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Abstract. Nanoparticle structures formed in a mixture of diblock copolymer and solvent are
investigated using a three-phase density functional model and its sharp interface approximation. A
wide variety of equilibria described by localized domain patterns are quantified both numerically
and analytically. Competition among multiple particles is shown to occur through mass diffusion
driven by differences in chemical potential, which may or may not lead to Ostwald ripening behavior.
Late stage rigid body dynamics is shown to result from interaction through dipolar fields, leading to
orientational alignment and long-range attraction.
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Introduction. Block copolymer materials can create a wide variety of micro-
structures resulting from a compromise between phase segregation and polymer archi-
tecture which prevents complete separation [1, 2, 3, 4, 5]. In the presence of a solvent
phase or confinement mechanism, these materials may form structured nanoparticles.
Many current and anticipated applications for block copolymer nanostructures have
emerged, including synthetic nanoreactors and drug delivery systems [4, 5].

The self-assembly of AB-diblock copolymers within a third immiscible phase (of-
ten called ``soft confinement"") has been well documented in physical experiments
[6, 7, 8, 9]. Symmetric copolymers are often observed to form concentric or layered
domain structures [9, 10, 11, 12], as well as more exotic forms [13, 14]. An even wider
array of geometries can be realized in asymmetric mixtures [15, 16, 17].

The technological challenges to nanoparticle fabrication include controlling size
and morphology. Many possible mechanisms exist for influencing nanoparticle forma-
tion [18], including annealing [19], Ostwald ripening behavior [20, 21], and controlling
size with mixing rates [22]. There are many open questions concerning the kinetic
aspects of synthesis and the preference between competing morphologies, which mo-
tivates the current work.

Theoretical models have been successful at the replication and prediction of
copolymer nanoparticle assembly [9, 23, 24, 25, 26, 27, 28, 29]. The primary focus
of past work has been to reproduce equilibrium morphologies seen in experiments.
Outside of numerical simulation, very little work has been done to characterize quan-
titative aspects of equilibria or dynamic phenomena surrounding them.

One popular modeling framework for inhomogeneous polymer systems arises from
density functional theory [30, 31, 32]. This produces systems which are derivatives
of the classical Cahn--Hilliard equation [33] and include nonlocal effects of polymer
stretching. As common with phase-field approaches, there is a natural limiting case
where sharply defined domains of different composition form. This allows passage
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EVOLUTION OF COPOLYMER NANOPARTICLES 29

to a free boundary problem which describes the evolution of domain boundaries,
rather than the composition itself [27, 34, 35]. This type of free boundary problem is
employed here to study domain interface configurations.

Localized or confined multidomain structures have been studied previously in
the context of density functional theory and its free boundary limit. This includes
lamellar configurations and their stability [36, 37, 38], concentric geometries [27, 39],
double bubbles [40], and dynamic phenomena [41, 42]. Numerical work using Cahn--
Hilliard-type systems has also revealed a wide range of equilibrium morphologies
[9, 26]. Stationary assemblies of multidomain structures have also been investigated
in a related three-phase system [43].

This paper addresses the question of interaction among nanoparticles. A sin-
gle particle in isolation may be regarded as an equilibrium configuration of the free
boundary problem, subject to a constraint on its volume. The corresponding Lagrange
multiplier may be identified as the chemical potential associated with total polymer
composition. In the classical scenario leading to Ostwald ripening, the monotonic
behavior of the chemical potential as a function of size leads to coarsening behavior.
In contrast, this may or may not occur in our system. In addition, the chemical po-
tential associated with monomer composition also drives interaction behavior among
particles. This results in both positional and orientational dynamics, which may be
computed explicitly.

The organization of this paper is as follows. Density functional models and their
approximating free boundary problem are reviewed in section 1. Section 2 describes
the equilibrium free boundary problem and derives some qualitative and quantitative
properties of solutions. A reduced dynamical description of multiparticle interaction
and some of its properties are derived in section 3. Late stage interactions between
particles which lead to rigid body motion are studied in section 4. Finally, numerical
simulations are used to confirm and illustrate theoretical findings in section 5.

1. Density functional model and sharp interface approximation. The
modeling framework employed here stems from density functional theory [30, 31, 35]
for heterogeneous polymer systems. The free energy is specified as a functional of
composition variables \phi A, \phi B , and \phi S , corresponding to copolymer constituents A and
B, and a third phase S, representing a homopolymer or poor solvent. One of these
variables can be eliminated by invoking the standard assumption of incompressibility
\phi A + \phi B + \phi S = 1. In addition, the fraction f \in (0, 1) of A-monomer relative to
the total polymer volume is prescribed. Ohta and Nonomura [44] reformulated this
description using the order parameter \bfitu = (\Phi ,\Psi ), where

(1) \Phi = (1 - f)\phi A  - f\phi B , \Psi = f\phi A + (1 - f)\phi B .

This has the advantage of decoupling the long-range interaction between the new
variables.

The free energy for a system with domain \Omega 0 \subset \BbbR 3 is [38, 44]

(2) F =

\int 
\Omega 0

1

\epsilon 
W (\bfitu ) +

\epsilon 

2

\bigm| \bigm| \bigm| \nabla (\bfitG 1/2\bfitu )
\bigm| \bigm| \bigm| 2 d\bfitx +

\alpha 

2

\int 
\Omega 0

\int 
\Omega 0

K(x, x\prime )\Phi (\bfitx )\Phi (\bfitx \prime ) d\bfitx d\bfitx \prime .

The potential W (\bfitu ) has minima

(3) \bfitu S = (0, 0), \bfitu A = (1 - f, f), \bfitu B = ( - f, 1 - f),

corresponding to each pure phase. The symmetric, positive definite gradient energy
tensor \bfitG and potential W can be calibrated in order to prescribe interfacial energies,
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30 KARL GLASNER

which is explained below. Lastly, the nonlocal energy term has interaction kernel K(),
which is taken to be the Laplacian Green's function.

Generalized chemical potentials \nu , \mu arise as variations of the free energy

(4) \nu =
\delta F

\delta \Phi 
, \mu =

\delta F

\delta \Psi 
.

Diffusive dynamics are driven by gradients of chemical potential resulting in

(5)

\biggl( 
\Phi t

\Psi t

\biggr) 
= \nabla \cdot 

\biggl[ 
\bfitM \nabla 

\biggl( 
\delta F/\delta \Phi 
\delta F/\delta \Psi 

\biggr) \biggr] 
.

The mobility tensor \bfitM describes the rates of diffusion and cross-diffusion and for
simplicity of presentation will be taken to be the identity.

The free boundary approximation of (5) is used as a more tractable model for our
analysis. This results in the usual way (see, e.g., [27, 34, 45, 46]) from the limit \epsilon \rightarrow 0,
wherein (\Phi ,\Psi ) \rightarrow (\Phi 0,\Psi 0) = \bfitu A,B,S almost everywhere. The limiting configuration
may therefore be associated with corresponding domains \Omega A,B,S . Polymer phase
domains \Omega A and \Omega B are assumed open and bounded in what follows. The solvent
phase \Omega S is the interior of the complement of \Omega A \cup \Omega B , which may be unbounded
(depending on \Omega 0). The limiting free boundary problem involves the phase interfaces,
denoted by \partial \Omega \scrI , where \scrI \in \{ AB,BS, SA\} . The normal interface velocities Vn are
prescribed by the system

\Delta \nu = \alpha \Phi 0, \bfitx \in \Omega S \cup \Omega A \cup \Omega B ,(6)

\Delta \mu = 0, \bfitx \in \Omega S \cup \Omega A \cup \Omega B ,(7)

\nu [\Phi 0] + \mu [\Psi 0] =  - \sigma \scrI \kappa , \bfitx \in \partial \Omega \scrI ,(8)

[\nu ] = 0 = [\mu ] , \bfitx \in \partial \Omega \scrI ,(9)

Vn [\Phi 0] =  - [\partial \nu /\partial n] , \bfitx \in \partial \Omega \scrI ,(10)

Vn [\Psi 0] =  - [\partial \mu /\partial n] , \bfitx \in \partial \Omega \scrI .(11)

The notation [] refers to the difference in a quantity on either side of the interface,
i.e., the jump from an arbitrarily prescribed  - phase to the + phase. By convention,
the normal to the interface is oriented in the + direction, so that the interface mean
curvature \kappa is positive if the phase corresponding to  - is locally convex. The param-
eters \sigma \scrI and \alpha are surface energy and polymer energy coefficients, respectively; their
specification is described in detail below.

