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Re ́sume ́

La	 phosphorylation	 des	 protéines	 contribue	 de	 manière	 importante	 à	 la	

régulation	cellulaire.	Ainsi,	les	kinases	et	les	phosphatases	(KP)	sont	essentielles	à	la	

transduction	de	signal	dans	les	cellules.	Les	signaux	reçus	par	la	cellule	doivent	être	

transmis	efficacement	pour	garantir	l'obtention	d'une	réponse	adaptative	appropriée.	

Le	suivi	de	l'activité	de	phosphorylation	des	protéines	nous	aide	à	mieux	comprendre	

comment	 les	 cellules	 fonctionnent.	 Dans	 notre	 étude,	 nous	 avons	 exposé	

Saccharomyces	cerevisiae	à	une	osmolarité	élevée,	soit	0,4	M	de	NaCl,	ce	qui	a	provoqué	

un	 choc	 hyperosmotique.	 La	 phosphorylation	 des	 protéines	 a	 été	mesurée	 à	 l'aide	

d'une	technique	de	spectrométrie	de	masse	appelée	`’Marquage	en	culture	cellulaire	

avec	 des	 acides	 aminés	 dotés	 d’isotopes	 stables	 (SILAC)’.	 Il	 s'agit	 d'une	 technique	

quantitative	de	protéomique	qui	permet	de	comparer	des	cellules	exposées	au	choc	

hyperosmotique	 à	 un	 groupe	 contrôle	 où	 les	 cellules	 n’ont	 pas	 subi	 ce	 choc.	 Cette	

comparaison	 entre	 les	 deux	 groupes	 nous	 permet	 de	 déduire	 une	 régulation	

dynamique	 des	 protéines	 spécifique	 au	 stimulus	 appliqué.	Nous	 avons	utilisé	 deux	

échelles	de	temps,	la	première	inférieure	à	une	minute	et	la	seconde	de	30	minutes,	

pour	examiner	les	effets	du	choc	osmotique	chez	S.	cerevisiae.	

	

Dans	ce	mémoire,	j'ai	examiné	la	voie	métabolique	MAPK-Hog1	au	cours	de	la	

demi-heure	de	mesure	et	l'ai	comparée	aux	mesures	prises	lors	de	l’échelle	inférieure	

à	 la	 minute,	 laquelle	 ayant	 été	 publiée	 précédemment	 par	 Kanshin	 &	 Bergeron-

Sandoval	 et	 al.,	 2015	 [26].	 De	 plus,	 les	 données	 complètes	 contenaient	 161	

phosphopeptides	dynamiques	provenant	de	100	protéines	distinctes	présentes	 lors	

des	 deux	 échelles	 de	 temps.	 Les	 phosphopeptides	 dynamiques	 découverts	 furent	

également	 comparés	à	une	autre	étude	phosphoprotéomique	ayant	utilisé	 le	 stress	

froid	 /	 chaud	 comme	 stimulus	 (Kanshin	 et	 al.,	 2015	 [25]).	 Il	 y	 avait	 des	

chevauchements	 remarquables	 des	 phosphopeptides	 kinétiques	 observés	 lors	 des	

chocs	osmotiques	et	en	particulier	ceux	observés	lors	du	stress	thermique.	Cela	nous	

a	mené	à	examiner	la	possibilité	d'une	implication	de	TORC1	&	2	dans	le	processus	
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d'osmoadaptation.	De	plus,	les	cellules	arrêtent	temporairement	leur	cycle	cellulaire	

lors	de	ce	processus	d'osmoadaptation.	Conformément	à	cette	observation,	68%	des	

protéines	 impliquées	 dans	 la	 transition	 G1	 /	 S	 ont	 subi	 des	 modifications	 de	 la	

phosphorylation,	 lesquelles	 reflétant	 peut-être	 leur	 régulation,	 au	 cours	 des	 30	

premières	minutes	de	choc	osmotique.	

