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Abstract

Ocean circulation models employ horizontal viscosity and diffusivity to rep-

resent unresolved sub-gridscale processes such as breaking internal waves.

Computational power has now advanced sufficiently to permit regional ocean

circulation models to be run at sufficiently high (100m-1km) horizontal res-

olution to resolve a significant part of the internal wave spectrum. Here we

develop theory for boundary generated internal waves in such models, and

in particular, where the waves dissipate their energy. We focus specifically

on the steady lee wave problem where stationary waves are generated by a

large-scale flow acting across ocean bottom topography. We generalise the

energy flux expressions of Bell (1975) to include the effect of horizontal vis-

cosity and diffusivity. Applying these results for realistic parameter choices

we show that in the present generation of models with O(1)m2s−1 horizontal

viscosity/diffusivity boundary-generated waves will inevitably dissipate the

majority of their energy within a few hundred metres of the boundary. This
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dissipation is essentially spurious since it is a direct consequence of the ar-

tificially high viscosity/diffusivity used in the numerical models and hence

caution is necessary in comparing model results to ocean observations. Our

theory further predicts that O(0.01)m2s−1 horizontal viscosity/diffusivity is

required to satisfactorily reduce the spurious dissipation and enable a realistic

representation of wave dynamics in ocean models.
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1. Introduction

Internal waves are an important mechanism for vertical and downscale

transfer of energy in the ocean. Internal waves can transport energy from the

upper and lower boundary of the ocean (where much of the energy is injected)

to the ocean interior, where wave breaking and other nonlinear processes can5

lead to turbulent mixing (Waterhouse et al., 2014). Furthermore, they are

amongst the larger scales of ‘unbalanced’ flow, and can therefore provide a

conduit from large-scale ‘balanced’ flow to the small-scale turbulence where

dissipation occurs (Vanneste, 2013). Internal waves are generated by surface

wind stresses (Watson et al., 1976), tidal interactions with bathymetry (e.g.10

St Laurent and Garrett, 2002), geostrophic flows over rough topography on

the sea floor (Nikurashin and Ferrari, 2010), and small-scale unbalanced flow

at the ocean surface including submesoscale eddies, fronts and filaments (e.g.

Danioux et al., 2012; Nagai et al., 2015; Shakespeare and Taylor, 2016).

Only recently have computational capabilities expanded sufficiently to15

permit regional ocean circulation models to be run at sufficiently high (100m-

1km) horizontal resolution to resolve a significant portion of the internal wave
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spectrum (Nikurashin et al., 2013; Nagai et al., 2015; Rosso et al., 2015). In

their 200m resolution model, Nikurashin et al. (2013) find that the resolved

waves generated via geostrophic flow over topography (lee waves) dissipate20

80% of their energy in the water column directly above the topography. They

extrapolate this result to the global ocean to suggest that the resolved waves

with scales exceeding 1km provide a first-order contribution to turbulent

mixing directly above topography, thereby sustaining the ocean overturn-

ing circulation. Enhanced dissipation above rough topography is consistent25

with ocean observations (Waterhouse et al., 2014). However, observational

estimates suggest that lee waves only dissipate 2-20% of their energy near

topography (Waterman et al., 2013), much less than the 80% predicted from

the Nikurashin et al. (2013) numerical model.

As with all large-scale ocean models, the subgrid-scale turbulence in wave-30

resolving numerical models must be parameterised, typically using Laplacian

(or higher order) horizontal diffusivities and/or viscosities. The fact that the

horizontal gridscale (100m-1km) is much larger than the vertical (1-20m)

implies that the corresponding viscosity/diffusivity will be that much larger:

typical values of Laplacian horizontal diffusivities and/or viscosities employed35

in these high resolution models (e.g. Nikurashin et al., 2013; Nagai et al.,

2015; Rosso et al., 2015) are of O(1)m2 s−1 throughout the depth of the

ocean. In comparison, values for vertical viscosity/diffusivity are typically

of O(10−3 − 10−5)m2 s−1. To some extent these parameterisations are in-

tended to represent the effect of internal waves breaking and driving mixing40

of density and momentum in the ocean interior (Polzin, 2010; Polzin and

Lvov, 2011). This situation presents a problem since we are parameterising
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the effect of waves while partially resolving waves, and thus any effect the