In addition to (6)--(11), there is a Herring--Young--Laplace condition imposed at
triple junctions [46], which may be stated as

(12)
\sum 

\scrI \in \{ AB,BS,SA\} 

\sigma \scrI \bfitn \scrI = 0,

where \bfitn pq denotes the normal directed from phase p to phase q. It is useful to state
this condition in terms of vectors \bfitt \scrI = \bfitl \times \bfitn \scrI , where \bfitl is the tangent to the three-phase
line. After taking cross products with \bfitl , (12) becomes

(13)
\sum 

\scrI \in \{ AB,BS,SA\} 

\sigma \scrI \bfitt \scrI = 0.

The primary interest here is in one or more isolated contiguous structures within
a large but finite system domain \Omega 0. The problem of studying just a single structure
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EVOLUTION OF COPOLYMER NANOPARTICLES 31

in isolation can be idealized by choosing the domain to be unbounded (section 2). The
interaction of many such structures can then be placed into a matched asymptotics
framework (section 3.1), wherein the inner solutions are, to leading order, the infinite
domain equilibria. Solvability of (6) with either periodic boundary conditions or
suitable decay of \mu at infinity demands that the volume fractions of A and B domains
satisfy

(14)
| \Omega A| 
| \Omega B | 

=
f

1 - f
.

Numerical simulation of the free boundary problem will utilize the phase field
approximation (5). The surface energy parameters \sigma \scrI can be associated with the
potential W and gradient energy tensor \bfitG by

(15) \sigma \scrI = inf
\bfitgamma 

\biggl\{ \int 1

0

\sqrt{} 
W (\bfitgamma (s))

\bigm| \bigm| \bigm| \bfitG 1/2\bfitgamma \prime (s)
\bigm| \bigm| \bigm| ds, \bfitgamma (0) = \bfitu p, \bfitgamma (1) = \bfitu q

\biggr\} 
,

where \scrI = pq and \bfitu p,\bfitu q are the potential minima for phases p and q. This represents
an extension of Baldo's minimal path formula [47], wherein the equilibrium interface
profiles \bfitgamma (s) are characterized as geodesics with respect to a degenerate metric. A
convenient choice for \bfitG and W which satisfies this characterization was proposed by
Boyer and Lapuerta [48]. For a reference system with potential minima \~\bfitu = (0, 0),
(1, 0), and (0, 1), they set

(16) \~\bfitG =

\biggl( 
\Sigma 1 +\Sigma 3 \Sigma 3

\Sigma 3 \Sigma 2 +\Sigma 3

\biggr) 
and
(17)
\~W (\~\bfitu ) = \sigma AB\~\bfitu 2

1\~\bfitu 
2
2+\sigma AS \~\bfitu 

2
1(1 - \~\bfitu 1 - \~\bfitu 2)

2+\sigma BS \~\bfitu 
2
2(1 - \~\bfitu 1 - \~\bfitu 2)

2+\Lambda \~\bfitu 2
1\~\bfitu 

2
2(1 - \~\bfitu 1 - \~\bfitu 2)

2,

where \Sigma 1 = \sigma AB + \sigma AS  - \sigma BS , \Sigma 2 = \sigma AB + \sigma BS  - \sigma AS , \Sigma 3 = \sigma AS + \sigma BS  - \sigma AB , and
\Lambda is a suitably large adjustable parameter. To obtain a potential which has minima
as in (3), the corresponding gradient tensor and potential are obtained by a linear
transformation

(18) \bfitG = \bfitQ T \~\bfitG \bfitQ , W (\bfitu ) = \~W (\bfitQ \bfitu ), \bfitQ =
1

f2 + (1 - f)2

\biggl( 
1 - f f
 - f 1 - f

\biggr) 
.

The parameters \epsilon and \alpha in (2) correspond to physical lengthscales. As in other
diffuse interface problems, \epsilon is proportional to the interface width and is set to unity
for convenience. A scaling argument [49] suggests that equilibrium domain structures
will have a characteristic width (defined in the narrow direction) proportional to
\alpha  - 1/3. To achieve a separation of lengthscales required in the small \epsilon limit, one needs
\alpha \gg \epsilon  - 3. For later numerical computation, \alpha is fixed at 2 \times 103, ensuring that the
sharp interface limit is respected.

The system (5) describes two types of phase segregation. On one hand, mi-
crophase segregation between monomer components A and B leads to spatial inhomo-
geneity of the order parameter \Phi . This is ultimately inhibited by polymer stretching,
encoded by the nonlocal energy term. Similarly, phase segregation between polymer
phases and solvent occurs, leading to inhomogeneity of \Psi . When the polymer oc-
cupies only a small fraction of the domain, the combined effect of phase segregation
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32 KARL GLASNER

processes is to create nanoparticles composed of patterned A and B phase domains,
whose morphology is highly dependent on surface energies, composition, and size. In
the absence of polymer effects, the phase segregation process would lead to Ostwald
ripening, wherein small particles shrink at the expenses of larger ones. It will be
demonstrated that this process is altered both quantitatively and qualitatively in the
presence of microphase segregation.

2. Localized equilibria. The fundamental objects in this study are nanopar-
ticle equilibria, which are stationary solutions to the free boundary problem. A wide
variety of such configurations have been observed [9, 27]. These structures are in
equilibrium with their local environment, in the sense that in isolation the chemical
potential \mu which drives polymer mass diffusion is constant everywhere. This section
describes and quantifies some basic types of domain configurations.

2.1. Mathematical formulation and morphological classes. The equilib-
rium configurations of interest may be characterized as a pair of bounded, open do-
mains \Omega = (\Omega A,\Omega B) with piecewise smooth boundaries, satisfying (14), and com-
prising a simply connected set. These satisfy the stationary version of the problem
(6)--(13), which reads as

\Delta \nu = \alpha \Phi 0, \bfitx \in \Omega S \cup \Omega A \cup \Omega B ,(19)

\nu [\Phi 0] + \mu \infty [\Psi 0] =  - \sigma \scrI \kappa , \bfitx \in \partial \Omega I ,(20)

[\nu ] = 0 = [\partial \nu /\partial n] , \bfitx \in \partial \Omega I ,(21) \sum 
\scrI \in \{ AB,AS,BS\} 

\sigma \scrI \bfitn \scrI = 0, \bfitx \in \partial \partial \Omega ,(22)

with \partial \partial \Omega denoting three-phase interfaces. As an idealization of a situation where an
equilibrium domain configuration is far from other structures, this problem is studied
on the infinite domain \BbbR 3. This is exactly the leading order problem which arises
when considering interaction of well-separated particles section 3.1.

Note that the field \mu \equiv \mu \infty is a constant here. It is shown below that this can
be regarded as a Lagrange multiplier associated with a constraint on polymer domain
size. The latter is a conveniently characterized by the functional

(23) M = \Sigma (\Omega ) \equiv 
\int 
\Omega 0

\Psi 0 d\bfitx = f | \Omega A| + (1 - f)| \Omega B | = [f2 + (1 - f)2]| \Omega A \cup \Omega B | ,

where (14) was used. In other words, M is proportional to the total volume occupied
by the polymer phases.

In general, explicit solutions to (19)--(22) are not easily obtained. Much more can
be said about certain distinct classes, such as concentric domains patterns [27]. We
define a morphological class Q to be a differentiable (in the sense defined below) family
\Omega Q(M) of topologically equivalent equilibria with \Sigma (\Omega Q(M)) = M . For a particular
morphological class Q, there is assumed to be a smooth dependence of equilibrium
chemical potential \mu \infty on size M ,

(24) \mu \infty = \mu \infty (M ;Q).

For any particular configuration \Omega (not necessarily at equilibrium), an admissible
perturbation \~\Omega corresponds to a normal displacement of the domain boundaries which
maintains the volume fraction constraint, as well as the coherence of three-phase
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EVOLUTION OF COPOLYMER NANOPARTICLES 33

junctions. Denoting the collection of such boundaries as \partial \Omega , this is a smooth mapping
\~\Omega : \partial \Omega \rightarrow \BbbR constrained to respect (14), so that

(25)

\int 
\partial \Omega 

[\Phi 0] \~\Omega d\bfitx = 0.

In addition, the interfaces must move so that they all intersect at three-phase junc-
tions. Denoting the infinitesimal motion of the junction in a plane normal to the
three-phase line by \bfitq , it follows that

(26) \~\Omega = \bfitn \scrI \cdot \bfitq , \scrI \in \{ AB,AS,BS\} .

This represents an overdetermined linear system for \bfitq , whose solvability constrains
the values of \~\Omega at the three-phase junction.