	

Les	kinases	et	les	phosphatases	sont	connues	pour	fortement	se	réguler	les	unes	

les	autres.	Un	réseau	de	KP	actives	interconnectées	a	révélé	que	Hog1	était	la	kinase	la	

plus	connectée	dans	les	mesures	à	l’échelle	de	temps	inférieure	à	la	minute	alors	que	

Cdc28	était	 la	plus	 connectée	 lors	de	 l’échelle	de	 temps	d’une	demi-heure.	Cela	est	

indicatif	du	mécanisme	par	lequel	les	cellules	s'adaptent	à	une	osmolarité	élevée.	Par	

exemple,	Hog1	est	responsable	de	la	détection	rapide	et	de	l’adaptation,	et	Cdc28,	de	

l’arrêt	et	de	la	régulation	du	cycle	cellulaire.	

	

En	 résumé,	 j'ai	 soutenu	 qu'il	 était	 possible	 d'identifier	 des	 phosphopeptides	

dynamiques	spécifiques	à	un	stimulus	dans	l’échelle	de	temps	d'une	demi-heure.	J'ai	

comparé	les	phosphopeptides	dynamiques	de	l'échelle	de	temps	inférieure	à	la	minute	

à	l'échelle	de	30	minutes	et	j'ai	examiné	les	processus	biologiques	qui	jouent	un	rôle	

dans	le	processus	d'osmoadaptif.	

	

Mots-clés:	 phosphosites fonctionnels, re ́seau des kinases-phosphatases, 
Saccharomyces cerevisiae, structure hie ́rarchique des re ́seaux, cycle cellulaire, 
osmoadaptif, cible de la rapamycine chez les mammifères, système des MAP kinases.  
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Abstract  
Protein phosphorylation is an important cellular regulatory mechanism. Kinases and 

phosphatases (KP) are vital for the signalling transductions in cells. Signals received by the 
cell must be transmitted effectively to ensure an appropriate adaptive response is achieved. 
Monitoring the phosphorylation activity on proteins helps us gain a better understanding to 
how cells work. In our study we have exposed Saccharomyces cerevisiae to high 
osmolarity using 0.4M NaCl, and caused a hyper osmotic shock. Protein phosphorylation 
was measured using a mass spectrometry technique called Stable Isotope Labeling by/with 
Amino acids in Cell culture (SILAC). This is a quantitative proteomic technique that allows 
the comparison between cells that are exposed to NaCl and a control group, where cells 
are not exposed to NaCl. This comparison between the two groups allows us to deduce 
dynamic regulation of proteins specific to the stimulus applied. We have used a sub-minute 
and a half-hour timescales to examine the effects of osmotic shock in S. cerevisiae.  

 
 In this memoir, I have examined the MAPK-Hog1 pathway during the half-hour 
timescale and have compared it to the sub-minute timescale, which was previously 
published in Kanshin & Bergeron-Sandoval et al., 2015 [26]. Moreover, the entire data had 
161 dynamic phosphopeptide from 100 unique proteins that were present on both 
timescales. Dynamic phosphopeptides were also compared to another phosphoproteomic 
study that had used cold/hot stress as a stimulus (Kanshin et al., 2015 [25]). There were 
remarkable overlaps between osmotic shock and in particular heat stress. This led us to 
examine the possibility that TORC1&2 involvement in the osmoadaptation process. 
Furthermore, cells temporarily stop cell cycling during the osmoadaptation process. 
Consistent with this observation, 68% of the proteins involved in the G1/S transition 
underwent changes in phosphorylation, perhaps reflecting their regulation, during the first 
30 minutes of osmotic shock. 
 

Kinases and phosphatases are known to heavily regulate themselves. A network of 
interconnected active KPs revealed Hog1 to be the most connected kinase in the sub-
minute timescale, and Cdc28 to be the most connected in the half-hour timescale. This is 
indicative of how cells adapt to high osmolarity; Hog1 being responsible for the fast sensing 
and adaptation, and Cdc28 for stopping and regulating the cell cycle. 

 
In summary, I have argued that it is possible to extract dynamic phosphopeptides 

that are stimulus-specific within the half-hour timescale. I have compared dynamic 
phosphopeptides from the sub-minute timescale to the half-hour timescale and have 
examined biological processes that play a part in the osmoadaptive process.  

