
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

A pipeline structure for the block QR update in
digital signal processing

Manuel F. Dolz · Fran J. Alventosa ·
Pedro Alonso-Jordá · Antonio M. Vidal

Received: date / Accepted: date

Abstract There exist problems in the field of digital signal processing, such as
filtering of acoustic signals, that require processing a large amount of data in real-
time. The Beamforming algorithm, for instance, is a process that can be modeled
by a rectangular matrix built on the input signals of an acoustic system and, thus,
changes in real-time. To obtain the output signals, it is required to compute its QR
factorization. In this paper, we propose to organize the concurrent computational
resources of a given multicore computer in a pipeline structure to perform this
factorization as fast as possible. The pipeline has been implemented using both
the application programming interface OpenMP, and GrPPI, a library interface
to design parallel applications based on parallel patterns. We tackle, not only the
performance challenge but also the programmability of our idea using parallel
programming frameworks.

Keywords QR factorization, QR Update, pipeline QR update, jagged matrix,
GrPPI, Beamforming Algorithm.

1 Introduction

It is quite common that for digital signal processing applications, given an input
signal, the resulting output signal is required in real-time. One of these applica-
tions, for instance, consists of recovering an acoustic signal that has been altered by
noise, reverberations or other possible alterations. This system, which takes place
into a room, is represented by several microphones in one side of this room that
are recording a mix of signals being emitted by several independent loudspeakers
placed at the other side of the room. This system is modeled as a Multiple Input
Multiple Output (MIMO) system [1,2].

Manuel F. Dolz
Departament d’Enginyeria i Ciència dels Computadors, Universitat Jaume I de Castelló, Spain
E-mail: dolzm@icc.uji.es

Fran J. Alventosa, Pedro Alonso-Jordá, Antonio M. Vidal
Depto. de Sistemas Informáticos y Computación, Universitat Politècnica de València, Spain
E-mail: {fraalrue,palonso,amvidal}@upv.es

2 Manel F. Dolz et al.

In this work, we deal with the solution to this problem in one of its forms,
that in which the digital system is represented by a system matrix that relates
inputs and outputs. The system matrix must be factorized (QR factorization) to
solve this problem, being this part the most time-consuming kernel of the whole
application. The system matrix is partitioned in blocks of rows and columns whose
number and size all depend on the number of inputs, outputs, and other factors.
In [3,4], we initiated this work by proposing the use of a special matrix called
jagged . The QR factorization of this special matrix can be quickly updated real-
time in parallel using OpenMP tasks with dependencies. The number and size of
the OpenMP tasks are closely related to the number and size of matrix blocks.
This fact may limit the scalability of the parallel factorization since the size and
the number of tasks can not be freely adapted to the processor features, i.e. the
performance of the parallel algorithm depends on the shape imposed by the physi-
cal conditions of the MIMO system. In this contribution, we arrange the available
parallel computational resources to build a pipeline structure or pattern. With
this structure, we manage not only to reduce the execution time to get this QR
factorization but also to improve the throughput of the application, i.e. to increase
the number of QR factorizations calculated per time unit.

For the implementation of the pipeline, we have used two different tools. The
first one is OpenMP, a very known programming interface to design parallel ap-
plications based on pre-processor macros. The stages of the pipeline are OpenMP
tasks interconnected through queues. The second tool is GrPPI (Generic Reusable
Parallel Pattern Interface) [5]. GrPPI is an open source generic and reusable par-
allel pattern programming interface that simplifies the developer efforts for parallel
programming. The interface leverages modern C++ features, meta-programming
concepts, and generic programming to achieve this goal.

The next section presents the digital system and outlines the kernel of the
Beamforming Algorithm. The main idea of this contribution is described in Sec-
tion 3. Section 4 deeps into the implementation details of the pipeline while Sec-
tion 5 is devoted to the results obtained with our pipeline compared with previous
efforts. The paper closes with a conclusions section.

2 The Beamforming Algorithm and the sound digital system

One approach to solve the Beamformer problem for sound signals is based on a
correlation matrix that represents the relationship between input and output sig-
nals [6]. Provided all the room channel responses are known, the known as LCMV
(Linearly Constrained Minimum Variance) Beamformer Algorithm [7] can be used
to design the broadband “beamformers” (digital filters) that allows obtaining the
desired clean output signal.

