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ABSTRACT 

Conversion of natural woodlands to grazing pastures is a major driver of biodiversity 

loss. In response to this threat, regenerative management approaches have been proposed to 

balance agriculture with biodiversity conservation. Yet, rigorous experiments investigating 

the effectiveness of such approaches are rare. We used time-series data from a broad-scale 

experiment in south-eastern Australian woodlands to explore the effects of agricultural 

practices and environmental factors on regeneration, bare ground, and native and exotic cover 

and richness. Our study included historical fertilization, three past grazing regimes 

(continuous, short-conversion rotational, long-conversion rotational), two present-day grazing 

measures (grazing duration, stocking rate), and three environmental covariates (natural soil 

fertility, native woody cover, rainfall). We found fertilizer application was associated with 

altered trajectories of native overstorey cover, native plant richness, exotic cover and bare 

ground. Changes in woodland condition also was associated with a combination of present-

day grazing and environmental drivers. Natural regeneration, native plant richness, and native 

herb cover were negatively associated with increased grazing intensity. Conversely, increased 

landscape-scale native woody cover and local-scale natural soil fertility were associated with 

increases in native overstorey cover and native plant richness; and decreases in exotic cover 

and bare ground. 

Our results indicate that land-use history, present grazing intensity and landscape 

context alter woodland ecosystem responses to intervention. This may explain why some 

conservation actions fail to meet objectives. Our results indicate that the effectiveness of 

conservation actions can be improved by considering the combined influence of past and 

present agricultural management and landscape context on woodland condition. 

KEYWORDS: agro-ecosystem; Australia; fertilizer; landscape context; livestock grazing; 

plant richness; temperate woodland; vegetation cover 
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INTRODUCTION 

Land-use change is one of the greatest global threats to biodiversity (Haddad et al., 

2015). Approximately 55 % of ice-free terrestrial habitats worldwide have been modified, 

with agriculture being a major driver of land-use change (Ellis et al., 2010). Pressure to 

expand and intensify agricultural land use to meet global food demand (Godfray et al., 2010) 

poses a serious threat to biodiversity (Loos et al., 2014) through habitat loss (CBD, 2010; 

McIntyre, 2011) and modification (van Klink et al., 2015b), changes to soils (e.g. elevation of 

nutrients and increased soil compaction, Dorrough et al., 2006; Close et al., 2008; van Klink 

et al., 2015a), and direct animal or plant mortalities caused by trampling (van Klink et al., 

2015b).  

In ecosystems modified for (i.e. through land clearing and/or fertilizer use) or affected 

by livestock grazing, continuously grazed systems have negatively affected natural 

regeneration capacity (Sato et al., 2016) and reptile patch colonization probabilities (Kay et 

al., 2017), but have positively influenced diversity of obligate grassland birds (Ranellucci et 

al., 2012). Rotational grazing systems (i.e. systems where paddocks undergo alternate periods 

of grazing and rest; Dorrough et al., 2012) have negatively affected grasshopper abundance 

(Onsager, 2000) and bird richness (Dorrough et al., 2012), but positively influenced flower-

visiting invertebrate richness and abundance (Ravetto Enri et al., 2017), availability of bird 

nesting habitat (Carroll et al., 2007) and plant basal area (Teague et al., 2004). Inconsistent 

effects of different grazing regimes on biodiversity may be observed as other specific factors, 

like grazing intensity (e.g. timing, duration and stocking rate; Dorrough et al., 2012; Eldridge 

et al., 2016; Kay et al., 2017) or fertilizer application (Dorrough et al., 2006; Dorrough et al., 

2012), may be stronger drivers of biodiversity patterns than broad types of grazing regime 

(i.e. rotational versus continuous grazing). 
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In Australia, restoration programs in agricultural landscapes have shifted from 

maximising agricultural production towards balancing agricultural productivity with 

biodiversity conservation (DEWHA, 2009; Duncan & Dorrough, 2009). These programs can 

play an important role in the preservation of threatened ecosystems occurring across 

agricultural lands (Spooner & Briggs, 2008), including temperate grassy woodlands. 