 
Keywords: dynamic phosphorylation, kinase-phosphatase network, Saccharomyces 
cerevisiae, network hierarchical structure, cell cycle, osmoadaptation,  mammalian target 
of rapamycin, mitogen-activated protein kinase 
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1 Introduction  
 Earth provides an ever-fluctuating environment for organisms that inhabit it. Nutrition, 

temperature, pH, salinity are environmental properties that constantly change and force 
organisms to either adapt or perish. Yeast cells are single-cell organisms that live freely in 

nature that have a remarkable capacity for adaptation. Adaptation is a fundamental feature 
for survival. Mechanisms involved in adaptation include sensing external changes, which 

in turn trigger cellular response mechanisms that help cells cope with these environmental 
challenges. Yeast response mechanisms to the extracellular changes often begin at the 

plasma membrane, where there are sensors that detect stimuli. Through dedicated 
signalling pathway, the signal is then relayed within the cell, resulting in an adaptive 

response. The cellular response to stress generally increases overall cellular fitness, 

growth and proliferation. 
 Broadly, a stress is any stimulus that disrupts cellular homeostasis. For cells to 

respond to stress swiftly and adequately there are few key signalling features. Some of 
these include: signal fidelity, redundant or alternative pathways involved in the relay of the 

signal, and in some cases, robustness in response, which is a consequence of feedback 
mechanisms that integrate signals. Phosphorylation kinetics obtained by mass spectral 

analysis combined with readily available protein-protein interaction data are crucial for 
elucidating some of the triggered pathways in the osmoadaptation of Saccharomyces 

cerevisiae (budding yeast). 
 

1.1 Osmotic homeostasis and water 

 For all eukaryotic cells one critical physical parameter that requires regulation, that is 
crucial for optimal biochemical reactions, is the ratio between available and bound water 

within the cell [1]. Water activity is the measure of available water. In regards to the level 
of available water in the cytosol, there are two extreme cases. First, a sudden increase in 

intracellular water activity, which results in the increase of cell size, known as hypo-osmotic 
shock. Second, the sudden decrease in intracellular water activity, which results in the 

shrinkage of cell size that is known as hyper-osmotic stress.  
 

 During a hypo-osmotic shock a force is generated due to the decreased cytoplasmic 
water potential, which in turn drives extracellular water into the cytosol. This force is 
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counteracted with the increase of cellular turgor pressure caused by the entered water. 

Cells sense the excess of turgor pressure and reduce it by an aquaglyceroporin Fps1, a 
transmembrane protein, that acts like a valve expelling intracellular glycerol [2]. In the case 

of hyper-osmotic shock, the water activity in the cytosol is higher than its surrounding; an 
outward force is generated due to the decreased water potential of the extracellular 

environment, pushing the water out from the cell. Cells sense the loss of water and they 
adapt to this change by synthesizing cytosolic glycerol. This increases intercellular turgor 

pressure and reduces intracellular water potential due to the increase in osmolytes. The 
reduced water potential results in drawing back some of the water from the extracellular 

space. In addition, Fps1 is activated to fine balance intracellular turgor pressure. Cells that 
have adapted can resume growing and proliferating [1]. 

 

 For example, yeast cells growing on grapes could suddenly be exposed to high sugar 
levels as grape ruptures due to external forces. As a result, these cells experience a 

hyperosmotic shock, causing a rapid outflow of water leading a cell to shrink. Or the 
opposite may occur; cells cohabiting on a drying grape could suddenly be drenched in a 

rain shower that results in a hypo-osmotic shock. This causes a rapid influx of water into 
the cytosol leading the cell to swell, and hence this also increases turgor pressure. These 

two cases can be so extreme that a yeast cell may end up relying on its cell wall to prevent 
it from bursting [1].  In addition to this, there is yet another process where a stress similar 

to osmotic shock can be triggered. In the production of some beer and wine fermentations, 
the ethanol concentration can reach up to 20% of the volume. This ethanol permeates back 

into cells affecting the hydration of biomolecules, resulting in a water stress that is similar 

to hyperosmotic shock [3][4]. As a result, yeast cells need to be resilient to fluctuating 
environmental conditions. 

