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Abstract

A solution of rotaxane switches, which can switch their length by external stimuli, is de-

scribed using statistical thermodynamics. We show that this solution can exhibit different

behaviors.

This solution can rapidly switch between isotropic and nematic liquid crystalline phases

without altering temperature and concentration. There is a minimum of 13% length

extension for which transition from pure isotropic to pure nematic phase is possible in

idealistic system. We provided a framework to help synthetic chemists understand the

requirements of switching efficiency, length change and concentration in rotaxane chemical

design to create a macroscopic liquid crystalline phase change.

When external rotaxane switches are depletants in the solution, length switching of ro-

taxane can significantly change the range and magnitude of colloid depletion interaction.

This indicates a possible application of rotaxane switch in controlling colloid stability.

We also investigate liquid crystalline behavior in solution of a rotaxane switches which

change length to “adapt” to surrounding environment. We find the effect of adaptive

length change on liquid crystalline behaviors is most dramatic at relatively low length

extension.
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Chapter 1

Introduction

While molecules have fixed connectedness or bonds between constituent atoms, these

bonds themselves can rotate and create different shapes or molecular conformations. The

chemical drawing diagrams are only the best “snapshots” of these dynamic molecules.

For example, the staggered and eclipsed conformations of ethane are only two extreme

conformations, between which ethane molecules rotate constantly. This endless rotational

motion within a molecule has inspired many researchers to try to harvest useful work from

bond rotation. However, direction of motion is hardly controllable due to the symmetry

of energy barrier between conformers, let alone the storm of thermal energy.

There are molecules synthesized specifically to achieve controlled motion and this is

achieved with two strategies: First, the conformational energy barrier must be high enough

to withstand thermal energy, so that only external excitation can drive the movement.

Second, the energy barrier must be asymmetric with respect to direction to achieve uni-

directional ratchet-like motion. Feringa et al.1 reported such a molecular rotor driven by

light, as shown in figure 1.1. The rotor is a molecule with two chiral structures connected

by a carbon-carbon double bond. The light radiation triggers the cis-trans isomerization

of the double bond and turns the bulky group to an unstable position. The molecule then

thermally relaxes to a stable state, resulting in an overall unidirectional rotation under

constant exposure of light. With proper arrangement, Feringa et al.2 proceeded further

to build the world’s smallest 4-wheel drive of 4 by 2 nanometers, powered by four of such

light-driven motors tethered to an frame axle.

While such a fully covalently-bonded molecules can serve as a molecular propeller, the

nature of covalent bonding limits them for more sophisticated mechanical motion, such as

1
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Figure 1.1: Top: The work cycle of the light driven unidirectional molecular motor.1 The light

radiation triggers the cis-trans isomerization of the double bond and turns the bulky group to an

unstable position. The molecule then thermally relaxes to a stable state, resulting in an overall

unidirectional rotation. Bottom: The molecular 4-wheel-drive powered by 4 molecular motors

made by Feringa et al.2

linear actuation. To achieve motion over elongated length scales, researchers turn their

attention to mechanically interlocked molecules (MIMs). Each of these molecules features

two or more covalent structures interlocked or connected by topology. Each topological

linkage provides at least one additional degrees of conformational freedom. For example,
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a catenane (shown in figure 1.2 left), with two rings interlocked together, allows one of the

rings to rotate as well as slide around the perimeter of the other. A rotaxane is another

MIM with rings threaded on an axle stoppered by bulky ends (shown in figure 1.2 right),

allowing freedom of ring position along the axle. These mechanical degrees of freedom can

be far more versatile compare to the degrees of freedom that arise from bond rotation, as

they provide more available motion and greater flexibility in chemical design. For example,

a rotaxane made with non-interacting rings that freely translate along the contour of an

axle possess extra conformational entropy due to the mechanical degrees of freedom. Such

a rotaxane is ideal as a molecular shock absorber,3 which absorbs compression energy by

reducing translational entropy of rings (shown in figure 1.3).

Figure 1.2: Graphic illustration of a catanane (left) and a rotaxane (right). A catenane, a word

derived from Latin word “catena” of chain, has two or more rings mechanically interlocked to each

other. A rotaxane, from “rota” in Latin meaning wheel, has one or more rings threaded on a

dumbbell-shaped axle.

Figure 1.3: Graphic illustration of a rotaxane with free-sliding rings utilized as molecular shock

absorber.3 When compressed, the external force confines the rings to part of the axle. Upon

removal of external force, rings redistribute to the complete axle to maximize translational entropy.
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1.1 Development of mechanically interlocked molecules

(MIMs)

After the important breakthrough in synthesis of macrocyclic rings,27–29 the idea of me-

chanical interlocking was a reasonable goal but proved to be a far greater challenge. Cate-

nanes were first isolated using a statistical method by Wassermann in 1960,30 as extremely

unfavored by-products of macrocyclic ring closure reaction. The statistical method relies

on rings interlocked by lottery-winning chance at great loss of translation entropy of the

components. As a result, the yield was exceptionally low. The statistical synthesis of a

rotaxane in 1967 was achieved with 6% yield by repeating threading reactions repeated

seventy times.31

Due to the limitation of the statistical method, chemists immediately searched for more

effective and controllable alternatives. More specifically, some interactions are needed to

scaffold intermediates before interlocking. Schill introduced directed synthesis method in

19648 using covalent bonds as scaffolds. Macrocyclic interlocking rings were build on to

an aromatic backbone. The interlocking rings remain covalently bonded (see figure 1.4)

until the final step which cleaves the connection to afford a [2]catenane. For the following

20 years, directed synthesis remained the most effective method to synthesize MIMs such

as [3]catenanes4 and [2]rotaxanes.5

Figure 1.4: Graphic illustration of catanane (top) and rotaxane (bottom) intermediates of Schill’s

directed synthesis.4,5 Both intermediates have covalent bond linkage to position the components of

mechanically-interlocked molecules. The connection (red) is subsequently cleaved to afford either

a catenane or a rotaxane.
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While directed synthesis was a controlled method, the process remained lengthy. As a

result, catenanes and rotaxanes were not much further explored apart from being syn-

thetic wonders. The game changer was the discovery of the metal template synthesis, in

which transition metal coordination replaces the covalent bond as the scaffold. Discovered

by Sauvage,6,32 a 2,9-diphenyl-1,10-phenanthroline (dpp) ligand was threaded through a

related macrocycle perpendicularly held by tetrahedral coordination of a copper-I cation.

The dpp ligands were subsequently “clipped” as new macrocycles by a Williamson ether

reaction. The copper(I) cation was subsequently removed to afford a catenane. With this

method, the Synthesis was greatly shorten to only three steps (see figure 1.5), with the

ring clipping reaction being the only non-quantitative step (42% yield). Based upon metal

templating, MIMs become readily synthesizable and the field of mechanically-interlocked

molecules started to grow rapidly. Various different coordinate geometry, such as octa-

hedral33 and square planar34 can be used and the transition metal can serve as catalyst

at the same time. CUAAC (Copper-catalyzed Azide-Alkyne Cycloaddtion) is often used

in current synthesis of catenane and rotaxane,7 with copper(I) cations serving as metal

template as well as catalyst of the ring clicking process, making the synthesis a one-pot

reaction. Many other interactions, including but not limited to π-π stacking interaction,35

hydrogen bonds36,37 and radical-radical interaction,38 have been employed as alternatives

to pre-scaffold MIMs.

1.2 Switching motif of MIM switches

For years, synthetic chemists designed strategies to effectively manipulate motion in me-

chanical linkages of MIMs. Attraction sites or “stations” were incorporated into the back-

bones of covalent structures to lock the MIMs in two or more preferable configurations,

turning them into molecular switches. Stoddart introduced a symmetric “molecular shut-

tle” driven by Brownian motion (see figure 1.6) in 1991.9 By simply removing the sym-

metry in molecular architecture, many physical and chemical external inputs can then

temporarily perturb the equilibrium between states and create well-defined, controllable

ring motion.
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Figure 1.5: Illustration of catenane Sauvage’s synthesis using metal template.6,7 The metal

template method uses far fewer steps compare to directed synthesis,8 with step (ii) being the only

non-quantitative step at 42% yield.

Figure 1.6: The first molecular switch by Stoddart’s group,9 a symmetric [2]rotaxane with 2

identical sites for ring. The ring shifts between sites by Brownian motion.
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1.2.1 Molecular switch by physical input

Several groups10,39,40 reported reversible photoisomerization of stilbene units on an axle of

rotaxane to utilize light-driven switching. These molecular switches are Janus [2]rotaxanes,

in which two identical units of covalently bonded ring-rod structure interlocked together

(see figure 1.7).

Figure 1.7: Contraction and elongation of a light-driven molecular switch with stilbene and

α-cyclodextrin rings by Easton et al.,10 accompanied by simplified models on the right.

Solvent polarity is a common control factor of isomerization. Leigh et al.18 reported a

[2]rotaxane with an axle consisting of a C11 alkyl chain and a glycylglycine hydrogen-

bonding binding site for a ring containing nitrophenyl and pyridinium moieties. This

rotaxane switch operates by disruption of hydrogen bonding between ring and axle upon

addition of solvent polarity such as DMSO (see figure 1.13).

Temperature-controlled switching is inherently driven by entropy. Starting from its en-

thalpically favorable state, thermally driven rotaxane switches rearrange to the entropi-

cally favored state as increasing temperature scales up the entropic part of free energy.
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Bottari et al.11 reported a rotaxane of benzylic amide ring, which forms hydrogen-bonds

to two sites on the bended axle at room temperature. Gentle heating stretches out the

molecular axle in high efficiency and harbors the ring in amide ester site (See figure 1.8).

Figure 1.8: Thermally driven rotaxane switch.11 At room temperature benzylic amide ring

forms hydrogen-bonds to two sites of the bended axle. Gentle heating will result in ring harboring

in amide ester site and stretching out of molecular axle. Figure from Carson and Stoddart12 ,

accompanied by simplified model on the right.

1.2.2 Molecular switch by chemical input

Redox-driven switching is the first switching mechanism to be developed making use of

oxidation-reduction to change the ring’s site preference. Shortly following the first report

of “molecular shuttle”, Stoddart’s group reported a refined version of molecular shuttle

which is controlled electrochemically13 (see figure 1.9). A [2]rotaxane with tetracationic

cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT4+) ring is threaded onto an axle

with biphenol and benzidine sites as π-electron donor. Following the oxidation in which

benzidine site loses an electron,the biphenol site becomes a stronger π-electron donor and

grabs the ring. This process can be reversed by reduction.

Sauvage’s group succeeded in imitating muscle sarcomere expansion and contraction in

molecular length by exchanging transition metal ion templates in a Janus [2]rotaxane.41

In one of their work on ionic-driven molecular switch14 (see figure 1.10), copper-I ions
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pair with phenanthroline ligands on both the rings and axles in a tetrahedral geometry,

resulting in a rotaxane in elongated state. Replacement of copper-I ions with zinc-II

ions will see zinc ions pairing up with tridentate terpyridine ligands instead to afford the

contracted state of rotaxane.

Pairing of dialkylammonium salts and crown ethers provides a suitable mechanism to de-

sign molecular switches driven by pH. Stoddart’s group have carried out extensive work on

this type of switch.15,42 The ring sits at the dialkylammonium site under acidic conditions

and the molecule is in a contracted state. Addition of base deprotonates the dialkylammo-

nium site and sabotages the hydrogen-bonds. The ring then resides on the BYPM2+ site

instead and the molecule is stretched out to an elongated state. This rotaxane switch can

be polymerized to create macroscopic motion accumulated by switching on all rotaxane

monomers (see figure 1.11).

Figure 1.9: The first redox driven molecular switch by Stoddart’s group,13 accompanied by

simplified models on the right. In this rotaxane switch the CBPQT4+ ring prefer to harbor at

benzidine site on the left. Either by oxidation or protonation on benzidine site, the ring shifts to

the biphenyl site preferentially.

1.3 Harvesting motion of MIMs

Externally-driven motion, particularly single molecule actuation, has been demonstrated

in a growing list of examples. Juluri et al.17 reported a redox-driven palindromic [3]rotax-
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Figure 1.10: Rotaxane switching by replacement of copper-I ion with zinc-II ion,14 accompanied

by simplified models on the right.

ane switch with the two rings tethered to a mica-surface (see figure 1.12 right). The redox

reaction drives the two rings to stations closer to each other, resulting in an optically-

detectable bend of mica surface. Rotaxane switches also see application as valves in

recently developed controlled-release mechanism,43–45 in which rotaxane switches are end-

grafted on mesoporous silica drug carriers. At specific external signals such as light16,46,47

or redox reaction,48 rings switch between stations to plug or unplug the drug carriers (see

figure 1.12 left).

Apart from utilizing a rotaxane switch as a single-molecule mechanical component, the

ring location on a rotaxane switch can impact on physical properties of the molecules in

solutions. One currently reported example is the solvent-driven rotaxane switch by Leigh

et al.18 In non-polar solvent, no fluorescence can be detected under UV-light because

the macrocycle ring resides near an anthracene stopper and effectively quenches the an-

thracene fluorescence. Addition of a polar solvent like dimethylsulfoxide (DMSO) results

in relocation of the ring and recovery of the fluorescence. By masking part of solution

containing their solvent-driven switch away from DMSO vapor (shown in figure 1.13),

fluorescence patterns of the unmasked area can be observed.

Other than the notion of these length-extending switches to produce mechanical work,

these molecules in solution also provide interesting properties. Such rotaxane switches
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Figure 1.11: A polymerized Janus[2]rotaxane switch driven by addition of acid or base,15 accom-

panied by simplified models on the right. Length change of monomers are accumulated to create

macroscopic motion.

Figure 1.12: Left: A controlled delivery molecular device with rotaxane switch valves which

can open under heat or light by switching the ring to sites further from drug carrier.16 Right:

A Palindromic [3]rotaxane switch with two rings tethered to a mica surface. Switching by redox

reacting is strong enough to produce an optically-detectable bend on surface.17

change not only length but also excluded volume, i.e. the volume that a molecule excludes

other molecules from. In this thesis, we describe two physical features associated with

the change in excluded volume with switching of a 2-state rotaxane molecules: isotropic-

nematic liquid crystalline phase transition and colloidal depletion interaction.

1.3.1 Isotropic-nematic liquid crystalline phase transition

Liquid crystalline phases are phases where particles align like crystals and simultaneously

flow like liquid. The discovery of liquid crystals dates back to the mid-late 19th century.

Chemists and biologists back then observed anisotropic optical behavior in liquefied sub-



12 Introduction

Figure 1.13: Top: Rotaxane switches by Leigh et al.18 driven by solvent polarity. Bottom:

One of the Leigh’s solvent-driven switches18 shows fluorescence controlled by switching. Different

fluorescence patterns are shown by masking the solution film containing the solvent-driven switch

and exposing the unmasked area with DMSO vapor.

stances near their melting points. In 1888, Austrian botanist Friedrich Reinitzer observed

two “melting points” of cholesteryl benzonate, between which an iridescent color was ob-

served.49 He later discussed his findings with German physicist Otto Lehmann, who later

confirmed and investigated the discovery using polarized optical microscope with a hot

stage.50 This marked the discovery of the liquid crystalline phase. Early work on liquid

crystals were primarily focused on observation and classification level. In 1922, George

Friedel introduced a classification scheme and identified 3 main liquid crystalline phases

(shown in figure 1.14) based on the alignment pattern of liquid crystal.19

Liquid Crystal Displays (LCD) are currently the most recognizable application of liquid

crystals. In 1962 Richard Williams51 discovered that an electric field can direct the orien-
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Figure 1.14: Top: Graphic illustration of liquid crystalline phases characterized by George

Friedel.19 Figure from Matsui.20 Bottom: The texture of nematic phase,21 smectic A & C phases22

and cholesteric phase23 under microscope. In nematic phase, molecule has long-range orientation

order but no translational order; In smetic phase, paticles are ordered along one direction as well as

forming well-defined layers; For chiral particles only, cholesteric phase is a phase consists of layers

of nematic phase with different directors.

tation of a nematic liquid crystal, forming what he referred to as “domain”. Commercial

application of this discovery remain elusive though as Williams’ liquid crystal must be

heated over 100 ◦C to operate. Based on Williams’ work, George Heilmeier25 discovered

what he named the “dynamic scattering mode” (DSM) by applying a stronger electric field

on the liquid crystal in Williams’ “domain” (see figure 1.15). Combined with the synthesis

of room temperature p-aminophenyl acetate liquid crystals by his group, DSM became the

first commercially feasible liquid crystal display (LCD). Compared to the display instru-

ment of that date, like the Nixie tubes which operated at over 100V, the LCD proved far

superior and took over as the major display component since its major commercialization

in 1970s.24

Traditionally, Liquid crystals is also classified by the control factor of formation. Tem-

perature controlled liquid crystals are thermotropic and those controlled by concentration

are lyotropic. From a solid-fluid transition point of view,thermotropic and lyotropic liquid

crystallinity are actually related. One can consider a system of asymmetric particles as

McMillan - Mayer solution and construct phase diagram of dimensionless pressure versus

dimensionless density. Ordering phase occurs as pressure increase. Pressure is propor-
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Figure 1.15: Left: Graphic illustration of DSM by T.Wada.24 As the applied electric field on

liquid crystal increase, the liquid crystal lines up parallel to the electrode plates (2), and build up

charge (3). A shear torque then occur as a result of induced field and external field, causing spinning

of molecules, corresponding to the Williams domain (4). Further increase of electric field then

drives the molecules into mechanically unstable turbulence, in which molecules randomly scatter

light and turn the solution from transparent to milky white (5). Right: Laboratory Demonstration

of DSM working, figure by Heilmeier et al.25

tional to the inverse temperature. Thus the ordering phase can be considered as brought

by either pressure increase or concentration decrease. Similar arguments were made on

hard-sphere solid liquid transition by Monson and Kofke.52

Onsager53 first predicted an isotropic-nematic transition of lyotropic liquid crystals, by

treating the system as a non-ideal gas of rod-like molecules, which excluded each other

by their own volume. Onsager’s work considers the lyotropic liquid crystal formation

as a purely entropic process: At low concentration, particles have full orientational and

translational freedom to maximize entropy. As the concentration increases, particles with

large aspect ratio and unrestricted directors attract a high energy penalty due to mutual

exclusion. The nematic phase is formed by lining up directors of particles so that more

particles can be accommodated with the same level of translational freedom. Onsager

predicted two critical concentrations in the isotropic-nematic phase transition: the maxi-

mum concentration of pure isotropic phase and minimum concentration of a pure nematic
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phase. At constant temperature, the only way to obtain a nematic phase from an isotropic

solution is to added more molecules. In this PhD thesis, I describe how the switching of

2-state rotaxane molecules can lead to an isotropic to nematic lyotropic phase transition

without changing the overall concentration. A more surprising result is that at certain

concentrations, direct isotropic-nematic phase transition bypassing coexistent phase can

be achieved and that not all molecules need to be switched to affect a transition.

