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Abstract 
This study presents the latter part of an exploratory study of 
the potential of sub-band parametric cepstral distance (PCD) 
as an alternative forensic voice comparison (FVC) feature to 
formants and cepstral coefficients. Using 5 Japanese vowels 
produced by 306 male Japanese speakers, we conducted LR-
based FVC experiments under a channel mismatch condition, 
with sub-bands selected in reference to the expected formant 
locations. Combining 3 sub-band PCDs from F1, F2, and F3 
ranges, sub-band PCDs outperformed the full-band PCDs in 
speaker classification, demonstrating their promise as an 
automatically extractable, robust, and linguistically 
interpretable acoustic feature for FVC.   
Index Terms:  Sub-band cepstral distance, likelihood ratio, 
forensic voice comparison, channel mismatch, Japanese 
vowels 

1. Introduction 
Both speech and voice recognition systems are now part of our 
daily lives, and yet forensic voice comparison (FVC hereafter) 
is still no easy task. One of the reasons for this is the lack of 
control over the data. The speech samples in FVC, especially 
those from crime scenes, are often short and contain 
considerable background noise. The scarcity of data means 
insufficient data for modelling of speakers. Poor recording 
quality compromises the accuracy of acoustic feature 
extraction. As speakers are modelled based on those acoustic 
features, this also contributes to poor quality of the speaker 
models.     

Also, the speech samples to be compared are most often 
recorded under very different circumstances. The speakers 
may be in very different emotional states, speak in different 
styles, and also be recorded on different devices via different 
transmission channels. These factors, which are unrelated to 
speaker characteristics, can amplify the acoustic differences 
between two samples, contributing to difficulties in producing 
strong likelihood ratios (LRs) in support of the same-speaker 
hypothesis, even where the speakers are indeed the same.    

What the analyst can do to improve the situation is 
limited. We may be able to improve the elicitation and 
recording process of the known (or suspect) speaker, but crime 
scene recordings are largely out of our control.  

Over the years, much research has been done on the 
impact of channel mismatch (e.g. [1-3]), and various 
techniques have been proposed to compensate for channel 
mismatch (e.g. [4-6]). However, such techniques all appear to 
require building a channel characteristics model. Crime scene 
recordings are often very short, so the recording in question 

may not contain sufficient information to build a reliable 
channel characteristics model. Also, mobile transmission 
characteristics change continuously, as the compression rate 
and methods change in response to network conditions [7, 8]. 
This makes the alternative approach, i.e. retrospectively 
‘matching’ the conditions by putting a non-telephone 
recording (such as a police interview) through a mobile codec 
or a telephone network, less attractive. Further, various social 
network platforms now offer voice call options. It is thus 
increasingly unlikely for analysts to have access to full 
information on the processing applied to the speech sample in 
question. 

These issues suggest that the most practical way forward 
in FVC is to search for features which are robust under 
forensically realistic conditions: less affected by external 
factors, and reliably measurable even with poor quality of 
recordings. This led us to the sub-band parametric cepstral 
distance (PCD), an approach initially proposed in [9]. PCD 
extracts the difference between two cepstral shapes within 
user-defined frequency boundaries. Its potential has been 
discussed in two studies: [10] examined within- and between-
speaker variability of PCD, using landline telephone speech 
recordings from 297 Japanese speakers. Another study [11] 
made small scale observations on the F-ratio of sub-band 
PCDs using mobile and microphone recordings. The results 
from both studies were encouraging.  

This motivated us to embark on the current project: an 
examination of the potential of sub-band PCD as an FVC 
feature using a large dataset. As the first step, we examined 
the behavior of sub-band PCDs in detail with respect to their 
F-ratios and verification rates in different sub-band ranges, 
using a database of Japanese vowels elicited from 306 
speakers [12]. This database permits us to examine the 
forensically significant effect of channel mismatch, as it was 
recorded simultaneously via two channels: microphone and 
mobile phone transmission. The results of the initial 
experiments were promising; they suggested that sub-band 
PCD is relatable to articulatory gestures in similar ways to 
formants. This brings two advantages specific to forensic 
application: firstly, the results can be explained in court to 
non-experts in a relatively less abstract way; secondly any 
unusual results can be detected and reexamined in relation to 
articulatory and phonetic characteristics, more easily than full-
band cepstra. They also found that speaker verification based 
on sub-band PCDs degrades less under a channel mismatch 
condition compared to that based on full-band PCDs, 
presumably because sub-band PCDs can exclude frequency 
ranges unrelated to speaker information. 