parameterisation has on the waves is essentially a spurious one. Here we

investigate this effect and what can be done to minimise or eliminate it.45

The ‘fluid’ in the numerical models described above (which we will term

the ‘model fluid’) has strongly non-isotropic behaviour, with horizontal vis-

cosity/diffusivity dominating over the vertical for typical internal wave as-

pect ratios. Further, most of these models use the hydrostatic version of the

Boussinesq equations, so we will only consider hydrostatic internal waves.50

Thus, our objective here is formulate hydrostatic linear internal wave theory

to describe the energy flux associated with boundary-sourced internal waves

in the presence of horizontal viscosity/diffusivity. In particular, we will ex-

tend the classic steady lee wave energy flux expression of Bell (1975), which

has been recently used to estimate lee wave generation in the global ocean55

(e.g. Nikurashin et al., 2014), to include viscous and diffusive effects. We

describe this as the ‘viscous lee wave problem’.

2. Linear wave theory

Here we investigate the dynamics of internal waves generated at a bound-

ary in a ‘model fluid’ with purely horizontal viscosity and/or diffusivity using60

linear theory. The hydrostatic Boussinesq equations with uniform Lapla-

cian horizontal diffusivity (κh) and viscosity (Ah) on an f -plane, linearised

about a state with uniform barotropic, time-independent background flow,
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U = (U, V, 0), and constant stratification, N2, are

∂u

∂t
− fv + U · ∇hu = − 1

ρ0

∂p

∂x
+ Ah∇2

hu, (1a)

∂v

∂t
+ fu+ U · ∇hv = − 1

ρ0

∂p

∂y
+ Ah∇2

hv, (1b)

0 = − 1

ρ0

∂p

∂z
+ b, (1c)

∂b

∂t
+ wN2 + U · ∇hb = κh∇2

hb, (1d)

0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
, (1e)

where (u, v, w) are the velocities in the (x, y, z) Cartesian coordinate di-65

rections, p is the pressure, b = −g(ρ − ρ0)/ρ0 the buoyancy, f the Coriolis

parameter, and ρ0 the reference density. We seek solutions to (1) with the

form of plane waves moving with the background flow,

b = b̂(k, l, ω, z) exp (ı(k(x− Ut) + l(y − V t) + ωt))

= b̂(k, l,Ω, z) exp (ı(kx+ ly + Ωt)), (2)

where ı =
√
−1, k, l are the x and y wavenumbers, ω the Lagrangian fre-

quency, and Ω = ω − (kU + lV ) the Doppler shifted (Eulerian) frequency.70

Our objective here is to determine the vertical structure function, b̂(k, l, ω, z),

which describes the vertical amplitude profile of a wave, given the scale and

frequency. Similar expressions to (2) apply for the velocity and pressure
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fields. Substituting these expressions into (1) yields,

b̂ = b̂0 e
γ(z−zb), (3a)

p̂ = ρ0

∫
b̂ dz, (3b)

û =
ıl(ıω −K2Ah) + ıkf

f 2 + (ıω −K2Ah)2
p̂

ρ0
, (3c)

v̂ =
ık(ıω −K2Ah)− ılf
f 2 + (ıω −K2Ah)2

p̂

ρ0
, (3d)

ŵ =
1

N2
(ıω −K2κh)̂b, (3e)

where75

γ2 =
K2N2 (ıω − AhK2)

(f 2 + (ıω − AhK2)2) (ıω −K2κh)
. (4)

The sign of γ must be chosen such that solutions decay as away from the

boundary (z = zb). The function b̂0(k, l, ω) is the boundary condition on the

buoyancy due to the forcing mechanism (e.g. topography, buoyancy flux; see

below). We now introduce appropriately defined Reynolds, Re = ω/(AhK
2),

and Peclet, Pe = ω/(κhK
2), numbers to describe the relative strength of80

the horizontal viscosity and diffusivity. The solution to (4) in terms of these

non-dimensional numbers is

γ = ±NKı

√
(1− ıRe)RePe

(1− ıPe)(ω2(ı+ Re)2 − f 2Re2)
. (5)

Most model fluids are in a weakly viscous and diffusive limit in which Re� 1

and Pe� 1. In this limit, (5) becomes

γ = ±
(
ım+

(
1

hκ
+

1

hA

))
, (6)

where m is the vertical wave number (when ω > f),85

m =
NK√
ω2 − f 2

, (7)

6



hκ is the diffusive decay depth,

hκ =
2Pe
√
ω2 − f 2

NK
, (8)

and hA is the viscous decay depth,

hA =
2Re(ω2 − f 2)3/2

NK(ω2 + f 2)
. (9)