Other important theoretical work on liquid crystal not presented in this thesis includes

theory of isotropic-nematic transition of thermotropic liquid crystal using a mean-field

approach averaging inter-molecular potential between adjacent particles, by Maier and

Saupe54–56 in 1958 . This theory was later extended to model transition to smetic phase

by McMillan.57 We do not consider thermotropic systems in this thesis.

1.3.2 Depletion interaction

Well before the 1950s, the depletion interaction had been observed in dense solutions and

was applied practically in industry. In the early 20th century, the booming rubber indus-

try required a way to effectively concentrate rubber latex for the sake of transportation.

Traube58 showed that adding polysaccharides extracted from seaweed results in separa-

tion of a rubber-rich layer from latex. Baker59 then systematically investigate this process

and found out that the rubber rich phase can return to suspension upon dilution. In

1953, Asakura and Oosawa60,61 rationalised this behavior as an entropic effect arising

from excluded-volume interactions. They presented a theory of a pair of parallel plate im-

mersed in an ideal solution of non-adsorbing particles (The AO model). When the parallel

plates are spaced close together, a separation smaller than depletant size, an attractive in-

teraction between the plates develops, because of an osmotic pressure difference between

pure solvent in the gap and solution outside the gap. This attractive interaction due

to these smaller additive molecules was coined the “depletion interaction”. Asakura and

Oosawa’s theory was subsequently proved by Sieglaff ’s experiment,62 in which a depletion-

induced aggregation occurred by adding polystyrene in a microgel-toluene solution. The

short range of the depletion attractions and the presence of long-ranged interaction, such

as electrostatic interactions, makes measurement of the depletion interaction a challeng-
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ing task. Pashley et al63 and Richetti et al64 successfully measured the depletion force

between two mica plates coated with cetyltrimethylammonium bromide (CTAB) using

surface force apparatus. Later measurement methods employ small-angle neutron scat-

tering (SANS),65 optical tweezer,66 Total internal reflection microscopy (TIRM)67–70 and

colloidal probe AFM.71 Also worth mentioning is a direct depletion force measurement by

Ohshima et al72 using a gradually increase in laser radiation pressure.

As an extension of the AO model, Vrij73 worked on the theory of depletion due to non-

adsorbing polymers treated as small penetrable spheres (illustrated in figure 1.16). Theo-

retical methods of polymers such as mean-field treatment74,75 and numerical self-consistent

field (SCF) method76 were used to describe the depletion interaction.

Asakura and Oosawa61 have recognized rod-like particles to be highly effective depletant

(illustrated in figure 1.17). This was confirmed by Koenderink et al.77 by experiment

which found depletion driven crystallization occur at ≈ 0.5% of rod-like depletants. Mao,

Cates and Lekkerkerker78–80 presented detailed theory of the depletion interaction due

to rod-like particles. In this thesis, their numerical methods are generalised to find the

depletion interaction due to any mixture of rod-like depletants. As the depletion interac-

tion depends strongly on the dimension of depletant, we suggest using length-extending

rotaxane switches as depletant molecules. These novel depletants allow one to “switch”

the attractive depletion interaction, possibly allowing one to change colloidal stability not

by dilution, but by external factors (light, pH) that switch individual molecules.

1.4 Thesis Outline

The main goal of this thesis is to investigate the effect rotaxane switching on liquid crys-

talline behavior and on the depletion interaction, using statistical mechanical methods.

In Chapter 2, A liquid crystal solution of rotaxane switch that change length under external

stimuli is described using the statistical mechanical theory of lyotropic liquid crystals. In

our first publication,81 we assume the rotaxane switch isomerizes quantitatively between

two different lengths. We predicted possible isotropic-nematic phase transition by length
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Figure 1.16: Graphic illustration of depletion interaction of colloidal spheres due to non-adsorbing

depletants. The dashed area around the sphere indicates the depletion layer, in which depletion

force takes effect. When the spheres are in close proximity, the polymers lost translational freedom

in the space of overlapping depletion layers, resulting in an unbalanced force pushing colloidal

spheres together. Figure from Lekkerkerker and Tuinier.26

switching of the rotaxanes at constant concentration. A direct isotropic to nematic phase

transition bypassing the coexistence phase can be achieved. The second publication of this

chapter is a further development of the theory taking into account switching inefficiency,82

that is, where external driving force does not quantitatively switch the rotaxane in solution.

We introduce a framework that will inform synthetic chemists of requirements in chemical

design, such as switching efficiencies, length changes, and concentrations, in order to

create rotaxane switches capable of driving isotropic-nematic phase transition by external

switching.

In Chapter 3, our publication83 on the statistical mechanical description of a liquid crys-

talline solution of adaptive rotaxane switch is presented. “Adaptive” means the free energy

difference between states of a rotaxane switch are small and can therefore respond to its

surrounding environment-molecular switching does not need to be driven by an external

factor. We present the critical concentration of adaptive rotaxane liquid crystal of various
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Figure 1.17: Graphic illustration of depletion interaction of colloidal spheres due to rod-like

depletants. The dashed area around the sphere indicates the depletion layer, in which depletion

force takes effect. Compare to spherical depletants at same volume fraction, rod-like depletants

are more effective depletants. Elongated shape and rotational freedom of rods increase the range

of depletion interaction.

length ratio, and the composition of rotaxane switch states in both isotropic and nematic

phase.

In Chapter 4, our manuscript on the theory of depletion due to a rod-like molecular switch

that changes length under external stimuli (not adaptive) is presented. We provided a

statistical mechanical description of depletion due to bidisperse rod-like molecules. And

based on this description, we predict that a solution of rotaxane switches as depletants can

dramatically change the range and magnitude of the depletion force via externally-driven

switching, providing a new strategy to manipulate colloid stability.
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Chapter 2

Fast Switching from Isotropic to

Nematic Liquid Crystal with

Rotaxane Switch

Work on this topic consists of 2 major publications. The first paper published in Chem-

ical Communications is a qualitative study showing that rotaxane switches is capable

of triggering isotropic-nematic phase transition by change in molecule dimension during

switching. The second publication published in The Journal of chemical Physics is a

detailed follow-up study taking switching inefficiency into account.

The research presented in this publication was solely completed by the author of this thesis.

The author was the main contributor to the statistical mechanical model and numerical

calculations in these two publication.

2.1 Isotropic-Nematic Phase Switching upon Complete Iso-

merization of Rotaxane Switch

27
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Fast switching from isotropic liquids to nematic
liquid crystals: rotaxanes as smart fluids

Hao He,a Edith M. Sevicka and David R. M. Williamsb

We examine a solution of rod-like piston-rotaxanes, which can

switch their length by external excitation (for example optically)

from a short state of length L to a long state of length qL. We show

that this solution can exhibit a number of different behaviours. In

particular it can rapidly switch from an isotropic to a nematic liquid

crystalline state. There is a minimum ratio q* = 1.13 for which

transitions from a pure isotropic state to a pure nematic state are

possible. We present a phase-switching diagram, which gives the six

possible behaviours for this system. It turns out that a large fraction

of the phase switching diagram is occupied by the transition from a

pure isotropic to a pure nematic state.

A rotaxane is a ‘‘wheel and axle’’ molecule,1–3 where a ring is
threaded onto an axle that is capped with stoppers at both ends
to prevent the ring from falling off. Such mechanically or
topologically interlocked molecules have been synthesized for
many years and represent a very active area of chemical syn-
thesis. Chemists have designed these rotaxanes to act as a
2-state switch: they build 2 different ‘‘stations’’ or attractive
sites into the axle and entice the ring to reside at one or the
other station, depending upon external influences. The external
influence, can be due to pH4 and ion interaction, redox reac-
tion,5 solvent quality, or light.5,6 Many examples are given in
the review by Bruns and Stoddart.5 A rigid rod attached to the
moveable ring provides one way to monitor or control this
internal switch: using AFM, Brough et al.7 measured the work
required to mechanically push a ring off of an attractive station
and Sevick and Williams8 predicted how such a rotaxane,
loaded with inert rings that freely translate on the axle, acts
as a molecular-scale shock absorber. As the rod is of the same
length as the axle (or larger) switching also brings about a
considerable change in the dimension of the molecule (Fig. 1)

and this switchable molecular size can create interesting new
smart fluids. In this communication, we describe quantitatively
how a solution of 2-state rotaxane switches, appended with a
rigid rods, provides externally switchable liquid crystalline phase
transitions. There has been some previous work on liquid crystal-
line rotaxane systems,9–11 but our study is very different.

Liquid crystals are solutions of anisotropic molecules which
flow like a liquid, but can have phases which possess different
degrees of molecular orientation.12 They come in many different
forms. Here we examine a lyotropic system where a solution of
rods undergoes the transition. In dilute solutions, the fixed-
sized, anisotropic molecules have no long-range translational or
orientational order – the solution of molecules is isotropic.
However, with increased concentration a nematic phase appears
where the molecules have no long-range translational order,
but self-align to have directional order along their long axis.12

Fig. 1 (A) An illustration of a [2]-rotaxane with attractive stations (denoted
by red & green) built into the axle and a rod attached to the interlocked ring
in (left) the short state, and (right) the long state. The reversible switching
between short and long states provides an added mechanism to switch
between an isotropic and a nematic liquid crystalline phases, which exhibit
strikingly different optical properties. (B) The simplified model of this
structure where a cylinder extends from a length L to a length qL, at fixed
diameter d.
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The important point for applications is that the aligned nematic
phase is birefringent, and can be easily detected optically using
cross polarised filters. This fact, and their alignment by electric
fields is the basis of liquid crystalline displays.

The usual transition from isotropic to nematic is based
either on increasing the concentration (lyotropics) or decreasing
the temperature (thermotropics). In this paper we show that, for a
lyotropic system, by keeping the concentration fixed, but switch-
ing the rod length, we can easily transition from an optically
inactive isotropic phase to a birefringent nematic phase. This
gives us a system whose bulk optical properties can be externally
switched.

Our quantitative calculation is based upon Onsager’s classical
treatment,13 applied to a simple model of a 2-state rotaxane
switch. Onsager’s theory assumes a solution of volume-excluding
rods where the solvent fills the space surrounding the rods.
Alignment of the rods leads to a decrease in rotational entropy
but may also increase the volume available for placement of
the rod’s center of mass, or in other words, may increase the
translational entropy. Onsager’s theory captures this competi-
tion between rotational and translational entropy over a concen-
tration range of rods of fixed length. In our extension of this
model, we consider a molecular switch that has two possible
states, long and short, depending upon the residential station
of the ring With the rod and axle of the same length, and with
the stations placed near the ends of the axle, the extent of the
molecule can switch from length L to length qL. In our descrip-
tion, we limit the ratio of long to short states to 1 r q r 2
although q can be increased beyond 2 by linearly concatemerizing
several such switches into a daisy-chain of extendable molecules.
We assume that the switching action is 100% efficient: that is, the
switches are all in either the short state or long state and there is
no mixture of switch states. Analysis of a more complicated
‘‘polydisperse’’ systems is possible,14 but for simplicity is avoided
here in this first study.

The physics is essentially as follows. Consider the molecules
as hard rods of length L, and diameter d. We assume only hard
body interactions between the molecules. The model does have
a solvent, but this is implicit, just as in the Flory theory for
polymers – the effect of all the solvent and rod interactions is
assumed to produce a hard-body interaction between the rods.
The model does not rely on the chemical details of the solvent
or the rods, and encompasses any system with effective hard-
body interactions. At low concentrations c (number of mole-
cules per unit volume), the molecules do not touch each other
and do not interact. They thus minimise their free energy by
maximising their entropy. Each rod has both translational
entropy (associated with where in space its centre of mass is
located), and rotational entropy (associated with the direction
in which it points in space). At low c the cylinders thus are
found distributed randomly throughout their container and
point in random directions. This is the isotropic state. At higher
concentrations the cylinders begin to interact. However, we
have hard-body interactions and no overlaps are allowed. We
now imagine two rods which are close to each other. The hard-
body interactions imply that the only terms in the free energy

are entropic. When two cylinders approach each other they
suffer an excluded-volume interaction, which decreases their
translational entropy. This penalty is lower if the angle between
the cylinder axes, g, is small, i.e. if they are closely aligned. The
cylinders can thus increase their translational entropy by aligning.
However, aligning, by definition decreases their rotational
entropy, and they are now restricted in the directions they
can point. In order to maximize the total entropy the cylinders
adopt a compromise, and some alignment is the result.
Because all the cylinders can interact in this way this produces
a system where all the cylinders align roughly along one
direction, producing a nematic phase. The degree of alignment
is never perfect, but it increases as the concentration increases.

Experiments, computer simulation, and theory show that
the transition from isotropic to nematic is 1st order, so there is
a sudden jump in alignment from 0 to some finite value at
critical concentration c1. Moreover there is always a coexistence
regime, where isotropic and nematic states coexist in a single
sample. Furthermore the concentration of molecules in the
nematic state, c2, is always greater than c1. By gradually increas-
ing c the following behaviour is observed. At small c the whole
sample is isotropic. As c is increased the whole sample remains
isotropic until c is slightly greater than c1. At this point a small
volume becomes nematic. Further small increases in c does not
change the concentration in either phase, it remains at c1 and
c2. All that occurs is that the volume of the nematic phase
gradually grows at the expense of the isotropic phase. Even-
tually when c = c2 the entire sample is nematic. Beyond this
point any further increase in concentration leads to nematic
phase with the concentration c.

This system is analogous to that of a hard sphere fluid with
attractive interactions between the spheres. For a closed con-
tainer, at low densities a gas phase is formed. As more material
is added the gas density increases, until at a critical density a
small section of the liquid phase forms in coexistence with the
gas phase. As still more material is added the liquid phase
increases in size but the gas and liquid phases each have
constant density. Eventually all the container is liquid, and
further addition of material merely increases the density of the
liquid. The gas phase corresponds here to the isotropic phase,
and the liquid phase to the higher density nematic phase.

We will not reproduce the calculation for the concentrations
c1 and c2 here.13–15 We note in passing that the excluded
volume between two rods at an angle g is 2L2d|sin g|. This

is very different from the volume of a rod
p
4
d2L, by a factor

of BL/d, so that in the isotropic state a rod affects a volume
much larger than its actual volume. We would thus expect that
the critical concentrations c1 and c2 would be roughly B1/(L2d).
We shall use the results of the exact numerical solution:14

c1 = 3.290(L2d)�1 c2 = 4.191(L2d)�1 (1)

It is helpful to define dimensionless critical concentrations
as c1* = c1L2d = 3.290 and c2* = c2L2d = 4.191 This classical
Onsager treatment tells us that for monodisperse molecular
cylinders, there is a purely isotropic phase for the concentration

Communication ChemComm

Pu
bl

is
he

d 
on

 2
3 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 A
us

tr
al

ia
n 

N
at

io
na

l U
ni

ve
rs

ity
 o

n 
31

/0
3/

20
18

 0
7:

42
:0

8.
 