Let M̄ ∈ Rm×n be the correlation matrix of the system over time [7], then this
matrix changes periodically by losing a bunch of ts top rows while an equal bunch
of rows (built with new data) is appended to the bottom. Each time the system
matrix is updated, the algorithm performs a QR factorization of M̄ from which
only the upper triangular factor R̄M̄ is required in order to solve the least squares
problem (Fig. 1(a), a)). This factorization is by far the most time-consuming part
of the algorithm [3]. Performing this factorization is critical if the result is required

A pipeline structure for the block QR update in digital signal processing 3

M̄

X̄

Ȳ

Z̄

Ā

c)

W̄

X̄

Ȳ

Z̄

a) b)

Ā

R̄M̄ M̄ ′ R̄M̄ ′

(a) QR factorization update on system matrix M̄ .

M

X

Y

Z

A

X1

Y2

Z3

c)

W

X

Y

Z

W1

X2

Y3

a) b)

Ā

RM M ′ RM ′

(b) QR factorization update on system matrix M in jagged form.

Fig. 1 QR factorization of system matrices.

in real-time, as it is the case with other signal processing applications such as 3D
audio [8,9], which also use this correlation matrix between inputs and outputs.

The digital system under test imposes a special structure to the correlation
matrix M̄ (Fig. 1(a)) so that the proportion between the number of rows and
columns is 4 × 3. The matrix is partitioned in square tiles of order ts, so that
m = 4ts and n = 3ts. At each step of the process, matrix M̄ changes by losing
25% of the rows at the top (row of tiles W̄). Given a set of new rows represented
by a 1× 3 tiles matrix Ā (Fig. 1(a), b)), this block is appended at the bottom to
form matrix M̄ ′·. Then, a new upper triangular factor of the QR factorization of
the new “updated” system matrix M̄ ′, i.e. R̄M̄ ′ , must be calculated. The objective
is to recompute (or update) this factor as fast as possible at each processing time.

The computational cost of performing a QR factorization is 2n2(m−n/3) flops
(floating point operations per second) using Householder reflections [10]. There ex-
ist proposals to improve this computational kernel on different hardware architec-
tures. Many of them are based on block algorithms which improve performance on
processors with a hierarchical organization of the memory system [11,12]. In [13],
for instance, we built a parallel version of a sequential block algorithm proposed
in [14] that performs this factorization with the aim at exploit the multicore capac-
ity available in current personal computers. This version builds a DAG (Directed
Acyclic Graph) to encode dependencies and executes tasks as the dependencies
are satisfied. OpenMP task together the depend clause are enough tools to artic-
ulate this DAG. The OpenMP runtime schedules the operations according to that
DAG, which represents the dependency relationships among operations on tiles.
Using jagged matrices instead of the original rectangular ones allows to speed up
computations by a factor of ×1.35 approximately [4].

3 The pipeline structure to update the QR factorization

When we identify the suboperations necessary to factorize each updated matrix,
it can be seen that some of these suboperations can be reused and/or executed
in advance. This fact, together with the availability to use concurrent threads,
motivates the construction of the proposed pipeline structure. Figure 2 shows the

4 Manel F. Dolz et al.

Z̄

W1

X2

W

X

Y

Z Z

Y

X̄2

W̄1

Z

¯̄Y3

¯̄X2

¯̄W1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

X

Y

Z

A A

Z

Ȳ2

X̄1

A

¯̄Z3

¯̄Y2

¯̄X1

Z3

X1

Y2

Y

Z

A

B B

A

Z̄2

Ȳ1

B

¯̄A3

¯̄Z2

¯̄Y1

A3

Y1

Z2

Z

A

B

C C

B

Ā2

Z̄1

C

¯̄B3

¯̄A2

¯̄Z1

B3

Z1

A2

C̄

B̄

Ā

Y3

Stage 3 Stage 4Stage 2

Fig. 2 Reduction to upper triangular form through QR factorization of the system matrix
M , in jagged form, in different steps of the algorithm.