This paper thus continues to examine the potential of sub-
band PCDs as a speaker classification feature by selecting sub-
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band ranges based on vowel formant frequencies, and 
conducting LR-based voice comparison experiments under a 
channel mismatch condition.  

2. Data and procedures 

2.1. Database, speakers, and speech materials 

This study used the same data as [12]: 306 adult male speakers 
from the NRIPS database [13]. They are native speakers of 
Japanese, aged from 18 to 76 years. They had widely varied 
dialectal background, but dialectal variations appear not to 
affect vowel formants much in modern Japanese [14]. Thus 
the dialectal variation is unlikely to have contributed to greater 
between-speaker variability here. All speakers were recorded 
on two occasions, 2 to 3 months apart. They performed the 
same recording tasks twice at each recording session, and the 
whole process was recorded simultaneously through 2 
channels: direct microphone (Ch1), and via a mobile phone 
network (Ch3). This study focuses on the cross-channel 
comparisons. 

Read-out (C)V syllables were used as the speech samples: 
that is, Japanese 5 vowel phonemes, /a/, /e/, /i/, /o/ and /ɯ/, 
preceded by selected consonantal environment: �  (no 
consonant), /k/, /s/, /t/, /h/, /r/, /g/, /z/, /d/, /b/, and /p/. The 
phonemes /n/, /m/, /y/, and /w/ were excluded from analysis 
this time to facilitate reliable automatic segmentation. These 
are highly controlled elicitation, not spontaneous. However, 
[14] reports relatively small vowel reduction in running 
speech in Japanese. Therefore, we regard the current data as 
acceptable for this exploratory work. 

Japanese kana syllabary writing system maintains the 
distinction between the pairs � /di/ – � /zi/ and � /dɯ/ – � 
/zɯ/, but they are phonetically identical, both realized as 
[dʐi] and [dzɯ]. Consequently, we have the vowel data in 10 
different phonological contexts for /i/ and /ɯ/, and 11 for /a/, 
/e/, and /o/.  

2.2. Segmentation and full-band LPCC extraction 

The target syllables were automatically segmented into a 
preceding consonant and a vowel based on their power and F0. 
The sound files were down-sampled from 44.1 kHz to 8kHz, 
and full-band LPCCs were extracted from the selected vowel 
sections (order 14, Hamming window, window length 25ms, 
time-step 5ms). The LPCCs were averaged across the vowel 
duration, and further averaged across different phonological 
contexts for each vowel. As result, we obtained LPCCs for 5 
vowels, 2 recording sessions, 2 repeats, and 2 recording 
channels for each speaker. 

2.3. Parametric cepstral distance (PCD) calculation 

The parametric cepstral distance (PCD) described in [9] 
affords selection of any sub-band range directly from full-
band LPCCs. Its formulation is summarised below in Eq. (1), 
where !" #$, #&, '(, '" 		 represents the Euclidean distance 

between any pair of full-band LPCCs (#
$
, #&)		for a given sub-

band range. Note that the full-band LPCCs are index-weighted 
by the matrix , to emphasise spectral slope differences, and 
then weighted by the matrix - '(,'"  to focus on any sub-
band range selectable by its lower and upper limits '(	and 
'".	 For '( = 	0	and '" = 	1, Eq. (1) simply reduces to the 
familiar Euclidean distance between any pair of (index-
weighted) full-band LPCCs.  

 
!" #$, #&, '(, '" = #$ − #&

3

∙ ,3 ∙ - ω(, ω" ∙ , ∙ (#$ − #&)    

																											≡ PCD	between	#$	and	#&																																							(1) 
where: 
B, C ≡ speaker-session index  
#$ ≡ mean LPCC for BDE speaker across all tokens 
#& ≡ mean LPCC for CDE speaker across all tokens 
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≡ index-weighting matrix 

 
- '(,'" 	≡ band-selective matrix (see [9]) 
L	 ≡ LPCC order = 14 
'( ≡ lower limit of sub-band selected within [0, 1] 
'" ≡ upper limit of sub-band selected within [0, 1] 
 

Sub-band PCD has the capacity to limit the analysis to the 
user-defined frequency regions, allowing us to exclude 
frequency regions that are unhelpful in assessing speaker 
identity. In the first part of this project, we found that the F-
ratios tend to be higher in the frequency regions where we 
expect to find formants [12]. Thus, this time we select the sub-
band frequency ranges referring to the formant measurements 
made in [15]. For each vowel, the mean ± 1 standard deviation 
of the first three formants were sought. The frequency ranges 
which contain the above values to the nearest 100Hz were 
defined as the target sub-band ranges for this study. These 
ranges are referred to as subF1, subF2 and subF3 hereafter. 

