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Abstract: In this short communication, we report a new carbon material prepared from meta-linked
polyaniline that exhibits weak antiferromagnetic interactions at low temperature. The synthesis of
poly(meta-aniline), abbreviated as m-PANI, was conducted using the Ullmann reaction with the aid
of Cu+ as a catalyst in the presence of K2CO3. After the generation of radical cations by vapor-phase
doping with iodine, carbonization was performed to prepare carbon polyaniline (C-PANI), which
comprises condensed benzene rings. Analysis with a superconducting quantum interference device
revealed that the resultant carbon exhibits antiferromagnetism at low temperatures. The discovery of
this weak antiferromagnetic carbon may contribute to the development of carbon magnets.

Keywords: polymer magnet; polyaniline; antiferromagnetism; superconducting quantum
interference device

1. Introduction

Polymer magnetism has been intensively studied with the aim of obtaining polymer ferromagnets
that exhibit a ferromagnetic spin alignment. For example, the magnetic coupling of triplet phenylene
units was reported by Iwamura in 1989 [1]; the ferromagnetic behavior of pyrolyzed o-, m-, and
p-phenylenediamine and triazine derivatives was reported by Yoshino [2]; and Nishide et al. achieved
ferromagnetic spin alignment with 3,4‘-bis(diphenylamino)stilbene [3]. Ferromagnetic spin interactions
in polymeric aromatic amines have also been reported [4], and, in the field of high-spin polymers,
ferromagnetic coupling in hexaazacyclophane units has been reported [5]. Moreover, carbon magnets
have been widely studied by both experimental and theoretical techniques [6,7]. Finally, a combination
of organic and inorganic materials has been reported to show remarkable stability and a high-spin
quartet ground state [8].

Our research group has focused on the development of organic magnetic materials for a long
time. Accordingly, in the present study, we synthesized poly(meta-aniline) (m-PANI) as a carbon
precursor, which was subsequently carbonized in an inert atmosphere. The carbon obtained from
the polymer exhibits weak low-temperature antiferromagnetism. Although the obtained carbon may
exhibit spin interactions with the graphite structure, the full mechanism is currently unclear. In this
short report, we present the synthetic method for the preparation of weak antiferromagnetic carbon
and the superconducting quantum interference device (SQUID) analysis results as a contribution to
the development of carbon magnets.
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2. Materials and Methods

2.1. Synthesis

As shown in Figure 1, the Ullmann-type polycondensation between m-phenylenediamine and
tribromobenzene in nitrobenzene yielded m-PANI with a highly cross-linked two-dimensional
(2D) structure, according to a previously reported method [9,10]. First, equimolar amounts of
m-phenylenediamine and tribromobenzene were dissolved in nitrobenzene in the presence of a copper
iodide catalyst (see Table 1). The reaction was stirred for 2 days at 200 ◦C. The resultant black solution
was filtered, and the black powder was added to ca. 200 mL of ammonia/water solution to remove the
copper. The solution was then filtered again. The filtrate was then added to ca. 200 mL of water and
stirred for 24 h. After filtering, the filtrate was added to ca. 200 mL of methanol and stirred for 24 h
before filtering again. The black filtrate was dried under reduced pressure. During these processes,
care was taken to avoid contamination by Fe and Ni. Subsequently, vapor-phase iodine doping was
performed to generate radicals in the m-PANI. Then, carbonization of the resultant polymer was
performed at 1,000 ◦C under argon. The resultant material was labeled carbon polyaniline (C-PANI).
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Figure 1. Synthesis of polymers and carbon materials in these studies. All polymer structures are 
representative. poly(meta-aniline) (m-PANI): 2D poly(m-aniline) network; m-PANI-I: iodine-doped 
sample containing polarons (radical cations); carbon polyaniline (C-PANI): carbonized sample; 
C-PANI-doped: carbonized sample with iodine doping. 

 
 
 
 
 
 

Figure 1. Synthesis of polymers and carbon materials in these studies. All polymer structures are
representative. poly(meta-aniline) (m-PANI): 2D poly(m-aniline) network; m-PANI-I: iodine-doped
sample containing polarons (radical cations); carbon polyaniline (C-PANI): carbonized sample;
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Table 1. Materials and quantities used for synthesis of poly(meta-aniline) (m-PANI).

Compound Role Chemical Structure Quantity

m-Phenylenediamine Monomer
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2.2. Instruments

Magnetic susceptibility measurements of the polymer were carried out using a SQUID (Quantum
Design CA, Magnetic property measurement system, MPMS). Electron Spin Resonance (ESR)
measurements were conducted using a JES TE-200 spectrometer (JEOL, Tokyo, Japan) with 100 kHz
modulation (X-band). Infrared (IR) absorption spectra for the polymer samples were obtained with an
FT/IR-4600 spectrometer (JASCO, Tokyo, Japan) by the KBr method. Carbonization was carried out
with an MIT Lincoln Lab Gold furnace (MIT, Cambridge, MA, USA). Electron Probe Micro Analyzer
(EPMA) measurements for the samples were carried with a JEOL JXA-8530F Electron Probe Micro
Analyzer (JEOL, Tokyo, Japan).