Thus, in the weakly viscous scenario the wavenumber (m) is unaffected by

viscous effects, but there is a potentially significant decay of propagating

wave (ω > f) amplitudes away from the boundary where they are generated.90

The total decay depth, h, is the geometric mean of the viscous and diffusive

decay depths,

h =

(
1

hκ
+

1

hA

)−1
=

2ω
√
ω2 − f 2

NK3

(
κh +

ω2 + f 2

|ω2 − f 2|
Ah

)−1
. (10)

The decay depth in the weakly viscous limit is always very much larger than

the vertical wavelength, λ = 2π/m; for example, hκ/λ = Pe/π � 1. The

non-wave or geostrophic part of the solution (ω < f) is characterised by an95

imaginary vertical wavenumber m (7). Independent of the viscosity or dif-

fusivity, frequencies ω < f therefore decay rapidly away from the boundary

with inviscid decay depth λ/(2π) = 1/|m| =
√
f 2 − ω2/(NK). The viscous

and diffusive decay depth defined by (10) is imaginary (wavelike) for ω < f ,

but since λ � |h| in the weakly viscous limit, the geostrophic flow decays100

sufficiently rapidly that the viscous and diffusive contributions can be ne-

glected. As will be shown below, this result does not imply that there is no

energy dissipated from the geostrophic (ω < f) flow, only that the loss is not

sufficient to substantially affect its amplitude.
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The amount of energy lost by both waves and geostrophic flow at a given105

vertical level may be computed by forming the energy budget. The equation

for the time evolution of kinetic energy, EK = (u2 + v2)/2, is obtained by

multiplying (1a) by u, (1b) by v, summing the two equations, and then

integrating in x and y to yield

∂〈EK〉
∂t

= − 1

ρ0

∂

∂z
〈wp〉+ 〈wb〉 − Ah〈|∇huh|2〉, (11)

where angled brackets 〈〉 denote the horizontal average. Similarly, the equa-110

tion for the time evolution of available potential energy (APE),EA = b2/(2N2),

is obtained by multiplying (1d) by b, dividing by N2, and then integrating

in x and y to yield

∂〈EA〉
∂t

= −〈wb〉 − κh
N2
〈|∇hb|2〉. (12)

The total perturbation energy, E = EK + EA, thus evolves according to

∂〈E〉
∂t

= − 1

ρ0

∂

∂z
〈wp〉 − Ah〈|∇huh|2〉 −

κh
N2
〈|∇hb|2〉

= −∂F
∂z
− ε− φi. (13)

Thus at steady state the decay of the energy flux F with height corresponds115

to a deposition of energy either via viscous dissipation, ε, or irreversible

mixing, φi. Using Parseval’s theorem we can compute this energy deposition

as an integral over all wavenumbers and appropriate frequencies,

φi =
κh

(2π)3N2

∫ ∫ ∫
K2|̂b|2 dk dl dω, (14)

and

ε =
Ah

(2π)3

∫ ∫ ∫
K2
(
|û|2 + |v̂|2

)
dk dl dω

' Ah
(2π)3N2

∫ ∫ ∫
K2ζ

ω2 + f 2

|ω2 − f 2|
|̂b|2 dk dl dω, (15)
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substituting the solution (3), and taking the weakly viscous limit. The pa-120

rameter ζ in (15),

ζ =

(
1 +

2K4A2
h(ω

2 + f 2)

(ω2 − f 2)2

)− 1
2

, (16)

is important only to prevent infinities at near inertial frequencies, |ω/f−1| ≤

Re−2, and may otherwise be neglected. The net energy deposition, D = ε+φi,

from the wave flow (i.e. integral over ω > f) is

Dw =
1

(2π)3N2

∫ ∞
f

∫ ∫
K2

(
κh + ζ

ω2 + f 2

ω2 − f 2
Ah

)
e−

2|z−zb|
h |̂b0(k, l, ω)|2 dk dl dω,

(17)

where h is the viscous/diffusive wave decay depth (10). Similarly, the net125

energy deposition from the non-wave geostrophic flow (i.e. integral over

0 < ω < f) is

Dm =
1

(2π)3N2

∫ f

0

∫ ∫
K2

(
κh + ζ

ω2 + f 2

f 2 − ω2
Ah

)
e−2|z−zb||m| |̂b0(k, l, ω)|2 dk dl dω,

(18)

where 1/|m| is the geostrophic decay depth, as described above. The wave

energy flux at a given depth, Fw = |wp|/ρ0, can now be computed as the

vertical integral (e.g. (13)) of the net energy deposition defined by (17),130

Fw(z) =
1

(2π)3

∫ ∞
f

∫ ∫
ω
√
ω2 − f 2

N3K
e−

2|z−zb|
h |̂b0(k, l, ω)|2 dk dl dω. (19)