View Article Online



This journal is©The Royal Society of Chemistry 2015 Chem. Commun., 2015, 51, 16541--16544 | 16543

range 0 o c o c1, an isotropic–nematic phase coexistence
region for c1 o c o c2, and a purely nematic phase for c 4 c2.
Thus, to affect a transition between phases one uses the rather
slow process of increasing the concentration of molecules of
fixed length (Fig. 2A). A solution of rotaxane-based switches
potentially allows an entirely different and much more rapid
way of transforming between phases. Rather than changing the
concentration of molecules, we simply switch each molecule to
its more extended or long state, or back again to its short state, to
transform reversibly between the phases, (Fig. 2B).

To illustrate this, we use a very simple model of a rotaxane-
based switch (Fig. 1B). We let each rotaxane be represented by a
cylinder whose length is either L or qL, i.e. it increases by a factor
q. The cylinder diameter is fixed at d. The only other parameter is
the dimensionless number concentration of cylinders c* � cL2d.

The initial system, before switching is a monodisperse collec-
tion of cylinders of length L, diameter d and concentration c*.
This system could be in three different regimes, depending on
the concentration cL* as given by eqn (1). For low concentrations
cL* o 3.290 we have a pure isotropic phase, labelled (i). For
intermediate concentrations 3.290 o cL* o 4.191 we have
coexisting nematic and isotropic phases, (ni), while for high
concentrations, cL* 4 4.191 there is a pure nematic phase (n), or

Short state ¼

i cL
�o 3:290

ni 3:290o cL
�o 4:191

n cL
�4 4:191

8>>><
>>>:

(2)

We now switch the rotaxane to the long state, so that
each cylinder now has a length qL, but the same diameter d.

The concentration of cylinders is still the same, c, but crucially,
the scaled concentration is now cqL* = q2cL*, i.e. the scaled
concentration (which determine the particular regime the system
is in), is now a factor of q2 higher. Again, in the switched state we
have the same possible 3 regimes (i, ni, n) depending on cL*:

Long state ¼

i cL
�o 3:290=q2

ni 3:290=q2 o cL
�o 4:191=q2

n cL
�4 4:191=q2

8>>><
>>>:

(3)

At constant concentration and upon complete switching of
all molecules from short to long states, there are 6 possible
reversible transitions: i - i, i - ni, i - n, ni - ni, ni - n, and
n - n. Each of these transitions is reversible by switching the
molecules back to their short states. We can represent these
transitions on what we call a ‘‘phase-switching diagram’’ which
given the two parameters q and cL* allows us to determine what
the initial and final states will be. To draw such a diagram
all we need are the two eqn (2) and (3). We draw the four curves:
cL* = 3.290, 4.191, 3.290/q2, 4.191/q2. These delineate the 6
regions Fig. 3.

As can be seen from the switching diagram, all the theore-
tical processes are in fact possible, i.e. there are 6 regions in the
diagram. The most important region is the large region asso-
ciated with i 2 n switching: as this transition is between 100%
isotropic and 100% nematic phases, it provides the greatest
optical contrast. The bordering i 2 ni region is also of interest
as the transition is between an 100% isotropic phase and some
nematic phase which would also provide optical contrast. The
diagram also shows that the minimum length of the long state

Fig. 2 The initial isotropic phase (left) and final nematic phase (right)
associated with (A) increasing molecular concentration at fixed molecular
length, and (B) increasing molecular length at fixed molecular concen-
tration. At left is the isotropic phase, where the rods point in all directions.
At right is the nematic phase where the rods preferentially point in one
direction. This transition is usually accomplished by increasing the
concentration, as in (A). Here we show that it is possible to switch between
isotropic and nematic by increasing the rod length (B), via the use of a
rotaxane.

Fig. 3 The phase-switching diagram for this system. We have plotted the
scaled concentration versus the ratio of the two lengths. There are three
possible initial states (isotropic (i), coexisting isotropic and nematic (ni), and
pure nematic (n)) and the same final states, leading to six possible regions
in the switching diagram. Although most of the regions will show a change
in optical contrast using crossed polars, the region of most interest is
shaded in red, where a transition from pure isotropic to pure nematic is
predicted.
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that is required for the easily observable i - n transition
corresponds to qmin = 1.13, which can be found by solving
cL* = 3.290 = 4.191/q2. For a q ratio lower than this, it is not
possible to undergo the transition from a pure isotropic to a
pure nematic state, although a transition from a pure isotropic
to a coexisting nematic–isotropic state is certainly possible. We
also see that the i 2 n transition occurs at lower concentra-
tions as q, the ratio of extension in the long to short state,
increases. Optical contrast is still expected in switching regions
ni 2 ni, i 2 ni, and ni 2 n, because each of these regions
leads to a change in the fraction of the sample which is in the
nematic phase. The transition n - n might seem like it is
rather uninteresting. However, in fact this transition involves
an increase in order. The typical angle from which a cylinder
deviates from the mean is13 y E 2p�1/2(L2dc)�1. Thus by
increasing the length by factor q the angular variation decreases
by a factor of q�2. As a general rule, as long as we are not in the
region where i 2 i, we will always see some increase in optical
contrast. In other words, to see an increase in contrast we need
to have cL* 4 3.290/q2.

It is important to ask if our model systems have significant
overlap with experimentally accessible systems. In particular,
we require a ratio of long to short states, q at least of 1.13, in
order to see the most startling transition of i 2 n, i.e. going
from no nematic to all nematic. Bruns and Stoddart5 have done
a survey of molecular switching systems which undergo exten-
sion. They list 22 systems (their table 2) with q values ranging
from 1.19 to 3. The length cited for ordinary liquid crystals12 is
300 Angstroms, which is of the same order as many of these
listed switching systems. This is good indication that the liquid
crystalline switching transitions that we predict are feasible.
None of the molecules mentioned by Bruns and Stoddard are
perfectly rigid; conformational fluctuations provide flexibility
and fluctuations in the length of the axle. However, the theory
used here is still valid, provided the molecule does not become
very flexible. i.e. the length fluctuations are small in compar-
ison to the change in length caused by the switching of the
molecule. The issue of extreme flexibility has been examined by
Khokhlov and Semenov16 and Odijk15 who have shown that
even in the case of polymeric systems with rigid elements
connected by flexible spacers, a nematic transition is possible.
Moreover, for thermotropic systems there are many examples of
main-chain liquid crystalline polymers.

From the experimental point of view it would be useful to
have the concentrations in molarity. The typical critical concen-
tration (in units of number of rods per volume) is cT = L�2d�1. If
we say that a typical molecule is l angstroms long and d
angstroms in diameter, then converting from cubic metres to

litres gives us the number of molecules per litre as nT = 10�3/
(l2d10�30). The number of moles per litre is then nT = 1667/
(l2d). With l = 100 and d = 2 we find a molarity of nT = 0.08, as
the typical scale. With rods 10 times as long, the typical
molarity is reduced by a factor of 100.

The model used here still suffers from some well-known
limitations. The first is that the rod and axle are parallel to each
other. In the case where they are at an angle, or where the angle
could fluctuate, the theory would need to be modified. The
second, and more involved assumption is that all interactions
are those of hard-bodies. Although this is the traditional
assumption in lyotropic liquid crystalline systems, in reality
there will be dispersion forces between the rods which often
promote the formation of liquid crystalline phases. Despite
these limitations our calculations suggest that a system of rod-
like rotaxanes can form the basis of a solution capable of rapid
optical switching.

In conclusion we have shown using a simple model that it
should be possible to switch between isotropic and nematic
solutions using a rotaxane system, without changing the
concentration. This could be done rapidly, for example using
an optical trigger for the switch. In practice this is most likely to
be seen with a long molecule which is relatively stiff, which
undergoes an extension by at least a factor of 1.2 and cross-
polarised filters must be used to see the effect.
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2.2 Isotropic-Nematic Phase Switching upon Incomplete

Isomerization of Rotaxane Switch
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Rotaxane liquid crystals with variable length: The effect of switching
efficiency on the isotropic-nematic transition
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(Received 11 January 2018; accepted 14 March 2018; published online 3 April 2018)

We examine a solution of non-adaptive two-state rotaxane molecules which can switch from a short
state of length L to a long state of length qL, using statistical thermodynamics. This molecular switching
is externally driven and can result in an isotropic-nematic phase transition without altering temperature
and concentration. Here we concentrate on the limitation imposed by switching inefficiency, i.e., on the
case where molecular switching is not quantitative, leading to a solution of rotaxanes in different states.
We present switching diagrams that can guide in the design of rotaxanes which affect a macroscopic
phase change. Published by AIP Publishing. https://doi.org/10.1063/1.5022134

I. INTRODUCTION

Liquid crystals are comprised of anisotropic or rod-like
molecules that can be partially aligned or ordered like a crys-
tal, while simultaneously able to flow like a liquid. Onsager1

described how a solution of rods, interacting only via hard-
body repulsion, can transit from a low concentration isotropic
phase to an ordered nematic phase at higher concentrations.
This transition is understood in terms of a competition between
the translational and orientational entropy of the rods. In the
isotropic state, the orientational entropy is maximised, so the
rods point freely in every direction. As the concentration of
rods increases, this orientational freedom limits the trans-
lational freedom of the rods. At a critical concentration, a
trade-off occurs: rods begin to align with one another (with a
reduction in orientational entropy) so as to increase the transla-
tional freedom of the rods. This emerging alignment provides
an optical signal; similar to crystals, the aligned nematic phase
interacts with polarised light. This lyotropic isotropic-nematic
transition, first recognised in cholesterol, also occurs for col-
loidal particles, such as the tobacco mosaic virus, as well
as polymers which are not strictly rod-like but have internal
flexibility.2

However, a very different kind of molecule with inter-
nal degrees of freedom imparted by mechanical bonding3

can also exhibit liquid crystallinity, but without the required
change in concentration. Such mechanical bonds, which con-
sist of a topological linkage of at least two covalent struc-
tures, have existed for about half a century.4 The original
example is a catenane, where two macrocycles or rings are
mechanically linked or interlocked together. These molecules
were first made statistically in low yield by Wasserman,5 but

a)Electronic mail: u4785782@anu.edu.au
b)Electronic mail: Edie.Sevick@anu.edu.au
c)Electronic mail: D.Williams@anu.edu.au

Sauvage et al.6,7 revolutionised the synthesis of catenanes and
other interlocked molecules with a metal templating method.
Another example of an interlocked molecule, which is the
focus here, is a rotaxane, or a “wheel” and “axle” molecule,
where a ring is threaded onto a molecular axle that is stoppered
by a bulky group to prevent de-threading. A rotaxane-switch
corresponds to a molecular axle into which attractive stations
are built; the ring switches between stations depending upon
external factors, including chemical reactions,8–10 solvent
polarity,11 pH,12–16 and light.17–19 Bruns and Stoddart20 have
recently reviewed a class of length-extending two-state rotax-
ane switches which can be switched from a short to a long state,
where the ratio of lengths in these cited examples can be as
high as 3.

In two recent publications, He et al.21,22 introduced the
idea of using a solution of two-state rotaxane switches to
affect a switchable liquid crystalline phase. A generic two-
state rotaxane, predicted to exhibit lyotropic liquid crystalline
phase behavior, is illustrated in Fig. 1. In the case of 100%
switching efficiency, or where the two-state rotaxane switches
quantitatively between two different lengths, He et al.21,22

predicted a crystalline phase change that occurs without a
change in concentration. However, these molecules usually
do not switch quantitatively; i.e., a fraction of the molecules
do not switch.12,13 Instead, solutions of these two-state rotax-
ane switches consist of a mixture of long and short rods, and
switching changes the relative composition of short to long
states.

In this paper, we predict the macroscopic change in liquid
crystalline phases that result from the molecular switching of
two-state rotaxanes, controlled externally, but where switch-
ing is not quantitative. The liquid crystalline phases of binary
mixtures of rods of fixed length (and small diameter) were pre-
viously predicted by Lekkerkerker et al.23 and Birshtein et al.24

who constructed phase diagrams for a mixture of rods of length
L and qL (q > 1), with different fractions of long rods, x. Here
we use those predictions to construct a liquid crystalline phase

0021-9606/2018/148(13)/134905/7/$30.00 148, 134905-1 Published by AIP Publishing.
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FIG. 1. A two-state rotaxane consisting of two axles or rods interlocked to
each other. When the rings are engaged at the red stations, the molecule is in
a short state of length L. When the rings are engaged to the green station, the
molecule is in a long state of length qL. Switching between long and short
states is by external influences such as light or a change in pH which alters
the state of minimal energy. We assume that the energy difference in the long
and short states is always much greater than kBT, irrespective of which state
is minimal. This means that the switch is unaffected by the local alignment or
density of molecules. That is, we consider only non-adaptive switches. If the
state is affected by the local alignment or density, then the rotaxane switch
is adaptive.22 This length switching process provides a possible mechanism
to accomplish a direct macroscopic transition from an isotropic to nematic
phase, which is not possible in conventional lyotropic liquid crystals without
a change in concentration.

switching diagram, predicting the concentration range and q
which provides maximal optical signal or when the solution
macroscopically switches from isotropic to nematic phases.
The remainder of the paper is organised in the following way:
First, we briefly review the case of isotropic to nematic phase
change with 100% molecular switching efficiency. This pro-
vides the framework upon which the incomplete or inefficient
switching predictions are constructed. Next, we briefly out-
line the free energy minimisation or entropy maximisation for
binary mixtures of rods. Then we construct switching dia-
grams for four different switching scenarios to demonstrate
the range of concentration and length ratio where observ-
able, macroscopic optical changes can occur by molecular
switching.

II. MONODISPERSE RODS

Here we review the thermodynamics of isotropic/nematic
phase transition for a solution of monodisperse rods of length
L which have no interactions other than hard-body or volume-
excluding interactions. This means that the free energy com-
prises the translational entropy of the rods in solution, the
orientational entropy of the rods, and a term that describes
the reduction in translational entropy due to the pairwise hard-
body interactions. If we let u be the unit vector specifying
the rod direction and Ψ(u) be the orientational distribution so
that Ψ(u)du is the probability that a molecule has an orien-
tation vector between u and u + du, then the free energy per
molecule of a homogeneous solution of N molecules of length
L and diameter d in a volume V is

F[N , V ,Ψ]
NkBT

= ln
N
V
− 1 +

∫
duΨ(u) ln [Ψ(u)]

+
1
2

N
V

∫ ∫
dudu′Ψ(u)Ψ(u′)2L2d | u × u′ | .

(1)

Here the term involving ln [Ψ(u)] is the orientational entropy
of the solution, while the final term is the reduction in
translational entropy due to pairwise, volume excluding inter-
actions between two rods of orientations u and u′. At
low concentrations, this free energy is minimised when
Ψ(u) = (4π)�1 or when all orientations are equally likely and
the solution of molecules is isotropic. However, at interme-
diate concentrations ci < N /V < ca, two different orienta-
tion distributions minimise the energy, indicating that two
coexisting phases exist. These two phases are an isotropic
phase with Ψi(u) = (4π)�1 of concentration ci = N i/V i and a
nematic phase with preferential orientation, Ψa(u), and
concentration ca = Na/Va. The free energy in the isotropic
phase is F i = F[N i, V i, (4π)�1]; the free energy in the
nematic phase is Fa = F[Na, Va, Ψa(u)]. The volume of
each phase varies within the concentration range ci < c < ca,
where c = (N i + Na)/(V i + Va), and is determined by min-
imising the free energy of the solution, F = F i + Fa, with
respect to N i, V i, subject to the constraints of V = V i + Va

and N = N i + Na. Equivalently, we can determine phase
concentrations and volumes by equating the chemical
potential of molecules in each coexisting phase (or
∂Fi
∂Ni
=

∂Fa
∂Na

) and equating the osmotic pressure in each phase (or
∂Fi
∂Vi
=

∂Fa
∂Va

).
For a solution of homogenous fixed rods of length L and

diameter d, solutions for the critical concentrations, ci and
ca, have been obtained by numerical minimisation or, as first
achieved by Onsager, by parameterisation of the orientational
distribution function, Ψ(u). These critical concentrations are
reported in units of the inverse average excluded volume of the
cylindrical rods or vo =

π
4 L2d, when L � d. Herein we report

dimensionless concentration as c∗ = cv0. The values of c∗i and
c∗a vary slightly with different numerical solutions. Lekkerk-
erker’s solution is c∗i = 3.290 and c∗a = 4.191, that is, the
minimum density at which a nematic phase is present is 3.290
molecules per average excluded volume, and the maximum
density at which the isotropic phase persists is 4.191 molecules
per average excluded volume. For two-state rotaxane switches
with external and quantitative (100%) conversion from short to
long state, we can compare the isotropic and nematic concen-
tration boundaries (always given relative to the short state, that
is, c∗ = cv0, where v0 =

π
4 L2d) to relate the switching of indi-

vidual molecules to the switching of liquid crystalline phases.
That is, we can compare the isotropic nematic concentration
boundaries for solution of homogeneous molecules of short
length L,

short state =




isotropic, c∗ ≤ c∗i,short = 3.290,

nematic-isotropic, c∗i,short ≤ c∗ ≤ c∗a,short,

nematic, c∗ ≥ c∗a,short = 4.191

to that of a solution of homogeneous molecules of long length,
qL,



134905-3 He, Sevick, and Williams J. Chem. Phys. 148, 134905 (2018)

long state =




isotropic c∗ ≤ c∗i,long = 3.290q−2

nematic-isotropic c∗i,long ≤ c∗ ≤ c∗a,long

nematic c∗ ≥ c∗a,long = 4.191q−2

.

