were to 2a) determine the sensitivity of PRI to diurnal changes in needle function; and 

2b) confirm the extent to which canopy diurnal patterns reflect leaf physiology. 

 

2.  METHODS 

2.1 Study Site  

The site is a semi-arid sub-alpine mixed conifer forest in the Coronado National Forest on 

Mt. Bigelow, north of Tucson, Arizona, and is part of the Santa Catalina-Jemez River Basin 

Critical Zone Observatory.  The site is at 2573m elevation in an area that is considered 

topographically complex.  The climate is semi-arid: mean annual temperature is 9.4 °C and mean 

annual precipitation is 750mm, though interannual variability is notably high.  Of this, ~50% 

falls during the North American Monsoon in late summer, when a large portion may become 
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surface runoff.  The composition of the site is mature second-growth Douglas Fir (Pseudotsuga 

menziesii), Ponderosa Pine (Pinus ponderosa), and Southwestern White Pine (Pinus 

strobiformis), with little to no understory vegetation.  The forest exhibits a complex and atypical 

bimodal pattern of production, with an initial spring peak following snow melt, a dry pre-

monsoon mid-season depression (May-June), and a second peak of productivity during the wet 

monsoon (July-Sept), remaining active through fall (Appendix B, Fig 8).  Unlike many montane 

forests which undergo complete winter dormancy, there is evidence that trees remain 

photosynthetically active during winter months (J. Knowles, unpublished data) due to mild 

temperatures and unfrozen soils.   

 

2.2 Eddy Covariance Fluxes  

An EC flux tower was used to measure ecosystem-scale CO2, water vapor, and energy 

fluxes.  The EC flux tower has been in continuous operation since 2009 and is equipped with an 

open-path infrared gas analyzer (IRGA; LI-7500, Li-COR, Lincoln, NE, USA) and a three-

dimensional sonic anemometer (CSAT 3, Campbell Scientific, Logan, UT, USA) at 29.8m 

height oriented to 290°.  Facing south is a PAR sensor (LI‐190, LI‐COR, Lincoln, NE, USA) at 

25m height, and an air temperature (Tair) and relative humidity sensor (HMP45C, Vaisala, 

Helsinki, Finland) at 1.5m height.  Data were sampled at 10 Hz (sonic anemometer and IRGA) 

or five minutes (all other sensors) and recorded and averaged to 30-min values by a datalogger 

(CR5000, Campbell Scientific, Logan, UT, USA); manual data collection was performed 

approximately bi-weekly. All tower operations were powered by solar panels. Standard protocols 

were used to filter the turbulent flux data for accuracy and quality (Lee et al. 2004).  The net 

ecosystem exchange of CO2 (NEE) was further partitioned into GPP and ecosystem respiration 
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using a light response curve methodology (Lasslop et al. 2010).  Data were gap-filled using a 

look up table approach (Falge et al. 2001). The statistical flux footprint was seasonally consistent 

and 80% of flux originated from within approximately 750 horizontal meters of the tower (J. 

Knowles, unpublished data; Kljun et al. 2015).  LUE was calculated as GPP per unit 

photosynthetic photon flux density (PPFD), due to a lack of robust estimate of APAR.  The use 

of PAR when APAR is unavailable can have an impact on seasonal changes in LUE (Gitelson 

and Gamon 2015), however, changes in fAPAR over the course of the study are minimal 

according to NDVI (see Appendix B, Fig 9). 

 

2.3 Ecohydrology 

Sap flow was measured using the thermal dissipation probe method (Granier 1985; 

Granier 1987) logged at 30 min resolution.  Briefly, this method measures the temperature 

difference between an upper heated probe and a lower reference probe (TDP-30, Dynamax Inc., 

Houston, TX, USA) implanted in the sapwood of the tree approximately 40mm apart.  As sap 

flow increases due to transpiration, the temperature difference between two points is reduced.  

Sap flow velocity (cm hr-1) was calculated according to equation: 

V𝑠𝑠 = 0.0119𝐾𝐾1.231 
𝐾𝐾 = (𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑)/𝑑𝑑𝑑𝑑 

    
Where dT is the difference in temperature (°C) between the two needles, and dTM is dT when 

there is no sap flow.  Sap flow was measured on the north and south sides of three P. 

strobiformis and two P. ponderosa individuals.  In addition, soil volumetric water content 

(VWC) was measured continuously using three sets of water content reflectometers (CS 616; 

Campbell Scientific, Logan, UT, USA) buried at 5cm and 15cm depth beneath the soil surface on 

Equation 2 
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the east, north, and south of the tower.  Daytime measurements from these six probes were 

averaged to obtain a single daily VWC value. 

 

2.4 Canopy Spectral Measurements 

On July 4, 2018, a Spectral Reflectance Sensor (SRS, METER Group, Inc., Pullman, 

WA, USA) was installed, collecting 10-min resolution PRI reflectance.  A few studies have 

demonstrated successful use of these or similar autonomous sensors (Castro and Sanchez-

Azofeifa 2018; Eitel et al. 2019; Gamon et al. 2015; Garrity et al. 2010; Magney et al. 2016; van 

Leeuwen et al. 2015).  The PRI sensors use photodiodes with narrow bandpass filters centered at 

wavelengths 532 and 570nm with 10 nm full width half maximum (FWHM) bandwidths.  It uses 

a hemispherical upward-looking sensor, and a field stop downward-looking sensor to measure 

incoming and upwelling radiation (W m-2 sr-1 nm-1), respectively.  The upward looking sensor 

contains a cosine diffuser to provide continuous 180° irradiance measurements that are used to 

normalize downward looking spectral radiance.  PRI is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝜌𝜌532 −  𝜌𝜌570
𝜌𝜌532 +  𝜌𝜌570

 