Lastly, a family of equilibrium configurations \Omega (\beta ) is said to be differentiable on
some open interval \beta 1 < \beta < \beta 2 if each interface in \partial \Omega (\beta ) can be locally described by
a smooth parameterization \bfitx = \bfitx (s;\beta ). In this case, we may define d\Omega /d\beta to be an
admissible perturbation, where

(27)
d\Omega 

d\beta 
(\bfitx (s;\beta )) \equiv d\bfitx 

d\beta 
(s;\beta ).

2.2. Variational characterization of equilibria. As in other phase field sys-
tems, the sharp interface problem (19)--(22) has a natural energy, arising from (2) as
the \Gamma -limit (for the two phase problem, see, e.g., [50]). This energy may be decom-
posed as E = Es + Ep, where Es is the sum of surface energies,

(28) Es =
\sum 

\scrI \in \{ AB,AS,BS\} 

\sigma \scrI | \partial \Omega \scrI | ,

and Ep is the energy of polymer stretching,

(29) Ep =
\alpha 

2

\int 
\BbbR 3

\int 
\BbbR 3

K(x, x\prime )\Phi 0(\bfitx )\Phi 0(\bfitx 
\prime ) d\bfitx d\bfitx \prime .

Configurations satisfying (19)--(22) may be viewed as critical points of the aug-
mented energy \~E = Es + Ep  - \mu \infty \Sigma . This follows by computing the variation of \~E

with respect to an admissible perturbation \~\Omega :

(30) \langle \delta \~E, \~\Omega \rangle \equiv 
\int 
\partial \Omega 

\Bigl( 
\nu [\Phi 0] + \sigma \scrI \kappa + \mu [\Psi 0]

\Bigr) 
\~\Omega d\bfitx +

\sum 
\scrI \in \{ AB,BS,SA\} 

\int 
\partial \partial \Omega 

\sigma \scrI (\bfitq \cdot \bfitt \scrI )d\bfitx .

The triple junction condition (22) arises as a natural boundary condition (in the
calculus of variations sense). The first term in (30) is zero for all admissible \~\Omega ; the
latter set is simply the orthogonal complement of [\Phi 0] by (25). It follows that for
some constant c,

(31) \nu [\Phi 0] + \sigma \kappa + \mu [\Psi 0] = c [\Phi 0] .

Redefining \nu as \nu  - c leads to the equilibrium system (19)--(22).
The variational formulation can now be used to characterize the relationship

between particle size and chemical potential in two different ways. First, suppose
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34 KARL GLASNER

that \Omega Q(M) is a given morphological class of equilibria. Differentiation of E(\Omega Q(M))
with respect to M gives

(32)
dE

dM
= \langle \delta \~E, d\Omega Q/dM\rangle + \mu \infty (M)\langle \delta \Sigma , d\Omega Q/dM\rangle = \mu \infty (M).

This is just a restatement of the thermodynamic definition of chemical potential as
the derivative of free energy with respect to volume.

A second characterization of \mu \infty (M) can be made as follows. Given some equilib-
rium configuration \Omega (1), consider the differentiable family \Omega (r) of dilations, i.e., con-
figurations \Omega A(r) and \Omega B(r) defined so that \bfitx \in \Omega A,B(1) if and only if r\bfitx \in \Omega A,B(r).
By virtue of the scaling of individual energy components (in three dimensions),

(33) \~E(\Omega (r)) = r2Es(\Omega (1)) + r5Ep(\Omega (1)) - \mu \infty r3.

Differentiating with respect to r and setting r = 1 gives

(34) \langle \delta \~E(\Omega (r)), d\Omega (r)/dr\rangle | r=1 = 2Es(\Omega (r)) + 5Ep(\Omega (1)) - 3\mu \infty \Sigma (\Omega (1))

or, in other words,

(35) \mu \infty =
2Es + 5Ep

3M
.

In general, the quantitative relation among energy components, size, and geom-
etry is complicated. For large particles, on the other hand, subdomains appear to
have a characteristic width independent of their size. This suggests an ``equipartition
hypothesis"": for large, low energy domain equilibria, the surface and polymer energy
contributions are each proportional to particle size. Therefore, the formula (35) says
that \mu \infty should approach, or at least be bounded from below by, a constant as the
size becomes large. Computations in section 5.3 are consistent with this conclusion.

2.3. Micelle equilibria. One tractable class of structures which admits analytic
solutions are two-domain ``micelles,"" where the domain boundaries \partial \Omega AB and \partial \Omega BS

are concentric spherical shells with radii r1 and r2. This means r1 = f1/3r2 by virtue
of (14).

The solution of (19) with condition (20) for r < r1 gives

(36) \nu =
\alpha (1 - f)(r2  - r21)

2d
+

2\sigma AB

r1
+ (1 - 2f)\mu \infty ,

whereas the solution for r1 < r < r2 is

(37) \nu =
 - \alpha f(r2  - r21)

2d
+ c(1/r1  - 1/r) +

2\sigma AB

r1
+ (1 - 2f)\mu \infty .

The constant c is determined by applying the second equality of (21) on the \partial \Omega AB

interface, giving c = \alpha r31/3. Finally, applying (20) gives

(38)
 - \alpha f(r22  - r21)

2d
+\alpha rd1(1/r1  - 1/r2)+

2\sigma AB

r1
+(1 - 2f)\mu \infty =

(1 - f)\mu \infty 

f
 - 2\sigma BS

fr2
,

which implies

(39) \mu \infty =
f

f2 + (1 - f)2

\biggl( 
2(\sigma ABf

 - 1/3 + \sigma BSf
 - 1)

r2
+

\alpha r22(2f
2/3 + f5/3  - 3f)

6

\biggr) 
,
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EVOLUTION OF COPOLYMER NANOPARTICLES 35

where

(40) r2 =

\biggl( 
4M

3\pi (f2 + (1 - f)2)

\biggr) 1/3

.

It is important to observe that the relationship (39) between chemical potential
and size is not monotonic. In particular, \mu \infty (M) has a local minimum corresponding
to outer radius

(41) rmin =

\biggl( 
6(\sigma ABf

 - 1/3 + \sigma BSf
 - 1)

\alpha (2f2/3 + f5/3  - 3f)

\biggr) 
.

2.4. Multiple bubble equilibria. Another important morphological class is
one where all A- and B-subdomains are adjacent to the solvent phase. We call these
bubble configurations, and they are commonly observed in simulations where the
monomer volume fraction is \approx 1/2 (see, e.g., Figure 4).

The simplest of these structures is the two-domain bubble. In the absence of
the polymer energy term (i.e., \alpha = 0), equilibria solve a well-known minimal surface
problem. The solution is geometrically simple: interfaces are two parts of a sphere,
joined by a planar surface (this was conjectured in [51] and proved in [52]). Ren and
Wei [40] showed that this solution may be used as a basis for continuation to nonzero
polymer energy \alpha > 0.

Our interest is in obtaining quantitative information about solutions to (19)--(22),
and numerical continuation in the size parameter was implemented. This was done by
first finding a single equilibrium along a branch of a particular morphological class by
gradient descent dynamics (5) and then adiabatically increasing and decreasing the
total integral of \Psi . The corresponding values of \mu are determined by finding \partial W/\partial \Psi 
away from diffuse interfaces.

Figure 1 shows the results of the computation for the case \sigma AB = \sigma BS = \sigma SA = 1
and f = 0.5, along with the analytical results of the previous section for micelle
equilibria. The apparent discontinuity in the derivative of \mu \infty (M) suggests that a
symmetry breaking bifurcation is encountered. This corresponds to a morphological
transition where the AB-interfaces become nonplanar as size increases. Except for
small particles, there is a distinct ordering among morphological classes, where the
three-bubble configurations generally have lower chemical potential than the two-
bubble and micelle configurations.

The situation for equal surface energies but asymmetric volume fraction f = 0.35
was also investigated. In this case, numerical continuation was used to compute two-
bubble configurations, along with their respective chemical potentials \mu \infty (M). The
results of this computation, along with the analytical micelle results, are shown in
Figure 2. As two-bubble configurations become larger, the minority phase domain
becomes elongated and is mostly encapsulated by the majority phase. This continues
until the minority phase domain breaks into two domains (far right depiction in Figure
5). In contrast to the case of symmetric volume fraction, the chemical potential for
the micelle branch is generally smaller than those for two bubbles.