process followed when a new bunch of ts rows is coming (first column of matrices).
Each row of matrices represents the stages followed to reduce a jagged matrix to
upper triangular form using the QR factorization. For instance, the second matrix
at the first row represents system matrix M in Fig. 1(b), a). Stage 2 consists of
reducing the submatrix formed by blocks W and X to the one formed by blocks
W̄1 and X̄2. At the next stage, the submatrix formed by blocks W̄1, X̄2, and Y
is reduced to the one formed by blocks ¯̄W1, ¯̄X2, and ¯̄Y3. Analogously, the last

stage produces the sought-after upper triangular factor RM =
(
WT

1 XT
2 Y T

3

)T
of

Fig. 1(b), a). In the same way, the second row represents the new system matrix
M ′ (Fig. 1(b), c)) resulted by discarding X from M and appending A, which is
the result of reducing the new bunch of rows Ā (Fig. 1(b), b)) to a trapezoid by
its QR factorization. Hence, at the last stage we get RM ′ (Fig. 1(b), c)). The rest
of the rows represent the following system matrices in jagged form, i.e. matrices
formed when the first block is discarded and a new one is appended.

The objective of our proposal is to obtain the QR factorization of matrix M ′

(Fig. 1(b)), i.e. RM ′ , as fast as possible. This can be accomplished if the upper

triangular factor
(

¯̄X1
T ¯̄Y2

T ¯̄Z3
T
)T

of the QR factorization of the upper square

submatrix of M ′, i.e.
(
XT Y T ZT

)T
, has already been computed when matrix

A is available. A key factor that can be observed in Fig. 2 is that those framed
stages operate on the same submatrix A and the three of them can be executed
concurrently. We have used this fact to design a pipeline structure like the one
shown in Fig. 3. The figure shows four steps of execution at each horizontal line. It
can be observed that, at Step 1, the output of the pipeline is matrix RM (Fig. 1(b)).
Assuming that the matrices represented into the stages of the pipeline at Step 1
have been computed previously, we can see that Step 2 represents the operation in
which Stage 1 broadcasts factor A to the following three stages. The computations
are carried out at the third step of the pipeline, where those matrices built at

A pipeline structure for the block QR update in digital signal processing 5

Step 4

¯̄Z3

¯̄Y 2

¯̄X1

Stage 1 Stage 2 Stage 3 Stage 4

Ȳ1

Z̄2

A

Stage 1 Stage 2 Stage 3 Stage 4

¯̄Y 1

¯̄Z2

¯̄A3 Z3

Y2

X1

Stage 1 Stage 2 Stage 3 Stage 4

¯̄Y 1

¯̄Z2

¯̄A3

Stage 1 Stage 2 Stage 3 Stage 4

Z̄2

Ȳ1

W1

X2

Y3

Z

A

B̄

Input = C̄

Output = RM

Step 1

Z

A

A

¯̄X1

¯̄Y 2

¯̄Z3

W1

X2

Y3

A

B̄

Input = C̄

Output = RM

Step 2

Z̄1

Ā2

W1

X2

Y3

B

A

Input = C̄

Output = RM

Step 3

Z̄1

Ā2

X1

Y2

Z3

A

B

C̄

Input = D̄

Output = RM ′

Fig. 3 Pipeline for the QR factorization update.

Step 2 are reduced through a QR factorization to the triangular (or trapezoidal)
matrix represented inside the bold-line circles. Indeed, these computational steps
are those represented in the framed stages of Fig. 2. At the last step, all stages
pass their factor to the right-hand side stage. At this step, the last stage issues
the sought-after triangular factor at the output, i.e. RM ′ (Fig. 1(b)). Notice that
Step 1 and Step 4 are really the same but with different data.