The isotropic to nematic transition provides the dominant opti-
cal contrast, so our aim is to identify a concentration, c∗, and
a length ratio q, where molecular switching changes the solu-
tion from an isotropic to a nematic solution. Initially, the phase
of short rods is isotropic, c∗ ≤ c∗i,short, but after quantitative
switching to long rods, the solution is in a nematic phase,
or c∗ ≥ c∗a,long. This corresponds to a solution of two-state
rotaxanes of c∗ ≤ 3.290 with a strategic extension ratio of
q >

√
4.49/3.34, which provides a first principles approach

which can guide synthetic chemists constructing two-state
switches with the capacity to phase switch. However most
synthesised two-state molecular switches are not quantitative,
as a solution of rotaxanes may be in a 80/20 ratio of short
to long state; after molecular switching, the ratio may change
to a 10/90 ratio of short to long state. How sensitive is the
switching of the liquid crystalline phase to the inefficiency of

molecular switching? To address this question, we make use
of predictions of the isotropic/nematic transition of a solution
of rods of fixed but bidisperse length.

III. A SOLUTION OF RODS OF BIDISPERSE LENGTH

Lekkerkerker et al.23 extended Onsager’s treatment to
model a solution of rod-like molecules of two different fixed
lengths, with a length ratio of long to short rods q, again in
the limit of L � d. Knowing the liquid crystalline phases of a
binary mixture of rods of two different fixed lengths allows us
to construct a switching diagram of two-state rotaxanes with
inefficient molecular switching. The free energy derivation is
similar to that for the monodisperse rods,1 with the exception
that we allow the short and long rods to orient differently, or
in other words, we have two orientational distribution func-
tions, one for short rods, Ψs, and another for long rods, Ψ` .
Additionally, there is a mixing entropy contribution to the free
energy, Smix/(NkB) = x ln x + (1 � x) ln (1 � x), where x is
the fraction of molecules that are in the long state, of length
qL. The corresponding free energy for this solution of rods of
bidisperse length is

F[N , V , x,Ψs,Ψ`]
NkBT

= ln
N
V
− 1 + x ln x + (1 − x) ln (1 − x) + (1 − x)

∫
duΨs(u) ln [Ψs(u)] + x

∫
duΨ`(u) ln [Ψ`(u)]

+
1
2

N
V

[
(1− x)2

∫ ∫
dudu′Ψs(u)Ψs(u′)2L2d | u × u′ | + 2x(1 − x)

∫ ∫
dudu′Ψs(u)Ψ`(u′)2qL2d | u × u′ |

+ x2
∫ ∫

dudu′Ψ`(u)Ψ`(u′)2q2L2d | u×u′ |
]
. (2)

As in the homogeneous, fixed length problem, the critical
concentrations are found by determining the orientation dis-
tributions that minimise the free energy, and where coexisting
phases exist, equating chemical potentials and osmotic pres-
sures of the phases. However, the critical concentrations now
depend upon the fraction of long rods, x in the solution. We
do not consider the de-mixing of short/long rods, as van Roij
and Mulder25 demonstrated that de-mixing within isotropic or
nematic phases occurs when the diameter ratio between differ-
ent rods is more than 5:1. Here, our rods are of fixed diameter
irrespective of the short or long state.

The major difficulty in solving Eq. (2) is in approximating
the orientational distribution functions for the two kinds of
rods,Ψi(u), where i = {s, `}. Here we express the orientational
vector u in terms of a shorthandΩ for the spherical polar angles
(θ, φ) so that the usual normalisation conditions can be written
as

1=
∫

duΨi(u)=
∫ 2π

0
dφ

∫ π

0
dθ sin θ Ψi(θ, φ)=

∫
dΩΨi(Ω),

i = {s, `}, (3)

and the orientational entropy term in Eq. (2) is written as∫
duΨi(u) ln [Ψi(u)]→

∫
dΩΨi(Ω) ln [4πΨi(Ω)].

The contribution to the free energy due to pairwise volume-
excluding interactions involves integrals which we identify
as ρij,∫ ∫

dudu′Ψi(u)Ψj(u′)2L2d | u × u′ |→
4
π

×

∫ ∫
dΩdΩ′ sin [γ(Ω,Ω′)]Ψi(Ω)Ψj(Ω

′) = ρij.

Here γ(Ω,Ω′) is the angle made by two rods with orientations
Ω and Ω′, where this integral can be written for 3 possible
pairings, ρss, ρs` , and ρ`` , for short-short, short-long, and
long-long pairs. Minimising the free energy [Eq. (2)] results
in a set of coupled equations

ln [4πΨs(Ω)] = Cs − 2DL2c
∫

dΩ′ sin [γ(Ω,Ω′)]

× [(1 − x)Ψs(Ω′) + qxΨ`(Ω′)],

ln [4πΨ`(Ω)] = C` − 2DL2qc
∫

dΩ′ sin [γ(Ω,Ω′)]

× [(1 − x)Ψs(Ω′) + qxΨ`(Ω′)],

(4)

where the constants Cs and C` are determined by the normali-
sation of orientation distribution function, Eq. (3). Equation (4)
provides the orientational distribution function of short and
long rods, Ψs and Ψ` , for a given concentration, c = N /V and
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fraction of long rods, x. Like the monodisperse case, at
low concentrations, all orientations are equally likely with
Ψs = Ψ` = (4π)�1. But at an intermediate range of concentra-
tions, ci ≤ c ≤ ca, there are two pairs of orientation functions
that satisify Eq. (4) indicating coexistence of an isotropic
phase, identified with a subscript 1, and a nematic phase, iden-
tified with subscript 2. Let c1 and c2 denote the concentrations

of rods in the isotropic and nematic phases and x1 and x2 be
the fraction of long rods in the isotropic and nematic phases.
The coexisting phases at overall concentration c and a fraction
of long rods, x, are described by the 6 variables {Ψs ,2Ψ` ,2,
c1, c2, x1, x2} which are determined by Eq. (4) and cast for a
nematic phase [as Ψs ,1Ψ` ,1 = (4π)�1], an equation matching
the osmotic pressure in each phase,

Π1 = Π2

c1(1 + c1[(1 − x2
1 + 2x1(1 − x1)q + x2

1q2]) = c2(1 + c2[(1 − x2)2ρss + 2x2(1 − x2)qρs` + x2
2q2ρ``]),

an equation matching the chemical potential of short rods, µ(s), in each phase,

µ1(s) = µ2(s)

ln c1 + ln (1 − x1) + 2c1[(1 − x1) + x1q] = ln c2 + ln (1 − x2) + σ1 + 2c2[(1 − x2)ρss + x2qρs`],

an equation matching the chemical potential of the long rods, µ(`), in each phase,

µ1(`) = µ2(`)

ln c1 + ln x1 + 2c1q[(1 − x1) + x1q] = ln c2 + ln x2 + σ2 + 2c2[(1 − x2)qρs` + xaq2ρ``],

as well as one more equation from the mass balance equations

cV = c1V1 + c2V2

xN = x1c1V1 + x2c2V2.

However,these equations, particularly Eq. (4) involving
the orientation functions, cannot be solved analytically and
researchers have used different numerical methods to obtain
solutions. A trial function can be used for Ψ1,26 or one can
expand sin γ27 and solve the system numerically.28,29 Here
we employ Lekkerkerker’s method, as briefly detailed in the
Appendix, and approximate the integrals ρi ,j using a 32-point
Gaussian integration. The liquid crystalline phase diagram
of mixtures of fixed length is obtained numerically, using a
Newton-Raphson method, for 0 ≤ x ≤ 1 in increments of
∆x = 0.01 with fixed q, as well as for fixed x with the length ratio
varying between q = 1 (homogeneous rod length) and q = 2.

Figure 2 traces the critical concentrations, c∗i and c∗a, as a
function of the fraction of longer rods in solution for a length
ratio of q = 1.2 and 2.0. Note that x = 0 corresponds to a
monodisperse solution of short rods, recovering the critical
concentrations c∗i = 3.290 and c∗a = 4.191. This phase behav-
ior of mixtures of fixed length rods has been predicted in
earlier publications,23,24 i.e., an isotropic phase (i) at small
concentrations followed by isotropic-nematic coexistence (ni)
at intermediate concentrations and a pure nematic phase (n) at
large concentrations. The phase is determined by three vari-
ables: the overall concentration of the solution, c∗, the overall
fraction of long rods in the solution, x, and the length ratio, q.
The characteristic concentration where the major phase change
occurs is near c∗ ≈ 3. Naturally, as the fraction of longer rods
increases the concentration boundaries decrease, as it is much
easier to form a nematic phase.

A. Switching diagrams

The goal here is to construct a solution of two-state rotax-
ane switches which will allow us to affect an isotropic to
nematic phase transition without changing the concentration
of rotaxanes in the solution. That is, our goal is to esti-
mate the concentration range and extension length q, where
molecular switching results in a macroscopic change in the
orientational phase in solution. As we will show, even for the
case of very modest efficiencies in switching on the molecu-
lar scale, we still achieve transitions from isotropic to nematic
(i → n) and from isotropic to nematic-isotropic coexistence
(i→ ni). This is important because the presence of a nematic
phase, even if the system is not purely nematic, will have an
optical effect, and thus the length switching on the molecu-
lar scale will induce a macroscopically detectable change in
the solution. A weaker optical effect due to molecular align-
ment occurs for the other transitions between nematic (n)
and nematic-isotropic coexistence (ni) or nematic to nematic
(n → n, ni → ni, and ni → n). While these phase transi-
tions can be observed optically, a direct switch from a sin-
gle isotropic phase to a single nematic phase is of most
interest.

As the orientational phase of a solution is determined by 3
parameters, then the switching diagram is determined by four
variables: (1) the fixed concentration c∗ of the solution, (2) the
length ratio, q, of the molecule, (3) the initial fraction of long
rods in solution, xi, and (4) the final fraction of long rods in
solution, xf , after molecular switching. He et al.21 provided
the switching diagram for the case of xi = 0.0 and xf = 1.0,
or where switching is quantitative. Here we demonstrate four
different switching inefficiencies: where the fraction of long
rods changes as xi → xf
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FIG. 2. Scaled concentration, c∗ = cv0, versus fraction of long rods for a solution of rods of bidisperse length with a length ratio of long to short of q = 1.2 (left)
and q = 2 (right). The scaled concentration c∗i (dashed line) separates the isotropic phase region from the region where isotropic and nematic phases coexist:
it is the minimum concentration at which a nematic phase is present. The scaled concentration c∗a (solid line) separates the coexistence region from the single
phase nematic region: it is the maximum concentration at which an isotropic phase is present. The data points represent the results of Lekkerkerker.23 At x = 0,
corresponding to a solution of short rods of homogeneous length L, c∗i = 3.290, and c∗a = 4.191. The addition of longer rods reduces the concentration range over
which an isotropic phase is present and increases the range over which a nematic appears. A large extension ratio q steepens the boundary curves, enhancing the
nematic phase with an increase in population of the longer rod of length qL.

FIG. 3. The switching diagram, scaled concentration, c∗, versus extension ratio q with switching efficiency of xi = 0.2→ xf = 0.8 (top left), xi = 0.4→ xf = 0.6
(top right), xi = 0 → xf = 0.25 (bottom left), and xi = 0 → xf = 0.75 (bottom right). Isotropic(i), coexisting isotropic-nematic(ni), and nematic(n) phases are
labeled. Dashed lines separate isotropic and coexistence regions and solid lines separate coexistence and nematic regions, for both initial solution of xi and final
solution xf . In this way, (i→ ni) indicates an isotropic phase at xi switches to an isotropic-nematic coexistence phase at xf . While a transition from isotropic to
coexistence (i→ ni) or coexistence to nematic(ni→ n) can show change in optical properties, the transition from pure isotropic directly to a nematic phase is
of most interest.
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1. xi → xf ≡ 0.2→ 0.8
2. 0.4→ 0.6
3. 0→ 0.25
4. 0→ 0.75.

These cases are chosen because they all represent considerably
less than 100% switching efficiency, and in two of the cases,
the change in x is small,∆x = 0.2 or 0.25, corresponding to poor
switching efficiency. Figure 3 shows these cases over a limited
range of length ratio, 1.0 ≤ q ≤ 2.0. These are constructed by
overlapping phase diagrams of the initial solution of xi and
final switched solution of xf .

For three of these cases, the transition from isotropic to
pure nematic can be induced in this system by switching the
length of the molecules, even for the case of a very modest
change in x roughly at c∗ ≈ 3. A high switching efficiency
(∆x = xf � xi is large) creates a significant difference in the
critical concentrations, facilitating i↔n transitions of a greater
range of q (as demonstrated by cases 0.2→ 0.8 and 0→ 0.75).
When the switching efficiency is relatively low, for exam-
ple, xi = 0→ xf = 0.25, switching in molecular length is not
enough to trigger a direct transition from isotropic to nematic
phase with a reasonable extension ratio q. Importantly this
is not the least efficient switch case: the case of 0.4 → 0.6
has a lower switching efficiency (∆x = 0.2) but still demon-
strates a significant i→ n phase switch because of the initial
presence of long rods. This suggests that not all molecules
incorporated need to be designed as switchable in order to
achieve a macroscopic phase transition. For example, the same
phase switching predicted for the inefficient switching case of
0.4 → 0.6 also holds for a solution mixture containing 40%
fixed-length long (qL), 40% fixed-length short (L) molecules,
and only 20% molecules that quantitatively switch from
L→ qL. What the switching diagram does show is that even for
this case of very modest changes in switching on the molec-
ular scale (either inefficient switching or a small fraction of
quantitative switches), we still get transitions from isotropic
(i) to nematic-isotropic coexistence (ni).

IV. CONCLUSIONS

We have constructed the macroscopic isotropic-nematic
phase switching diagram for a rod-like molecule that can
switch between two different lengths via a mechanical bond.
We have previously studied this system in the case where the
microscopic switching in length was 100% efficient, i.e., all the
molecules switch quantitatively between short and long states.
Here we have examined the more realistic case of an ineffi-
cient system where molecular switching is not quantitative.
We have shown that the macroscopic, switchable phase tran-
sition from isotropic to nematic is in fact fairly robust and can
be found even for cases of very inefficient molecular switch-
ing. This also suggests that not all molecules in the solution
need to be switchable in order to achieve a switchable phase
change.

While our predictions have not yet been demonstrated in
experiment, it is worth noting that a different kind of molecu-
lar switch, based upon photo-induced isomerisation of a fully
covalent molecule (with no mechanical bond),30 is used as a
dopant to induce chirality in nematic liquid crystals. These

photoswitchable molecules have been shown to provide ther-
mally stable, reversible control31 of the structure of cholesteric
liquid crystals.

APPENDIX: NUMERICAL APPROACH TO SOLVE
EQUATION (4)

Equation (4) cannot be solved analytically and researchers
have used different numerical methods to obtain solutions.
Here we follow Lekkerkerker’s method23 and expand sin γ in
a Legendre series up to order 7, which is sufficiently accurate
for our predictions. As explained in Lekkerkerker, symmetry
allows us to recast the distribution functions in terms of θ
or Ψi(Ω) → Ψi(θ) and the Legendre series must be of even
order

sin γ =
π

4
−

7∑
n=1

d2nP2n(cos γ), (A1)

where d2n =
π(4n+1)(2n−3)!!(2n−1)!!

22n+2n!(n+1)!
. Using the addition theorem

for spherical harmonics or

Pl(cos γ) = Pl(cos θ)Pl(cos θ ′) + 2
l∑

m=1

(l − m)!
(l + m)!

Pm
l (cos θ)

× Pm
l (cos θ ′) cos [m(φ − φ′)].