3. Competition via mass diffusion. When there is more than one equilibrium
domain configuration in a system, differences in chemical potential may drive mass
diffusion, resulting in dynamic evolution of particles themselves. This idea can be
made precise by extending classical LSW theory [53, 54] to the present model. In this
framework, a separation of lengthscales is assumed between the interdomain spacing
and the characteristic width of domains. In addition, it is supposed that equilibrium
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36 KARL GLASNER

Fig. 1. The relationship between \mu \infty and size M for bubble morphologies with two (solid/blue)
and three (dashed/red) domains. Some representative equilibrium configurations are displayed along
each graph. For comparison, the relationship for micelles is also shown (dash-dot/black). The
surface energies were all set to one, and the volume fraction was f = 0.5.

domain configurations evolve adiabatically: the influence of diffusion between particles
is slow compared to the timescale of relaxation to a new equilibrium configuration.
The relaxation rate can in principle be identified by linearization of the dynamic
equations and finding the smallest (i.e., slowest) eigenvalue. This spectral problem has
been carried out for certain symmetric configurations [27] but is in general complicated
to characterize. It is also possible that diffusive interaction might drive morphological
changes (see section 5.1), either through size evolution or coalescence. These effects
are not incorporated in what follows.

3.1. The small volume fraction limit. Suppose that the system contains
multiple equilibrium domains \Omega i = (\Omega Ai,\Omega Bi), i = 1, 2, . . . , N , with centers of mass
\bfitx i and sizesMi (superscripts will be used to index multiple vector or tensor quantities,
and subscripts will only be used for components). Each particle domain configuration
is assumed to be in a morphological class Qi, and that small changes in size will
adiabatically result in configurational changes within the class Qi. The chemical
potential associated with each equilibrium will be labeled \mu \infty (Mi;Qi).

We consider a system domain \Omega 0 which is large but finite. For simplicity, this
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EVOLUTION OF COPOLYMER NANOPARTICLES 37

Fig. 2. The relationship between chemical potential \mu \infty and size M for bubble morphologies with
two (solid/blue) in the case of unequal volume fraction f = 0.35, with representative equilibria dis-
played along the graph. For comparison, the relationship for micelles is also shown (dash-dot/black).

is taken to be a large rectangular box endowed with periodic boundary conditions.
Letting \varepsilon \ll 1 be the ratio of domain width to interdomain separation, a scaled
coordinate \bfity = \varepsilon \bfitx is introduced so that the scaled centers of mass \bfity i = \varepsilon \bfitx i are O(1)
apart. The solution away from the \Omega i regions is expanded: \mu (\bfity ) = \mu 0(\bfity ) + \varepsilon \mu 1(\bfity ) +
\cdot \cdot \cdot . It is found that \mu 0 is a constant, and \mu 1 solves

(42) \Delta \mu 1 = 0, \bfity \in \Omega 0/\{ \bfity 1,\bfity 2, . . . ,\bfity n\} 

subject to periodic boundary conditions. In general, \mu 1 has singular behavior as
\bfity \rightarrow \bfity i, which will be determined.

Near the domain \Omega i, there is a boundary layer whose solution is written in terms
of the unscaled coordinate \bfitx . Note that although \bfitx is finite in the original prob-
lem, the boundary layer solutions are sought in the unbounded domain \bfitx \in \BbbR 3.
Since the domain boundary configurations \partial \Omega i are exactly of equilibrium shape, the
fields \mu and \nu inside \Omega i are completely determined by the solution of (19), (20), and
(22). In particular, \mu = \mu \infty (Mi;Qi) on the S-phase boundaries \partial \Omega S

i . The leading
order boundary layer problem satisfies \Delta \mu = 0, and matching to the outer solu-
tion gives limx\rightarrow \infty \mu (\bfitx ) = \mu 0. The solution to this problem may be obtained as
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38 KARL GLASNER

\mu = (\mu \infty (Mi;Qi) - \mu 0)U(y) + \mu 0, where U solves

(43) \Delta U = 0, U = 1 on \partial \Omega S
i , U(\infty ) = 0.

This is a standard problem in potential theory and admits a unique solution which
behaves as U \sim Ci/| \bfity | for | \bfity | \rightarrow \infty . The so-called electrostatic capacity Ci is a
function of the boundary geometry and may be written as

(44) Ci =
1

4\pi 

\int 
\partial \Omega S

i

\partial U/\partial n d\bfitx ,

where the normal to the interface is directed outward.
Returning to the outer solution, it follows that

(45) \mu 1 \sim Ci(\mu \infty (Mi;Qi)) - \mu 0)/| \bfity  - \bfity i| , \bfity \rightarrow \bfity i.

Defining the modified Green's function G(\bfity ) as solving the problem

(46) \Delta G(\bfity ) =  - \delta (\bfity ) + 1/| \Omega 0| ,

it follows that (up to an additive constant)

(47) \mu 1 =

N\sum 
i=1

Ci(\mu \infty (Mi;Qi)) - \mu 0)G(\bfity  - \bfity i).

Solvability of the Laplace equation requires

(48)

N\sum 
i=1

Ci(\mu \infty (Mi;Qi)) - \mu 0) = 0

or

(49) \mu 0 =

\sum N
i=1 Ci\mu \infty (Mi;Qi)\sum N

i=1 Ci

.

The evolution of the parameter M of each particle can now be determined. Using
the second interface velocity condition in (11),

(50)
dMi

dt
=

\int 
\partial \Omega S

i

Vn[\Psi ] d\bfitx =  - 
\int 
\partial \Omega S

i

[\partial \mu /\partial n] d\bfitx = 4\pi Ci

\Bigl( 
\mu 0  - \mu \infty (Mi;Qi)

\Bigr) 
.

In writing this, the normal to the interface and the jump [] across the interface are
both directed outward.

Equations (49) and (50) give a coupled system for the evolution of Mi. The mean
field \mu 0 can be interpreted as a weighted average of chemical potentials associated
with each particle. Then (50) says that particles with lower chemical potential will
grow at the expense of those with larger chemical potential; this is precisely the same
conclusion as in classical Ostwald ripening arising from binary phase segregation. The
novelty here lies in the fact that \mu \infty is not necessarily monotonically dependent on
size, and the dependence also varies from one morphological class to another. This
allows for a wider variety of phenomena which are investigated later on.

Based on the computations of the relation \mu \infty (M) given in sections 2.3 and 2.4,
predictions of evolution among competing structures can be made. In the case of
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equal surface energies and symmetric monomer volume fractions, \mu \infty is monotonically
decreasing within the two- and three-bubble morphological classes (see Figure 1). This
means that larger particles will outcompete smaller ones. In addition, for particles
of large enough size, the three-bubble morphology is favored over two-bubble and
micelle configurations. Numerical experiments in section 5.1 are consistent with this
prediction.

For the case of asymmetric volume fractions, the computations of section 2.4 show
that micelles should generally be favored over two-bubble structures. In addition, the
equilibrium chemical potential associated with the micelle morphology is not mono-
tonic. This means that larger micelles might not necessarily grow at the expense
of smaller ones, and ones with sizes near the minimum of the \mu \infty curve should be
favored. On the other hand, it will be shown that particles are not necessarily driven
to the size corresponding to the minimum itself.

3.2. Multiple particle equilibria and their stability. The dynamics spec-
ified by (49)--(50) may either drive individual particles to extinction (where M goes
to zero) or to a situation where many particles coexist. From (50), the latter case is
characterized by the equality of chemical potentials:

(51) \mu (Mi;Qi) = \mu 0, i = 1, 2, . . . , N.

The system (49)--(50) has an energy

(52) E =

N\sum 
i=1

Ei(Mi), Ei(Mi) \equiv 
\int Mi

0

\mu \infty (M \prime ;Qi) dM
\prime .

Using (49)--(50), it is straightforward to show that dE/dt \leq 0. In addition, critical

points of (52) subject to fixed total mass
\sum N

i=1 Mi yield (51), where \mu 0 is the Lagrange
multiplier.

Stability of critical points may be investigated by studying the second variation
of E given by the quadratic form

(53) B(M \prime 
1,M

\prime 
2, . . . ,M

\prime 
N ) =

N\sum 
i=1

\lambda iM
\prime 2
i , \lambda i \equiv 

\partial \mu \infty 

\partial M
(Mi;Qi),

restricted to the subspace of mass conserving perturbations

(54)

N\sum 
i=1

M \prime 
i = 0.

We say an equilibrium of (49)--(50) is stable if B(M \prime 
1,M

\prime 
2, . . . ,M

\prime 
N ) > 0 for all nonzero

perturbations satisfying (54). Stability can be completely characterized by the deriva-
tives \lambda i of chemical potentials.