Temperate grassy woodlands presently cover approximately 415 000 hectares of eastern 

Australia (TSSC, 2006) but have been extensively affected by land conversion for 

agriculture. Over 90 % of Australian temperate grassy woodlands have been cleared since 

European settlement (TSSC, 2006) and remaining remnants are often degraded (Yates & 

Hobbs, 1997). Moreover, remnants in good condition face the continued threat of degradation 

from agriculture (McIntyre, 2012) as they occur predominantly on private lands (Zammit et 

al., 2010). Improving understanding of long-term influences of grazing and fertilizer 

application on key ecosystem features in temperate grassy woodlands will help support the 

recovery of temperate grassy woodlands, prevent their further degradation, and strike a 

balance between agricultural production and biodiversity conservation (Lindenmayer et al., 

2010b).  

Despite the importance of understanding long-term grazing and fertilization effects on 

biodiversity, rigorous experimental studies investigating this subject are rare (Lagendijk et 

al., 2017). To address this knowledge gap, we established a broad-scale, long-term 

experiment associated with an agri-environment scheme in temperate grassy woodland to 

explore the effects of different grazing regimes (continuous and rotational grazing; Table 1) 

and historical fertilizer application (Table 1) on temporal patterns of woodland condition 

indicators (including native and exotic plant richness and cover, bare ground cover, 

overstorey cover and presence of tree regeneration). For grazing, the in situ past grazing 

regime (continuous, short-conversion rotational, or long-conversion rotational) was 
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maintained at approximately half of our sites and a new grazing regime (reduced duration of 

grazing at a site and/or reduced stocking rate at a site) was implemented at remaining sites in 

our study. Our study also included additional land management covariates (grazing duration 

and stocking rate; see Table 1 for definitions) and environmental covariates (rainfall, natural 

soil fertility, landscape-scale native woody cover; see Table 1 for definitions) to determine 

the relationship of these factors with woodland condition indicators compared with past land 

management practices. 

At the outset of this study, we postulated that, over time, agricultural practices such as 

grazing and historical fertilizer application would be associated with increased bare ground 

and increased proportion of exotic plant species cover, as well as increased exotic plant 

species richness. However, consistent with previous research, we expected that any increase 

in bare ground, exotic cover and exotic plant richness would be most pronounced in areas 

with a continuous grazing history (Leonard & Kirkpatrick, 2004; Eldridge et al., 2011) or 

where fertilizer had been previously applied (Dorrough et al., 2011). We also expected that 

areas with higher stocking rates would be associated with higher cover and richness of exotic 

plant species (Close et al., 2008; Dorrough et al., 2011), declining through time where 

overgrazing occurs for extended periods. In contrast, we postulated that condition indicators 

characteristic of increased woodland quality (e.g. native plant species richness, cover of 

native herbs, tree regeneration) would exhibit negative associations with agricultural 

practices. However, we expected these responses would be less pronounced in areas with 

limited or no history of fertilizer application (Dorrough & Moxham, 2005; Wassen et al., 

2005; Close et al., 2008; Fischer et al., 2009; Dorrough et al., 2012), or in rotational grazing 

systems (Dorrough & Moxham, 2005; Chillo et al., 2015) – particularly where pastures are 

rested during peak flowering and seed-set periods (Leonard & Kirkpatrick, 2004). We also 

expected that, in areas with decreased grazing intensity (i.e. duration of grazing events and/or 
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stocking rates), reduced rates of decline in tree regeneration (Fischer et al., 2009), tree cover 

(Fischer et al., 2010) and native plant richness (Dorrough et al., 2012) would be observed..  