 
 The initial interest in elucidating the molecular mechanisms of yeast osmoadaptation 

was a result of wanting to improve the performance of yeast strains in various applications 
in industry. In addition to the fermentation industry, another particular interest was to 

improve food preservation through dehydration by inducing a low water activity in yeast 
cells. However, in 1993, this research field gained a wider scientific interest with the 

discovery of a mitogen-activated protein kinase (MAP kinase) cascade. This is a conserved 

eukaryotic signalling transduction module that is present from fungi to humans [5][6]. 
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1.2 The high osmolarity glycerol pathway (HOG) 
 Cells use signal transduction pathways to detect and respond to changes in 

environmental conditions. These environmental changes are constantly sensed and 
evaluated by the Mitogen Activated Protein Kinase (MAPK) signalling module. This module 

consists of three sequential kinases: a MAPK Kinase Kinase (MAPKKK), MAPK Kinase 
(MAPKK) and MAPK [7]. Budding yeast is able to recognize and respond to its environment 

through five functionally distinct MAP kinases pathways: the cell wall integrity pathway 
(CWI), two osmoregulation pathways, the pheromone response pathway, the filamentation 

pathway, and the sporulation-meiosis pathway [6]. Each of these pathways have their 
unique MAPK, MAPKK and MAPKKK. The MAPK components for each pathway have a 

high degree of homology with each other. It is thought that this homology arose by gene 

duplication events early in eukaryotic evolutionary biology. These pathways can also 
control cell fate decision depending on nutrition, pheromone conditions and general stress 

levels. 

 In the case of high extracellular osmolarity there are two distinct pathways that 

converge on the MAPKK Pbs1, that in turn activate the MAPK Hog1. Phosphorylation of 
Hog1 at residues T174 and Y176 activate it and causes it to translocate to the nucleus. 

This translocation activates transcription factors triggering the cellular osmoadaptation 
process [8],[9],[10],[11]. These residues are within the TGY motif, which is conserved from 

yeast to humans. Upstream of Hog1, the MAPKK Pbs1 is regulated at residues S514 and 
T518, by Ste11 and Ssk2/Ssk22, which belong to two different osmosensor branches.  

Signals from the membrane originate and reach Hog1 via two distinct osmosensor 

branches. These branches are called the Sho1 branch, and the Sln1 branch. The Sln1 
branch is a sub-branch that was first known in prokaryotes [12]. Sln1 is essential for yeast 

homeostasis and its deletion, SLN1, causes cells to be inviable [13]. Sln1 is a 
transmembrane histidine phosphotransfer kinase that is active under iso-osmotic 

conditions and inactive upon hyperosmotic shock. It contains an extracellular sensor 
domain and an intercellular histidine kinase domain that auto phosphorylates itself at 

residue H576. This phosphate is then transferred to residue D1144 on Sln1 and is then 
relayed to residue H64 on an intermediate sensor protein Ypd1. Ypd1 then transfers the 

phosphate to Ssk1 at residue D554. This D554 phosphorylation prevents it from interacting 



	

4	

with the MAPKKK, Ssk2/Ssk22. This kind of phosphorylation is referred to as two-

component signalling machinery, and it does not involve serine/threonine/tyrosine 
phosphorylation  (Figure 1) [14]. 

 

 
Figure 1: The schematic model and the layout of the high osmolarity glycerol 
pathway in S. cerevisiae. 
(A) The schematic represents the direction of the pathway responding to high osmolarity, 
which results in Hog1 translocating to the nucleus activating transcription factors. Red 
indicates the MAP kinase module, green indicates the Sln1 branch, blue indicates the Sho1 
branch, and grey indicates the phosphatases that act on Hog1. (B) Layout of the membrane 
associated complex. This complex has adapter proteins Sho1, Cdc42 and Ste50, and 
scaffold proteins Pbs2, Ste11 and Hog1 (adapted from Brewster et al., 2014 [15]).  
 