Similarly, the energy flux associated with the geostrophic non-wave flow is

Fm(z) =
1

(2π)3

∫ f

0

∫ ∫
K
√
f 2 − ω2

2N3

(
κh + ζ

ω2 + f 2

f 2 − ω2
Ah

)
e−2|z−zb||m| |̂b0(k, l, ω)|2 dk dl dω. (20)

The above results can describe many different mechanisms of wave forcing

at boundaries through an appropriate choice of b̂0(k, l, ω). We consider the

particular case of steady lee waves in the next section.

9



Steady lee waves135

Lee waves are generated by large-scale flow over topography in a strati-

fied fluid. The linearised boundary condition is that flow is parallel to the

topography, or w = Uh · ∇hH, where H(x, y) is the height of the bottom

topography above z = 0. For small amplitude topography, the boundary

condition is applied at z = 0 and thus ŵ0 = (−ıkU − ılV )Ĥ, or in terms of140

buoyancy

b̂0(k, l, ω) =
N2ŵ0

ıω − κhK2
' −N

2Ĥ (kU + lV )

ω
, (21)

assuming the fluid is weakly diffusive (Pe� 1), as previously. For steady lee

waves we require the Eulerian frequency Ω = ω − (kU + lV ) = 0, and thus

the Lagrangian frequency is ω = (kU + lV ) and (21) becomes

b̂0(k, l, ω) = −N2Ĥ 2πδ(ω − (kU + lV )), (22)

where δ is the Dirac delta function. Substituting (22) into (19) and, without145

loss of generality, choosing our x-axis to coincide with the local flow, the lee

wave energy flux is

Fw =
1

(2π)2

∫ ∫ ∞
f/U

NU
k

K

√
k2U2 − f 2e−

2z
h |Ĥ|2 dk dl, (23)

where

h =
2kU

√
k2U2 − f 2

NK3

(
κh +

k2U2 + f 2

k2U2 − f 2
Ah

)−1
. (24)

Equation (23) agrees with the usual expression (e.g. Bell, 1975) for the hy-

drostatic steady lee wave energy flux at z = 0, but unlike the classical invis-150

cid/adiabatic problem, the flux decays with height over e-folding scale h/2.

Similarly, substituting (22) into (20) yields the energy flux associated with

10



dissipation from the non-wave flow (i.e. the geostrophic flow around topog-

raphy) for the steady lee wave problem. This flux is identically zero in the

classical inviscid problem.155

To understand the implications of the above results for ocean modelling

we need to make appropriate choices for free-stream speed U , stratification

N2, Coriolis frequency f and the topographic height spectrum |Ĥ|2. Here we

will use parameters characteristic of the Drake Passage region of the Southern

Ocean: N2 = 10−6s−2 and f = −1.2×10−4s−1. Goff and Jordan (1988) show160

that the height spectrum of sea floor topography may be well approximated

by

|Ĥ(k, l)|2 =
2πH2

rms(µ− 2)

k0l0

[
1 +

K2

k20
cos2(φ− φ0) +

K2

l20
sin2(φ− φ0)

]−µ/2
,

(25)

where k0 and l0 are the characteristic easterly and northerly wavenumbers,

φ is the angle of the wavevector with respect to east, Hrms is the root-mean-

square topographic height, φ0 is the azimuthal angle and µ characterises the165

roll-off of the spectrum at high wavenumbers. Here we will use the same

parameter values as Nikurashin and Ferrari (2010): Hrms = 305m, µ = 3.5,

k0 = 2.3×10−4m−1, l0 = 1.3×10−4m−1 and φ0 = 320◦. Figure 1 displays the

net energy deposition from the wave (solid) and geostrophic (dotted) flow

given the above parameter choices, for three different free-stream speeds:170

(a) 2cm s−1, (b) 5cm s−1 and (c) 10cm s−1. Each plot shows the result for

three different choices of turbulent parameters: both viscosity and diffusivity

(Ah = κh = 1m2 s−1; blue), viscosity only (Ah = 1m2 s−1; red) and diffusivity

only (κh = 1m2 s−1; black). These turbulent parameters are comparable to

those used in recent high resolution modelling studies (e.g. Nikurashin et al.,175
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2013, use Ah = 1m2 s−1 and κh ' 0).