Finally, we postulated that environmental variables would mediate the effects of 

grazing on woodland condition indicators. We expected that rainfall would be associated with 

changes in patterns of native plant richness (Gibbons et al., 2008), increases in the cover of 

exotic plants (Prevéy & Seastedt, 2014) and increased rates of natural tree regeneration 

(Clarke, 2000). In addition, we expected that increased natural soil fertility would be 

associated with reduced levels of natural tree regeneration (Sato et al., 2016), and increased 

native woody cover in the surrounding landscape would be associated with increases in tree 

regeneration (Manning et al., 2006; Fischer et al., 2009; Sato et al., 2016), native plant 

richness and native groundcover through time (Manning et al., 2006). We further expected 

that negative effects of grazing on woodland condition indicators would be lessened in areas 

supporting greater landscape-scale native woody cover, consistent with the findings of Sato et 

al. (2016).  

 

METHODS 

Study Region and Study Design 

In southern New South Wales, Australia, we established 97 sites between 2010 and 2011 on 

29 farms involved in an agri-environment scheme over an area of approximately 100 km east 

to west, and 150 km north to south (Fig. 1). Cropping and livestock grazing by sheep (Ovis 

aries) and cattle (Bos taurus) are the dominant land use practices occurring across farms in 

the study region (Yates & Hobbs, 1997; Barton et al., 2016). However, all farms selected for 

this study supported woodland remnants characterised by a discontinuous (20-50% cover) 

overstorey dominated or co-dominated by yellow box (Eucalyptus melliodora A.Cunn. ex 

Schauer), white box (E. albens Benth.), Blakely’s red gum (E. blakelyi Maiden) or grey box 
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(E. microcarpa Maiden) (TSSC, 2006; DEWHA, 2009; DECCW, 2010). The understorey of 

intact remnants supports a diverse assemblage of tussock grasses, herbs and patchy (< 30%) 

shrub cover (TSSC, 2006; DECCW, 2010), but highly degraded remnants are likely to 

predominantly support an understorey of exotic forage plants (Dear & Ewing, 2008). We 

classified in situ past grazing regime of each farm as either continuous (i.e. livestock allowed 

to graze sites year-round; sensu Barton et al., 2016), long-conversion rotational (i.e. for > 10 

years prior to our study, livestock have been rotated through sites, grazing each for a limited 

duration [median = 4 days]; sensu Barton et al., 2016) or short-conversion rotational (i.e. for 

< 5 years prior to our study, livestock have been rotated through sites, but grazing each for a 

limited duration [median = 12 days]; sensu Barton et al., 2016). On each farm, we established 

up to four survey sites in eucalypt woodland remnants. The past grazing regime (continuous, 

short-conversion rotational, long-conversion rotational) was maintained at 41 sites (15 

continuous grazing sites, 11 short-conversion rotational grazing sites, 15 long-conversion 

rotational grazing sites) and a new grazing regime (reduced duration of grazing at a site 

and/or reduced stocking rate at a site) was implemented at 56 sites in our study in 2011. We 

used the three ‘past grazing treatment’ categories in subsequent statistical analysis to 

represent pre-2011 grazing management. However, we used grazing frequency, duration and 

intensity data to represent post-2011 grazing management as this information was collected 

consistently across farms between 2012 and 2016 from landholder surveys. The grazing 

frequency, duration and intensity data allowed us to generate two grazing variables for 

analysis: (1) mean duration of grazing events (days, on average, over a whole year) and (2) 

mean stocking rate of grazing events (per hectare per day, on average, over a whole year) 

(sensu Kay et al., 2017) (see Table S2 for this article). Prior to calculating mean stocking 

rate, we standardised livestock numbers to a ‘dry sheep equivalent’ (DSE) to account for 

differential effects of sheep and cattle grazing (following Barton et al., 2016). We also 
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interviewed landholders to determine whether previous application of fertilizer on each site in 

our study had occurred. While fertilizer application did not necessarily occur within 

woodland remnants in our study, the remnants are embedded in an agricultural matrix where 

fertilizer application occurred. Under such circumstances, fertilizer may ‘leak’ onto non-

production land (McIntyre, 2010) with subsequent effects on biodiversity (e.g. weed 

incursions in remnants; McIntyre, 2010). 