The computational cost of performing Stage 4 of the pipeline (Fig. 3) can be
approximated by considering that applying a Householder Reflection to nullify the
µ − 1 last components of a column of a rectangular µ × ν matrix has a cost of
6µ + 4µν flops (see [10] for details). Provided the triangularizations are carried
out by means of Householder Reflections the complete cost consists of two terms.
The first one represents the cost of zeroing the bottom ts × ts triangular block
and, the second one, represents the cost of zeroing the the remaining rectangular
ts × (n− ts) bottom block. Thus, the total number of flops is

ts∑
i=1

6(i+ 1) + 4(n− i)(i+ 1) +

m∑
i=1

6(ts + 1) + 4(ts + 1)(m− i) , (1)

and, after some arithmetic operations, this expression can be approximated as
2tsn

2 + 2t3s − 2nt2s flops.
In order to obtain the total cost, we must add to (1) the cost of triangulating

factor Ā, which is 2t2sn flops (this cost can be deduced in the same way as (1)).
If we account for the 4 × 3 relationship between the number of row and column
tiles, we have the following costs: 54t3s flops to reduce the rectangular matrix M̄

6 Manel F. Dolz et al.

Stage 1 Stage 2 Stage 3 Stage 4 Output Stage

mat ET[0] ET[1] ET[2] mat
q2 q3

g1 g2 g3

q4

Fig. 4 OpenMP pipeline implementation.

to R̄M̄ (Fig. 1(a)), 40t3s flops to reduce the jagged matrix M to RM (Fig. 1(b)),
and 20t3s flops to reduce a matrix of the form shown in Stage 4 of Fig. 2 to upper
triangular form, including the computation of A as well.

4 Implementation of the pipeline

In this section, we describe the implementations of the pipeline described in the
previous section. In particular, we propose i) an OpenMP-based implementation;
and ii) a pattern-based implementation using GrPPI, a novel C++ high-level
interface of parallel patterns. Further, we improved these implementations using
nested parallelism at pipeline stage.

4.1 The OpenMP implementation

The OpenMP implementation leverages tasks to execute the pipeline stages and
Single-Producer/Single-Consumer (SPSC) queues to communicate matrices among
them. Fig. 4 depicts the main pipeline schema, while Listing 5(a) shows a simpli-
fied version of the OpenMP implementation. It is worth noting that the operations
related to each of the stages are executed in a loop fashion so they emulate the
stream nature of the pipeline pattern. Particularly, an iteration of Stage 1 reads
the input set of ts rows (e.g. Ā of Step 2 in Fig. 3), computes its QR factoriza-
tion (A) and broadcasts it to Stages 2–4 (pushing A into queues g1, g2 and g3).
Alternatively, an iteration of Stages 2–4 pops A and appends it at the end of
the stage state matrix (ET). Finally, Stages 2–4 reduce the state matrix via the
QR factorization, push the resulting upper triangular factor to the corresponding
output queue (q2, q3 and q4 for Stage 2, 3 and 4, respectively) and pop/copy the
new incoming upper triangular/trapezoid factor from the input queue q2/q3 for
Stage 3/Stage 4 to the stage state matrix. This process is repeated once per input
matrix and stage. We denote this pipeline version as Pipe-OMP-Seq.

While the pipeline stages of Pipe-OMP-Seq execute the tiled QR algorithm
in series, we have developed an improved version that executes the same algorithm
but in parallel. Specifically, this implementation builds a DAG using the OpenMP
task directive and the depend clause, which encapsulates the dependencies of each
QR factorization performed at the pipeline stages. Given the nested parallel nature
of this implementation, the OpenMP tasks executing the pipeline stages require
the directive taskgroup wrapping the QR subtasks. By doing so, the stage task
waits until the completion of all QR-related subtasks before processing the next

A pipeline structure for the block QR update in digital signal processing 7

1 #pragma omp parallel num_threads (5)
2 {
3 #pragma omp single nowait
4 { // Stage 1
5 #pragma omp task shared(gen ,g1,g2,g3)
6 { for (;;) {
7 auto mat = gen ();
8 g1.push(mat);
9 ...