Proposition 1. An equilibrium of (49)--(50) is stable if and only if either (1)
\lambda i > 0 for all i = 1, 2, . . . , N , or (2) there is exactly one k \in \{ 1, 2, . . . , N\} with \lambda k \leq 0
and

(55) | \lambda k| < \lambda , \lambda \equiv 

\left(  \sum 
i \not =k

\lambda  - 1
i

\right)   - 1

.
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40 KARL GLASNER

The proof of this depends on the following result.

Lemma 1. Let dj > 0. The minimum of \~B =
\sum \~N

i=1 div
2
i subject to the constraint

(56)

\~N\sum 
j=1

vi = 1

is equal to

(57) d =

\left(  \~N\sum 
i=1

d - 1
i

\right)   - 1

and is uniquely obtained, where vi = d/di.

Proof. The quadratic form \~B is convex on the affine set given by (56), and there-
fore has a unique minimum, which solves divi = L for some Lagrange multiplier L.
Summing over i and using (56) gives L = d. Then the minimum value of B is

(58)

\~N\sum 
i=1

di(d/di)
2 = d.

Proof of Proposition 1. Stability is obvious in the case of (1). If there are two
distinct indices l,m \in \{ 1, 2, . . . , N\} with \lambda l \leq 0 and \lambda m \leq 0, then for

(59) M \prime 
i =

\left\{     
+1, i = l,

 - 1, i = m,

0, i \not = l,m,

B(M \prime 
1,M

\prime 
2, . . . ,M

\prime 
N ) \leq 0. Finally, consider case (2) where only \lambda k \leq 0. For stability,

it suffices to consider perturbations with M \prime 
k =  - 1 and

(60)
\sum 
i\not =k

M \prime 
i = 1.

If (55) holds, the lemma shows that

(61) B(M \prime 
1,M

\prime 
2, . . . ,M

\prime 
N ) \geq \lambda k + \lambda > 0.

Conversely, if (55) does not hold, then for the perturbation

(62) M \prime 
i =

\Biggl\{ 
 - 1, i = k,

\lambda /\lambda i, i \not = k,

one has

(63) B(M \prime 
1,M

\prime 
2, . . . ,M

\prime 
N ) = \lambda k + \lambda \leq 0.

For domains within the same morphological class, the previous result indicates
the possibility of a stable collection of particles, provided they have identical size M
and \mu \prime 

\infty (M) > 0. The alternative is instability, where slightly larger particles grow at
the expense of slightly smaller ones. Note that this process may restabilize once small
particles are eliminated and enough additional mass has been accreted onto larger ones
so that \mu \prime 

\infty (M) > 0. Additionally, note that coexistence of different morphological
classes is not ruled out; there may be cases where there is equality along the \mu \infty (M)
curves, and simultaneously \mu \prime 

\infty > 0 for each class at these values.
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3.3. Kinetic limit. In the case of large particle number, the evolution of the size
distribution function \eta = \eta (M, t) may be studied by a kinetic equation. For illustra-
tion purposes, we consider only the interaction among a chosen morphological class
with chemical potential \mu \infty (M) and capacity C(M). The resulting Smoluchowski-
type kinetic equation corresponding to the dynamics (50) is [55, 56]
(64)

\partial t\eta + 4\pi \partial M

\Bigl( 
\eta (M, t)C(M)[\mu 0  - \mu \infty (M)]

\Bigr) 
= 0, \mu 0 =

\int \infty 
0

\eta (M, t)C(M)\mu \infty (M) dM\int \infty 
0

\eta (M, t)C(M) dM
.

The capacity C(M) is defined in (44), using the domain configuration within the
morphological class having size M .

The total free energy for a given size distribution is

(65) E =

\int \infty 

0

\eta (M, t)e(M)dM, e(M) \equiv 
\int M

0

\mu \infty (M \prime )dM \prime .

Note that (32) implies that e(M) is just the energy of the equilibrium domain with
size M . Provided that \eta decays sufficiently fast as M \rightarrow \infty , the integral in (65) will
be finite.

It is straightforward to compute

(66)
dE

dt
=

\int \infty 

0

e(M)\eta t dM = 4\pi 

\int \infty 

0

\eta (M, t)C(M)(\mu 2
0  - \mu 2

\infty )dM.

The dissipation of energy (65) can be seen by first noting that Jensen's inequality
implies

(67) \mu 2
0 =

\Biggl( \int \infty 
0

\eta (M, t)C(M)\mu \infty (M)dM\int \infty 
0

\eta (M, t)C(M)dM

\Biggr) 2

\leq 
\int \infty 
0

\eta (M, t)C(M)\mu 2
\infty (M)dM\int \infty 

0
\eta (M, t)C(M)dM

.

This can be combined with (66) to obtain dE/dt \leq 0. Since equality in (67) only
occurs when \eta (M, t) is a point distribution, it follows that the only time-independent
solutions of (64) are where \eta (M, t) = \delta (M  - M\ast ) for any M\ast > 0.

To illustrate the dependence of M\ast on initial conditions, simulations of (64) are
shown in Figure 3. The case of spherical micelles was used, where M can be scaled so
that C(M) = R and \mu \infty = 1/R+R2 with R = M1/3. The above proposition implies
that the ensemble will be stable for M > 1/2. The initial value of \eta was chosen to
be a Gaussian whose peak was either at M = 0.1 or M = 0.45. In both cases, \eta 
evolves toward a point distribution \eta = \delta (M  - M\ast ), but M\ast \approx 0.63 in the former
case and M\ast \approx 0.57 in the latter. We note that the initial condition dependence
provides a mechanism for controlling the final size, which is important in practical
applications [22].

4. Rigid body dynamics. In situations where multiple particles coexist, weaker
interaction effects come into play at late stages. These are driven by inhomogeneities
in the other chemical potential field \nu , which generically has a dipole character for
isolated equilibria. Two consequences of this interaction are identified: (1) rotation is
induced by field asymmetry, leading to orientational alignment, and (2) particles may
exhibit translational dynamics so as to reduce dipole interaction energy. It is found
that the latter is a weaker effect than the first, leading to a scenario where nearby
particles align and later experience attraction dynamics.
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42 KARL GLASNER

Fig. 3. Simulation of (64) for distributions with initially small radii (top) and initially large
radii (bottom). Each curve has been scaled so that the integral is unity. The initial conditions are
shown as red/dotted lines. In both cases, the center of mass moves right initially, and the final result
is a point distribution (not shown), but at a location dependent on the initial condition.

4.1. Rotational and translational eigenfunctions. For any equilibrium con-
figuration \Omega solving (19)--(22), the field \nu behaves in the far field as

(68) \nu \sim \bfitp \cdot \bfitx 
| \bfitx | 3

, \bfitx \rightarrow \infty ,

where \bfitp is the corresponding dipole moment. Provided that \bfitp \not = 0, the associated
direction \bfitd = \bfitp /| \bfitp | can be used as a parameter describing the orientation of the
configuration.

The symmetry of the underlying model (at least for an infinite system domain)
means that there is a continuous family of equilibria \Omega (\bfitd ), \bfitd \in S2, which are identical
up to rotations about \bfitx = 0. For fixed \bfitd , the tangent plane to the unit sphere at \bfitd 
is spanned by arbitrarily chosen orthonormal vectors \bfite 1, \bfite 2. Rotation about the axis
\bfitr k = \bfitd \times \bfite k gives infinitesimal interface displacements given by

(69) \~\Omega R
k = (\bfitr k \times \bfitx ) \cdot \bfitn .

The corresponding perturbation of \nu is

(70) \nu Rk (\bfitx ;\bfitd ) = \nabla \nu \cdot (\bfitr k \times \bfitx ).