 

Field Data Collection 

 At each of our 97 sites, we completed vegetation surveys between January and May 

each year from 2012 to 2016. Following field methods outlined by Sato et al. (2016), we 

measured percentage cover for ground layer native and exotic plants, bare ground, and 

overstorey along a 200 m transect, native and exotic plant richness within a 20 x 20 m plot 

centred over the 200 m transect, and presence of natural eucalypt regeneration within two 50 

x 20 m plots adjacent to the 200 m transect. For details regarding measured site-level 

attributes, see Table S1. 

For each site, we collected three spatially-derived environmental variables using 

ArcGIS 10.4.1: natural soil fertility (a local-scale measure of substrate fertility based on 

underlying lithology), native woody vegetation cover in a 250 m buffer around the site, and 

mean annual rainfall. For details regarding environmental variables compiled and software 

used to compile descriptors, see Table S2. 

 

Statistical Analysis 

Treatment of data 

For all 97 sites in our study, we aggregated plot-level data for eucalypt regeneration 

measures to obtain site-level estimates for each year of observation. We subsequently 
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excluded sites where data were not collected in each year of interest (2012 to 2016 inclusive) 

or were not available regarding the historical application of nutrients or contemporary grazing 

practices (i.e. paddock level information about grazing duration and/or intensity). In total, we 

retained data from 75 sites for detailed statistical analysis. 

 

Factors driving temporal patterns of woodland condition indicators 

To investigate the relationship between past grazing and fertilization on the 

trajectories of woodland condition indicators through time (accounting for grazing intensity 

and environmental covariates), we fitted a single generalised linear mixed model (GLMM) 

for each of the seven woodland condition indicators collected at each site. The indicators we 

included in analyses related to woodland character or condition (from state and transition 

models for box gum grassy woodlands, see McIntyre & Lavorel, 2007; Rumpff et al., 2011): 

% exotic ground cover, % native herb cover, % bare ground cover, % overstorey cover, 

presence of natural tree regeneration, ground layer native plant richness and ground layer 

exotic plant richness.  

For each GLMM, we included the woodland condition indicator (e.g. overstorey 

cover, exotic cover etc.) as the response variable, and ‘Year’ (categorical factor), as well as 

‘Site’ nested within ‘Farm’ as random effects to account for temporal and spatial structuring 

of the data. For models including cover variables as the response, we assumed a quasi-

binomial distribution with logit-link function. For models including native or exotic plant 

richness as the response, we assumed a quasi-Poisson distribution with a log-link function. 

For models including regeneration presence as the response, we assumed a Bernoulli 

distribution with logit-link function. For each model, we fitted an interaction between Year 

(continuous variable) and past grazing regime (three levels: continuous, long-conversion 

rotational, short-conversion rotational), Year and historical fertilization, and the additive 
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effects of stocking rate, grazing event duration, rainfall, native woody cover and natural soil 

fertility as fixed effects. During modelling, we used Wald tests to assess the significance of 

each predictor variable included in the model. We sequentially removed interactions that 

were not significant from the relevant model(s) (via backwards stepwise selection) to limit 

the masking of effects of potentially important variables. We conducted all statistical 

analyses in GenStat 18.2 (VSN International Ltd). 

 

RESULTS 

We found that past land management was not significantly associated with the 

temporal trajectories of natural regeneration, exotic plant richness or native herb cover (Table 

2, Table S3). However, historical fertilizer application was significantly associated with 

temporal patterns of native overstorey cover (𝜒1
2 = 6.29, P = 0.013), native plant richness (𝜒1

2 

= 3.92, P = 0.049), exotic cover (𝜒1
2 = 6.43, P = 0.012) and bare ground (𝜒1

2 = 18.57, P < 

0.001; Table 2, Table S3). Through time, both overstorey cover and bare ground exhibited 

significant increases on sites with previous history of fertilization but remained stable on sites 

with no previous fertilizer application (Fig. 2). In contrast, native plant richness declined 

across our study region through time, but observed declines were stronger on sites with a 

history of fertilization (Fig. 2). Finally, exotic cover exhibited a significant decline through 

time on sites with previous history of fertilization but an increase on sites with no previous 

fertilizer application (Fig. 2). 