10 if (!mat) break;
11 }
12 }
13 // Stage 2
14 #pragma omp task shared(ET ,qr,g1 ,q2)
15 { for (;;) {
16 auto mat = g1.pop();
17 if (!mat) break;
18 ET[0]. copy_rows (*mat , 1, 0, 1);
19 q2.push(qr(ET[0], 0));
20 ET[0]. copy_rows (*mat , 0, 0, 1);
21 }
22 }
23 // Stage 3
24 #pragma omp task shared(ET ,qr,g2 ,q3)
25 { ... }
26 // Stage 4
27 #pragma omp task shared(ET ,qr,g3 ,q4)
28 { ... }
29 // Output stage
30 #pragma omp task shared(q4 ,cons)
31 { ... }
32 #pragma omp taskwait
33 }
34 }

(a) OpenMP implementation.

int state [5] = {0,0,0,0,0};
parallel_execution_omp exec_omp{},
grppi:: pipeline(
exec_omp , // Execution mode
// Stage 1
[&]() -> optional <Matrix > {
if (state [0]++ < max_it * 2) {

return gen(state [0]);
else

return {};
},
// Stage 2
[&] (auto mat) {
switch (state [1]++ % 2) {
case 0:
ET[0]. copy_rows(mat , 1, 0, 1);
return mat;

case 1:
auto mat_aux= ET[0];
auto mat_qr= qr(ET[0], 0);
ET[0]. copy_rows(mat_aux , 0, 1, 1);
return mat_qr;

}
},
// Stage 3
[&] (auto mat)
{ ... },
// Stage 4
[&] (auto mat)
{ ... },
// Output stage
[&] (auto mat)
{ ... }

}

(b) GrPPI implementation.

Fig. 5 OpenMP and GrPPI implementations of the pipeline in Beamformer algorithm.

iteration with a new incoming matrix. We denote this pipeline implementation
as Pipe-OMP-Par.

4.2 The pattern-based implementation

The pattern-based implementation of the pipeline makes use of the GrPPI inter-
face, a parallel pattern interface for C++ applications [15]. Specifically, GrPPI
takes full advantage of modern C++ features, metaprogramming concepts, and
generic programming to act as a unified interface between the OpenMP, C++
threads and Intel TBB parallel programming models, hiding away the complexity
behind the use of native concurrency mechanisms. To propose an alternative ver-
sion of the algorithm presented in this paper, we take advantage of the GrPPI
pipeline pattern.

Listing 1 shows the GrPPI pipeline interface. As it can be seen, the interface
receives the execution policy (exec policy), which can be any of the supported
programming interfaces (OpenMP, ISO C++ threads, or Intel TBB), and the
functions (stages) related to the pipeline stages by universal reference (&&). The
C++ interface uses templates, making it more flexible and reusable for any data
type. Note also the use of C++11 variadic templates (...), allowing a pipeline to
have an arbitrary number of stages by receiving a collection of functions passed
as arguments. Depending on the chosen execution policy the pipeline performs
different actions. For the sake of simplicity, however, we limit the execution of the

8 Manel F. Dolz et al.

Listing 1 GrPPI pipeline interface.

template <typename E, typename ... S>
void pipeline(E exec_policy , S && ... stages);

Stage 1 Stage 2 Stage 3 Stage 4 Output Stage

mat ET[0] ET[1] ET[2] mat

State1 = 0 State2 = 0 State4 = 0State3 = 0

State2 = 1 State3 = 1 State4 = 1

Fig. 6 GrPPI pipeline implementation.

GrPPI pipeline to only OpenMP, where individual tasks are used to articulate
the pipeline stages.

For the development of this version, several modifications on the original
pipeline were adopted. Given that the DAG presented for Pipe-OMP-Seq in Fig. 4
does not exactly match the pipeline pattern, the original DAG was flattened into a
GrPPI pipeline. This flattening process led to bistate stages to mimic the behav-
ior of the OpenMP pipeline. The bistate stages of the pipeline proceed as depicted
in Fig 6 and in Listing 5(b). During the state 0, the set of ts rows (A) is prop-
agated along all pipeline stages. That is, Stage 1 reads the input set of ts rows,
computes its QR factorization and emits the upper triangular factor to Stage 2;
simultaneously, Stage 2 receives, copies (into its private matrix), and forwards the
upper triangular factor to Stage 3; the same occurs for Stages 3 and 4. During
state 1 the rest of operations are performed in Stages 2–4. These stages perform
the QR computation from its internal matrix state, copy the upper triangular/-
trapezoid factor received by argument from the previous stage, and return the
resulting factor to the next stage. For further analyses, we denote this implemen-
tation as Pipe-GrPPI-Seq.