Table 1. Target sub-band ranges for each vowel (Hz). 

 subF1  subF2  subF3  
 from to from to from to 

/a/ 600 800 1200 1600 2300 2800 
/e/ 300 600 1800 2200 2500 2900 
/i/ 200 400 1900 2400 2600 3100 
/o/ 300 600 1000 1300 2300 2700 

/ ɯ / 200 400 1300 1800 2200 2700 

2.4. Comparisons  

With 306 speakers recorded 4 times (2 non-contemporaneous 
occasions, twice per sessions), we had 1224 patterns of same-
speaker (SS) pairs and 3373320 patterns of different-speaker 
(DS) pairs. All comparisons were made in cross-channel 
conditions, i.e. between direct microphone recording (Ch1) 
and mobile phone network recording (Ch3). 

2.5. Modelling and LR calculation  

For LR calculation in linguistics-based FVC research, MVKD 
proposed by [16] has been a popular choice. It is, however, 
inappropriate to put PCDs through the MVKD formula, as a 
PCD is already a distance measure between two sets of 
information. The PCDs from the SS pairs and those from the 
DS pairs represent within- and between-speaker variations of 
the distance between two cepstra in the regions of the user-
selected frequency ranges. 

 The relatively large data size in this study suggests that 
general population is reasonably well represented by the 
current data. However, examination of the PCD distributions 
revealed that the 1224 comparisons for SS were not sufficient 
to produce a smooth distribution, and direct derivation of LR 
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from it will result in some arbitrary fluctuations of LRs. The 
distributions need to be modelled. 

To find an appropriate model, we tested the fit of four 
different distributions: normal, gamma, Weibull, and log 
normal, with the PCDs from different vowel and band 
combinations. Both SS and DS comparisons were evaluated 
for their fit to those 4 distributions based on Akaike's 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC). Although AIC and BIC measures fitting 
slightly differently [17], both measures selected an identical 
model as the best fit in all vowel and band range combinations 
in this study. Table 2 presents the counts of each model which 
produced the lowest AIC and BIC. SS and DS indicate the 
comparison types. The maximum score for each cell is 5, as 
we tested for all 5 vowels. Gamma clearly outperformed the 
rest.  

Table 2: Number of instances each model was selected 
as the best fit () 

 norm gamma weibull lnorm 
 SS DS SS DS SS DS SS DS 
Full 0 0 4 5 0 0 1 0 
subF1 0 0 4 2 1 3 0 0 
subF2 0 0 4 3 1 2 0 0 
subF3 0 0 5 4 0 1 0 0 
total 0 0 17 14 2 6 1 0 

 
Based on this result, we fitted gamma distribution to the 

distributions of PCDs. Here, we added another type of PCD:  
sum of the PCDS from subF1, subF2 and subF3. This equates 
to the sum of area differences in three sub-band regions 
obtained from a pair of cepstra. Five vowels, 2 comparison 
types, and 3 sub-band ranges + full-band + summed PCD, 
resulted in 50 distributions. All were modelled with gamma 
distributions defined as below: 

f x =
(

O P QR
SPT(UTV Q                  (2) 

We tested if lack of independence between testing and 
distribution modelling data has any effect by modelling the 
distributions with some speakers removed. We repeated 100 
times removing a different set of 6 speakers each time, but no 
meaningful effect was found, as expected from the data size. 
Thus LRs were calculated by: 1) pooling PCDs separately for 
SS and DS comparisons and modelling their distributions, 2) 
deriving probabilities of the testing pairs to be belonging to 
the 2 different distributions, applying them to the models. The 
obtained LRs were then converted to Log10LR (LLR) and 
calibrated. Cllr [18] was also calculated.  

3. Results and Discussion 

3.1. LLRs 

In this section, we add another feature combination, summed 
LLR: the sum of 3 LLRs obtained from subF1, subF2, and 
subF3. Summing potentially correlated LLRs such as these 
risks introducing inaccuracy. However, the correlation among 
LLRs turned out to be very low, as seen in Table 3. The 
strongest correlation coefficient found was 0.188 (between 
subF1 and subF2 of /o/ vowel), indicating that correlations is 
unlikely to distort the results significantly.  