 Past grazing regime was not significantly associated with the temporal or spatial 

patterns of any woodland condition indicator included in this study, and exotic plant species 

richness was not significantly associated with any of the variables included in our analysis 

(Table 2, Table S3). 
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The relationship between present land management and woodland condition indicators 

 Present-day grazing intensity was associated with three woodland condition 

indicators: natural tree regeneration, native species richness, and native herb cover. A site 

was significantly less likely to support native tree regeneration as the duration of grazing 

events increased (𝜒1
2 = 5.63, P = 0.018; Table 2, Table S3). If the duration of grazing events 

exceeded one month, significantly fewer sites were predicted to support natural regeneration 

when compared to sites with no grazing (Fig. 3a). Similarly, native species richness (𝜒1
2 = 

5.45, P = 0.023) and native herb cover (𝜒1
2 = 4.74, P = 0.035) declined as stocking rates 

increased (Table 2, Table S3). If mean daily stocking rates of grazing events exceeded 115 

DSE per hectare, significantly fewer native plant species were predicted to occur on site 

when compared to sites with no grazing (Fig. 3b). If mean daily stocking rates of grazing 

events exceeded 150 DSE per hectare, significantly lower cover of native herbs was predicted 

on site when compared to sites with no grazing (Fig. 3c).  

 

The relationship between environmental variables and woodland condition indicators 

 Native woody cover and natural soil fertility, but not rainfall, were associated with 

patterns of three woodland condition indicators: native overstorey cover, native plant species 

richness, exotic cover and bare ground. As native woody cover increased in the landscape 

surrounding a site, native overstorey cover (𝜒1
2 = 9.92, P = 0.003) and native plant species 

richness (𝜒1
2 = 5.99, P = 0.017) increased on site, while exotic cover decreased (𝜒1

2 = 4.26, P 

= 0.043; Table 2, Table S3). As natural soil fertility of a site increased, bare ground decreased 

(𝜒1
2 = 11.29, P = 0.004; Table 2, Table S3).  
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DISCUSSION  

Past and present land management practices in agricultural landscapes, including 

livestock grazing and fertilization, can have deleterious effects on biodiversity (Hautier et al., 

2009; Socher et al., 2013; Etchebarne & Brazeiro, 2016), often degrading the condition of 

natural ecosystems (Hautier et al., 2014; Eldridge et al., 2016) and influencing the recovery 

trajectories of attributes indicative of ecosystem condition (Chillo et al., 2015; Sato et al., 

2016). Using time-series data from a broad-scale grazing experiment, we found that historical 

fertilizer application – but not past grazing regime – was associated with changes in 

trajectories of four woodland condition indicators (native overstorey cover, native plant 

richness, exotic cover and bare ground). In addition, spatial patterns of woodland condition 

indicators were associated with a combination of land management and environmental 

drivers. Increased stocking rates and grazing duration were associated with declines in 

woodland condition (i.e. declines in natural tree regeneration, native plant richness and native 

herb cover). In comparison, increased landscape-scale native woody cover and local-scale 

natural soil fertility were associated with improved woodland condition (i.e. increased native 

overstorey and native plant richness, and decreased exotic cover and bare ground). These 

findings have important implications for the conservation of biodiversity in agricultural 

landscapes, as well as the design and evaluation of conservation schemes in agro-ecosystems. 

 

Are agricultural production and biodiversity conservation incompatible?  