 In contrast to the Sln1 branch, the Sho1 branch solely relies on 

serine/threonine/tyrosine phosphorylation. Besides functioning as an osmosensor, it also 
serves as a critical MAPK signalling adaptor linking the cell wall to MAPK (Figure 1B). Sho1 

recruits proteins necessary for MAPKKK Ste11 phosphorylation and activation. There are 
two Sho1 sub-branches that each have their own osmosensor. The two mucin-like 

transmembrane osmosensors are the Msb2 and Hkr1. These osmosensors can each 
activate Ste11 through Sho1, but have distinct pathways. The activated Msb2 interacts with 

Bem1, that in turn recruits Ste20 to the membrane. In contrast the Hrk2 pathway does not 

require Bem1. Following hyperosmotic stress Pbs2 is recruited to the membrane, carrying 
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along Ste11 that in turn interacts with Ste20 and Cla4 [16]. Phosphorylation of Ste11 by 

either Ste20 or Cla4, activate Ste11, which together with Ssk2/Ssk22 phosphorylate the 
MAPKK Pbs2. Pbs2 in turn phosphorylates and activates the MAP kinase of the pathway, 

Hog1 (Figure 2). Interestingly, even though both of these osmoadaptation branches 
ultimately converge on Hog1, cells can still survive high osmotic shock upon its deletion 

[17]. This suggests that there may be redundancies in yeast osmoadaptation process. 
 

1.3 Synthesis of glycerol during osmoadaptation  
 

 High extracellular osmolarity affects the expression of hundreds of genes [15]. This 
begins with phosphorylated Hog1 translocating and accumulating in the nucleus. Some of 

the well-known transcription factors regulated by Hog1, in the nucleus, are Hot1, Msn1, 

Sko1, Msn2 and Msn4 (Msn2/4). The genes GPD1 and GPP2, which encode for enzymes 
involved in the glycerol biosynthesis —a hallmark of osmoadaptation— are activated by the 

transcription factor Hot1 [18], [19].  

 

 Recent genetic profiling has revealed an overlap of hundreds of genes that are 
upregulated in response to osmotic shock and other stresses [20]. These common genes, 

which are involved in various kinds of stress responses are called stress responsive 
element (STRE) [21]. Similar to osmoadaptive response, the activation of STRE is triggered 

by two homologous zinc finger activators, Msn2/4. These activators bind to a conserved 
STRE, at 5′-CCCCT-3′, located in the promoters of these genes [22]. Under homeostasis 

conditions the activators Msn2/4 are mostly localized in the cytosol. In addition to the 
master regulator Hog1, an AGC kinase Sch9 is reported to also regulate Msn2/4 [23]. When 

cells undergo a hot/cold stress or osmotic stress, hyperphosphorylated Msn2/4 

translocates to the nucleus, in a process controlled by the cyclic AMP (cAMP)-dependent 
protein kinase A (PKA) [24]. Interestingly, a phosphoproteome study on budding yeast 

investigated the regulated phosphopeptides as cells were exposed to hot/cold stress. This 
study concluded the involvement of the target of rapamycin complex1 (TORC1), and its 

substrate Sch9 and thereby PKA in the upregulation of STRE genes (Kanshin et al., 2015, 
[25]).  

 
 For cells to survive high osmolarity, another imperative feature besides the actual 
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glycerol synthesis, is to keep synthesized glycerol within the cell. The accumulation of 

glycerol is ensured by the closure of the transmembrane aquaglyceroporin Fps1 [15]. The 
mechanism of Fps1 function was described in detail in Kanshin & Bergeron-Sandoval et 

al., 2015 [26]. In summary, Hog1 phosphorylation of the regulator glycerol channel 1 and 2 
(Rgc1 and Rgc2) causes their release from Fps1, which leads to the closure of Fps1 [27]. 