 
Where 𝜌𝜌532 is the spectral reflectance value at center wavelength of 532 nm and 𝜌𝜌570 is the 

spectral reflectance value at center wavelength of 570 nm.  Downward looking sensor 

interference filters restrict the field of view (FOV) to 36°.  The sensor sits at 24m height and is 

roughly 12m above the top of the canopy titled off-nadir at an angle of 20°, making its footprint 

coverage ~50m2.  The SRS sensor points west, therefore biasing eastern facing needles in its 

measurement.  After 3-4 months of measurement, the sensor glue has been reported to degrade 

from UV exposure (personal correspondence), therefore we limit our analysis to the monsoon 

season of July, August, and September (DOY 186-279, Appendix B, Fig 8).  In addition, we 

Equation 3 
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restrict our analysis to data points where sun-sensor angles <40° following Mottus et al. (2015), 

who found geometry effects on canopy PRI was small for solar zenith angles (SZA) within this 

range.  Within the FOV are full or partial canopies of five trees (three P. ponderosa and two P. 

strobiformis) four of which were equipped with sap flow sensors.   

For seasonal analysis, data is summarized into one daily value by taking the morning 

average (10:00 -12:00) for all data when PPFD>1000 µmol m-2s-1.  Because our sensor biases 

eastern facing needles, this should represent conditions with the highest sun:shade illumination 

fraction.  This minimizes the effects of canopy shading caused by sun angle, which can strongly 

influence the relationship between canopy PRI and LUE (Hall et al. 2011; Hall et al. 2008; 

Hilker et al. 2008a; Hilker et al. 2010).  The selection of this time frame follows previous studies 

which have observed that the highest correlations between PRI and LUE occur under clear sky 

conditions and for sunlit canopy surface (Gamon et al. 1997; Hall et al. 2008; Soudani et al. 

2014), and that on sunny summer days, sun leaves are not affected by SZA (Middleton et al. 

2009).  We note that with this approach, the proportion of sunlit needles observed by the sensor 

may not be representative of the proportion within the entire EC flux footprint.  However, in 

such a high light environment, we assume that a large portion of the canopy is light saturated 

throughout much of the day. 

 

2.5 Leaf campaign   

Leaf level measurements were taken on September 13-14 for one P. ponderosa and one 

P. strobiformis mature tree on attached top of canopy needles (13m height) using a canopy 

access crane.  The measured trees were not directly under the SRS sensor so as not to disturb to 

signal; however, they were adjacent and of the same size, age class, and topographic position.  
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We measured four branches on each tree every hour from 9:00-16:00.  Two sunlit fascicles were 

measured for simultaneous gas exchange and fluorescence, representing six needles for P. 

ponderosa and ten needles for P. strobiformis.  Immediately after, those same needles, plus two 

more fascicles, were measured with a spectroradiometer.  When measuring under intermittent 

cloudiness, measurements were aborted if the needles were not exposed to sunlight immediately 

prior to both gas exchange and spectral measurements.   

   

2.5.1 Combined gas exchange and fluorescence 

Gas exchange with simultaneous fluorescence measurements were taken using the Li-

6800 Portable Photosynthesis System infrared gas analyzer (LICOR Inc., Lincoln, NE, USA).  

Gas exchange measurements are the most established and commonly used field technique in 

plant ecophysiology and these methods have a high degree of confidence (Long and Bernacchi 

2003).  Spot measurements were taken to obtain net photosynthesis (Anet), stomatal conductance 

(gsw), and LUE.  For each round of branch measurements, Tair and PAR were characterized, and 

internal chamber conditions set to match the ambient environment.  We performed leaf area 

analysis on ten samples of each species to get an average leaf area within the chamber (2.24cm2 

± 0.16 cm2 and 2.22 ± 0.22 cm2 for P. ponderosa and P. strobiformis, respectively) assuming 

each sample clamped the same approximate amount of leaf area. 

  Pulse amplitude modulated (PAM) fluorescence was used to obtain the quantum yield of 

photosystem II (ΦPSII), NPQ, and maximal photochemical efficiency of photosystem II (Fv/Fm) 

according to (Bilger and Bjorkman 1990; Genty et al. 1989): 

 
ΦPSII = 𝐹𝐹𝑚𝑚′ −𝐹𝐹𝑠𝑠

𝐹𝐹𝑚𝑚′
    𝑁𝑁𝑃𝑃𝑁𝑁 =  𝐹𝐹𝑚𝑚−𝐹𝐹𝑚𝑚′

𝐹𝐹𝑚𝑚′
  𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹
=  𝐹𝐹𝑚𝑚−𝐹𝐹𝑜𝑜

𝐹𝐹𝑚𝑚
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Where Fm and Fo are the maximal and minimal fluorescence in a dark-adapted leaf, respectively, 

Fm’ is the maximal fluorescence in a light adapted leaf, and Fs is steady state fluorescence.  We 

used the multiphase flash method to obtain greater accuracy in Fm’ acquisition compared to 

typical rectangular flash methods (Loriaux et al. 2013).  To obtain dark adapted parameters, 

measurements were taken at pre-dawn for a minimum of eight samples per branch to obtain 

branch averaged Fo and Fm.  Average coefficient of variation for each branch was 0.126 and 

0.136 for Fo and Fm, respectively. 

 

2.5.2 Leaf hyperspectral 

In addition, leaf level hyperspectral reflectance measurements were taken with an ASD 

FieldSpec3 (ASD Inc., Boulder, CO, USA) spectroradiometer with plant probe.  The FieldSpec 

has a spectral range from 350-2500nm with spectral resolution 3nm FWHM and sampling 

interval 1.4nm in the visible range.  The plant probe has a low intensity light source for non-

destructive data collection.  Prior to each measurement, a white reflectance reference was taken 

using a calibrated reference standard.  Needles were arranged, as best as possible, in a single 

plane to minimize gaps without being overlapping.  After clamping onto the needles and turning 

on the light source, 2-3 spectra were taken within a few seconds to prevent jumps in PRI due to 

an altered light condition (Mottus et al. 2017). 