 There is often a conflict between the objectives of maximising agricultural production 

through livestock grazing and fertilizer application, and in managing landscapes for 

biodiversity conservation in agro-ecosystems. This is because livestock grazing and fertilizer 

application often negatively affect biodiversity (Wassen et al., 2005; Dorrough et al., 2011; 

Eldridge et al., 2016). Our study showed that achieving the dual objectives of agricultural 
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production and biodiversity conservation is challenging in agricultural systems because past 

fertilizer application and current grazing intensity often negatively affect woodland condition. 

Based on our data, the best biodiversity conservation outcomes will likely be achieved on 

sites where there is no previous history of fertilizer application, where mean stocking rates 

for grazing events are < 95 DSE per hectare per day (to maintain > 13 native plant species on 

site; see Fig. 3), and where grazing events are < 40 days in duration (to ensure that at least 

50% sites in an area support natural regeneration; see Fig. 3). If these grazing intensity 

thresholds are exceeded, negative effects on woodland condition may occur (e.g. fewer native 

plant species occur on site and fewer woodland patches supporting natural regeneration). In 

addition, if sites have a previous history of fertilizer application, the capacity of the ground 

layer to support and recruit native plant species may be reduced, potentially impeding 

positive conservation outcomes despite the implementation of conservation-related 

management actions (e.g. reductions in grazing intensity and/or biodiversity-sensitive timing 

of grazing). However, given that recovery from defoliation is an important factor of survival 

for many plants (e.g. grasses; Del-Val and Crawley 2005), we recommend that further 

focused research on the influence of timing and duration of recovery periods between grazing 

events on long-term woodland floristic condition be undertaken. We further suggest that this 

research be undertaken in areas with and without previous fertiliser application (where 

possible) to more accurately assess the success of conservation-related grazing actions, and to 

provide greater guidance on tailoring grazing strategies to improve conservation outcomes.  

Interestingly, in areas where fertilizer had historically been applied, we observed a 

decrease in exotic cover and an increase in bare ground through time, which is not consistent 

with previous research in woodlands (e.g. Close et al., 2008; Dorrough et al., 2011). The 

decrease in exotic cover may be due, in part, to increased intensity of weed control actions 

occurring on previously fertilized sites as part of landholder contractual obligations (see 
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DEWHA, 2009). Increased weed control action may also explain the increase in bare ground 

observed at sites with a history of fertilization given that, with the decrease in exotic cover, a 

concomitant increase in native plant richness or cover was not observed. However, the 

patterns in exotic cover and bare ground cannot be definitively attributed to altered land 

management actions or intensity without further investigation. 

 Importantly, to enhance woodland condition in agricultural landscapes, protecting and 

increasing native woody cover in the landscape surrounding a farm is critical. Native woody 

cover in the surrounding landscape was positively associated with indicators characteristic of 

improved woodland quality such as increased native overstorey cover and native plant 

richness (substantiating predictions from the outset of our study). Increased native woody 

cover also was associated with decreases in exotic cover; an indicator typically associated 

with poorer woodland quality. Thus, it is vital that remnant tree cover be protected across 

landscapes where livestock grazing and other agricultural practices occur, to maintain 

woodland biodiversity and its associated ecosystem services. 

 To ensure that agri-environment schemes are effective, landscape-scale protection of 

native woody cover will be critical to improving conservation outcomes and justifying 

investments in such schemes (e.g. $55.9 million AUD budget for 2013-2017 for the 

Environmental Stewardship Program in Australia; Australian Government, 2014). 

Landscape-scale woody vegetation cover has been considered in the design of some 

conservation programs. For example, ‘landscape value’ (i.e. percent vegetated cover in 1000 

ha and 10 000 ha buffers) was a metric used in initial Environmental Stewardship Program 

site assessments (Whitten et al., 2009). Similarly, availability of connected or ‘stepping 

stone’ woody vegetation adjacent to conservation patches formed part of Multiple Ecological 

Community site assessments (Whitten et al., 2010). However, there are currently no explicit 

contractual obligations for land managers involved in conservation programs to protect native 
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woody vegetation beyond the bounds of remnants targeted for conservation purposes 