Despite this, Hog1 is not an essential gene. Remarkably HOG1Δ cells are able to proliferate 

when exposed to 0.2M NaCl, just like their WT counterpart [28][29][30]. At high osmolarity, 

0.4M NaCl, HOG1Δ cells stop proliferating, but do not die [12][30][29]. It is not fully clear 

how cells are able to tolerate high osmolarity stress. However, a series of recent studies 

have indicated an involvement of target of rapamycin (TOR) via Ypk1 in the regulation of 

glycerol synthesis and Fps1 activity. More specifically, due to high osmolarity, inactivation 
of TORC2-dependent effector kinase Ypk1 leads to de-phosphorylation of Gpd1. This 

accelerates cell recovery through increased glycerol production [31][32]. Intriguingly, Fps1 
is also an authentic substrate of TORC2-Ypk1. It was shown that the TORC2-Ypk1 complex 

regulates the extent to which the Fps1 channel lets out excess glycerol, which is a vital part 
of osmoadaptation [33]. These data make TOR a central player in cellular osmoadaptation.  

 
1.4 Osmotic shock causes Hog1 to translocate to nucleus leading to a temporary cell 

cycle arrest 

 How cells perturb their growth machinery in order to survive high osmolarity is an 
active field of study. Cellular response to osmotic shock starts as soon as available water 

(opposed to bound water) in cytosol is lost to the extracellular space. Hog1 translocates to 
the nucleus within 1-5 minutes and remains in the nucleus over a period of 20 minutes 

(Figure 2B). After 72 minutes of exposure to high osmolarity, Hog1 totally returns back to 
the nucleus and cycle resumes. The new cellular state allows cells to proceed with cell 

cycle even under the osmotic pressure, Figure 2A [34]. With regard to how cells adapt to 
osmotic shock depends on which phase of the cell cycle a cell is as it is exposed to high 

osmolarity. The cell cycle can be divided in four phases in the following order: G1, S, G2 
and M.  
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Figure 2: High osmolarity affects cell cycle, cell size and Hog1 nuclear localization. 
(A) Cells that are trapped in a microfluidic device. Osmotic shock is applied using a step 
function, using 1M sorbitol. Hyperosmotic shock results in shrinkage of cellular volume, 
translocation of Hog1 to the nucleus, and cells arrest is seen almost instantly. (B) The 
reduction in volume and Hog1 to translocation occurs almost simultaneously. Recovery of 
the cell volume and the amount of nuclear Hog1 relocating to the cytosol completes after 
30 minutes. After 72 minutes cells then resume cell cycle. Cell number: n=356, the three 
single-cell traces are selected randomly. (This figure was adapted from Granados et al., 
2017 [34]) 
 
Different pathways are likely to be involved for temporarily arresting the cell cycle. For 

example, Hog1, that is localized in the nucleus, probably will have different substrates that 

in turn prevent cells from passing the G1/S checkpoint, compared to the G2/M checkpoint 
or spindle checkpoint [10]. Thus, cells will likely have heterogeneous responses to high 

osmolarity, which is to some extent contrary to the finding of STRE genes previously 
covered.  

 The G1 phase of the yeast cell cycle is the phase between the end of the previous 
mitosis until the beginning of DNA synthesis. This phase is the longest part of the cell cycle 

in budding yeast; it is approximately 2.5 times longer than the rest of the cell cycle [35]. 
Between the G1 and the S phase exists a checkpoint that ensures a cell-size threshold is 

exceeded, and furthermore, cells are able to assess whether environmental conditions are 

suitable to proceed to the S phase [36]. It is already reported that osmotic stress delays G1 
phase and thus cell cycle entry [37], in a Hog1 dependent manner, but the molecular 
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mechanisms of how this is achieved are not fully understood.  

 The G1/S checkpoint hinges on regulation of two heterodimeric transcription factors: 
SCB-binding factor (SBF) and MCB-binding factor (MBF) [38][39]. SBF regulates the genes 

that code for G1 specific proteins. SBFs DNA binding component is Swi4 [40]. Due to the 
binding of a transcriptional repressor Whi5 to SBF, the upregulation of G1 specific genes 

are inhibited, until the G1/S checkpoint [41]. The release of Whi5 occurs upon its 
phosphorylation by a complex consisting of a kinase Cdc28 and its activating cyclin protein 

Cln3 [42]. However, it should be noted that this model has known redundancies 
[43][44][45][46]. In section 3.4, some of the phosphosites that could be implicated in this 

process are studied and explained.  