Similar to the OpenMP implementation, which computes the QR tiled algo-
rithm at stage level using a task-parallel approach, we developed the analogous
for the GrPPI version. This design exploits parallelism using natively OpenMP
and the same mechanism presented in the previous subsection. We refer to this
implementation as Pipe-GrPPI-Par.

All in all, though this version required the transformation of the single-state
stages into bistate, the high-level of patterns interface provided by GrPPI sim-
plified the design of the application. For instance, different from the OpenMP
implementation, GrPPI interface hides away the communication queues used to
transfer items (matrices) between stages, and the main loops used in the pipeline
stages. Also, its compact design is capable of reducing the number of lines of code,
making it more robust due to the encapsulation of concurrency mechanisms.

5 Experimental results

In this section, we perform an experimental evaluation of the QR factorization
algorithm implemented utilizing the pipeline design, by using both the OpenMP

A pipeline structure for the block QR update in digital signal processing 9

and the GrPPI programming models. To carry out this evaluation, we used the
following hardware and software components:

– Target platform: The evaluation has been carried out on a server platform
equipped with 2× Intel Xeon Ivy Bridge E5-2695 v2 with a total of 24 cores
running at 2.70 GHz, 30 MB of L3 cache and 128 GB of DDR3 RAM. The OS
is a Linux Ubuntu 16.04.4 LTS with the kernel 4.4.0-109.

– Software: To evaluate the performance of the proposed OpenMP pipeline im-
plementations, we used the icc compiler v17.0.4 (Intel Parallel Studio XE
2018). Differently, for the pattern-based implementation, we used GrPPI v0.4s
along with the gcc GNU compiler v6.3.0, which supports C++17. In both ver-
sions, the -O3 was specified. The BLAS and LAPACK (sequential) kernels used
to compute the task-parallel tiled QR algorithm were those provided by Math
Kernel Library in the Intel Parallel Studio XE 2018.

In the following sections, we analyze the performance of the QR factorizations
and the pipeline throughput of both OpenMP and GrPPI versions computing the
QR factorizations in sequential and in parallel.

5.1 Evaluation of the pipeline with sequential stages

In a first step, we evaluate the pipeline implementations using the sequential QR
algorithm (Pipe-OMP-Seq and Pipe-GrPPI-Seq) with respect to a tiled algo-
rithm and the same with a jagged matrix. Table 1 shows a comparison in terms of
execution time for three different problem sizes with its respective tile size. The
basic computational kernels that work on any tile are blocking routines for which,
in all cases, the block size bs was fixed to 40 [4]. The column labeled as Rectangular
shows the execution time for the QR factorization with a tiled algorithm [14]. The
column labeled as Jagged shows the execution time required to obtain the QR fac-
torization of a matrix of the type shown in Fig. 1(b) with the algorithm presented
in [4]. The last column shows the time obtained with the pipeline proposed in this
work, i.e. this is the time to reduce a matrix of the form in Stage 4 at Step 2 in
Fig. 3 to upper triangular. Note that we evaluate the QR factorization performed
at Stage 4, as it is the largest one and acts as the pipeline bottleneck. It can be
seen that all the times obtained are coherent with the computations carried out.
The use of the pipeline allows to speed up the computation more than ×2 the
time for jagged matrices, and close to ×3 the time for the QR factorization of
rectangular matrices.

To extend this analysis, Fig. 7 shows the QR factorization execution time using
the tiled algorithm on rectangular and jagged matrices with different problem sizes
and number of threads. As it can be seen, the best time-to-solution is obtained
using 4 threads. Going beyond 4 threads does not bring any improvement given
the fixed matrix layout of 4×3 tiles, where, according the DAG, hardly more than
three tiles can be processed in parallel by individual threads.