(DEWHA, 2009; Natural England, 2012). In Australia, this issue is compounded by relaxed 

protection measures in native vegetation legislation that has led to accelerated vegetation 

clearing (DSITI, 2017). This lack of landscape-scale woody cover protection may, in part, 

explain why some agri-environment schemes do not achieve conservation objectives – given 

that structure and management of surrounding landscape influences agri-environment scheme 

effectiveness (Batáry et al., 2015). Conversely, by incorporating landscape-scale native 

woody cover protection into strategic frameworks, policies, and contractual agreements, 

conservation benefits of agri-environment restoration actions may be enhanced.  

Based on our results, we argue that short- and long-term benchmarks and objectives 

for restoration require careful calibration – or recalibration for agri-environment schemes 

currently underway. Benchmarks for conservation schemes should reflect how landscape-

scale native woody cover, local-scale natural soil fertility, and historical fertilizer application 

alter the restoration potential of woodlands. Careful benchmark development (or 

recalibration) becomes particularly important in situations where contractual obligations to 

meet benchmarks in set timeframes may disadvantage landholders in lower quality 

landscapes (e.g. farms in landscapes with lower landscape-scale native woody cover or low 

local-scale natural soil fertility may not be able to achieve identified benchmarks). 

 

The future for temperate woodlands in Australian agricultural systems 

Australia has suffered extensive loss of its temperate woodland ecosystems since 

European settlement (TSSC, 2006), and continues to lose wooded ecosystems to agricultural 

development. In 2016, 367 350 hectares of woody vegetation were cleared for grazing 

pastures in Queensland alone (DSITI, 2017). Ameliorative actions have been undertaken to 

offset these losses (e.g. 20 Million Trees Program; Australian Government, 2015) and to 
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maintain or improve remaining woodlands (e.g. Environmental Stewardship Program, 

Lindenmayer et al., 2012).  Yet, in much of Australia’s temperate woodlands, remnant 

woodland extent is declining faster than it can be replanted, and remaining woodlands 

continue to degrade. At a minimum, an understanding of the reasons for continued declines in 

woodland condition indicators (and consequently continued declines in woodland condition) 

in areas targeted for conservation is urgently needed. Ongoing investment in long-term 

monitoring and research can clarify why these systems continue to degrade and whether 

management is effective (Lindenmayer et al., 2010a). Long-term monitoring also can 

disentangle whether land-use legacy effects (arising from vegetation recovery lags; Pierik et 

al., 2011), or ecosystem collapse (i.e. widespread and potentially irreversible changes in 

ecosystem conditions that alter the identity of the ecosystem; see Lindenmayer & Sato, 2018) 

is the cause of ongoing declines. Under a land-use legacy effect scenario versus an ecosystem 

collapse scenario, ‘current’ management would have drastically different effects. An 

ecosystem exhibiting a land-use legacy effect would be expected to respond (potentially over 

long time periods; Bullock et al., 2011), while an ecosystem undergoing collapse likely will 

not (Biggs et al., 2009). If long-term monitoring revealed that the ecosystem is collapsing 

(Sato & Lindenmayer, 2017), decisions could then be made regarding how – and whether – to 

proceed with restoration actions, given that collapse is difficult and expensive to reverse 

(Biggs et al., 2009). 

 

CONCLUSIONS 

Conservation strategies in our study (i.e. agri-environment schemes that promote 

biodiversity-sensitive timing of grazing events through rotational grazing) are not resulting in 

significant improvements in woodland condition at this point in time. This lack of 

improvement is due – in part – to past and present agricultural practices and broader 
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landscape factors influencing the effectiveness of interventions. We argue the importance of 

considering the relationship between land-use history, present grazing intensity and landscape 

context – particularly natural soil fertility and native woody cover – and restoration potential 

when targeting conservation investments and evaluating the success of management 

interventions. Our findings suggest that no (or limited) fertilizer application, and low 

intensity and duration of grazing events, are generally beneficial for maintaining woodland 