1.5 Functional and promiscuous phosphorylation 

 With the advent of sensitive mass spectrometry (MS) and affinity media, for 

phosphopeptide enrichment, proteome-wide phosphoproteomic studies were suddenly 
possible requiring only a very small sample size. This was a significant breakthrough as 

phosphorylation is one of the most prevalent post-translational modifications. Many 
biological functions depend on phosphorylation and de-phosphorylation, which ensure cell 

homeostasis and stress adaptation. Phosphorylation is a covalent reaction by which a 
kinase enzyme catalyzes and transfers a phosphate group from adenosine triphosphate 

(ATP) (or guanosine triphosphate) to usually serine (S), threonine (T) or tyrosine (Y), or 
less typically histidine (H), arginine (R) and lysine (K), like in the two-component system 

seen in the Sln1 branch part of the cellular osmosensor (Section 1.2) [47]. 
Dephosphorylation is the opposite, by which a phosphatase catalyzes the transfer of a 

phosphate group away from an amino acid residue to a water molecule. Mass spectrometry 

studies have raised the possibility that most protein phosphorylations are 

inconsequential in terms beneficial phenotypes [48][49]. However, it should be noted that 
these phosphorylations can pick up significance with other additional mutations that can 

occur over an evolutionary significant time scale [50]. In addition, with the current state of 
the art technology, it is still too early to state that every protein phosphorylations in S. 

Cerevisiae has been discovered. Mass spectral data is only capable of showing protein 
phosphorylation. It does not indicate any information whether a site on a protein can not be 

phosphorylated. 
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 Phosphorylation in yeast and humans happens on a massive scale regardless of 
whether it is functional or not. The total number of enzymes that have a kinase or a 

phosphatase function, is 644 in humans [51] and 159 in budding yeast (yeastkinome.org). 
If we assume that each enzyme has a dozen interaction partners, it becomes evident that 

this would result in a very complex network. In addition, when off target phosphorylation 
(promiscuous phosphorylation) are taken into account, the network becomes even more 

complex [52][50], so much so that the kinase-phosphatase (KP) networks could in fact be 
irreducibly complex [53][54]. A recent study has estimated that KP’s could 

phosphorylate/dephosphorylate as much as 60% of all budding yeast proteins [55].  
 

 To address the complex nature of kinase and phosphatase network and to give a 

rational insight, some studies have opted for in silico analysis. These studies use elegant 
assumptions and criteria that in turn systematically attempt to capture functional 

interactions from those that are not. Some of these criteria are the following: functional 
phosphosites occur in less abundant proteins, functional phosphosites are sequence-wise 

more conserved, functional phosphosites have higher phosphorylation stoichiometry, and 
phosphosites with known function evolve slower [52][49][56][57][58][59]. However, these 

criteria are not perfect and their validity will be more clear over time [60]. In parallel to this, 
with already gained in vivo knowledge, significant effort has been made to map the kinase-

phosphatase network [53][61][62][63]. These in silico analyses, and in vivo studies, 
together with data from high throughput mass spectral analysis will over time give a better 

picture to the already well-studied kinase and phosphatase networks.  

 
1.6 Hierarchical structure of kinase and phosphatase networks  

 Networks can relay complex interaction information visually by nodes and edges that 
connect them. Some prominent examples of networks are the World Wide Web, citation 

relationships and biological processes. Networks are made of nodes and edges. Nodes 
can be proteins in the scope of our interest, and edges reflect the relation between the 

proteins. A network can be divided into two depending on the properties of its edges. In a 
directed network, there is directionality; like an enzyme and its substrate, where as an 

undirected network has no directionality information. When a directed network is made up 

of edges that are asymmetrical, it consequently generates a hierarchical network structure. 
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This in turn can result in network layers such as top, core and bottom, depending on the 

nature of the network [64]. 