Lekkerkerker finds that the orientation distribution functions
for the short and long rods are then

Ψs(θ) =
exp [
∑7

n=1 α2nP2n(cos θ)]

Ns
,

Ψ`(θ) =
exp [q

∑7
n=1 α2nP2n(cos θ)]

N`
,

(A2)

where N i is a normalisation constant so that 1 = ∫ dθ Ψi(θ) and
α2n is a set of 7 unknown Legendre coefficients. Equation (4)
then reduces to a set of 7 equations,∫

dθ [(1 − x)Ψs(θ) + xqΨ`(θ)]P2n(cos θ) =
πα2n

8cd2n

1 ≤ n ≤ 7. (A3)

Equations (A2) and (A3) provide us with nine equations,
which, for a specified concentration, c, and fraction of long
rods, x, provide the set of Legendre coefficients or distribution
functions Ψs and Ψ` for a solution of rods in a nematic phase.
[Recall, in the isotropic phase, Ψs = Ψ` = (4π)�1.]
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We describe the thermodynamics of a solution of rotaxanes which can change their length from a short
state of length L to a long state of length qL in response to their surrounding environment. We call
these rotaxanes “adaptive.” We show that such a system can exhibit both isotropic and nematic liquid
crystalline phases. The system shows several interesting kinds of behaviour. First we predict that
the fraction of short-length rotaxanes increases linearly with concentration and is a maximum at the
critical concentration that marks the isotropic to nematic transition. Second, the critical concentration
shows a minimum at a certain value of q. Our model suggests that the effect of adaptive length changes
is most dramatic at small q and where the long state is slightly favoured. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943098]

I. INTRODUCTION

A rotaxane is a wheel and axle molecule, where a
molecular ring or rings are threaded onto an axle. This is
then stoppered at both ends so the rings cannot escape.
Their synthesis is an active area of research1–15 and the
production of these mechanically linked molecules opens up
many new possibilities for phenomena on the molecular scale.
Some rotaxanes act as two-state switches. They can do this
because they have 2 stations along the axle, and the rings
attach preferentially to these stations. The switching between
stations can be controlled by external influences such as
solvent pH, ion interaction, redox reaction, solvent quality, or
light. Another way of moving the ring is to attach a rigid rod
to it and then compressing it with an AFM tip. This was done
by Brough et al.2 Later Sevick and Williams16 showed how
such a system, with many rings, could behave as a molecular
shock absorber.17 Switching changes the length of this piston-
rotaxane molecule. In Figure 1 we depict such a switchable
rotaxane where there is a short state and a long state, the
ratio of the lengths of these states being q. This suggests that
switching rotaxane molecules between states might create
interesting, controllable liquid crystalline phases.

Liquid crystals18 are solutions of anisotropic molecules
which have no long-range positional order, like a liquid, but
can have phases which possess different degrees of molecular
orientation similar to crystalline ordering. The phases in
lyotropic liquid crystals are determined by the concentration
of the molecules, c = N/V (N the number of solute particles
in a volume V ) which can be altered by addition of solvent,
Figure 2. In dilute solutions, the fixed-sized anisotropic
molecules have no long-range translational or orientation
order—the solution is isotropic. However, with an increased
concentration, a nematic phase appears where the molecules
still have no translational order, but self-align to have

a)Electronic mail: Edie.Sevick@anu.edu.au
b)Electronic mail: D.Williams@anu.edu.au

directional order along their long axis. This orientationally
ordered nematic phase is birefringent, optically detectable
using cross polarised filters, and is the principle concept
behind liquid crystalline displays. The fundamental theory for
these systems was produced by Onsager in 1949.19–21 Recently
this work was extended to a two-state rotaxane system, where
an external influence,22 controlled by the experimenter, could
switch the rod length from short to long. This enables a
sudden transition from isotropic to nematic, without changing
the concentration of rods.

In this paper, we describe a somewhat different rotaxane
system. The rotaxane can exist in two different states, one of
length L and the other of length qL, but the molecule itself
decides which state to be in on the basis of the what minimises
the total free energy of the system. We call such rotaxanes
“adaptive.” This is in marked contrast to the recent work of
He et al.,22 where the rotaxanes are forced to be in one state
or the other by external control of the system, as for example,
by changing the pH.

As a simple example, consider a dilute solution of adaptive
rotaxanes between two plates a distance H apart. The rotaxanes
can choose to have lengths L or qL, with q > 1. If the distance
between plates is larger than the largest molecular dimension
H > qL, we would find 1/2 of the molecules of length L
and the other half of length qL. However, as H gets smaller,
there will be a gradual bias towards shorter rods because
the longer rods can only fit by re-orientating parallel to the
plates. The rotaxanes “adapt” to their external environment.

In the case considered in this paper, the rotaxanes
adapt, not because of an imposed confinement by plates,
but because of hard-body interactions with surrounding rods.
The remainder of the paper is organised in the following way.
In Sec. II, we review Onsager’s classical treatment of lyotropic
liquid crystals formed from homogeneous, fixed-length rods.
In Sec. III, we extend this theory to an adaptive 2-state rotaxane
and present results in the following section. In particular, we
show how the critical concentrations for the transitions, the
order parameters, and the fraction of rotaxanes in the short

0021-9606/2016/144(12)/124901/12/$30.00 144, 124901-1 © 2016 AIP Publishing LLC
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FIG. 1. Illustration of a 2-state rotaxane in short and long states and the energy of an isolated rotaxane switch as a function of molecular length, showing
the short and long states as minimal energy states. Attractive stations along the axles are depicted as green and red regions. When the rings reside within the
attractive red stations (left), the rotaxane is in its short state, characterised by the molecular length, L. When the rings reside within the attractive green stations
(middle), the rotaxane is in its long state, characterised by the molecular length qL. The ratio of long to short state lengths, q, is set by the synthetic design of
the molecule. In adaptive rotaxanes, the energy difference between states, ∆E , is small, on the order of kBT . If the long state has lower energy, it is favoured at
vanishingly small concentrations; but because ∆E is small, the short state may be favoured at high solution concentrations so as to lower the free energy of the
solution. If |∆E |≫ kBT , the rotaxane will not be adaptive and solutions of rotaxanes will behave like solutions of fixed-length rods. For the adaptive rotaxanes
considered here, the energy barrier between the states is assumed to be large so that the individual rotaxane states (short or long) are the only allowed states.
Here we consider the equilibrium liquid crystalline phases of a solution of this adaptive two-state rotaxane.

FIG. 2. Illustration of lyotropic liquid crystalline phases for a solution of
fixed-length rods of one size and with simple hard-body interactions. The
volume-excluding rods are isotropic for concentrations up to ci, above which
appears a coexisting nematic phase. As concentration increases from ci to
ca, the volume of nematic phase increases at the expense of the isotropic
phase, until at ca, the solution is entirely in the nematic phase. Onsager
predicted the critical concentrations of rods of length, L and diameter d to
be ci = 3.34( π4 L2d) and ca = 4.49( π4 L2d).

state, depend on the synthetic design parameter q and energy
bias between the two adaptive states. The behaviour we
encounter is sometimes unexpected, and although we can give
post-hoc explanations of all of it, it would be very difficult to
predict it without the model and its numerical predictions.

This work should be seen in the context of other works on
adaptive systems. In particular, wormlike micelles,23 radially
compressible rods,24 and crowding of proteins.25

II. FIXED-LENGTH RODS

We start with a brief review of the classical Onsager
theory19 for monodisperse rods of length L, diameter d, and
concentration c = N/V , where N is the number of rods in
a volume V . The physics is essentially as follows. Onsager

assumes that the only forces between the rods are those of hard
bodies, i.e., the interaction is zero except in cases of attempted
overlap, and all overlaps are forbidden. In such a system, the
free energy is entirely entropic, and the system minimises the
free energy by maximising the entropy. The entropy is kB

multiplied by the logarithm of the number of configurations,
so that all we need to do is count the configurations. The en-
tropy is of two kinds, translational and rotational. First there is
the translational entropy of the centres of each molecule. This
is maximised by having the rods placed randomly within the
container. The second kind is the orientational entropy, which
is maximised by the rods pointing in every direction with equal
probability. At infinitely small concentrations, c → 0, the rods
do not interact and both the translational and orientational
entropy are maximised by having the rods uniformly distrib-
uted in space and in direction. However, as c is increased
towards the characteristic concentration ∼1/(L2d), the rods
begin to interact and we find overlap. At these low concen-
trations, the orientation is still totally random, but certain
positions of the centre of mass of two rods are forbidden.
These forbidden positions lead to a decrease in the transla-
tional entropy. The system can avoid some of these forbidden
positions by aligning the rods so that they preferentially point
along a particular direction. This decreases the orientational
entropy, but increases the translational entropy.

The free energy per rod (see Appendices A and B) of a
homogeneous solution of N rods of length L and diameter d
in a volume V is
F[Ψ]
N kBT

= ln
N
V
− 1 +


duΨ(u) ln [Ψ(u)]

+
1
2

N
V

 
du du′Ψ(u)Ψ(u′)2L2d |u × u′| . (1)

Here Ψ(u) is the orientational distribution function for the
rods and u is a unit vector specifying the rod direction.
The term ln(N/V ) − 1 is the translational entropy, assuming
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a homogenous distribution. The term in ln(Ψ) is the
orientational entropy, and the final term accounts for the
rod-rod interactions. In essence, this final term is the reduction
in translational entropy caused by rod-rod interactions.

The equilibrium orientation distribution is determined
by the condition that the free energy is minimal for all
variations of Ψ(u), subject to the mathematical condition that
the distribution is normalised. This results in a non-linear
equation for Ψ(u) which cannot be solved analytically. There
is then a choice of solution methods. One approach is brute-
force numerical minimisation. Onsager19 chose a more elegant
trial function approach, using the function (Figure 3),

Ψ(u) = α

4π sinh α
cosh [αu · n], (2)

where n is an arbitrary unit vector (the director) and α
is a parameter representing the degree of alignment, to be
determined analytically from minimisation of the free energy.
α = 0 corresponds to an isotropic state where rods adopt all
angles with equal likelihood or equivalently, Ψ(u) = (4π)−1,
and α = ∞ corresponds to a perfectly aligned collection of
rods, Figure 3. This trial function method replaces a function
with an infinite number of variables Ψ(u) with a single
variable α to be minimised over. It thus introduces some
approximation, but is in keeping with the other approximations
in the theory.

The parameter α is closely related to the order parameter,
S, which also measures the degree of alignment. S is defined
by S ≡ ⟨ 3

2 cos2 θ − 1
2 ⟩, where θ is the angle between the rod

and the nematic director, n. For the isotropic state, S = 0 and
any non-zero S implies a nematic phase. In the limit of perfect
alignment, S → 1. We can easily express S in terms of α via

S = 1 + 3α−2 − 3α−1 coth α (3)

so that for small α, S ≈ α2/15, while for large α, S ≈ 1 − 3α−1.

FIG. 3. Onsager’s trial function, Ψ(θ), versus angle, θ for several differ-
ent parameters, α ·θ = cos−1(u ·n) is the angle that the rod makes with an
arbitrary vector, n, the director. The parameter α characterises the degree
of alignment, with α = 0 describing the isotropic state with no orientational
order, where Ψ(θ)= (4π)−1. In our extension to adaptive rotaxanes, we use
this same trial function to describe the orientational ordering of rotaxanes in
nematic phases. As rotaxanes in the short and long state will be orientationally
ordered to different degrees, we introduce the orientation distribution ΨS,
with parameter αS to describe the orientational ordering of rotaxanes in the
short state, and ΨL and αL for rotaxanes in the long state.

At low concentration, the free energy is minimised when
α = 0; this corresponds to a single isotropic phase. At high
concentration, the free energy is minimised when α takes on a
larger value corresponding to a single nematic phase. However
between two critical concentrations ci and ca, there are two
coexisting phases, one isotropic at concentration c = ci and
the other nematic at concentration c = ca. In each of these
phases, the value of α is different. The first phase corresponds
to an isotropic phase of Ni rods and volume Vi. The free
energy per rod in this isotropic phase is Fi = F(Ni,Vi,αi = 0),
where F is of the form given by Eq. (1). The second phase
corresponds to a nematic phase of Na rods in volume Va with
orientation αa. The free energy per rod of the nematic phase is
Fa = F(Na,Va,αa). The number of rods in each phase and the
relative volume of the phases vary within the concentration
range ci ≤ c < ca, where c is the concentration of the entire
solution i.e., c = (Ni + Na)/(Vi + Va). These are determined
by writing the free energy as a sum of the free energy of the
isotropic and nematic phases,

F = Fi(Ni,Vi,αi = 0) + Fa(Na,Va,αa) (4)

and minimising F with respect to Ni,Vi subject to the
constraints of constant total volume and number of molecules,
V = Vi + Va and N = Ni + Na. Equivalently, we can determine
the phase compositions and volumes by equating the chemical
potential of the molecules in each coexisting phase

∂Fi

∂Ni
=

∂Fa

∂Na
, (5)

and by equating the osmotic pressure in each phase, or

∂Fi

∂Vi
=

∂Fa

∂Va
. (6)

These two thermodynamic relations coupled with the
constraints of constant total number of molecules and constant
total volume fully specify the concentrations and the relative
fraction of coexisting isotropic and nematic phases. In
practice, if we know ci and ca and we put N rods in a
solution of volume V , we can calculate the number of rods in
each coexisting phase and the volume of these phases using
the fact that Vici + Vaca = N and Vi + Va = V . To summarise
the results for a solution of homogenous hard rods, we have
the following:

1. 0 < c < ci the solution is isotropic,
2. ci < c < ca an isotropic phase of density ci coexists with a

nematic phase of density ca,
3. ca < c the solution is nematic.

In Onsager’s solution for homogeneous rods of fixed
length L and diameter d, the critical concentrations
are ci = 3.34( π4 L2d)−1 and ca = 4.49( π4 L2d)−1. Both these
concentrations contain the characteristic concentration ∼L2d,
which is essentially the inverse excluded volume of one rod.

III. 2-STATE ADAPTIVE ROTAXANES

Before we consider the free energy of the adaptive system,
we first need to determine how many coexisting phases there
can be in this system. In the case of rods of fixed length, the
Gibbs phase rule gives that the number of coexisting phases
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can be at most 2. In the system where we have rods of two
possible lengths, this is also true, for the reason that we only
have one species of rod, which can take two possible lengths,
i.e., the rod lengths are always in equilibrium with each
other. This in fact makes it less complicated than a system
consisting of rods of two different fixed lengths.26,27 We thus
expect coexistence of only two phases, one isotropic and
one nematic, just as in Onsager’s fixed length rod problem.
However, the critical concentrations for the transitions ci and
ca will of course be different.

To describe the liquid crystalline phase diagram of 2-
state adaptive rotaxanes, we extend Onsager’s treatment to a
solution of N molecules of fixed diameter d, a fraction x in the
short state, having length L and a fraction (1 − x) in the long
state with length qL. Molecules of different length may orient
differently: in a dilute solution, the molecules will be randomly
oriented irrespective of their length; however at higher
concentrations molecules in the long state will be oriented
more strongly than those in the short state. Consequently,
we introduce two orientation distribution functions, ΨS(u)
representing molecules in the short state and ΨL(u) in the long
state. Moreover, there can be an intrinsic energy difference
between short and long states (Figure 1) which will provide a
bias or preference for one of the states: we let ∆E represent
the energy of a rotaxane in the long state relative to the short
state, ∆E = EL − ES. We emphasise that this intrinsic bias is
independent of the local environment of the molecule, so that
in any case where ∆E , 0, there will be differing populations
of short and long states for an isolated rotaxane.

The free energy derivation is similar to that for the fixed-
length system (see Appendices A and B), with the exception
that, because of two possible states of each molecule, we
have two orientational distribution functions and the partition
function is augmented by a factor Z2[x],

Z[ΨS,ΨL, x] = Z0[ΨS,ΨL, x] Z1[ΨS,ΨL, x] Z2[x].
Z2[x] corresponds to the number of ways that N non-
interacting rotaxanes partition between the short and long
states

Z2[x] = N!
(xN)! ((1 − x)N)! exp


xN∆E
kBT


,

where x is the fraction of short states. The contribution
to the free energy associated with molecular switching is
F2[x] = −kBT ln Z2[x], or

F2[x]
N kBT

= x ln x + (1 − x) ln (1 − x) − x
∆E
kBT

. (7)

The first two terms of the RHS are recognisable as the
entropy of mixing. Here they represent a configurational
entropy. Any deviation from equal numbers of long and short
is penalised. In the absence of any interactions between
the rods, and assuming that there is no bias (∆E = 0),
the minimum lies at x = 1/2. With an inbuilt bias but no
interactions, we find the minimum is at x = 1

2 exp[− ∆E
kBT

].
The contribution to the free energy by distributing these non-
interacting rotaxanes with orientational distribution functions
ΨS and ΨL is F0[ΨS,ΨL, x] = −kBT ln [Z0[ΨS,ΨL, x]], and is,
following Sec. II,

F0[ΨS,ΨL, x]
N kBT

= ln [N/V ] − 1 + x


duΨS[u] ln [ΨS(u)]

+ (1 − x)


duΨL(u) ln [ΨL(u)]. (8)

Finally, the contribution to the free energy from the
interactions between rotaxanes requires the excluded volume
between the 3 possible pairs (short-short, short-long, long-
long). The excluded volume of a pair of molecules, β, depends
upon the molecular length, which can take on values of L, in
the short state, or qL in the long state. The 3 possible values
of β are

βL,L(u,u′) = 2L2d |u × u′|,
βS,L(u,u′) = 2qL2d |u × u′|,
βS,S(u,u′) = 2q2L2d |u × u′|.