We first consider the energy deposition from the geostrophic flow (dotted

curves). The geostrophic flow energy loss is essentially independent of the

free-stream speed and also of whether viscosity or diffusivity is responsible

(red and black dotted curves overlap). This behaviour results from the rapid180

roll-off of the topographic spectrum (25) with wavenumber such that near-

inertial frequencies (wavenumbers k ∼ f/U) do not contribute significantly

to the geostrophic flow energy loss: with this assumption, the geostrophic

flow energy deposition (18) may be expressed as

Dm = N2(κh + Ah)

[
1

(2π)2

∫ ∞
−∞

∫ ∞
0

K2|Ĥ|2e−
2NK
|f | z dk dl

]
. (26)

The energy deposition at the boundary (z = 0) is thus 3(κh + Ah)× 10−8W185

kg−1 for the present parameters and the vast majority of the geostrophic

flow energy loss will occur within hm = |f |/(2Nk0) ∼ 260m of the boundary,

consistent with figure 1. The total dissipation of geostrophic flow energy is

the vertical integral of (26),

ρ0

∫ ∞
0

Dm dz =
1

2
ρ0N |f |(κh + Ah)

[
1

(2π)2

∫ ∞
−∞

∫ ∞
0

K|Ĥ|2 dk dl
]
, (27)

which is 1.2(κh + Ah)mW m−2 for the present parameters. The energy loss190

from the geostrophic flow is thus a very significant component of the total

energy dissipation, particularly in regions of small free-stream velocity (e.g.

2cm s−1; figure 1a).

The energy deposition from the wave flow is shown by the solid curves in

figure 1. The corresponding wave energy flux for each case is shown in figure195

2. Both the magnitude and decay depth of the energy flux increases with free

stream speed as wave generation occurs at larger scales. For U = 2cm s−1 the
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(a) U = 2cm s−1
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(b) U = 5cm s−1
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(c) U = 10cm s−1

Ah = κh = 1

Ah = 1, κh = 0
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Figure 1: The total energy loss from the wave (solid) and geostrophic (dotted) flow for three

choices of diffusivity/viscosity (see legend; units m2 s−1) and three free-stream speeds: (a)

2cm s−1, (b) 5cm s−1 and (c) 10cm s−1. The topographic spectrum is defined by (25) with

the free parameters chosen as described in the text. The buoyancy frequency is taken as

N2 = 10−6s−2 and the Coriolis parameter as f = −1.2× 10−4s−1.

(small) wave energy flux (0.2 mW m−2) decays within 100m of the boundary.

For U = 5cm s−1 the wave energy flux (4.3 mW m−2) decays within 1500m

of the boundary. For U = 10cm s−1 the wave energy flux (33 mW m−2)200

remains non-zero even at 4km above the boundary. As a consequence there

is significant energy deposition at large distances from the wave source — for

example, energy deposition at 4km height exceeds 10−9 W kg−1. The decay

rate of the wave energy flux is significantly less for diffusivity (black curves)

compared with viscosity (red curves) of the same magnitude as a result of the205

majority of the wave energy being at near-inertial frequencies (which have a

comparatively weak buoyancy signature and minimal APE).
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energy flux (mW m−2)
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(a) U = 2cm s−1
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Ah = 1, κh = 0
Ah = 0, κh = 1

energy flux (mW m−2)
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(b) U = 5cm s−1

energy flux (mW m−2)
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(c) U = 10cm s−1

Figure 2: The wave energy flux for three choices of diffusivity/viscosity (see legend; units

m2 s−1) and three free-stream speeds: (a) 2cm s−1, (b) 5cm s−1 and (c) 10cm s−1.

Parameter values and topographic spectrum are the same as for the previous figure.