 

3.  RESULTS 
 
3.1 Seasonal PRI versus GPP 

Pooled over the course of the entire study period, PRI and GPP were not statistically 

related (p>0.05, regression not shown).  However, we did find a relationship that is inconsistent 
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through time (See Fig 2b).  There was a significant negative relationship between PRI and GPP 

in July and August (R2=.62, p<0.05, Fig 2c), and a significant positive relationship in September 

(R2=.48, p<0.05, Fig2d).  The seasonal course of LUE was very similar to GPP (Fig 2b), and 

again, PRI was significantly negatively related to LUE in July and August (p<0.05, R2=.52), and 

positively in September (p<0.05, R2=.53).  As mentioned previously, sunny data from 10:00-

12:00 was averaged to summarize each day into a single value.  The average standard deviation 

for each daily PRI data point was ±0.112, however some days displayed a much higher degree of 

variation in PRI (see Appendix B, Fig 10a).  Changes in the degree of intra-morning PRI 

variation over the course of the season are shown in Appendix B, Fig 10d.  This study period 

covered a three-month time span from July-September characterized by monsoon convective 

storms.  Hydrologic dynamics showed that July and August were marked by higher frequency 

storms and more variable atmospheric demand compared to September (see Fig 2a).  The sudden 

peak in GPP around August 8 is difficult to explain.  There were no sudden changes in the 

system that would lead us to expect a spike in GPP, therefore this peak may be a modeling 

artifact resulting from NEE partitioning.  Nonetheless, it is curious that this GPP spike 

corresponds precisely in time with an equally dramatic drop in PRI.   
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Fig 2: a) Three-month seasonal time course of VPD (hPa), VWC (cm3cm-3), and Tair (°C) 
showing greater hydrologic variability in July and August compared to September; b) seasonal 
PRI and GPP (µmol CO2 m-2 s-1), with LUE (µmol CO2/µmol PPFD) shown to demonstrate 
similarity to GPP.  Smoothed seasonal trend lines were created using a 1st order polynomial 
symmetrical Gaussian function.  Dotted trend line segments indicate data that was gap filled.  
Dividing the data at the dotted line around the end of August, PRI and GPP show c) a significant 
negative relationship (R2=.63 p<0.05) in July and August, and d) a significant positive 
relationship (R2=.47, p<0.05) through September.  
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3.2 Seasonal PRI and the dynamic environment: 
 

PRI clearly parallels a combination of VWC and Tair throughout the season (see Fig 3a).  

Daily average PRI was significantly, albeit weakly, correlated with VWC (p<0.05, R2=0.17), as 

well as with Tair (p<0.05, R2=0.10).  Daily PRI was not significantly correlated with vapor 

pressure deficit (VPD) or PPFD (see Table 1).  We performed a regression tree analysis 

(Breiman et al. 1984) using the recursive partitioning package (the R library rpart – Version 4.1-

13) on the environmental drivers of PRI:  VWC, Tair, VPD, and PPFD, and found that Tair and 

VWC ranked highest in importance:  Tair, VWC, VPD, and PPFD had a variable importance of 

37%, 29%, 27%, and 7%, respectively.  Multiple linear regression (MLR) using VWC and Tair 

significantly but weakly predicted PRI (R2=0.41, p<0.05; See Fig 3b,c,d)—with the equation:   -

2.0791 + 6.4036 *VWC + 0.0585 * Tair.  We ran a global validation of linear model assumptions 

(the R library gvlma – Version 1.0.0.3; Pena and Slate 2006), and all assumptions were met.  

Cross-validation analysis, in which the model was trained with 70% of the data, tested on the 

remaining 30%, and iterated five-fold, produced an R2=0.35 (Fig 3b,c).  Adding PPFD into the 

model showed no improvements (see Table 1).  The model performed the weakest during mid-

September when VWC was at a minimum (see Fig 3).   

In contrast, regression tree analysis for the environmental drivers of GPP showed that 

VPD rather than Tair ranked highest in importance.  VPD, VWC, PPFD, and Tair had a variable 

importance of 28%, 26%, 24%, and 23%, respectively.  GPP was less influenced by VWC and 

was more sensitive to PPFD, as compared to PRI.  These results hint that a decoupling between 

Tair and VPD (i.e. when its humid) could produce more divergence in the PRI-GPP relationship.  

In fact, only looking at times when VPD - Tair > 10, there was a strong negative relationship 

between GPP and PRI (R2= 0.56, p<0.05, data not shown).  This suggests that it is these times 
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that are driving the negative PRI-GPP relationship in July-August.  An MLR model predicting 

GPP with a combination of VWC and VPD was significant (p<0.05), but much weaker (R2=.24) 

than the prediction of PRI (see Appendix B, Fig 11).  It was somewhat surprising that PRI could 

be predicted from the physical environment more strongly than GPP.  This highlights the fact 

that PRI is directly tied to the plant response to environmental stress, while plants are adapted to 

maximize GPP within environmental constraints. 

 

 

Figure 3:  a) seasonal PRI is 
plotted against VWC (cm3cm-3) 
and Tair (°C).  Dotted black line 
indicates Tair data that was gap 
filled. b) observed PRI plotted with 
PRI modeled from the cross-
validated MLR model using VWC 
and Tair as predictors c) regression 
between observed values and PRI 
modeled from a five-fold cross 
validation (R2 = .35), as well as d) 
PRI modeled from all data 
(R2=0.41). Smoothed seasonal 
trend lines were created using a 
1st order polynomial symmetrical 
Gaussian function. 
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Model PRI GPP 
VWC .17*** 0 
Tair .10** .08* 
VPD 0 .13** 
PPFD 0 0.02 
VWC + Tair 0.4*** .12** 
VWC + VPD .18*** .18*** 
VWC + PPFD .17*** 0.03 
VWC + Tair + PPFD .4*** .12** 
VWC + VPD+ PPFD .18*** .18*** 

 
Table 1: Hierarchical regression analysis for predictors of PRI and GPP. Values presented are 
correlation of determination (R2). *p < 0.05 ** p<0.01 ***p<0.001. 
 