(9)

Amongst the N2/2 pairwise interactions, x2 is the mean
fraction of the pairwise interaction that is between molecules
in the short state, (1 − x)2 is the mean fraction of pairs in
the long state, and 2x(1 − x) is the mean fraction of pairwise
interactions involving molecules in different length states.
Thus, the contribution to the free energy due to pairwise
interactions is

F1[ΨS,ΨL, x]
N kBT

=
N

2V


(1 − x)2

 
du du′βL,LΨL(u)ΨL(u′)

+ 2x(1 − x)
 

du du′βS,LΨS(u)ΨL(u′)

+ x2
 

du du′βS,SΨS(u)ΨS(u′)

. (10)

Then, the total free energy of a solution of N rotaxanes, a
fraction x of length L and (1 − x) of length qL, all with
diameter d, is

F[ΨS,ΨL, x]
N kBT

=
F0[ΨS,ΨL, x]

N kBT
+

F1[ΨS,ΨL, x]
N kBT

+
F2[x]
N kBT

= ln [N/V ] − 1 + x


duΨS(u) ln [4πΨS(u)] + (1 − x)


duΨL(u) ln [4πΨL(u)]

+
1
2

N
V


(1 − x)2

 
du du′βL,LΨL(u)ΨL(u′) + 2x(1 − x)

 
du du′βS,LΨS(u)ΨL(u′)

+ x2
 

du du′βS,SΨS(u)ΨS(u′)

+ x ln x + (1 − x) ln (1 − x) − x

∆E
kBT

. (11)
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In complete analogy with Onsager’s treatment, we replace
the orientation distribution functions ΨS(u) and ΨL(u) with
parameters αS and αL (Figure 3) that characterise the
orientation of rotaxanes in the short (S) and long (L) states,

ΨS =
αS

4π sinh αS
cosh [αSu · n],

ΨL =
αL

4π sinh αL
cosh [αLu · n].

(12)

This allows us to express the free energy of a solution of
N rotaxanes at any concentration c as a function of the fraction
x and orientational parameters αS and αL. This expression
for the free energy is derived and given in Appendices A
and B, and is referred to using the notation F(x,αS,αL,c).
At any given concentration, the orientation of the rotaxanes
in their short and long states, as well as the fraction that
adjust to the short state will adopt values that minimise
the free energy. At the lowest concentration, c < ci, where
the solution is in a single isotropic phase, rotaxanes in the
short and long states will orient randomly or αS = αL = 0.
The fraction of rotaxanes in the short state in the isotropic
solution of concentration c is determined by that value of
x(c) that satisfies ∂F(x,αs = 0,αL = 0,c)/∂x = 0. At high
concentration c > ca, where a single nematic phase exists, all
rotaxanes are oriented, although rotaxanes in the long state
will be more highly oriented than those in the short state.
The orientation of the short and long switch states, αS(c) and
αL(c), as well as the fraction of short switch states x(c), will
adopt values that minimise the free energy and are determined
by the solution of the 3 equations

∂F(x,αS,αL,c)
∂x

=
∂F(x,αS,αL,c)

∂αS
=

∂F(x,αS,αL,c)
∂αL

= 0.

Between two critical concentrations, ci and ca, the free
energy is minimised simultaneously by two sets of {αS,αL, x}:
this corresponds to the coexistence of two phases, an isotropic
phase and an (anisotropic) nematic phase. The isotropic phase
with Ni rotaxanes and volume Vi, with fraction x rotaxanes
in the short state and parameters αS = αL = 0, has a free
energy per molecule of Fi = F(Ni,Vi, x(ci),αS = 0,αL = 0).
In the nematic phase, the free energy per rotaxane is
Fa = (Na,Va, x(ca),αS(ca),αL(ca)). The relative amounts of
the phases vary within the concentration range and this is
determined by equating the chemical potential of the rotaxanes
(irrespective of their state) in each of the phases, as well as
the osmotic pressure in each phase.

IV. RESULTS AND DISCUSSION

The free energy expression (Eq. (11)) provides numerical
results which yield the phase diagram of these liquid
crystalline rotaxanes as a function of the length ratio, q,
that is associated with the molecular design of the rotaxane.
As stated previously, the phase diagram is similar to that of
a system of fixed-length rods, in that there are three different
regimes: isotropic; coexisting isotropic and nematic and pure
nematic. The concentrations at which each of these regimes
occur, are different to the fixed-length case, as we detail
later. The system seems rather complicated, since we can

vary two different parameters externally. These are the scaled
concentration π

4 cL2d and the ratio of the long to short states, q.
Moreover, we have three different regimes (isotropic, nematic,
and coexisting), and in each of these regimes, we can measure
the order parameter, S for each of the different lengths,
and the fraction of short rotaxanes x. Against this apparent
complexity is the fact that the free energy is a simple sum of
4 terms. These are: the orientational entropy; the interaction
term; the configurational entropy; and the energetic bias. The
behaviour of the system can be understood as a competition
between all of these terms. We present the results under
a number of subheadings: the fraction of short states, the
critical concentrations, and the order parameters.

A. Fraction of short states

First we consider a solution of unbiased (∆E = 0)
rotaxanes with q = 1.1, and consider the fraction of short
states, x, as we increase the total concentration, c, Figure 4.
In the limit of infinite dilution, when the rotaxanes orient
freely and randomly, the proportion of rotaxanes in the short
state, x, is determined by the energy bias in between the
states and the configurational entropy, Eq. (7), and is x = 0.50
for ∆E = 0, independent of q. As the total concentration
increases towards ci, the molecules begin to interact and in
order to maximise translational and orientational entropy, the
rotaxanes increasingly adopt a short state at the expense of
the configurational entropy. As we will see, this growth in the
population of short states is more dramatic, as the ratio of
long to short lengths, q increases—this is because switching
a randomly oriented long rod to a randomly oriented short
rod, increases the translational entropy of the solution. At a
critical concentration, ci, partial orientational ordering occurs
and a nematic phase appears which coexists with the isotropic
phase. The fraction of short rods in the coexisting phase is
xi for the isotropic phase and xa for the nematic phase. This
nematic or orientationally ordered phase has a larger fraction
of rotaxanes in the long state than the coexisting isotropic
phase (xa < xi)—this is because the translational entropy
penalty in the nematic phase is reduced by alignment. In an
isotropic phase, the randomly oriented long rod would greatly
reduce translational entropy (due to collisions) at c < ci,
whereas collisions within a nematic phase are significantly
less because the molecules are already well-aligned. As in the
case of monodisperse rods, these coexisting phases persist
over a range of concentrations ci < c < ca. As the total
concentration, c, changes within this range, the concentrations
of each phase and the fraction of rotaxanes in the short
state within each phase do not change—only the relative
amounts of isotropic and nematic phases change. At a total
concentration of ca, the isotropic phase disappears entirely
leaving a single nematic phase which grows more ordered
with concentration. Because of this, the length of the rods
becomes less and less relevant (collisions become rarer for
well-aligned systems), and there is not much translational
entropy to be gained by being short. The configurational
entropy again comes to the fore, and at large enough
concentrations, we expect x to approach its “natural” value
of 1/2.
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FIG. 4. Left: The fraction of rotaxanes in the short state, x, as a function of dimensionless concentration, π
4 cL

2d, for unbiased rotaxanes (∆E = 0) and q = 1.1.
The solid line gives the fraction of short rods in the solution where we use red to denote the isotropic phase and blue for the orientationally ordered or nematic
phase. At and above a critical concentration ci (red circle), the rotaxanes are in coexisting isotropic and nematic phases, with the fraction of short states differing
in the coexisting isotropic (dashed red line) and nematic (dashed blue line) phases. As the total concentration increases within the coexistence region, the
nematic phase grows at the expense of the coexisting isotropic phase and the overall fraction of short states decreases. At a critical concentration ca (blue
circle), the coexisting isotopic phase vanishes leaving a single nematic phase. The fraction of short states in the nematic phase decreases slightly with increased
concentration and in the limit of very large concentrations, the fraction of short states is determined by the bias in the switch states, which for ∆E = 0 is x = 0.50
(dashed black line). Right: The fraction of rotaxanes in the short state, x versus π

4 cL
2d for q = 1.1 in the presence of an intrinsic energy bias towards long states.

From top to bottom, these are ∆E = 0 (unbiased), ∆E =−1kBT , and ∆E =−2kBT (chemical bias towards long states). When the energy bias |∆E | becomes
much greater than kBT , the variation in x with concentration disappears, that is there is a lack of adaptivity, and the rotaxanes are effectively of fixed length.

We now introduce an energetic bias between the short and
long states by having ∆E , 0. In Figure 4, we compare the
fraction of rotaxanes in the short state versus the concentration
for the unbiased case ∆E = 0 with two cases where there
is chemical bias towards the long state, ∆E = −1kBT and
∆E = −2kBT . The phase behaviour is similar to that in
the unbiased case except that the fraction of short rods
at infinite dilution, x(c → 0) = exp[− ∆E

kBT
](1 + exp[− ∆E

kBT
])

is significantly reduced and switching between states is
significantly reduced with an increased bias towards long
states. Likewise if the short state is energetically preferred,
0 < ∆E, there will also be minimal switching. Indeed, without
adaptive switching | ∆E |≫ kBT , the molecules become fixed-
length rods with liquid crystalline phase diagram approaching
that of Onsager’s. If an external switch is applied to these
non-adaptive rotaxanes, the rotaxanes can be forced into an
Onsager-like liquid crystalline phase behaviour predicted by
He et al.22

We now look at the effect of the length ratio q upon the
fraction of rods in the short state. This is shown in Figure 5
where we plot x, as a function of concentration, c(L2d)−1,
for unbiased rotaxanes for q ranging between 1.1 and 2.0.
As noted before, as q increases, the variation in the fraction
of short states becomes more dramatic for c < ci. Except in
the limits of c → 0 and c → ∞ where x = 0.50 for all values
of q, the fraction of rotaxanes in the short state increases
with q at a fixed c. In essence, this system has a choice
between a short state and a long state. Short states always
have less translational entropy penalty and thus are always
favoured whenever there is the possibility of rotaxane overlap.
Rotaxane overlap is not possible at infinite dilution, c = 0. In
the case of highly concentrated solutions, within the Onsager
approximation, there is perfect order, and the approximation
for the excluded volume interaction gives no overlap. Hence,
in both of these cases, c → 0 and c → ∞, q becomes irrelevant.

Apart from these numerical results, for the isotropic state,
it is possible to produce some analytic results, valid for low
concentrations. These will tell us how the fraction of short
rods depends on concentration, energy bias, and length ratio.
We start from the free energy per rod in the isotropic phase
(ignoring irrelevant terms)

F
N kBT

= x ln x + (1 − x) ln (1 − x)

+
πcL2d

4


x2 + 2qx(1 − x) + q2(1 − x)2


− x
∆E
kBT

.

(13)

FIG. 5. The fraction of rotaxanes in the short state, x, as a function of the
scaled concentration, π

4 cL
2d for unbiased rotaxanes (∆E = 0) and (bottom

to top) q = 1.1,1.2,1.3,1.4,1.8, and 2.0. As the ratio of the lengths of
the long to short states increases, we see a strong tendency to favour short
rotaxanes. In the limit of c→ 0 and c→ ∞, the fraction of rotaxanes in the
short state goes to x = 0.50 in the unbiased ∆E = 0 case. At intermediate
concentrations, the fraction in the short state increases with q, irrespective of
phase or coexistence.
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In the case of no bias ∆E = 0 and zero concentration, this free
energy is minimised when the fraction of short rotaxanes is 1

2 .
At non-zero concentrations, we expand the free energy with
respect to x about x = 1

2 and to lowest order in c, minimising
gives

x =
1
2
+

πL2d
16

c(q2 − 1). (14)

We are thus able to conclude that in the isotropic phase, the
fraction of short rods grows linearly with the concentration.
Moreover we also have the dependence on q from this
equation. A similar procedure allows the dependence on ∆E
to be included, but the results are more lengthy.

B. The effect of length ratio

The critical concentrations ci and ca,as well as the fraction
of short states in the coexisting phases, xi and xa, depend
critically upon the length ratio, q. First, it is important to
recognise that the case of q = 1 corresponds to rotaxane states
whose lengths are indistinguishable; that is, q = 1 is the same
as the case of monodisperse rods where ci = 3.34( π4 L2d)−1

and ca = 4.49( π4 L2d)−1.
Figure 6 shows the critical concentrations ci and ca versus

q for unbiased rotaxane states and the corresponding fraction
of short states, x, in each of the coexisting phases versus q,
again for the unbiased switch states. Taken together, these

FIG. 6. Left: The critical concentrations as a function of the length ratio of long to short states for different values of the energy bias. The full line is for the
isotropic to nematic-isotropic coexistence transition. The dotted line is for the transition from coexistence to pure nematic. At the top is the case ∆E = 0 (no
intrinsic bias towards long or short). At middle ∆E =−1kBT (a slight bias towards long rods). At the bottom, ∆E =−2kBT (stronger bias towards long rods).
Right: The fraction of rods in the short state (right) at coexistence, as a function of the length ratio of long to short states for different values of the energy bias.
The solid line is the fraction in the isotropic phase, and the dotted line is the fraction in the nematic phase. The values of ∆E are the same as for the left graphs.
Two things are notable on these graphs. First the critical concentrations exhibit a minimum as the length ratio increases. Second, for any finite length ratio there
is a substantial jump in x between the two different phases.
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figures show that the coexistence of isotropic/nematic phases
(for ∆E = 0) in the case of large q, (q > 2) approaches that of
the monodisperse or q = 1 case; that is, ci(q > 2) → ci(q = 1),
ca(q > 2) → ca(q = 1) and xi(q > 2) → 1, xa(q > 2) → 1.
That is, the coexisting phases become monodisperse in the
short state as q increases in the unbiased case. This is because
there is no energy bias between long and short states, and
(outside of infinite dilution) switching to short states affords
more translational entropy than the long state in both the
isotropic phase and in the nematic phase. Indeed, even if there
is a small chemical bias against short states, Figure 6, the
isotropic and nematic phases are dominated by short states
when q is significantly large. That is, as we make rotaxanes
where q is large, the liquid crystalline phase behaviour is
reduced to that of monodisperse short rods, outside of infinite
dilution. Rotaxanes designed with too large a value of q
do not utilise adaptability in all but the most dilute of
concentrations. This contrasts with the case of a mixture
of short and long fixed-length rods:26,27 the smallest fraction
of long rods results in a decrease in the critical concentrations
ci and ca, and the larger the ratio of the long to short
length or q, the more dramatic is this decrease in the critical
concentrations.

Figure 6 also shows that rotaxanes which switch between
states with 1 < q < 2 have lower critical concentrations ci
and ca, and that the critical concentrations are minimal at an
intermediate q, q∗. This quantitative result from the free energy
model is understood by considering the entropy compromises
made when a molecule in a long state switches to a short
state. When this happens, there is an increase in translational
entropy. This is true if the long rotaxane is randomly oriented
in the isotropic phase or oriented in a nematic phase, and
this gain in entropy is larger if the difference in lengths of
the states is greater. However, when a long state switches to
a short state, there is also a penalty paid in configurational
entropy, and this penalty is independent of the length of the
states. Consequently, for rotaxane states that are nearly of the
same length, (q is a little larger than unity), the increase in
translational entropy for switching from a long to short state
can be small compared to the penalty paid in configurational
entropy—and consequently switching from long to short
state is not favourable. We already mentioned that adding
long fixed-length rods to short rod26,27 lowers the critical
concentrations ci and ca and the larger the length difference
between the rods, the lower the critical concentrations. So
consequently, for moderate values of q where switching is
not entropically favourable, we see a decrease in ci and ca
with an increase in q towards q∗. Next, as q increases beyond
q∗, the length of the long state increases to such an extent
that the gain in translational entropy overcomes the penalty in
configurational entropy. At these larger values of q, switching
is entropically favourable and the rotaxanes readily adopt a
short state and the solution trends towards a monodisperse
collection of short rotaxane states. The numerical results of
the model confirm this: Figure 6 shows that the fraction
of short states grows roughly linearly from q = 1, but that
at large q, the fraction of short states is nearly constant at
x = 1. Again, from the bidisperse fixed-length molecules,
we know that when you decrease the fraction of long

fixed-length molecules, the critical concentrations increase:
In analogy, when q > q∗, the fraction of short states in both
isotropic and anisotropic phases approaches unity and the
critical concentrations ci and ca increase back to the q = 1
limit.