We now compare the above solutions to the results of recent modelling

studies, in particular Nikurashin et al. (2013) who use comparable parameter

values (Ah = 1m2 s−1 and κh ' 0; red curves in figures 1 & 2). The dissipa-210

tion seen in that study (e.g. figure 5a therein) is strongly enhanced near the

bottom topography, O(10−8)W kg−1, and decays rapidly to less than 10−9 W

kg−1 within a few hundred metres of the topography. This is the magnitude

of dissipation predicted to come from the geostrophic non-wave flow around

topography (e.g. (26) and figure 1), even in the absence of waves, and is di-215

rectly proportional to the artificially elevated viscosity. The total predicted

energy dissipation from the geostrophic flow is 1.2 mW m−2 for Ah = 1m2

s−1, which is 20% of the reported dissipation in that study (6.1 mW m−2;
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their figure 2a). Bottom generated waves will therefore account for at most

4.9 mW m−2, since there is also substantial dissipation near the ocean sur-220

face. Thus a flow speed of 5cm s−1 (figures 1b & 2b) which corresponds to a

net wave energy flux of 4.3 mW m−2 seems to be reasonably representative

of the numerical model. Figure 2b indicates that the wave energy flux re-

duces by over 80% within 250m of the boundary, comparable to the reported

numerical model results. Only in regions of particularly strong bottom flow225

(e.g. 10cm s−1; figure 2c) are the waves able to transport significant energy

outside of the bottom boundary region.

The above analysis demonstrates that the dissipation seen in current gen-

eration high-resolution wave modelling studies is a direct consequence of the

use of elevated horizontal viscosity/diffusivity in those models and says noth-230

ing fundamental about the energetics of internal waves in the ocean. In par-

ticular, the location of wave dissipation cannot be inferred from such models.

3. Discussion

Here we have described the energetics of linear waves in a fluid with

elevated values of horizontal viscosity and/or diffusivity as is typical of high-235

resolution numerical models. In particular, we have presented extended solu-

tions to the classical steady lee wave problem (Bell, 1975) that describe the

magnitude of energy deposition and decay of the wave energy flux due to ele-

vated horizontal viscosity and/or diffusivity. These solutions have important

consequences for the modelling of internal waves.240

Firstly, our solutions are vital in interpreting recent numerical model re-

sults. Ocean observations clearly show enhanced viscous dissipation near
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the ocean surface and near the ocean bottom, with the bottom dissipation

strongly enhanced in regions of rough topography (Waterhouse et al., 2014).

This dissipation is thought to be associated with intense diapycnal mixing245

and hence these regions are important to sustaining the ocean overturning

circulation (Wunsch and Ferrari, 2004). Recent wave-resolving model results

(Nikurashin et al., 2013) have been interpreted as suggesting this enhanced

dissipation is the direct result of locally generated lee waves. However, here

we have shown that the dissipation local to rough topography in such models250

is a direct and artificial result of the subgrid parameterisations used in those

models. Indeed, our theoretical result is supported by recent observational

studies (Waterman et al., 2013) which report that dissipation near topog-

raphy is only 2-20% of the theoretical lee wave energy flux. The present

generation of high-resolution models thus provide no evidence for local lee255

wave dissipation near topography, and should not be used to identify where

boundary generated waves will ultimately dissipate.

The solutions presented herein also suggest design criteria for future wave-

resolving numerical models. In most models an artificially high viscosity

and/or diffusivity is required to prevent the collapse of flow structures below260

the gridscale. Given that diffusivity has a smaller spurious effect on the

wave field, our first suggestion is that models focusing on wave dynamics

use elevated diffusivity rather than viscosity. Secondly, the viscous lee wave

theory may be used to determine the maximum magnitude of horizontal

diffusivity permitted to limit the spurious decay of the wave field to a certain265

value. For example, figure 3 shows the fraction of steady lee wave energy

flux remaining at the ‘ocean surface’ (4km height) as a function of horizontal
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Figure 3: The fraction of the initial steady lee wave energy flux remaining at a vertical

height of 4km above the bottom as a function of horizontal diffusivity κh, for three free-

stream speeds U (see legend). Parameter values and topographic spectrum are the same

as for the previous figures.

diffusivity for three flow speeds and the Southern Ocean parameters described

in §2. The most significant lee wave generation typically occurs for speeds

exceeding 5 cm s−1; for less than 10% dissipation at this speed over the ocean270

depth the horizontal diffusivity would need to be O(0.01)m2 s−1. Achieving

such values seems impractical for regional ocean models since it is likely to

require O(1)m horizontal model resolutions (versus the O(100m) resolution

currently used). An alternative model design that would reduce, but not

eliminate, spurious wave decay is to have elevated diffusivity near the model275

boundaries (where flow gradients tend to collapse towards the gridscale), but

an essentially inviscid and adiabatic interior — we will present results from

such a model in a future paper.

Internal waves play an important role in the ocean energy budget, and re-

solving their effect in regional ocean models is a laudable objective. However,280

17



the viscous lee wave theory outlined here indicates that careful consideration

is required before we can infer dissipation and mixing from such models.
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