3. Results

3.1. IR Spectra

Figure 2a shows the IR spectra of m-PANI and C-PANI. m-PANI presents N-H stretching at
3386 cm−1. The absorption band at 1591 cm−1 is assigned to the C=C stretching of the one-dimensional
(1D) quinonoid structures (Figure 2c) in the polymer. The absorption at 1485 cm−1 is due to C=C
stretching of the 1D or 2D benzenoid structures in the polymer. Three C-H out-of-plane bending
absorptions for the meta-linked polymer are observed at 790, 742, and 706 cm−1 (Figure 2b).
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The carbonized sample (C-PANI) shows an absorption band at 1582 cm−1 (Figure 2a).
This characteristic peak implies partial graphite formation inside the bulk sample. Another prominent
peak appears around 1233 cm−1. These results indicate that carbonization affords a graphitic structure.
As the carbon has no N-H bonds, no N-H stretching absorptions are observed. Thus, these results
confirm that C-PANI, which is a condensed ring structure consisting of benzene, is formed by the
complete carbonization of m-PANI-I. Figure 1 (bottom) shows a plausible structure of the carbon
comprising benzene structures.

Figure 3 displays Electron probe micro analyzer (EPMA) results for m-PANI (a) and C-PANI (b).
m-PANI as a sample of before carbonization consists of C, N, and O. However, C-PANI, as a carbonized
sample, has no nitrogen atom, indicating that the sample after carbonization has no pyridinic structure.

Condens. Matter 2019, 4, x 4 of 7 

 

2D benzenoid1D benzenoid

N

1D quinonoid

N N
H

 
(c) 

Figure 2. (a) Infrared (IR) absorption spectra of m-PANI-I and C-PANI. (b) Magnification of the 1100 to 550 
cm−1 region of the m-PANI-I spectrum. (c) The quinonoid and benzenoid structures in m-PANI. 

The carbonized sample (C-PANI) shows an absorption band at 1582 cm−1 (Figure 2a). This 
characteristic peak implies partial graphite formation inside the bulk sample. Another prominent 
peak appears around 1233 cm−1. These results indicate that carbonization affords a graphitic 
structure. As the carbon has no N-H bonds, no N-H stretching absorptions are observed. Thus, 
these results confirm that C-PANI, which is a condensed ring structure consisting of benzene, is 
formed by the complete carbonization of m-PANI-I. Figure 1 (bottom) shows a plausible structure 
of the carbon comprising benzene structures. 

Figure 3 displays Electron probe micro analyzer (EPMA) results for m-PANI (a) and C-PANI 
(b). m-PANI as a sample of before carbonization consists of C, N, and O. However, C-PANI, as a 
carbonized sample, has no nitrogen atom, indicating that the sample after carbonization has no 
pyridinic structure. 

  
keV keV 

  
(a)  (b) 

Figure 3. Electron probe micro analyzer (EPMA) results for m-PANI (a) and C-PANI (b). Scale bar = 10 m. 
Top: signals from atoms. Bottom: Scanning electron microscopy (SEM) images.  

3.2. Magnetic Measurement  

Figure 4 shows the ESR trace measured at 24 °C for m-PANI after iodine doping. Data points 
are 4096 in this measurement. Lorentz-type symmetric absorption is observed due to the radical 
cations on the N atoms. This demonstrates that the polymer has paramagnetic characteristics. 

Figure 3. Electron probe micro analyzer (EPMA) results for m-PANI (a) and C-PANI (b). Scale bar =
10 m. Top: signals from atoms. Bottom: Scanning electron microscopy (SEM) images.

3.2. Magnetic Measurement

Figure 4 shows the ESR trace measured at 24 ◦C for m-PANI after iodine doping. Data points are
4096 in this measurement. Lorentz-type symmetric absorption is observed due to the radical cations
on the N atoms. This demonstrates that the polymer has paramagnetic characteristics.

Figure 5 shows results of SQUID magnetometry measurements for C-PANI. The magnetic
susceptibility (χ) of C-PANI increases as the temperature decreases. The plot of 1/χ vs. T presents
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a linear decrease. This indicates that the Weiss temperature of C-PANI is −0.3 K due to weak
antiferromagnetic behavior at a low temperature. The values of χT in the Curie plot for C-PANI
decrease at a low temperature. This result confirms that C-PANI is antiferromagnetic.Condens. Matter 2019, 4, x 5 of 7 
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Even though high-vacuum treatment of the sample was performed before doping, the possibility
of residual oxygen in the sample may need to be considered further. Radical cations of the
graphite structure produced by iodine doping may interact by spin alignment to show partial
ferromagnetic-like behavior.

4. Discussion

m-PANI was prepared by the Ullmann polycondensation using Cu+ [9,10]. This reaction
affords a 2D-structured polymer constructed with amine linkages. Subsequent vapor-phase iodine
doping generates radicals. Radical generation in the polymer induces good carbonization activity.
Carbonization under argon yields a black powder. The resultant C-PANI contains graphite structures.
This carbon contains random defects in its graphite structure, which may exhibit antiferromagnetic
order. In this short communication, we have reported a new carbon prepared from m-PANI, which
exhibits weak antiferromagnetic interactions at low temperature. The meta-linkages in m-PANI may be
related to its high-spin state [14]. The meta-form of the precursor m-PANI used in this study may endow
a certain spin structure onto the resultant carbon. The structural and chemical dynamics in graphene
play a central role in magnetic functionality [15]. Iodine doping may produce ferromagnetic-like
interactions in the carbon sample. However, the reason for these interactions is unclear at the
present time.
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