As a final note, it is clear from the graphs in Figure 6
that, provided the inbuilt bias, |∆E | is not too large, for large
q that almost all the molecules at coexistence are in the short
state in the isotropic phase.

C. The order parameter, S

One other quantity of interest is the order parameter,
S which quantifies how well-aligned the molecules are. The
isotropic state has S = 0, and a perfectly aligned nematic phase
has S = 1. We plot S against the length ratio q in the coexisting
phase, for both the long and the short states in Figure 7. For
the long states, these graphs show little that is surprising.
The long molecules are better-ordered than the short ones,
because a lack of order for the long molecules automatically
gives more collisions and a reduction in translational entropy.
Moreover, the longer the rod the higher the order.

The order parameter of the short molecules in the
coexisting nematic phase exhibits a somewhat more complex
behaviour in that it is non-monotonic in q. Again, this is due
to a balance between translational and orientation entropy as
detailed in the free energy model; however we can understand
this in terms of the volume available to a short rotaxane in the
nematic phase and Figure 6. When the volume available to an
anisotropic rod decreases, it will orient, i.e., S will increase.
From Figure 6, the concentration of the coexisting nematic
phase, ca, decreases from q = 1 to some q∗, that is, there is
more volume per molecule in the nematic phase. Rotaxanes
in the long state, whose excluded volume grows with q align,
and the short rotaxanes, with fewer collisions in a larger
molecular volume, are more free to rotate. Consequently, the
order parameter for the short state decreases with q for q < q∗.
However, for q > q∗, the concentration of the nematic phase
increases with q, and there is less volume available to the
rotaxanes: rotaxanes in both the short and long state become
more aligned and S increases with q for both. This produces the
minimum in S(q) for the short state. As we increase q further,
the order parameter of the long state increases; however the
proportion of long states also vanishes at high q. Again,
the disappearance of the long state which has an excluded
volume that varies with q2, provides additional volume for
the growing population of short rotaxanes. With more volume
per molecule, the rotaxanes in the short state again gain some
orientational freedom and their order parameter diminishes.
This produces a maximum in S(q) for the short state. However,
in the limit of high q, the coexisting nematic phase contains
rotaxanes that are entirely in the short state and consequently,
it is indistinguishable from the coexisting nematic phase for
q = 1. That is, for the short state, S(q → ∞) = S(q = 1). When
the rotaxane has a small intrinsic bias towards the long state,
these changes in the order parameter with q become more
dramatic, primarily because the variation in the proportion of
short rods in coexistence varies more dramatically with q when
there is intrinsic bias towards the long state: from Figure 6, we
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FIG. 7. The nematic order parameter, S for molecules in the short state (full
line) and long state (dashed line) in the nematic phase at coexistence, as a
function of the length ratio for different values of the energy bias, ∆E . At the
top is the case ∆E = 0 (no intrinsic bias towards long or short). At middle
∆E =−1kBT (a slight bias towards long rods). At the bottom, ∆E =−2kBT
(stronger bias towards long rods). Note that the order parameter for long rods
always increases, but that for short rods shows a minimum followed by a
maximum.

see that 0.5(q = 1) ≤ x ≤ 1(q → large) for ∆E = 0, but that
0.15(q = 1) ≤ x ≤ 1(q → large) for ∆E = −2kBT .

V. CONCLUSIONS

Here we examined the phase behaviour of 2-state adaptive
rotaxanes. These rotaxanes should be contrasted with those

studied earlier by the present authors,22 where the length
was externally controlled. Here the length is chosen by the
rotaxane molecule itself in response to the local concentration
environment. One major conclusion of this study is that the
2-state adaptive rotaxane forms isotropic and nematic phases,
just as the fixed-length rod system does. However, the critical
concentrations are different from the fixed-length system,
and moreover they show a minimum as the length ratio is
increased. In particular, for an unbiased rotaxane (∆E = 0),
it is best to use a length ratio which is small q ≈ 1.2. Large
length ratios, q > 2, are counter-productive. The rotaxane
has a choice of being of length L or length qL, and if
q is made too large, the loss of translational entropy due
to collisions becomes prohibitive. In the limit of large q,
the system effectively ignores the possibility of having rods
of length qL and behaves as if it had rods of fixed short
length L.

There is a good reason why we cannot have q > 2 with
only two axles. This means that such an extension would be
geometrically impossible. Of course, we could have larger q
values by using more axles per rotaxane, but in such a case,
the flexibility of the extended molecule would need to be
accounted for.

In the isotropic state, the fraction of short states
increases with increasing concentration, because short states
undergo fewer collisions. However, once the coexistence
regime is entered, the alignment implies fewer collisions
and the advantage short states have is reduced. Thus in the
coexistence regime, the fraction of short states decreases
(because the nematic phase increases in volume), and keeps
decreasing when a pure nematic phase comes into being.
The initial increase in the fraction of short states (Eq. (14))
is perhaps the simplest experimental test of the theory,
because this occurs in the isotropic phase, and does not
require the existence of a nematic phase. In particular, the
linear increase in x with c should be relatively simple to
detect.

One referee has raised the question of our energy biases,
∆E, in particular why they seem to have limited effect
on the transition concentrations, and why we do not push
them to higher negative values. The reason for their limited
effect is that even ∆E = −2kBT is not particularly large. For
∆E = −20kBT , we would expect a large effect. However, if
we push |∆E | to be large, we encounter a simple problem.
The system no longer behaves as adaptive, and becomes one
of the rods with a single length. It then reverts to the ordinary
Onsager system, and all novelty is lost.

The most unexpected conclusion is that the order
parameter for the short state in the nematic shows a minimum
and a maximum as the rod length ratio is increased. This
might be difficult to detect experimentally, because it requires
a measurement of the order of only one species, but it should
be easily measured in computer simulation.

An important question to ask is which experimental
systems should be used to detect these effects. In the review
by Bruns and Stoddart,1 there are many systems which undergo
extensions in the range we are interested in. What is required
is one for which the Onsager theory should be approximately
true. Such systems tend to have large ratios of length to
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diameter. The first test that needs to be made in such cases is
to take to axles individually, prior to rotaxane formation, and
ensure that at high enough concentration a nematic state is
formed.
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APPENDIX A: THE ONSAGER THEORY FOR RODS
OF FIXED LENGTH

Here we review Onsager’s theory19,28 for rods of fixed
length L and diameter d. The equilibrium partition function
for a solution of N rods with orientational distribution Ψ is

Z[Ψ] = 1
N!


Ψ


dui


dRi exp


−


i> j Ui, j

kBT


,

where ui is the unit vector, directed along the long axis of the
ith rod, Ri is the rod’s centre of mass position, and Ui, j is
the interaction energy between the ith and jth rods. We can
rewrite this partition function as a product of functions,

Z[Ψ] = Z0[Ψ]Z1[Ψ].
Z0 is the partition function associated with distributing non-
interacting rods with an orientational distribution Ψ(u), and
Z1 is the contribution from the interactions between the rods,
or

Z0 =
1

N!


Ψ


dui


dRi

and

Z1=


Ψ


dui


dRi exp


−


i> jUi, j

kBT




Ψ


dui


dRi

=⟨exp[−


i> j Ui, j

kBT
]⟩Ψ.

Z0 is determined in the following way: the position of each
rod can be any location within the volume, so


dRi = V

or
 N

i dRi = V N . However, the orientation vectors of the
rods are constrained by the distribution Ψ(u). The set of all
possible unit-vectors, u, sweeps out the surface of a sphere,
which we divide into small regions of area (or solid angle) Ω.
As the rods are oriented according to Ψ(u), then the number
of rods oriented within ua ± dua, or solid angle of size Ω, is
na = NΨ(ua)Ω. Thus


Ψ

N
i dui is evaluated discretely as the

number of ways of assigning N rods to a set of differential
solid angles, each of size Ω with population na or

Ψ

N
i

dui =
N!
na!
Ω

N .

Taken together, this yields

Z0 =
(ΩV )NN

i na!
.

As


a na = N and


aΩΨ(ua) = 1, then the free energy
(entropy) associated with distributing non-interacting rods
with an orientational distribution Ψ(u) is

F0[Ψ]=−kBT ln [Z0[Ψ]]
=N kBT


ln [N/V ] − 1 +


duΨ(u) ln [Ψ(u)]


. (A1)

The contribution to the free energy from the interactions
between rods can also be found from the corresponding
partition function, F1[Ψ] = −kBT ln[Z1[Ψ]], or alternatively,
we can make simple use of a simple virial expansion of the
free energy written in terms of particle number,

F1[Ψ]=−kBT ln

exp


−


i> j Ui, j

kBT


=B2N + B3N2 + · · ·,

where Bj is the jth virial coefficient. In dilute solutions of
rods, we only need to consider B2N , first term in the virial
expansion which accounts for the pairwise interaction between
two rods of orientation u and u′,

B2N =
N2kBT

2V


dudu′Ψ(u)Ψ(u′)β(u,u′),

where β(u,u′) is

β(u,u′) =


dR

1 − exp


−U(u,u′,R)

kBT

 
.

For a pair of rigid rods which interact as hard bodies (or where
the interaction energy is U = ∞ when overlapping and U = 0
otherwise), β(u,u′) corresponds to the volume that one rod
excludes to another rod. For rods of diameter d, but of two
different, fixed lengths, L and L∗, the excluded volume for
two rods that make an angle |γ|≡|u × u′| is

β(u,u′) = 2LL∗d |u × u′|. (A2)

The contribution of pairwise interactions of rods of the same
length L to the free energy is

F1[Ψ]
N kBT

=
1
2

N
V

 
du du′Ψ(u)Ψ(u′)2L2d |u × u′|. (A3)

APPENDIX B: CALCULATION OF THE ADAPTIVE
FREE ENERGY

(i) Free energy of the isotropic phase. In the isotropic
phase,28 all molecules are randomly oriented, irrespective
of whether they are in the short or long state, so that
the orientational distribution function is a constant, ΨS[u]
= ΨL[u] = 1

4π . Consequently, there is no orientational
entropy of non-interacting rods in the isotropic phase and

duΨ[u] ln[4πΨ[u]] = 0. To simplify the three terms
for the free energy associated with pairwise interactions
between rods, we need to specify the excluded volume
of pairs of molecules. Let γ be the angle made by two
molecules so that we have

βS,S(γ)=2L2d |u × u′| = 2L2d |sin γ |, (B1)

βS,L(γ)=2qL2d |u × u′| = 2qL2d |sin γ |, (B2)

βL,L(γ)=2q2L2d |u × u′| = 2q2L2d |sin γ |. (B3)

du is a differential solid angle, expressible in terms
of polar and azimuthal angle or du = dφ sin θdθ. The
integrals are of the form
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 
du du′βS,SΨ(u)Ψ(u′)= 1

16π2

 2π

0
dφ

 2π

0
dφ′

 π

0
sin θdθ

 π

0
2L2d | sin γ | sin θ ′dθ ′ =

πL2d
2

, 
du du′βS,LΨs(u)Ψs(u′)= πL2dq

2
, 

du du′βL,LΨ(u)Ψ(u′)= πL2dq2

2
.

These are readily performed by rotating the coordinate system so that one rod always lies along the z axis. The free energy of
the isotropic phase of concentration c with fraction of short rotaxane states x is

Fisotropic

N kBT
=

F0,isotropic

N kBT
+

F1,isotropic

N kBT
+

F2,isotropic

N kBT

= ln [N
V
] − 1 + x ln x + (1 − x) ln (1 − x) + N

2V


x2πL2d

2
+ 2x(1 − x)πL2dq

2
+ (1 − x)2πL2dq2

2


− x
∆E
kBT

= ln c − 1 + x ln x + (1 − x) ln (1 − x) + πcL2d
4


x2 + 2qx(1 − x) + q2(1 − x)2


− x
∆E
kBT

.

(ii) Free energy of the nematic phase. In the nematic
phase, molecules are oriented and those in the long
state will be oriented more strongly than those in the
short state. We use the angle, θ, that the molecule
makes with a director as a measure of the orientation
and define two orientational distribution functions, one
for the short state, ΨS(θ) and another for the long
state, ΨL(θ), using Onsager’s trial function, Eq. (2) with
u · n = cos θ,

ΨS(θ)= αS cosh (αS cos θ)
4π sinh (αS) , (B4)

ΨL(θ)= αL cosh (αL cos θ)
4π sinh (αL) . (B5)

The orientational entropy contribution associated with
distributing non-interacting rods in the nematic phase,

F0[Ψ, x], is then
duΨS(θ) ln 4π[ΨS(θ)]= log (αS coth αS) − 1

+
arctan (sinh αS)

sinh αS
, (B6)

duΨL(θ) ln 4π[ΨL(θ)]= log (αL coth αL) − 1

+
arctan (sinh αL)

sinh αL
. (B7)

As in the isotropic case, the three terms for the free energy
associated with pairwise interactions between rods can
be readily calculated by rotating coordinates. However,
unlike the isotropic case, the orientation distribution
function, Ψ, is no longer a constant but depends
upon θ as well as the state of the rotaxane, long or
short.

 
du du′βS,SΨS[u]ΨS[u′]=

 2π

0
dφ

 2π

0
dφ′

 π

0
sin θΨS[θ]dθ

 π

0
2L2d |sin(γ)|sin θΨS[θ ′]dθ ′ = 2L2dI2(2αS)

(sinh αS)2 , (B8)

 
du du′βL,LΨ(u)Ψ(u′) = 2q2L2dI2(2αL)

(sinh αL)2 , (B9)

where I2 is second order Bessel function.19 The contribution due to pairwise interaction of molecules of different size is rather
involved. Here we simply write down Onsager’s result; in his original work, he describes the derivation in great detail, referring
to this as the covolume, 

du du′βS,LΨS(u)ΨL(u′)

= qL2d


αS + αL

2παSαL



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8
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1
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+

1
αL
+
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15
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

8
αSαL

−
(

1
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+

1
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+

1
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)2
+ · · ·



. (B10)

Like Onsager, we ignore the higher order terms in the last expression, so that the free energy per molecule in the nematic phase,
F2, reduces to
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F2[αS,αL, x,c]
N kBT

= ln [N/V ] − 1 + x
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arctan (sinh αS)
sinh αS



+ (1 − x)

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I. INTRODUCTION

A depletant force is an attractive force that arises between large colloidal particles due the

presence of dilute, smaller solutes, called depletants. This attractive force was first explained

as an entropic force in the 1954 Asakura-Oosawa model1; this entropic force is based upon

the concept of excluded volume, or the volume inaccessible to smaller solutes by larger col-

loids. When two large colloids are sufficiently close, the exclusion volume of each colloid

overlaps and the total volume excluded to the depletants is reduced or the volume accessible

to the solute depletants increases. This increases the depletants’ translational entropy and

minimises the solution free energy, resulting in an effective or entropic attractive force be-

tween the colloids. The use of depletants has long been used to tune the stability of colloidal

dispersions. An early example is the creaming process of rubber where polysaccharides are

added as depletants to induce attractive interactions which lead to separation into a dense

latex phase which can be more cheaply transported, and later restored by dilution2.

Since Asakura-Oosawa’s 1954 model, depletion forces have been characterized for polymeric

and biological depletants using theory as well as experimental measurement. When the de-

pletant is anisotropic or rod-like , the increase in translational entropy is accompanied by an

increase in the orientational entropy of the rod-like depletant, and as a result, the entropic

attraction is increased in both range and magnitude3–5. This entropic force can be signif-

icant as it leads to phase separation of hard-core spheres and rods in simulation6. In this

paper, we consider a possible rod-like depletant comprised of interlocked components, called

a rotaxane-switch. A rotaxane-switch corresponds to a molecular axle upon which attractive

stations are built; the ring switches between different station, driven by a number of differ-

ence external factors7–9, most notably by light10–12. A significant class of length-extending

rotaxane-switches, generically illustrated in Figure 1, have already been synthesized13 to

switch between short and long rods with a length variation in excess of a factor of 3. Can we

use this molecular switching to alter the stability of colloidal dispersions through depletion

forces? The potential advantage of photo-switchable switchable depletants is that colloidal

stability can be controlled by light rather than the addition/dilution of the solvent.

In this chapter, we calculate the attractive interaction imparted by a fixed depletant con-
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FIG. 1. Left: A two state 2-rotaxane consisting of two axles or rods interlocked to each other.