3.3 Seasonal PRI & Sap flow 

Our assertion that PRI tracks seasonal water dynamics is further supported by sap flow 

analysis.  Over the monsoon season, PRI and sap flow varied in synchrony (see Fig 4a).  This 

was especially true from late July through mid-September, when PRI and sap flow were 

positively correlated with R2=0.55 (see Fig 4c).  During rain events with extremely low VPD 

(see Fig 4b), sap flow response exhibited a ~2 day lagged response behind PRI (see red arrows 

in Fig 4). 

GPP association with seasonal sap flow was dramatically weaker (see Fig 5a).  Sap flow 

and GPP were not significantly related throughout the season (p>0.05).  In July and August when 

PRI vs GPP had a negative relationship (Fig 2b,c), GPP and sap flow had no relationship 

(p>0.05; see Fig 5b); while in September when PRI vs GPP were positively correlated (Fig 

2b,d), GPP and sap flow were also positively correlated (p<0.05, R2=.63; see Fig 5c).  

 



 48 

 

 
 
 
 

Fig 4: a) Seasonal course of PRI compared 
with sap flow (cm hr-1) from July-October 
compared with b) changing VPD (hPa) and 
VWC (cm3cm-3) during that time.  Red arrows 
indicate a time lag of sap flow following PRI 
response.  c) regression analysis for data 
between dotted lines in Fig 4a–which 
excludes times that exhibit a temporal lag—
shows PRI and sap flow are positively 
correlated (R2=.55, p<0.05).   
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Fig 5:  a) Seasonal course of GPP (µmol m-2s-1) relative to sap flow (cm hr-1) had an overall 
insignificant relationship (p>0.05, R2=.05).  When the season was divided at the same point as 
in Fig 2b, b) July and August showed a non-significant relationship, c) while in September sap 
flow and GPP were positively correlated (p>.05, R2=.63). 
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3.4 Diurnal Canopy Scale PRI  
 

For diurnal analysis, data from mid-season, July 23-Sept 16, were used to calculate 

30min averages.  All data was used where PPFD > 500 µmol m2 s-1, from 9:00am – 1:30pm 

when sun-sensor angle was <40°.  Constancy of diurnal dynamics was tested by plotting each 

variable against SZA (see Table 2).  Canopy scale diurnal data showed no significant diurnal 

signal in PRI, LUE, or GPP (p>0.05; see Fig 6).  PRI was not significantly related to GPP 

(p>.05) or PPFD (p=.08, R2=.34), and PRI was significantly negatively related to LUE 

(p<0.05, R2=.48, Table 1), contrary to expectations.  PPFD values show that the system exists 

in a state of extremely high irradiance and appears to be light saturated throughout much of the 

day, with daily average PPDF >1200 µmol m-2s-1 from 8:30am – 3:00pm (see Fig 6). 

 

 
Fig 6:  Half-hourly diurnal PRI, GPP (µmol m-2s-1), LUE (µmol CO2/µmol PPFD), and PPFD 
(µmol m-2s-1) averaged from day of year 203-260 (July 23- Sept 16). All data are included where 
PPFD>500 µmol m-2s-1.  Dotted lines at 9:00am and 1:30pm indicates when sun-sensor angle 
<40° for eastern facing needles. Error represents ±1SE from the mean.  
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 PRI Tair PPFD LUE GPP 
PRI      
Tair 0.28     
PPFD 0.34 0.44*    
LUE -0.48* -0.52* -0.69**   
GPP 0.11 0.41* 0.69** -0.31  
SZA -0.15 -0.94*** -0.27 0.35 -0.35 

Table 2:  Correlation matrix for diurnal data for sun-sensor angle <40° and PPFD> 500 µmol 
m2 s-1.  Values presented are correlation of determination (R2).*p < 0.05 ** p<0.01 ***p<0.001. 
 

3.5 Leaf Level Diurnal PRI 

We chose to conduct leaf level analyses in top-of-canopy sunlit leaves with the 

hypothesis that upper canopy layers would demonstrate large gradients in PRI due to strong 

photoprotective needs (Lichtenthaler et al. 2007).  Branch data were aggregated to give hourly 

data for each species, therefore each data point represents an average of 1-4 measurements.  Gsw 

and Anet both responded to diurnal changes in VPD and Tair (see Fig 7a,b), and we expected that 

the xanthophyll pool, which regulates the amount of energy being used for electron transport, 

would respond in concert.  However, in agreement with canopy data (Fig 6), leaf PRI did not 

express a diurnal signal for either P. ponderosa or P. strobiformis (p>0.05; see Fig 7g).  

Constancy of diurnal dynamics was tested by plotting each species against PAR.  Significant 

noise in diurnal leaf level PRI is not an uncommon issue (Dobrowski et al. 2005).   

In addition, NPQ was remarkably high by early morning, with values >3 by 9:00am, and 

remained high throughout the day (see Fig 7c).  High NPQ values were supported by 

correspondingly low ΦPSII values.  That P. strobiformis appeared to have higher NPQ and lower 

ΦPSII resulting in lower LUE and Anet, indicates that this species was experiencing a higher 

degree of stress induced reductions in photosynthetic function compared to P. ponderosa. 

Though diurnally constant for both species, PRI appeared to be, for the most part, lower in P. 

strobiformis than in P. ponderosa, indicating that PRI was able to differentiate between species.  
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However, we cannot not conclude statistically that PRI differed significantly between the two 

species (two-sample T-test, p=.08), likely due to a limited sample size. 