It is straightforward to check that \~\Omega R
k and \nu Rk solve the the linearized equilibrium
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problem

\Delta \nu Rk = 0, \bfitx \in \Omega S \cup \Omega A \cup \Omega B ,(71)

\nu Rk [\Phi 0] =
\bigl\{ 
( - \partial \nu /\partial n) + \sigma \scrI (\Delta s + \kappa 2

1 + \kappa 2
2)
\bigr\} 
\~\Omega R
k , \bfitx \in \partial \Omega \scrI ,(72) \Bigl[ 

\partial \nu Rk /\partial n+ (\partial 2\nu /\partial n2)\~\Omega R
k

\Bigr] 
= 0, \bfitx \in \partial \Omega \scrI ,(73) \sum 

\scrI \in \{ AB,BS,SA\} 

\sigma \scrI \nabla s
\~\Omega R
k (\scrI ) = 0, \bfitx \in \partial \partial \Omega .(74)

Here \Delta s and \nabla s are the surface Laplacian and gradient, and \kappa 1,2 are the principal

curvatures. The notation \~\Omega R
k (\scrI ) refers to the limit as the triple line is approached

from interface \scrI . Equation (73) may be simplified by noting that in a coordinate
system fitted to the boundary \partial \Omega ,

(75) \Delta \nu = \nu rr + \kappa \nu r +\Delta s\nu = \Phi 0,

where r is the normal coordinate. Using (21), the jump of this quantity across the
interface is

(76) [\Delta \nu ] = [\nu rr] + \kappa [\nu r] + [\Delta s\nu ] = [\nu rr],

so that (73) can be written as

(77)
\bigl[ 
\partial \nu Rk /\partial n

\bigr] 
=  - [\Phi 0]\~\Omega 

R
k .

Condition (74) can also be simplified by writing \nabla s
\~\Omega R
k = (\nabla s

\~\Omega R
k \cdot \bfitt )\bfitt + (\nabla s

\~\Omega R
k \cdot \bfitl )\bfitl 

and taking the cross product with \bfitl to obtain

(78)
\sum 

\scrI \in \{ AB,BS,SA\} 

\sigma \scrI (\nabla s
\~\Omega R
k \cdot \bfitt \scrI )\bfitn \scrI = 0, \bfitx \in \partial \partial \Omega .

The underlying translational symmetry implies that the linearized problem (71)--
(74) also has solutions \nu Tk = \partial \nu /\partial xk, k = 1, 2, 3, where the corresponding interface

displacements are \~\Omega T
k = \bfitn k. Regarding (71)--(74) as a homogeneous linear system, \~\Omega R

k

and \~\Omega T
k are simply the eigenfunctions in the kernel of the linearized operator and will

be utilized in a solvability argument. These calculations require the far field behavior
of the field \nu associated with the eigenfunctions, which using (68) and (70) give

(79) \nu Rk \sim | \bfitp | \bfite k \cdot \bfitx 
| \bfitx | 3

, \bfitx \rightarrow \infty ,

and

(80) \nu Tk \sim \bfitp k| \bfitx | 2  - 3(\bfitp \cdot \bfitx )\bfitx k

| \bfitx | 5
, \bfitx \rightarrow \infty .

4.2. Rotation dynamics. We will now show that the collective effect of dipole
fields generated by equilibrium configurations induces particle rotation. This is done
by extending the analysis of section 3.1, incorporating higher expansion terms and
longer timescales. It is supposed that a collection of particle domains \{ \Omega i\} , identical
up to rotation, has reached diffusive equilibrium, in the sense that they have a common
value of \mu \infty . Beyond this point, \mu remains constant and is suppressed in what follows.
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After expanding \nu in powers of \varepsilon , it is found that \nu 0 is just the equilibrium value,
and

(81) \nu 0 \sim \bfitp i \cdot \bfitx 
| \bfitx | 3

, \bfitx \rightarrow \infty .

The corresponding orientations are \bfitd i(T ), where T = \varepsilon 3t is a slow timescale. The
interface displacements (relative to the equilibrium configuration) are also expanded
as \~\Omega = \epsilon \~\Omega 1 + \epsilon 2 \~\Omega 2 + \epsilon 3 \~\Omega 3 + \epsilon 4 \~\Omega 4 + \cdot \cdot \cdot .

The expansion using the outer coordinate is \nu (\bfity ) = \varepsilon 2\nu 2(\bfity )+\varepsilon 3\nu 3(\bfity )+\cdot \cdot \cdot , where
the first nontrivial order solves \Delta \nu 2(\bfity ) = 0. By matching,

(82) \nu 2(\bfity ) \sim 
\bfitp i \cdot (\bfity  - \bfity i)

| \bfity  - \bfity i| 3
, \bfity \rightarrow \bfity i.

The solution using the Green's function defined by (46) is

(83) \nu 2(\bfity ) =  - 4\pi 

N\sum 
i=1

\nabla G(\bfity  - \bfity i) \cdot \bfitp i.

Expanding for \bfity \approx \bfity i leads to

\nu 2(\bfity ) \sim 
\bfitp i \cdot (\bfity  - \bfity i)

| \bfity  - \bfity i| 3
 - 4\pi 

N\sum 
j=1,j \not =i

\nabla G(\bfity i  - \bfity j) \cdot \bfitp j

 - 4\pi 

N\sum 
j=1,j \not =i

\nabla 2G(\bfity i  - \bfity j) \cdot \bfitp j \cdot (\bfity  - \bfity i)

 - 2\pi 

N\sum 
j=1,j \not =i

\nabla 3G(\bfity i  - \bfity j) \cdot \bfitp j \cdot (\bfity  - \bfity i) \cdot (\bfity  - \bfity i), \bfity \rightarrow \bfity i.

(84)

Matching back to the inner expansion means that

(85) \nu 3(\bfitx ) \sim  - 4\pi 

N\sum 
j=1,j \not =i

\nabla 2G(\bfity i  - \bfity j) \cdot \bfitp j \cdot \bfitx \equiv \bfitpi i \cdot \bfitx , \bfitx \rightarrow \infty .

For the inner expansion, it is found that \nu j(\bfitx ) = 0 for j = 1, 2, and the problem
at O(\varepsilon 3) is

\Delta \nu 3 = 0, \bfitx \in \Omega S \cup \Omega A \cup \Omega B ,(86)

\nu 3 [\Phi 0] =
\bigl\{ 
( - \partial \nu 0/\partial n) + \sigma \scrI (\Delta s + \kappa 2

1 + \kappa 2
2)
\bigr\} 
\Omega 3, \bfitx \in \partial \Omega \scrI ,(87)

[\Phi 0]
d\Omega 

dt
=  - 

\Bigl[ 
\partial \nu 3/\partial n+ (\partial 2\nu 0/\partial n

2)\~\Omega R
k

\Bigr] 
, \bfitx \in \partial \Omega \scrI ,(88) \sum 

\scrI \in \{ AB,BS,SA\} 

\sigma \scrI \nabla s\Omega 3(\scrI ) = 0, \bfitx \in \partial \partial \Omega ,(89)

supplemented with the far field condition (85). The interface motion induced by
rotation is

(90)
d\Omega 

dt
\equiv 

\Biggl( 
d\bfitd i

dT
\cdot \bfite 1
\Biggr) 

\~\Omega R
1 +

\Biggl( 
d\bfitd i

dT
\cdot \bfite 2
\Biggr) 

\~\Omega R
2 .
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Solvability of the linear system (86)--(89) proceeds by multiplying (86) by
\nu Rk = \nu Rk (\bfitx ;\bfitd i), integrating over a ball B(r) of radius r, and taking r \rightarrow \infty . This
gives

(91)

\int 
\partial \Omega 

\nu Rk [\partial \nu 3/\partial n] - \nu 3[\partial \nu 
R
k /\partial n]d\bfitx +

\int 
\partial B(r)

\nu Rk (\partial \nu 3/\partial n) - \nu 3(\partial \nu 
R
k /\partial n)d\bfitx = 0

by Green's identity. Evaluation of the latter integral as r \rightarrow \infty uses (79) and (85),
giving

(92)

\int 
\partial B(r)

\nu Rk (\partial \nu 3/\partial n) - \nu 3(\partial \nu 
R
k /\partial n)d\bfitx = 4\pi | pi| (\bfitpi i \cdot \bfite k).

The first integral in (91) can be written as\int 
\partial \Omega 

\nu Rk [\partial \nu 3/\partial n] - \nu 3[\partial \nu 
R
k /\partial n]d\bfitx =  - 

\int 
\partial \Omega 

[\Phi 0]
d\Omega 

dt
\nu Rk d\bfitx  - I,(93)

I \equiv 
\int 
\partial \Omega 

[\Phi 0](\nu 
R
k \Omega 3  - \nu 3 \~\Omega 

R
k ) d\bfitx .(94)

The integral term I can be shown to vanish. Using (77) and (88), this term can
be written as

(95) I =

\int 
\partial \Omega 

\sigma (\~\Omega R
k \Delta s\Omega 3  - \Omega 3\Delta s

\~\Omega R
k )d\bfitx 

with \sigma = \sigma \scrI on each corresponding interface in \partial \Omega . Application of Green's identity
to manifolds in \partial \Omega means that (95) reduces to integrals along three-phase lines:

(96) I =

\int 
\partial \partial \Omega 

\sum 
\scrI \in \{ AB,BS,SA\} 

\sigma \scrI 

\Bigl[ 
(\nabla s\Omega 3(\scrI ) \cdot \bfitt \scrI )\~\Omega R

k (\scrI ) - (\nabla s
\~\Omega R
k (\scrI ) \cdot \bfitt \scrI )\Omega 3(\scrI )

\Bigr] 
d\bfitx .