When the rings are engaged at the red stations, the molecule is in a short state of length L. When

the rings are engaged to the green station, the molecule is in long state of length qL. Switching

between long and short state is by external influences such as light or a change in pH which

alters the state is of minimal energy. We assume that the energy difference in the long and short

states is always much greater than kBT, irrespective which state is minimal. This means that

the switch is unaffected by the local alignment or density of molecules. Right: rotaxane switches

as depletants sandwiched between parallel plates of separation h. This length switching process

provides a possible mechanism to accomplish a significant change in the range and magnitude of

depletion force.

centration of 2-state rotaxanes which switch length from a long state, of length L, to a short

state of length qL with 0 < q ≤ 1.. We use the simplest of models, where depletants of

switchable length L or qL and fixed diameter D, and colloids, or radius R, interact only

through their mutual excluded volume. We also consider the rod-like depletants in the On-

sager limit of high aspect ratio, or where qL/D →∞. The depletion attraction of a solution

of monodisperse fixed-length rod-like depletants in the Onsager limit as been characterised

by Mao, Lekkekerker and Cates3,4, and our approach closely follows this work. However,

here we generalise their approach to calculate depletion interaction due to any mixture of

rod-like depletant in Onsager Limit. I particular we focus on case where rod-like depletants

are bidisperse in length, i.e., a mixture of rods of length L and qL. This is necessary as

3



switching of a solution of 2-state rotaxanes in not quantitative. The Onsager limit not only

simplifies the model considerably, but it also excludes any possibility of de-mixing by molec-

ular length14. Furthermore, we consider the switching process to be externally driven and

not adaptive; that is the energy barrier to switching states is much larger than kT so that

a molecule does not change its length state in response to its surrounding. In this way, we

consider the switching process as process which alters the composition of mixture.

The original Asakura and Oosawa model considered the depletion attraction between two

parallel plates, a distance h apart, immersed in a solution of depletants. When the plates

are separated by a distance small enough to exclude depletant molecules, the concentration

of depletants between the plates is smaller than that of the bulk. This gradient in depletant

concentration across each of the plates gives rise to an osmotic pressure, or force per unit

area, fp, pushing the plates towards one another. For rod-like depletants in the Onsager

limit, this force is proportional to the difference in the density of rods ends which are

sandwiched between the plates and in contact with the plate, n(h), and the density of rod

ends touching the opposite side of the plate, n(h =∞)

fp = kBT (n(h)− n(h =∞)). (1)

This force per unit area can be related to the force that would exist between two spheres of

radius R, whose centres are separated by 2R + h, by the Derjaguin approximation,

fs(h) = −π
∫ h

∞
fp(h

′)dh′. (2)

Here the subscript s denotes that it is sphere between which the depletion force acts. The

depletion interaction between two spheres is then

Ws(h) =

∫ ∞

h

fs(h
′)dh′ (3)

In order to find the depletion interaction, we need to solve for the number density of rod-ends

in contact with a plate. Both Poniewierski15 and Mao et al.4 have determined the number

density of needle-like rods and their alignment near a plate, where the bulk density is low

and corresponds to an isotropic solution. Based on Mao’s method, we purpose generalise

theory of polydisperse rods in solution and provide results for bidisperse case. These results

demonstrate the first numerical calculation of alignment of bidisperse rods at a surface, as

well as depletion interactions.
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II. THEORY OF DEPLETION FORCE DUE TO POLYDISPERSE

ROD-LIKE DEPLETANTS

Consider a polydisperse rods solution with k types of rods of length L1, L2, ..., Lk and con-

stant diameter D in Onsager limit, Li >> D, i = 1, ..., k. The geometry associated with

this problem is illustrated in figure 2, where ends of rod i locate at z and z1 from the plate,

ends of rod j locate at z2 and z3. si and sj are the distance between the end of rod i & j

to the point at which the rods intersect. The orientation of rod 2, Ωj = {θj, φj}, is defined

with rod i as normal axis. These geometric parameters are related as follows:

z1 = z + Lit

z2 = z + sit− (Lj − sj)(t cos θj +
√

1− t2 sin θj cosφj) (4)

z3 = z + sit+ sj(t cos θj +
√

1− t2 sin θj cosφj), (5)

where t = cos θ = z1−z
Li

and t′ = z3−z2
Lj

. Without loss of generality, we choose z to be the

lower end of rod i,z < z1.

Depletion interaction is entropically-driven, the free energy per unit area of plate in plates

separated by h in solution of mixed depletant, is written as sum of translational, rotational

entropy and and mixing entropy, Strans, Sori & Smix.

Translational entropy and mixing entropy of rod i is function of the end density ni(h, z,Ω):

Strans,i(h) =

∫
dz dΩni(h, z,Ω)(ln Λ3ni(h, z,Ω)− 1), (6)

Smix,i(h) =

∫
dz dΩni(h, z,Ω) ln (

ni(h, z,Ω)

n0(h, z,Ω)
), (7)

where n0(h, z,Ω) is the concentration of all rods, n0(h, z,Ω) =
∑k

i=1 ni(h, z,Ω).

Rotational entropy are given by the pairwise excluded-voulme interaction between two rods:

Srot,ij(h) =
1

2

∫
dzi dΩi ni(h, zi,Ωi)Gij(h, zi,Ωi) (8)
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FIG. 2. Parameter setup for two intersecting rods near a flat solid wall. Without loss of generality,

z is always the lower end of rod 1, z < z1. But for rod 2 this is not the case, −Lj < z3 − z2 < Lj .

Orientation of rod j is defined with rod i as normal axis.

where

Gij(h, zi,Ωi) = 2D

∫
dΩj

∫ Li

0

dsi

∫ Lj

0

dsj nj(h, zj,Ωj)| sin θj|, (9)

Direct integration of Gij is difficult4. One can rewrite Gij as follows

Gij(h, z,Ω) = 2DLiLj

∫ 1

−1

dt′
∫ B

A

dz2 Ξ(z2, z2 + Ljt
′)f(t, t′)gij(z, z2, t, t

′)nj(h, z2, t
′), (10)

where integration bounds A and B are




A = max(z,−Ljt′) , B = z + Lit− Ljt, when − 1 < t′ < 0

A = max(z − Ljt′, 0), B = z + Lit , when 0 ≤ t′ < 1.
(11)

f(t, t′) is

f(t, t′) =

∫ 1

0

d cos θj

∫ 2π

0

dφδ(t′ − t cos θj − sin θj
√

1− t2 cosφj)| sin θj|, (12)

and gij is
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gij(z, z2, t, t
′) =

∫ Li

0

dSi

∫ Lj

0

dSj δ(z2 − z + t′ − tSi − t′Sj). (13)

Functions f(t, t′) and gij effectively integrate all possible contacting rods that satisfy equa-

tions 4 and 5. Computation time can be greatly reduced by calculating f(t, t′) as 2-

dimensional array beforehand. gij are simple integrals that specify a linear segment in Si, Sj

plane. In bulk solution with monodisperse length, equation 9 can be integrated directly to

give

Gij,bulk =

∫
dΩG(h =∞, z =∞,Ω) = 2DLiLjnj. (14)

thus the free energy for a polydisperse rods solution with k types of rods of length

L1, L2, ..., Lk is

F (h)

kBT
=

k∑

i=1

Strans,i +
k∑

i=1

k∑

j=1

Srot,ij +
k∑

i=1

Smix,i, (15)

The chemical potential at all points in the solution is equal, ∂Fbulk/∂ni,bulk = ∂F/∂n(h, z,Ω).

∂Fbulk/∂ni,bulk can be calculated by equation 14 and 15 given bulk rod concentrations

n1,bulk, ..., nk,bulk. Uniform chemical potential allows self-consistent relations for each end

density of rod ni,

ni(h, zi,Ωi) =
ni,bulk

2π
Ξ(z, z1)

exp [(
∑k

j=1 Gij,bulk) + ln (
ni,bulk

n0,bulk
)]

exp [(
∑k

j=1 Gij(h, zi,Ωi)) + ln ( ni(h,z,Ω)
n0(h,z,Ω)

)]
, (16)

The total rod center density, nc(h, zc), can be caculated by summing up that of rods of

lengths,

nc(h, zc) = 2π
k∑

i=1

[

∫ min(1,2zc/Li)

0

ni(h, zc −
Lit

2
, t)dt]. (17)

The depletion force per unit area between the two parallel plates is proportional to the end

density difference between the 2 sides of plate:

fp(h)

kBT
=

k∑

i=1

∫
dΩ [ni(h, 0,Ω)− ni(∞, 0,Ω)] (18)

7



and the depletion force and interaction between spherical colloid particles can be found from

equations 2 and 3 using Derijaguin Approximation. Given any length profile L1, L2, ..., Lk

and the corresponding bulk density n1,bulk, n2,bulk, ..., nk,bulk, depletion force and concentra-

tion profile near plates can be calculated.

Case k = 1 corresponds to depletion theory of monodisperse rod. This case is thoroughly

discussed by Mao et al.4, and will not be discussed further. In this paper, we focus on

the depletion due to bidisperse rod, k = 2. The longer rod is of length L1 = L and the

shorter one of length L2 = qL (0 < q < 1), and in the Onsager limit, L > qL >> D. The

corresponding bulk concentrations are n1,bulk = nbulkx and n2,bulk = nbulk(1− x), with x the

fraction of short rod in bulk solution. In our calculations, the total bulk rods density is fixed

at cbulk = nbulkDL
2 = 1, which is well below the minimum critical concentration πnDL2

4
= 4

for a nematic phase formation16. Plug in these parameters to equation 16, the end density

for long and short rods, n1 and n2 are solved by numerical iteration using equations 6-16. To

help quick convergence, the input for next iteration is a linear combination of the output nout

and input nin of current step, n = αnin + (1− α)nout, where alpha is a randomly generated

number between 0.1 and 0.5. With n1, n2 and plate separation h, rod center density nc and

depletion profile fp is then calculated with equation 17 and 18.

III. RESULT AND DISCUSSION

We first construct density profiles of rods near an isolated plate or where plate separations

are sufficiently large that the bulk densities are achieved midway between two plates, i.e.,

the plate separation is larger than the longest rod length, h > L. Figure 3 (left) shows the

end-density, normalized by the bulk end density as a function of distance from the plate;

and Figure 3 (right) shows the center density, again normalized by bulk center density

as a function of distance from the plate. The dashed line in each plot corresponds to

a reconstruction of the predictions of Mao17 & Poniewierski15 for monodisperse rods or

x = 1. The density of rod end increase relative to the bulk near a surface while the

rod centre density shows a discontinuous maximum or “kink” at z = L/2 : rods whose

centers are located z ≥ L/2 are orientationally unrestricted; but at z < L/2 rods, the rods

become orientational restricted. A rod whose center is located close to the plate, z ∼ 0, will

8



contribute both ends to the end density as the rod will be aligned with the plate. At the

total rod density investigated, the solution of monodisperse long rods seems to have have a

slightly larger center density near the plate than solution of the same number density but

where smaller rods are incorporated.
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FIG. 3. Normalised rod end density n/(n1,bulk + n2,bulk) (left) and center density nc/(n1,bulk +

n2,bulk)(right) versus vertical distance z with q = 0.5 and bulk fraction of long rods, x = 0.1 (red),

x = 0.3 (blue), x = 0.5 (black), x = 0.7 (brown). The dashed line is the end and center density for

mondisperse rods of the same bulk concentration. The monodisperse concentration profile agrees

well with the results of Mao et al.17 and Poniewierski15. Higher presence of short state rod (lower

x) result in smaller end density at the wall. For center density profile, an extra kink contributed

to the presence of short rod appears.

Also included in these plots are results for mixtures where the shorter rod has length qL with

q = 0.5, with fraction of long rods in the solution being x = 0.7, 0.5, 0.3, and 0.1. Increasing

the fraction of short rods at this fixed overall rod density results in a decrease in the end

density at the plate and a “kink” in the center density at z = qL/2 grows with the fraction

of short rods. As expected, increasing the fraction of short rods leads to a means that the

bulk density, both center and end, is achieved at distances closer to the plates.

Depletion force between parallel plates fp is calculated by equation 1 from the end densities

at the plate. Again, the dotted line in figure 4 corresponds to a monodisperse solution of
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FIG. 4. Depletion force between plates, fp/kBT due to mixed long and short rod with length ratio

q = 0.5 versus separation h/L. Bulk fraction of long rods fixed at x = 0.1 (red), x = 0.3 (blue),

x = 0.5 (black), x = 0.7 (brown) and x = 1 (dashed). On top of showing depletion profile for

binary rod mixture, this is essentially the switching diagam of depletion interaction of 2-state length

switchabble molecules as depletant. and can provide information on how the attractive depletion

interaction changes when exteranlly driven length switching alters the relative composition of long

and short rods.

long rods or x = 1.0. where an attractive force first appears between plates separated by

h = L and is more attractive as h is decreased towards h = 0. The conversion of long rods

of length L to short rods of length qL, forming binary mixtures of x = 0.7, 0.5, 0.3 and

0.1, weakens the attractive depletion interaction, especially at separation qL. Finally, we

can reinterpret this force between plates in terms of the depletion interaction between large

spherical colloid with Derjaguin Approximation in equations 2 and 3: Figure 5, shows the

dimensionless depletion interaction of a pair of spherical colloid of radius R = 10L due to

binary mixture of rod-like depletants with dimension L = 20D and q = 0.5, as calculated

in our Onsager limit with a bulk depletant concentration cbulk = 1, which corresponds to

approximately 4% by volume of depletant. Here the attractive interaction is strongest for

depletants which are 100% in the long state (dashed line), but as a large fraction (x = 0.1) of

these molecules is switched to the short qL state, the attractive interaction is diminished by

10s of kBT at a surface-to-surface equal to qL. More importantly, the range of the attractive

interaction is reduced by nearly 1/2 or twofold. Thus switching from long to short depletants
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FIG. 5. Depletion potential Ws between 2 spherical colloid of radius R = 10L, due to mixed long

and short rod with q = 0.5, L = 20D versus separation h. Bulk fraction of long rods fixed at

x = 0.1 (red), x = 0.3 (blue), x = 0.5 (black), x = 0.7 (brown) and x = 1 (dashed).

reduces the short range, attractive depletion interaction between purely hard sphere colloids.

The depletion potential of monodisperse rod of volume fraction vr in Onsager limit is4,18

W (h) =
2

3
kBTvr

L

D

R

D
(1− h

L
)3 (19)

Koenderink et al. has confirmed by experiment that rod-like depletants are highly effective

and even low rod concentration, which induce near theoretical minimum of attractive deple-

tion interaction predicted by equation 19, is sufficient to induce flocculation in rod-sphere

mixture19. Our calculation at monodisperse limit x = 1 (dashed line) agrees well with equa-

tion 19 at low h. When h = 0.1, depletion potential due to pure long rod is ≈ −83kBT , 4

times greater than that due to pure short rods. The attractive depletion potential for binary

mixture of rods at h = 0 lies between these two limits. As depletants switch towards a short

rods majority (say from x = 1 to x = 0.1), attractive depletion interaction is greatly weak-

ened and diminished by 10s of kBT at a surface-to-surface equal to qL. More importantly,

the range of the attractive interaction is reduced by nearly 1/2 or twofold. Of course, this

change in the depletion interaction will affect colloidal stability most dominantly if it can

mask and overcompensate short-range repulsion between colloidal particles when x ∼ 1.0

11



resulting in colloidal aggregation, but upon switching can unmask this repulsion at small

values of x to disperse the colloidal particle. For instance, if the spherical colloids in this

case has DLVO repulsive potential of ≈ 50kbT at contact h ≈ 0.1, switching the rod-like

depletant between x = 1 and x = 0.3 will induce reversible colloid flocculation.

IV. CONCLUSION

We have numerically calculated depletion interaction between two parallel plates due to

binary rod-like molecules mixture. Then we examined the idea of using 2-state length-

switchable molecules as depletant. We have shown that range and magnitude of deple-

tion interaction can be effectively controlled by externally driven depletant molecule length

switching. This is suggesting an alternative way of colloid suspension stability control other

than addition or removal of depletant.
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Chapter 5

Conclusion

In this thesis, a solution of 2-state rotaxane has been described with statistical thermody-

namics. It is found that molecular motion upon external driven switching can be harvested

to affect physical behavior in solution.

A simple model shows that switching between isotropic and nematic liquid crystalline

phases us possible in 2-state rotaxane switch system without changing concentration and

temperature. While it is first demonstrated assuming quantitative switching between

elongated and contracted states of rotaxane, it is subsequently shown that “real world”

rotaxane switches, which switches incompletely between states or are in mixture with

mesogens, can achieve externally-driven isotropic-nematic phase switching.

Using similar theoretical model, rotaxane switches are found to shown interesting behavior

as depletants. Molecular motion upon switching can significantly alter the range and

magnitude of depletion interaction, giving rotaxane switches the potential to exert control

over colloidal stability in solution.

And finally, an interesting case of “adaptive” rotaxane that change length in response

to surrounding environment is investigated. Theoretical prediction on isotropic-nematic

critical concentrations and order parameters are made.
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