5.2 Evaluation of the pipeline with parallel stages

In this section, we evaluate the execution time of the QR factorization performed
at Stage 4 and the throughput (matrices/s) of the Pipe-OMP-Par and Pipe-

10 Manel F. Dolz et al.

Table 1 Time in seconds to perform the QR factorization of a rectangular matrix, a jagged
matrix, and using the pipeline (at Stage 4) for different matrix sizes.

m× n Tile size Rectangular Jagged Pipe-OMP-Seq Pipe-GrPPI-Seq
1280× 960 320 0.074 s. 0.064 s. 0.023 s. 0.023 s.
2560× 1920 640 0.379 s. 0.307 s. 0.129 s. 0.117 s.
3840× 2880 960 1.184 s. 0.934 s. 0.363 s. 0.368 s.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Threads

Rectangular - 1280× 960
Rectangular - 2560× 1920
Rectangular - 3840× 2880

Jagged - 1280× 960
Jagged - 2560× 1920
Jagged - 3840× 2880

Fig. 7 QR factorization execution time using a tiled algorithm on rectangular and jagged
matrices with varying number of threads.

GrPPI-Par implementations with increasing number of threads, from 5 to 10.
Note that the use of 5 threads corresponds to the sequential version, as the pipeline
is composed of 5 stages and no additional threads are left for the parallel execution
of the QR factorization. Note as well the selected upper boundary of 10 threads;
this is given due to the fixed matrix layout of 4 × 3 tiles, allowing the QR tiled
algorithm to process only up to three tiles in parallel. As it can be seen in Fig. 8(a),
the QR execution time at Stage 4 remains almost constant regardless the number
of additional threads left for processing the QR subtasks. It is a bit noticeable
the execution time decrease for 7 threads in all problem sizes. This is because the
QR tiled algorithm at this stage can not leverage more than 2 threads; thus, if 5
threads are always dedicated to run the pipeline stages and more than 2 threads
bring no performance benefits, the best execution time is obtained with 7 threads.
In any case, if we compare these results with those shown in Figure 7, for the QR
factorization execution time using the tiled algorithm on rectangular and jagged
matrices, we can easily observe that pipeline-based algorithms always deliver better
speedups. Concretely, it reduces, at least, 50 % the execution time of both QR
factorizations on rectangular and jagged matrices for their best configuration using
4 threads.

On the other hand, Fig. 8(b) shows the pipeline throughput at the consumer
stage (Stage 5), i.e. the ratio of upper triangular factors (matrices) delivered per
second. As it can be seen, the figures are also almost constant w.r.t. the number
of threads. As it occurs for the QR execution time and the reasons mentioned
before, the best throughput is obtained when 7 threads are used. Furthermore, we
also notice a throughput slowdown for the GrPPI pipeline in all problem sizes.
We relate this slowdown to the modifications introduced into the application to
fit the DAG into a pipeline with bistate stages to match the GrPPI interface,
making slightly less efficient w.r.t. the OpenMP version. Although the slowdown

A pipeline structure for the block QR update in digital signal processing 11

is considerable, the GrPPI benefits of using high-level patterns, i.e. less lines-of-
code, better portability, and productivity, may pay off the use of the interface in
some cases.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 6 7 8 9 10

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Threads

OpenMP - 1280× 960
OpenMP - 2560× 1920
OpenMP - 3840× 2880

GrPPI - 1280× 960
GrPPI - 2560× 1920
GrPPI - 3840× 2880

(a) QR execution time at Stage 4.

0

5

10

15

20

25

30

35

40

5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(m

a
tr

ic
es

/
s)

Threads

OpenMP - 1280× 960
OpenMP - 2560× 1920
OpenMP - 3840× 2880

GrPPI - 1280× 960
GrPPI - 2560× 1920
GrPPI - 3840× 2880

(b) Pipeline throughput.

Fig. 8 QR factorization execution time at Stage 4 and total throughput of the Pipe-OMP-Par
and Pipe-GrPPI-Par implementations with varying number of threads.

6 Conclusions

The QR factorization of a rectangular matrix is a basic computational kernel very
used in many scientific applications. The application tackled in this paper, the
Beamformer problem, is defined by a rectangular matrix that changes quickly
(real-time) with a given set of input signals (of digital sound). The factorization
of this matrix, which is required to build the corresponding output signals, is the
most time-consuming task of those that are part of the Beamforming Algorithm,
and must be computed rapidly to keep the track of inputs. We have shown that
arranging the computational resources available in a computer system in a pipeline
structure allows reducing the execution time of this factorization.