Tower and leaf level data showed that these needles exist in a remarkably high light 

environment (Fig 6, 7f)—higher than reported in most other studies.  Yet, natural vegetation is 

remarkable at adapting to its natural light environment (Walters 2005).  The Fv/Fm parameter 

should be 0.83-0.84 in most species (Bjorkman and Demmig 1987), while reductions in Fv/Fm 

indicate photoinhibition has occurred in response to prolonged stress (Maxwell and Johnson 

2000).  Average Fv/Fm for P. ponderosa was 0.845±0.004 and for P. strobiformis was 

0.837±0.002.  These needles were not experiencing any sustained photoinhibition and the plants’ 

ability to dissipate excess light energy was within the capacity of reversible photoprotective 

pathways.   
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Figure 7:  Leaf level hourly diurnal data for a) gsw (mol m-2s-1) b) Anet (µmol m-2s-1) c) NPQ 
(unitless), d) φPSII (unitless), e) Tair  (°C, solid lines) and VPD (kPA, dotted lines), f) PAR (µmol 
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m-2s-1), f) PRI, and h) LUE calculated as Anet/PAR (µmol CO2 /µmol PPFD).  Each point is an 
average of 1-4 branches, (some missing data due to cloudiness), and was a measurement of 20 
needles for P. strobiformis (green) and 12 needles for P. ponderosa (blue).  Error bars represent 
±1SE from the mean. 
 
 
4.  DISCUSSION   
 

Remotely sensed PRI holds potential to fill a major gap in our ability to distinguish how 

water availability influences C dynamics, particularly in evergreen conifer forests, but has 

largely been under-studied in natural wildlands.  In this study, we assessed spectral 

measurements in conjunction with biophysical and functional parameters for a deeper 

examination of PRI as a proxy for dynamic photoprotection.   

 

4.1 Inconsistent PRI-GPP seasonal relationships   

While a number of studies have attempted to relate PRI to canopy level productivity 

using flux data, we still lack a mechanistic understanding of the drivers involved and how these 

relationships vary between ecosystems.  Results from the literature on the seasonal dynamics of 

PRI are inconclusive and a strong relationship between PRI and LUE may (Cheng et al. 2013; 

Louis et al. 2005; Nichol et al. 2002; Serrano and Penuelas 2005) or may not be observed (Filella 

et al. 2004; Gamon et al. 2001; Nakaji et al. 2006; Rahimzadeh-Bajgiran et al. 2012; Soudani et 

al. 2014).  Median R2 for 15 seasonal relationships between LUE and PRI for conifer individuals 

or stands reported in the literature was R2=0.65 (Zhang et al. 2016), however most of these 

studies were in boreal climates or potted plants.  He et al. (2016) showed that GPP modeled from 

MODIS-based PRI was able to predict measured GPP at flux tower sites across the continental 

U.S. (.46> R2>.82), but model performance in arid or semi-arid evergreen needleleaf forests was 

much lower (R2=.30).   
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Only a few studies of seasonal PRI have been conducted in forests that experience a 

monsoon climate, and those have reported inconsistent and weaker relationships with estimates 

of productivity (Nakaji et al. 2014; Nakaji et al. 2006; Zhang et al. 2015).  In agreement, our 

results show that the relationship between PRI and GPP varies dramatically throughout the 

monsoon growing season.  However, while Nakaji et al. (2006) attributed a negative PRI-LUE 

relationship to yellowing deciduous needles, the inverse PRI-LUE relationship in our system 

occurs during the period leading up to peak productivity, and therefore cannot be explained by 

any obvious state change such as senescence.  Changing hydrologic variability is one 

explanation.  July and August, which mark the beginning and peak of the monsoon, experience 

an overall wetter environment with frequent rain events creating more variable hydrologic 

dynamics.  In contrast September is relatively drier, moving towards the end of the monsoon 

season (Fig 2a).  In agreement with this explanation, time periods with high frequency rain 

events and frequent alternations between sunny and cloudy conditions have been linked to 

scattered relationships between PRI and LUE (Soudani et al. 2014; Zhang et al. 2015).  Indeed, 

Zhang et al. (2015) found significant negative PRI-LUE relationships around days with heavy 

precipitation events in a sub-tropical conifer forest, with PRI and LUE being correlated on 40% 

of dry season days but only 22% of rainy season days.  

On the other hand, the seasonal break down in the PRI-GPP relationship may be driven 

by physiological mechanisms.  There is substantial evidence that changing carotenoid to 

chlorophyll (Car/Chl) ratios can dominate the seasonal PRI signal (Filella et al. 2009; Frechette 

et al. 2016; Gitelson et al. 2017; Hmimina et al. 2015; Porcar-Castell et al. 2012; Sims and 

Gamon 2002; Stylinski et al. 2002; Wong and Gamon 2015b) masking its relationship to 

changing deepoxidation state (DEPS).  The PRI relationship with short-term, reversible changes 
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in DEPS has been termed the “facultative” component, while its confounding relationship with 

long term changes in Car/Chl has been termed the “constitutive” component (Gamon and Berry 

2012).  This pattern is due to the fact that both carotenoids and chlorophylls absorb at 531nm, 

while chlorophylls but not carotenoids absorb at 570nm.  When seasonal photosynthetic activity 

is regulated by changing Car/Chl ratios in response to changing environmental stress, this 

confounding effect may actually magnify the seasonal relationship between PRI and LUE 

(Gamon and Berry 2012; Wong and Gamon 2015a).  On the other hand, when photosynthesis is 

decoupled from the timing of these pigment pool changes, there can be a concurrent decoupling 

in the seasonal PRI-LUE relationship (Frechette et al. 2015; Porcar-Castell et al. 2012).  It is 

possible that the observed decoupling between PRI and GPP represents a shift in pigment pool 

composition.  During the prolonged pre-monsoon drought, we might expect sustained forms of 

NPQ to dominate, therefore pigment pool adjustments following the start of the monsoon 

rewetting in early July may be decoupled from photosynthetic recovery.  To test this hypothesis, 

PRI data that extend into the pre-monsoon season should be analyzed in conjunction with a 

seasonal pigment composition analysis. 