Conditions (26), (78), and (89) imply
(97) \sum 

\scrI \in \{ AB,BS,SA\} 

\sigma \scrI (\nabla s\Omega 3(\scrI ) \cdot \bfitt \scrI )\~\Omega R
k (\scrI ) =

\sum 
\scrI \in \{ AB,BS,SA\} 

\sigma \scrI (\nabla s\Omega 3(\scrI ) \cdot \bfitt \scrI )\bfitq \cdot \bfitn \scrI = 0.

A similar expression holds for the second term in (96), which means that I is zero as
claimed.

The other integral on the right-hand side in (93) can be written using (77) as

 - 
\int 
\partial \Omega 

[\Phi 0]
\bfitd \Omega 

dT
\nu Rk d\bfitx =

2\sum 
j=1

\Biggl( 
d\bfitd i

dT
\cdot \bfite j
\Biggr) \int 

\partial \Omega 

[\partial \nu Rj /\partial n]\nu Rk d\bfitx (98)

=  - 
2\sum 

j=1

\Biggl( 
d\bfitd i

dT
\cdot \bfite j
\Biggr) \int 

\BbbR 3

\nabla \nu Rj \cdot \nabla \nu Rk d\bfitx .(99)

4.3. Alignment effects. Using expressions (92) and (98) in (91), the rotational
dynamics may be written as

(100) \bfitM i\bfitE 
d\bfitd i

dT
= 4\pi | \bfitp i| \bfitE \bfitpi i,
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46 KARL GLASNER

where \bfitE kj = \bfite kj and

(101) \bfitM i
kj =

\int 
\BbbR 3

\nabla \nu Rj \cdot \nabla \nu Rk d\bfitx .

Equation (100) can be written in a form independent of the choice of basis vectors
\bfite 1,2 as

(102)
d\bfitd i

dT
= 4\pi | \bfitp i| \~\bfitM i

\bfitpi i,

where the matrix \~\bfitM 
i
= \bfitE T (\bfitM i) - 1\bfitE . Note that both \bfitM i and \~\bfitM 

i
are nonnegative

definite.
Equation (102) represents an interacting system of particles which rotate in re-

sponse to their neighbor's orientation. This system has a natural dissipated energy

(103) ER =
1

2

N\sum 
i=1

N\sum 
j=1,j \not =i

\nabla 2G(\bfity i  - \bfity j) \cdot \bfitp i \cdot \bfitp j .

Using (102), one has

(104)
dER

dT
=  - 1

4\pi 

N\sum 
i=1

| \bfitp i| \bfitpi i \cdot d\bfitd 
i

dT
=  - 

N\sum 
i=1

| \bfitp i| 2 \~\bfitM 
i \cdot \bfitpi i \cdot \bfitpi i \leq 0.

For large systems where boundary effects are negligible, the Green's function is
well approximated by the free-space Green's function G \approx  - 1/(4\pi | \bfitx | ) which allows
(103) to be written as

(105) ER \approx 1

8\pi 

N\sum 
i=1

N\sum 
j=1,j \not =i

\bfitp i \cdot \bfitp j  - 3(\bfitp i \cdot \Delta ij)(\bfitp j \cdot \Delta ij)

| \bfity i  - \bfity j | 3
, \Delta ij \equiv \bfity i  - \bfity j

| \bfity i  - \bfity j | 
.

Since the interaction has a strongly decaying character, it is illuminating to
consider a system with only two particles. In this case, energy is proportional to
\bfitp 1 \cdot \bfitp 2 - 3(\bfitp 1 \cdot \Delta 12)(\bfitp 2 \cdot \Delta 12). Subject to fixed values of | \bfitp i| and | \bfitp j | , it is straightfor-
ward to check that there are two global minima given by \bfitp 1 = \bfitp 2 = \pm \Delta 12. In other
words, the dipole moments preferentially align with the displacement vector between
particles. This effect is tested numerically in section 5.2.

4.4. Translation dynamics. Using (84), matching to the inner expansion pro-
vides the far field behavior

(106) \nu 4(x) \sim  - 2\pi 

N\sum 
j=1,j \not =i

\nabla 3G(\bfity i  - \bfity j) \cdot \bfitp j \cdot \bfitx \cdot \bfitx \equiv \Pi i \cdot \bfitx \cdot \bfitx , \bfitx \rightarrow \bfitx i.

On the very slow timescale T2 = \varepsilon 5t, the rotational dynamics has equilibrated, but
centers of mass \bfity i = \bfity i(T2) may be influenced by the far field behavior of \nu 4. This
order in the expansion solves a system similar to (86)--(89), with (88) replaced by

(107) [\Phi 0]
d\Omega 

dT2
=  - 

\bigl[ 
\partial \nu 4/\partial n+ (\partial 2\nu 0/\partial n

2)\Omega 4

\bigr] 
,

d\Omega 

dT2
\equiv  - 

3\sum 
k=1

\nu Tk \cdot d\bfity 
i
k

dT2
.
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The solvability argument is essentially identical to that above. After multiplying the
Laplace equation by eigenfunctions \nu Tk , one arrives at

(108)

\int 
\partial \Omega 

\nu Tk [\partial \nu 4/\partial n] - \nu 4[\partial \nu 
T
k /\partial n]d\bfitx +

\int 
\partial B(r)

\nu Tk (\partial \nu 4/\partial n) - \nu 4(\partial \nu 
T
k /\partial n)d\bfitx = 0.

In this case, the latter integral can be computed using (80) and (106), giving

(109)

\int 
\partial B(r)

\nu Tk (\partial \nu 4/\partial n) - \nu 4(\partial \nu 
T
k /\partial n)d\bfitx \sim  - 2\pi (\Pi i\bfitp i)k, r \rightarrow \infty .

The first integral in (108) uses a computation analogous to (93) and (98), leading to

(110)

\int 
\partial \Omega 

\nu Tk [\partial \nu 4/\partial n] - \nu 4[\partial \nu 
T
k /\partial n]d\bfitx =

3\sum 
l=1

d\bfity i
l

dT2

\int 
\BbbR 3

\nabla \nu Tk \cdot \nabla \nu Tl d\bfitx .

Combining the previous two expressions, the translation dynamics can be written
compactly as

(111)
d\bfity i

dT2
= 2\pi (\bfitM i) - 1\Pi i\bfitp i, \bfitM kl =

\int 
\BbbR 3

\nabla \nu Tk \cdot \nabla \nu Tl d\bfitx .

The energy defined in (103) is also dissipated by the dynamics (111), since

(112)
dER

dT2
=  - 1

2\pi 

N\sum 
i=1

\Pi i\bfitp i d\bfity 
i

dT2
=  - 

N\sum 
i=1

(\bfitM  - 1\Pi i\bfitp i) \cdot (\Pi i\bfitp i) \leq 0.

It is again instructive to consider the interaction among only two particles. Since
orientational alignment is achieved on a faster timescale, the terms in (105) are pro-
portional to  - | \bfity 1  - \bfity 2| 3. This means that there is an energetic preference for aligned
particles to attract, which will be illustrated in section 5.2.

5. Numerical simulation. This section illustrates and confirms many of the
preceding analytical results using numerical computation of the diffuse interface model
(5). The numerical methods employed use a spectral spatial discretization and guar-
antee that the discrete version of the energy (2) is dissipated. The other details are
fully described elsewhere [57]. For simplicity, the surface energy parameters were all
chosen to be unity, with the exception of the computations of section 5.2.

5.1. Competitive dynamics. Simulations with a computational grid of size
2563 were conducted to observe the formation and interaction of nanoparticle struc-
tures. In order to generate spatially distinct domains, initial conditions were chosen
to represent small randomly placed spherical patches. To do this, \Psi was set to 1/2
within these patches and was set to zero outside. The variable \Phi was chosen to be
small and random to initiate phase separation. When patches were chosen to be
too small, they failed to nucleate domains of heterogeneous polymer composition and
subsequently vanished. Trial and error was used to set the patch size to be just large
enough so this does not occur.