The basic idea was defined as a special DAG, very close to a pipeline (quasi-
pipeline), that can be implemented with the OpenMP programming tool. In order
to use higher level programming tools, we flattened the former DAG or quasi-
pipeline to derive a real pipeline that can be easily implemented using GrPPI.
Comparing the performance obtained with the two tools we can consider that both
are almost at the same performance level.

The features of the physical system under test imposes a shape to the system
matrix unsuitable to be accelerated with parallelism, i.e. the degree of concurrency
is very low. We have shown that, with our pipeline, the number of threads that
can be exploited to improve performance and throughput can be higher.

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competi-
tiveness under MINECO and FEDER projects TIN2014-53495-R and TEC2015-
67387-C4-1-R.

12 Manel F. Dolz et al.

References

1. Yiteng Huang, Jacob Benesty, and Jingdong Chen. Acoustic MIMO Signal Processing
(Signals and Communication Technology). Springer-Verlag, Berlin, Heidelberg, 2006.

2. C. Ramiro, A.M. Vidal, and A. González. MIMOPack: A High Performance Computing
Library for MIMO communication systems. The Journal of Supercomputing, 71:751–760,
2015.

3. F.J Alventosa, P Alonso, G Piñero, and A.M. Vidal. Implementation of the beamformer
algorithm for the nvidia jetson. pages 201–211, Granada, Spain, 2016. Actas de la Con-
ferencia (ISBN 978-3-319-49955-0).

4. Fran J. Alventosa, Pedro Alonso, Antonio M. Vidal, Gema Piñero, and Enrique S.
Quintana-Ort́ı. Fast block qr update in digital signal processing. The Journal of Su-
percomputing, Mar 2018.

5. David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and José Daniel Garćıa. A
generic parallel pattern interface for stream and data processing. Concurrency and Com-
putation: Practice and Experience, 29(24), 2017.

6. Jacob Benesty, Jingdong Chen, Yiteng Huang, and Jacek Dmochowski. On microphone-
array beamforming from a MIMO acoustic signal processing perspective. IEEE Trans.
Audio, Speech & Language Processing, 15(3):1053–1065, 2007.

7. J Lorente, G Piñero, A.M. Vidal, J.A. Belloch, and A González. Parallel implementations
of Beamforming design and Filtering for Microphone Array Applications. In 19th European
Signal Processing Conference (EUSIPCO), pages 501–505, Barcelona, Spain, 2011.

8. J.A. Belloch, M. Ferrer, A. González, F.J. Mart́ınez-Zald́ıvar, and A.M. Vidal. Headphone-
based Virtual Spatialization of Sound with a GPU Accelerator. Journal of the Audio
Engineering Society, 61:546–561, 2013.

9. Jose A. Belloch, Alberto González, F. J. Mart́ınez-Zald́ıvar, and Antonio M. Vidal. Real-
time massive convolution for audio applications on GPU. The Journal of Supercomputing,
58(3):449–457, Dec 2011.

10. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 2013.

11. Brian C. Gunter and Robert A. van de Geijn. Parallel out-of-core computation and up-
dating the QR factorization. ACM Transactions on Mathematical Software, 31(1):60–78,
March 2005.

12. Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel
tiled linear algebra algorithms for multicore architectures. Parallel Computing, 35(1):38 –
53, 2009.

13. Manuel F. Dolz, Fran J. Alventosa, Pedro Alonso-Jordá, and Antonio M. Vidal. A pipeline
for the QR update in digital signal processing. In Proceedings of the 18th International
Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE 2018), pages 1–5, Rota, Cádiz, Spain, July 2018.

14. Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. Van De Geijn, Field G. Van
Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for thread-level paral-
lelism. ACM Trans. Math. Softw., 36(3):14:1–14:26, July 2009.

15. David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and J. Daniel Garćıa. A generic
parallel pattern interface for stream and data processing. Concurrency and Computation:
Practice and Experience, 29(24):e4175, 2017. e4175 cpe.4175.