 

4.2 Seasonal PRI responds to ecohydrological dynamics   

Analysis of long-term EC records at our site indicates that this forest, subject to a high 

degree of interannual climatic variability, can be both water and/or energy limited (unpublished 

data, J. Knowles) depending on prevailing conditions.  Our result that PRI was driven by a 

combination of VWC and Tair provides further evidence of this, and indicates that PRI is able to 

integrate across ecosystem response to multiple environmental drivers.  In addition, PPFD did 

not appear to be as important in determining either PRI or gross CO2 flux as expected, likely due 
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to light saturation and in agreement with Sims et al. (2005).  Our results are supported by 

previous studies which found PRI varied seasonally in response to Tair in conifers (Nakaji et al. 

2006; Wong and Gamon 2015a).  However, in contrast, PRI has been shown to be uncorrelated 

with Tair for evergreen needleleaf sites across the continental U.S. (He et al. 2016), and weakly 

correlated with Tair in a subtropical conifer forest (Zhang et al. 2015).  These inconsistencies are 

unsurprising and reflect varying degrees of temperature limitation across diverse ecosystems. 

  In combination with energy constraints, we showed that PRI responded to dynamic water 

availability.  Studies in crop systems have shown that soil moisture can affect the PRI 

relationship with LUE (Inoue and Penuelas 2006) or irradiation (Magney et al. 2016), and these 

effects become stronger as soil moisture becomes increasingly limited.  It is logical that 

unnatural crop systems would be highly responsive to water availability– however expected PRI 

response to water availability in natural forests is more complex.  PRI was found to be driven by 

stress response to reduced soil moisture in a beech forest (Nestola et al. 2018), while in contrast, 

using MODIS sPRI13 as a proxy for water supply to improve modeled estimates of GPP was less 

effective in forested systems due to the complex ecohydrology of large trees (He et al. 2016).  

We found that during the time period with lowest VWC in our study (mid-September), PRI 

appeared more strongly driven by water availability than by Tair (Fig 3a).  The overall 

moderately low performance of the MLR (R2 = .41), indicates that the relative strengths of Tair 

and VWC as drivers are dynamic through time and complicated by threshold-type responses.  

PRI response to environmental drivers appears to be highly site specific due to contrasting 

evolutionary adaptation to constraints on C assimilation (Garbulsky et al. 2011).  That being 

said, our result that PRI can be predicted using an MLR with VWC and Tair as predictors agrees 

with what we believe to be limiting constraints in our study system.   
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The results of the MLR analysis are strengthened by sap flow data which show that PRI 

was significantly related to transpiration across the season.  Because gsw simultaneously 

regulates water loss and CO2 uptake (Collatz et al. 1991; Meinzer 2002), transpiration rates 

should be related to photosynthetic inhibition as measured by PRI.  While a few studies in crop 

systems have attempted to link seasonal PRI to measures or proxies of plant hydraulics (Magney 

et al. 2016; Rossini et al. 2013; Suarez et al. 2008; Sun et al. 2014; Zarco-Tejada et al. 2012), 

even fewer have attempted to relate PRI to sap flow rates (Manzanera et al. 2017; Marino et al. 

2014).  PRI has been shown to vary with Tair-Tleaf—a proxy for transpiration—in crop systems 

(Rossini et al. 2013; Suarez et al. 2008), and has been used as a remotely sensed proxy of gsw to 

successfully model transpiration (Hilker et al. 2013).  Our results agree with Marino et al. (2014) 

who showed a linear relationship between sap flux density and leaf-level PRI in olive trees 

(R2=.42), and Manzanera et al. (2017) who showed that single-tree scale PRI was significantly 

correlated with sap flow rate (R2=.62) in juvenile potted pines.  However, this is the first study to 

our knowledge to report a relationship between PRI and sap flow in a natural mature forest, the 

first to do so using canopy PRI, and the first to show this relationship on a seasonal time scale 

with continuous, daily resolution. As Magney et al. (2016) reported on a diurnal scale, we report 

on a seasonal scale and in a natural system that stomatal opening is regulated similarly as PRI.  

These sap flow results suggest that on a seasonal scale PRI is an effective indicator of stomatal 

response to ecohydrological dynamics.   

The influence of precipitation pulses in semi-arid ecosystems causes functional 

parameters to decouple over relatively short time scales (Huxman et al. 2004).  While we found 

that PRI sometimes responded prior to transpiration, Zarco-Tejada et al. (2012) reported the 

opposite time delay, with PRI responding slightly behind Tcanopy-Tair during drought recovery 
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after re-watering.  The important difference is that our study system experienced re-watering due 

to rain events, which simultaneously affected the VPD and radiation intensity of the system, 

whereas their system experienced re-wetting from irrigation independent of atmospheric 

conditions.  We attribute the exhibited temporal lag in our study to time periods with extremely 

low VPD corresponding to rain events (see Fig 4b).  During these times, transpiration slows to a 

minimum because evaporative demand is too low to drive the physical pull of water.  Therefore, 

these instances of low VPD represent times when transpiration is low yet leaves are relieved of 

stress, resulting in a PRI response to unstressed conditions and sap flow following only after the 

water potential gradient is reestablished.   

We highlight that both our study and Manzanera et al. (2017) observed a relationship 

between PRI and transpiration in pine species when a significant relationship between PRI and 

CO2 assimilation was absent.  We would expect that PRI is related to gsw only when diffusional 

limitations cause photosynthetic inhibition—meaning PRI should be related to CO2 assimilation 

if it is also related to transpiration, contrary to our results.  Remote sensing of transpiration 

remains a nascent field (Damm et al. 2018; Marshall et al. 2016), and the way in which the PRI 

signal interacts with water use efficiency dynamics is entirely unclear and warrants further study.  