Figure 4 shows the evolution in the case where the A-monomer volume fraction
was f = 0.5. Initially, mostly two-bubble domains are formed and compete via
Ostwald ripening as predicted. Structures with more than two subdomains were
continuously created either by morphological transitions or coalescence events and
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48 KARL GLASNER

Fig. 4. Three-dimensional simulations at times t = 280, 3.5\times 103, 7.3\times 104. The surface energy
parameters are all set to one, and the volume fraction parameter was f = 0.5. The final state (not
shown) is a single multilayered nanoparticle.

Fig. 5. Three-dimensional simulations at times t = 700, 4.2 \times 103, 2.0 \times 104. The parameters
are the same as in Figure 4, except f = 0.35. After a ripening phase, all micelles equilibrate to the
same radius (far right).

ultimately outcompete two-bubble domains. This process continues until just a single
multilayered nanoparticle remains.

Figure 5 shows the evolution with the same parameters, except the monomer
volume fraction was f = 0.35 instead. In this case, particles take the form of two-
layered micelles initially. Ripening of domain structures is observed for a while, but
this eventually halts once a critical size is reached, leaving many equally sized micelles.

5.2. Rotation and translation. The theoretical predictions of section 4 in-
dicate that late stage dynamics of coexisting particles without radial symmetry is
characterized by rotational alignment and subsequent pairwise attraction. To demon-
strate this, two-bubble particles are natural candidates. With equal surface energies,
however, we have seen that these will compete by Ostwald ripening and no late stage
coexistence is possible. We have found, on the other hand, that the choice of surface
energy parameters \sigma AB = 2 and \sigma AS = \sigma BS = 1 (with f = 0.5) does yield a stable
collection of two-bubble particles.

A simple numerical illustration confirms the qualitative nature of the theoretical
findings. Initial conditions were chosen to be two spherical domains, each subdivided
along a diameter into A- and B-phase subdomains where the orientation of each
particle is different. These regions quickly develop into two-bubble domain structures,
each of the same size, and then exhibit rigid body motion.

The results are shown in Figure 6. After the two structures have obtained their
equilibrium shape, they each rotate, largely without any other movement, until both
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EVOLUTION OF COPOLYMER NANOPARTICLES 49

Fig. 6. Simulation of late stage interaction dynamics, where the arrows indicate the instanta-
neous dynamics. Initially, particles rotate (left) until they align (left middle) and migrate toward
each other (right middle) until they merge (right).

axes of symmetry are aligned with a line drawn between particles. The particles then
drift toward one another, and finally merge, creating a four-domain bubble.

5.3. Behavior in two dimensions and dynamic scaling. To acquire mean-
ingful statistics of dynamical scaling phenomena, computations with a very large
number of particles are required. Unfortunately, this regime is (at least presently)
numerically inaccessible in three dimensions. On the other hand, simulations in two
dimensions reveal phenomena similar to those in three and allow for much larger
system sizes to be investigated.

Although simple morphologies analogous to micelles and multiple bubbles are
seen in two dimensions as well, it is also feasible to compute a much wider variety
of complex equilibria. To illustrate this, steady states were found using the gradient
descent dynamics (5), with initial conditions where \Psi = 1/2 on a circular patch of
adjustable radius and where \Phi was chosen to be small and random. In addition,
surface energies were all set to unity and the volume fraction parameter was f = 0.5.
The relationship \mu \infty (M) was computed for numerous particles of different sizes as
in section 2.4, setting \mu \infty = \partial W/\partial \Psi far away from interfaces and finding M from
numerical integration of \Psi within the polymer domain region. Figure 7 shows the
computed relationship, along with a nonlinear least squares fit of the data and plots
of representative equilibria. Consistent with the conjecture in section 2.2, subdomains
appear to have a distinct characteristic width.

The dynamics of a large number of particles was also investigated, using a com-
putational grid of size 40482. The behavior with polymer volume fraction f = 0.5
and all surface energies set to one is shown in Figure 8. As in three dimensions, phase
segregation initially produces two-bubble domains. As ripening ensues, multiple bub-
ble structures appear. The final result (not shown) is a single large particle with a
lamellar substructure. Asymmetric mixtures with volume fraction f = 0.35 and equal
surface energies were also investigated (Figure 9). As expected, ripening behavior
eventually gives way to equilibration of micelle radii.

To quantify dynamic scaling, statistics on domain size were computed. Polymer-
rich domains were identified by finding regions where the order parameter \Psi > 0.1,
and their effective radius was then found by computing the square root of the corre-
sponding area. The average radius was computed at each simulation time to determine
scaling or nonscaling of domain sizes.

Figure 10 shows the average radius R(t) as a function of time for the simulations
in Figures 8 and 9. The case of equal surface energies (left panel) demonstrates fairly
consistent power-law scaling for times < 105, at which point the number of particles
is less than 10 and they have acquired complicated morphologies. Within this time
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50 KARL GLASNER

Fig. 7. Relationship between equilibrium chemical potential \mu \infty and size parameter M for
numerous two-dimensional equilibria. A nonlinear least squares fit of the form \mu = A + Br\gamma is
shown, where A = 0.093, B = 0.85, \gamma =  - 0.35. Domain patterns for several of the computed
equilibria are also shown.

Fig. 8. Simulation for equal surface energies and volume parameter f = 0.5 at times
t = 780, 6.9 \times 103, 2.6 \times 104, 8.9 \times 104. Particles undergo Ostwald ripening as well as encounter
morphological transitions as a result of instability and coalescence.

Fig. 9. Simulation at times t = 440, 2.0\times 103, 1.3\times 104, 1.20\times 106, where the parameters are
like Figure 8, except the polymer volume fraction was f = 0.35.

frame, a power law fit R \sim t\alpha was found with \alpha = 0.33. Statistics for the other
scenario for which ripening halts are shown in Figure 10(right). In this case, there is
a transient regime where the scaling of a radius is consistent with the t1/5-power law.

6. Discussion and conclusions. This paper has explored a broad class of dy-
namical phenomena in multiphase density functional models. This includes formation
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Fig. 10. Left: average particle radius as a function of time for the simulation in Figure 8.
The dashed line corresponds to a linear regression fit with slope \approx 0.33. Right: average radius as a
function of time for the case of unequal composition as in Figure 9 (dotted). The dashed line is for
reference and has slope 1/5.

of topologically diverse equilibria, multiparticle stability and instability, and interac-
tion leading to rotation and translation. Disparate length- and timescales were ex-
ploited to explicitly calculate the evolution of a reduced set of configurational degrees
of freedom. These simplified models demonstrate qualitative aspects of nanoparticle
self-assembly, such as the preference of certain morphologies and sizes. They also show
how collective effects may influence the overall trajectory of pattern development.

Some surprising features of the dynamics were found, including the possibility
of stable multiparticle assemblies and orientational alignment. These effects are im-
portant to the processing of block copolymer materials, where control over final mi-
crostructure is desirable [18, 58].

Our computational results exhibiting a wide class of possible equilibrium mor-
phologies run parallel to Avalos et al. [9]. They utilize a similar system of coupled
Cahn--Hilliard-type equations but with phenomenological parameters in the bulk po-
tential. Both their framework and ours appear capable of reproducing experimentally
observed structures.

The asymptotic analysis used herein extends the classical LSW approximation for
binary phase mixtures. Previously, two-phase systems with nonlocal repulsion were
also studied with this approach [56, 59, 60]. The main finding of these investigations is
that nonlocal energy terms stabilize ripening behavior and lead to patterned domain
assemblies. In contrast, there is no long-range order at late stages here, even when
ripening effects halt.

Competing morphologies in an amphiphilic system were studied by Dai and
Promislow [61] (this is different from our system, where A and B phases are hy-
drophobic). In their case, spherical and toroidal morphologies are formed. Like our
system, they compete diffusively by differences in chemical potential, leading to either
extinction of spherical structures or coexistence of both types.

Recently, Wang, Ren, and Zhao [62] studied a system similar to ours but with
nonlocal interaction among all three phases. They observe assemblies of two-bubble
domain patterns which eventually establish both spatial and nematic (orientationally
aligned) order. In contrast to our model, however, the nonlocal repulsion with the
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third phase modifies the domain interaction and prevents attraction and coalescence.
This results in a final state comprised of a lattice of aligned domain patterns.

While our computations are limited to the choice of equal surface energies, it
is expected that these parameters will also heavily influence preferred morphology.
A complete taxonomy of morphological classes and the associated phase diagram
would be valuable. This is a computationally challenging undertaking, since there are
numerous physical parameters that influence equilibrium behavior. Combined with
the theoretical results established here, this would be an important step toward the
broad goal of engineering spontaneously assembled block copolymer structures.
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