    Figure 1 presents the mean LLRs for each vowel and 
band range selection. It reveals that SS and DS comparisons 
are separated well at the theoretical threshold, LLR 0, across 

all vowels and band ranges. The vowel which produces 
strongest LRs — i.e. appearing at the furthest positions from 0 
on both directions — is /ɯ/, closely followed by /i/. /a/ and /o/ 
appear to produce weaker LLRs. Comparing subF1, subF2 and 
subF3, we can see that subF1 is of limited use. The speaker 
information seems to be most richly carried in subF2. 

Table 3: Correlation between LLRs (Pearson’s r) 

 SS comparisons DS comparisons 

 F1-F2 F1-F3 F2-F3 F1-F2 F1-F3 F2-F3 
a 0.072 -0.022 0.174 0.013 0.024 0.098 
e 0.032 0.087 0.169 0.003 0.019 0.161 
i 0.055 0.049 0.046 0.027 -0.003 0.131 
o 0.188 0.128 0.045 0.045 0.109 -0.052 
ɯ 0.102 0.121 0.102 0.040 0.053 0.055 

 

 
    Figure 1: Mean LLRs for each vowel and band range 

The results from the first part of this study [12] and the 
theoretical nature of the sub-band PCD predict sub-band PCDs 
(such as sum of PCD and sum of LLR) to outperform the full-
band PCDs.     Figure 1 shows that this is indeed to be the 
case; sum of PCD, and sum of LLR outperformed from full-
band, confirming utility of band-selective analyses. 

3.2. Verification rate and Cllr 

Next, we observe the rates of successful speaker verification at 
threshold LLR 0. We focus our observation in this section on 
the comparison between full-band, sum of PCDs and sum of 
LLRs. With all vowels, the LLRs supported the correct 
hypothesis well above chance level, /i/ and /ɯ/ reaching over 
80% for DS, which is a strong result for a single vowel. For all 
vowels but /a/, the sub-band based approach constantly 
outperformed full-band. Even for /a/, sum of LLR performed 
better than full-band. Here too the high vowels /i/ and /ɯ/ 
performed better than other vowels.  

 
    Figure 2: Successful classification rate at LLR 0   

Cllr is the cost metric that evaluates the quality of the 
classification system [18]. We used half of the SS and DS 
comparisons for training the calibration, and the rest to 
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examine Cllr. Cllr can be decomposed to the verification cost 
(Cllr_min) and the calibration cost (Cllr_cal). For ease of 
interpretation, the decomposed components are presented in  
Figure 3. The results are presented separately for each vowel, 
/a/ to /ɯ/ from the bottom to the top. The categories “Full-
band”, “3_area”, and “3_LLR” indicate full-band PCD, sum of 
PCD, and sum of 3 sub-band LLR. 

Across all vowels, the scores for Cllr_cal (in dark blue) 
were very low, indicating that the system was already well 
calibrated, and the classification errors were largely caused by 
the PCD’s discriminant capacity. The calibration results 
confirmed this; Cllrs did not improve with calibration, as seen 
in Figure 4, which presents the comparison of pre and post 
calibration Cllr, pooled across all band types in a violin plot.  
 

 

Figure 3: Pre-calibration Cllr_min and Cllr_cal  

 

Figure 4: Pre-and post-calibration difference in Cllr  

4. Conclusion 
This paper further examined the behavior of sub-band PCDs. 
We selected 3 sub-bands for each vowel based on their known 
formant frequency ranges, and examined their performance 
under a channel mismatch condition. The results showed that 
individual sub-band PCDs were not as powerful as the full-
band PCDs but once combined, they outperformed the full-
band PCDs as predicted. Also LLRs produced from PCDs 
were found to be extremely well calibrated.  

The examinations presented in [12] and here support our 
proposition of sub-band PCD being a potentially useful FVC 
feature. Most results were predictable from existing phonetic 
knowledge, suggesting sub-band PCD to be a feature that is 
automatically extractable and more readily interpretable – a 
desirable quality for evidence presentation in court.  

As future tasks, performance comparison to the existing 
approaches is critical, especially to formant-based FVC. We 
also plan to do further work on optimal sub-band ranges, and 
the effect of sample data size and speech style, and different 
approaches to the LR calculation.    
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