condition. That said, farms with different land-use histories, current grazing management and 

landscape contexts will have different propensities to respond to intervention, different time-

scales in which vegetation will show responses to intervention, and different capacities to 

return to baseline conditions. These differences will affect the perceived and actual success of 

management interventions in agro-ecosystems.  
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Figure 1. Map of the study region in south-eastern Australia. White circles represent short-

conversion rotational sites, grey circles represent long-conversion rotational sites, and white 

triangles represent continuous grazing sites. Patches of native woody vegetation and modified 

pastures are delineated by dark grey and light grey shading respectively. 
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Figure 2. Predicted temporal patterns of (a) native overstorey cover, (b) native plant richness, 

(c) exotic cover, and (d) bare ground in locations with (dashed lines) and without (solid lines) 

previous fertilizer application. Error bars represent standard errors of predictions. 
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Figure 3. Relationship between (a) grazing duration and proportion of sites predicted to 

support natural regeneration, (b) stocking rate and predicted native plant species richness at a 

site, and (c) stocking rate and predicted cover of native herbs at a site. Error bars represent 

standard errors of predictions.   
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Table 1. Grazing management, pasture management and environmental variables included in 

study. 

Explanatory variable Definition 

Past grazing regime 

Continuous 

Short-conversion rotational 

Long-conversion rotational 

 

livestock permitted to graze sites year-round 

rotational grazing recently implemented, i.e. < 5 years prior to study 

rotational grazing implemented for longer periods, i.e. > 10 years prior to study 

Present grazing intensity 

Grazing event stocking rate 

Grazing event duration 

 

mean dry sheep equivalent (DSE) stocking rate of grazing events per hectare 

per day, on average, across a whole year 

mean duration of grazing events (days), on average, across a whole year 

Historical fertilizer application 

Absent 

Present 

 

No previous application of fertilizer 

Historical application of fertilizer, but application period variable  

Environmental variables 

Rainfall  

Natural soil fertility 

Native woody cover 

 

mean annual precipitation  

measure of substrate fertility that is indicative of plant growth conditions 

proportion of native woody vegetation in a 250 m buffer surrounding a site 

   



 

 
This article is protected by copyright. All rights reserved. 

 
 

Table 2. Significance of model terms testing the effects of Year, past land management, 

grazing intensity and environmental covariates on seven woodland condition indicators. 

Condition indicators modelled include presence of native regeneration (Regen), % native 

overstorey cover (% OS), native plant richness (NPS Richness), % native herb cover (% 

Herb), % bare ground (% Bare), exotic plant richness (EPS Richness), and % exotic ground 

cover (% Exotic). Land management variables include past grazing regime (Hist Grazing) 

and historical fertilization (Hist Fert). Grazing intensity variables include event stocking rate 

(esr) and duration of grazing event (edg). Environmental covariates include natural soil 

fertility (Nat Fert), native woody cover (Woody) and mean annual rainfall (Rain). 

 
 

Regen % OS 
NPS 

Richness 
% Herb % Bare 

EPS 

Richness 
% Exotic 

 df Wald Wald Wald Wald Wald Wald Wald 

Year 1 ns ns ns ns ns ns ns 

Hist Grazing 2 ns ns ns ns ns ns ns 

esr 1 ns ns 5.45*** 4.74*** ns ns ns 

edg 1 5.63*** ns ns ns ns ns ns 

Hist Fert 1 ns ns ns ns ns ns ns 

Nat Fert 1 ns ns ns ns 8.40* ns ns 

Woody 1 ns 9.92*** 5.99*** ns ns ns 4.26*** 

Rain 1 ns ns ns ns ns ns ns 

Time * Historical Land Management  

Year*Hist Grazing 2 ns ns ns ns ns ns ns 

Year*Hist Fert 1 ns 6.29*** 3.92*** ns 7.54** ns 6.43*** 

*P<0.05, **P<0.01, ***P<0.001, ns = not significant. 