Lacking a physiological explanation, we assess methodological inconsistencies.  Another 

surprising result was that PRI performed much better than GPP at tracking the three-month time 

course of sap flow, and when GPP did track sap flow in September (Fig 5), was the same time 

period GPP and PRI were positively correlated (Fig 2).  These results lead to the speculation that 

a footprint mismatch is at play.  The size of any flux tower footprint varies with atmospheric 

stability and can change monthly (Chen et al. 2009), and spatiotemporal mismatches are a 

recognized issue when attempting to pair optical and flux methods (Chen et al. 2009; Gamon et 
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al. 2010; Gamon et al. 2006; Pacheco-Labrador et al. 2017).  While the FOV of the SRS sensor is 

~50m2, EC measurements at this site come from within ~750m.  Spatial variability of PRI has 

been shown to be affected by species (Atherton et al. 2017; Guo and Trotter 2004), and the 

species within the SRS sensor FOV are not fully representative of the demography within the 

entire flux tower footprint, as it excludes P. menziesii.  On the other hand, the SRS sensor 

measured the full or partial canopy of five trees, four of which were used to measure sap flow. 

Therefore, the spatial scales of PRI and sap flow measurements were nearly identical, which we 

believe contributes to their close correlation even when PRI was not closely correlated to CO2 

assimilation. 

Our results in conjunction with previous studies demonstrate that PRI holds remarkable 

potential as a unique remotely sensed indicator of ecohydrological constraints.  Remote sensing 

has proven to be a powerful tool for monitoring past and ongoing ecosystem disturbances such as 

drought induced forest mortality, however to harness the full potential of these technologies, 

progress should be made in our ability to predict when ecosystems will be vulnerable to future 

degradation prior to visible manifestations (Smith et al. 2014).  PRI has potential as an a priori 

approach for characterizing plant response to future changes in hydroclimate.   

 
4.3 Suppressed Diurnal PRI response  

Photochemical efficiency should parallel irradiance conditions throughout a diurnal cycle 

(Demmig-Adams et al. 2012).  Characterization of diurnal PRI is needed if snapshot satellite data 

can ever serve as a robust representation of photosynthetic processes (Sims et al. 2005), yet at 

present, information of diurnal PRI is limited in natural systems, particularly in mature conifer 

forests (Gamon and Bond 2013; Mottus et al. 2018).   
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Very few studies have used canopy PRI to track diurnal changes in conifer forests (Zhang 

et al. 2016).  Other studies, in agreement with our results, have found that diurnal dynamics were 

suppressed in summertime (Cheng et al. 2009; Middleton et al. 2009), indicating that canopy PRI 

may fail to exhibit diurnal variation when multiple environmental stressors occur in concert with 

high light intensities, or anytime diurnal LUE variability is low.  To probe more deeply into the 

physiological meaning behind a constant PRI, we turn to the leaf level analysis. This is the first 

study to our knowledge to analyze diurnal needle PRI and its relationship with both gas 

exchange and fluorescence parameters in top of canopy needles of a montane conifer forest. 

Across many species and plant functional types, there is conclusive evidence of a strong 

correlation between leaf PRI and ΦPSII as well as LUE (for reviews see Garbulsky et al. 2011; 

Zhang et al. 2016).  However, most diurnal leaf level studies have been biased towards 

broadleaved and herbaceous plants.  Of the 57 PRI-ΦPSII relationships analyzed in Zhang et al. 

(2016) metanalysis, only four were for conifers from a single study of Pinus taiwanensis (Weng 

et al. 2012).  In addition, leaf PRI should track the PAM fluorometry parameter NPQ on diurnal 

time scales (Alonso et al. 2017; Atherton et al. 2016; Evain et al. 2004; Gamon et al. 1992; 

Rahimzadeh-Bajgiran et al. 2012), however this relationship has proven to be complex and is 

often non-significant (Garbulsky et al. 2011).  No other studies to date have analyzed the diurnal 

relationship between PRI and NPQ in conifer needles.   

We found that PRI did not predict diurnal LUE for either species.  PRI should be a proxy 

of LUE when ΦPSII determines the rate of C assimilation (Guo and Trotter 2004).  We might 

expect ΦPSII to be uncoupled from C assimilation under conditions of severe stress.  Stress 

conditions can decouple electron transport in the light reactions from carboxylation in the dark 

reactions via alternative electron sinks (Porcar-Castell et al. 2014).  This would by extension 
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manifest as an uncoupling between PRI and CO2 assimilation (Kovac et al. 2018).  In our study, 

ΦPSII and Anet were significantly correlated in P. strobiformis (p<0.05, R2=.62), but not in P. 

ponderosa.  This suggests that P. ponderosa is utilizing alternative processes that reduce energy 

for use in photosynthesis as a form of stress relief, which impedes the ability of PRI to predict 

LUE.  While neither species expressed a statistically significant diurnal PRI signal, it appears 

that P. strobiformis may have been more diurnally variable than P. ponderosa (Fig 7g), in 

agreement with these theories.  Larger sample size would be needed to investigate these 

relationships more conclusively. 

Typically, conifer species adapted to persist through repeated unfavorable seasons 

experience reduced Fv/Fm during winter downregulation when sustained levels of Z+A remain 

engaged for energy dissipation (Demmig-Adams and Adams 2006; Demmig-Adams et al. 2012; 

Porcar-Castell 2011).  The lack of diurnal PRI signal combined with the fact that PAR and NPQ 

are very high by early morning while ΦPSII is quite low (Fig 7), indicates that these top-of-

canopy needles exist in a state of maximum photo stress throughout the entire day.  This suggests 

that Z+A is retained overnight similar to overwintering pines, but importantly, without the 

concurrent reduction in Fv/Fm.  Retention of Z+A without a reduction in Fv/Fm was first 

reported by Barker et al. (2002) for Yucca species withstanding extreme summers in the Mojave 

Desert, leading to the discovery that Z + A retention and Z + A engagement are separate 

processes.  Because irradiance remains saturated all day, these needles may have adapted to 

forgo unnecessary epoxidation of Z + A in the morning and afternoon so that zeaxanthin can be 

more rapidly engaged upon early morning exposure to high light than if violaxanthin had to first 

be de-epoxidized.  Because PRI detects conversion to V to Z+A, but not engagement of already 

present Z+A, retention of Z+A will decouple PRI from diurnal photoprotection.  Contrary to 
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Mottus et al. (2018) who attributed constant PRI to a lack of photosynthetic downregulation in a 

boreal forest, we hypothesize that constant PRI decoupled from diurnally changing Anet indicates 

xanthophyll cycle pigments are retained in Z+A form, but maintain flexibility in terms of 

engagement and disengagement.  Ongoing xanthophyll pigment biochemical analysis will be 

processed to test this hypothesis.  Overall, we find an instantaneous measurement of canopy PRI 

would not be representative of instantaneous photosynthesis in this system. 

Leaf and canopy scale diurnal analysis each have their own limitations, therefore 

complimenting one with the other can strengthen conclusions.  A major limitation of any leaf 

level analysis is the pooling of data from measurements across multiple leaves and branches on 

different days.  Leaf-leaf heterogeneity in orientation (Mottus et al. 2018), Car/Chl ratios, or 

physical structure (Marin et al. 2016) could obscure the diurnal PRI signal (Ac et al. 2009).  

However, canopy scale PRI integrates over this inter-leaf heterogeneity.  On the other hand, 

physical factors complicate the acquisition of canopy scale diurnal PRI, including sun sensor 

geometry effects on illumination (Barton and North 2001; Grace et al. 2007; Hall et al. 2008; 

Hilker et al. 2008a), mixed-pixel background effects, as well as canopy structural effects 

(Hernandez-Clemente et al. 2016; Hernandez-Clemente et al. 2011; Jia et al. 2018).  Barton and 

North (2001) showed that PRI exhibits greater variation of view angle than most other vegetation 

indices, and this has been one of the more significant barriers to moving PRI out of the proof-of-

concept stage.  These complicating effects can uncouple canopy PRI from leaf physiology.  

Therefore, agreement between leaf-level measurements that are not subject to structural and 

geometrical effects and canopy-level measurements that integrate over leaf heterogeneity, 

strengthen our confidence that the demonstrated lack of PRI diurnal response is in fact rooted in 

physiology. 
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5.  CONCLUSIONS 

We found that the ability of PRI to serve as a proxy for seasonal and diurnal 

environmental photoprotection in a semi-arid conifer forest was highly dependent on temporal 

scale.  At the canopy scale we found that the relationship between PRI and GPP changed over 

the course of the monsoon season.  This could be due to a) high frequency rain events b) 

changing pigment pools following the transition out of pre-monsoon sustained suppression, or c) 

a footprint mismatch between EC flux and optical data.  In addition, we found that seasonal PRI 

responded to ecohydrological dynamics as expected in a system that is both water and energy 

limited, and reported for the first time a relationship between seasonal PRI and sap flow in a 

natural, mature forest.  On a diurnal time scale we conclude that PRI remained constant 

throughout the day, and hypothesize that in this high light, high temperature environment, 

retention of zeaxanthin through day and night keep top of canopy needles poised for flexible 

engagement.  

Few studies have been done in systems that exhibit a bimodal pattern of production, or in 

conifer forests that retain winter photosynthetic capacity.  We suggest that to investigate further, 

this analysis should be repeated multiple times throughout the season, paying particular attention 

to the transition between pre-monsoon drought and monsoon re-wetting.  Seasonally iterated 

diurnal analysis should be paired with biochemical characterization of the DEPS of the 

xanthophyll cycle and total Car/Chl pools to help discern if PRI is representing xanthophyll cycle 

activity versus larger pigment pool changes.  We hypothesize that complex temporal phase 

decoupling may be present between PRI, transpiration, GPP, and pigment composition during 

the atypical seasonal transitions of this semi-arid forest (Ruehr et al. 2012).  Ultimately this 
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investigation will help elucidate how the presence of water stress complicates seasonal PRI-LUE 

relationships, and may serve as a window into the future for forests across the western U.S. 

expected to undergo significant hydroclimatic changes.  
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APPENDIX B 
 
ADDITIONAL FIGURES 
 

 
Fig 8:  2018 annual course of GPP and VWC for context.  Dotted blue lines indicates time frame 
of canopy-scale analysis from DOY 186-279.  Dashed blue line pair indicates time frame of leaf 
level analysis on Sept 13-14. 
 
 



 78 

 
Figure 9:  MODIS NDVI time series data during the study period, 2018.  Data was acquired 
from Terra MOD13Q1(Didan 2015a) and Aqua MYD13Q1(Didan 2015b) surface reflectance 
products.  The spatial resolution is 250m. Data downloaded from MODIS and VIIRS Land 
Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. 
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Figure 10:  The spread of standard deviations for each daily mean from 10:00 – 12:00 for PPFD 
>1000 µmol m2s-1 is shown for seasonal a) PRI, b) GPP, and c) PPFD; and d) seasonal changes 
in the standard deviation of PRI daily means. 
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Figure 11: Observed GPP plotted with GPP modeled from the cross-validated MLR model using 
VWC and VPD as predictors.  Inlay shows regression between observed values and PRI modeled 
from a 5-fold cross validation (R2 = .18, p<0.05). 
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