 One recent hierarchical network that illustrates the KP network was recently curated 

by a former colleague, Abd-Rabbo & Michnick, 2017 [65]. The topological network structure 
seems to resemble a bow-tie shape, and is made out of 3 layers (bottom, core and top), 

reflecting different biological properties (Figure 3). To associate biological roles with these 
three layers a Gene Ontology enrichment and depletion analysis was utilized, Abd-Rabbo  

& Michnick, 2017 [65]. The postulated biological functions associated with each layer are 
the following. The top layer is enriched with proteins with high abundance, and low noise 

(a concept defined in Newman et al., 2006 [66] that uses the coefficient of variation (CV) of 
protein abundance (the ratio between the protein standard deviation to its mean 

abundance) ), which are thought to play a role with the fidelity of the biological signals. The 

core is enriched with proteins that are associated with scaffolds, take part in cell cycle and 
organization, and are localized to a sub-cellular compartment such as the bud neck. The 

nodes that make up this layer are more connected than the other two layers, and it forms 
a bottleneck within a bow-tie structure, which in turn suggests a decision-making quality 

and signal integrity within the core layer. And lastly, the bottom layer is enriched with few 
GO terms which suggests that these proteins are less specialized compared to those in the 

other layer. 
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Figure 3: The architecture of the kinase and phosphatase network. 
The general architecture of 101 of kinase and 31	phosphatase (covering 77%) can 
be evaluated as a bow-tie. The core level is classified as a strongly connected 
component, later the top level was formed as the layer that regulates the core layer, 
and lastly, the bottom layer was formed and is the layer that the top and core layer 
regulates. The direct interaction number that are not KPs are 484, which are mostly 
KP substrates (adapted from Abd-Rabbo & Michnick , 2017 [65]).  
 
 This network reflects our current knowledge of what we know about kinases and 

phosphatase, but it is not perfect. This is because our knowledge is not complete: 

phosphatases are not as well studied as kinases, nonspecific phosphorylation of kinases 
cause false positive results, and a significant portion of our existing interaction network 

comes from protein-protein interactions, genes deletion, and genetic interaction assays, 
which in turn create fundamental problems such as causality as directionality between 

nodes are not always clear [62][54]. Despite this, these networks are also a valuable source 
for connecting ideas and biological interactions.  
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 1.7. Investigating kinase-phosphatase networks using mass spectrometry  

1.7.1 Mass spectroscopy and SILAC 

 Mass spectroscopy-based proteomics is an indispensable tool of choice when it 

comes to quantifying and identifying large-scale protein phosphorylation [67][68]. There are 
3 main components to a mass spectroscope (MS): an ionizer, an analyzer to separate 

fragmented peptides, and a detector that measures these peptides that have a certain 
mass-to-charge (m/z) value. The peptides are created by digesting the entire protein soup 

using an enzyme called trypsin. This protease cleaves proteins by hydrolyzing peptide 
bonds at sites adjacent to arginine or lysine residues.  

 Electrospray ionization (ESI) is a technique used in mass spectrometry that produces 
ions for their eventual detection [68]. The ionization process occurs when macromolecules 

in a solution pass through a vacuum capillary. These capillaries are electrically heated and 

with the application of a large potential difference the sample is dispersed into fine aerosols 
(3-10 nm). Water-based solvent evaporates and gas-phase ions are produced. These ions 

are later sent into the mass analyzer with a carrier gas [69].  

 The ions created are then directed to the mass analyzer. To redirect and trap these 

charged peptides, magnetic and static fields are utilized [70]. One such devise is the 
Orbitrap. It has an outer and an inner barrel electrode that traps ionized peptides within a 

circularly confined space [71]. These ions oscillate axially depending on the peptide mass-
to-charge ratio (m/z), resulting in their separation. The image current on the outer 

electrodes, induced by ion axial motion, is measured as a time domain transient and then 
fast Fourier-transformed to produce a frequency spectrum, converting analog information 

to digital information [72]. These frequencies are then converted to m/z spectra. This 

process is repeated many times until the entire sample is processed. The peptide coverage 
of the sample can further be enhanced by coupling a linear ion trap (LTQ) that efficiently 

stores a large batch of charged peptides. The stored charged peptides are then injected 
into Orbitrap in numerous smaller batches over time.  

 One other key experimental setup is a liquid chromatography (LC) [73]. This step 
restricts the diversity of peptides simultaneously sent to the MS. By controlling the elution 

step on the nano-column, it is possible to control the size and quantity of the peptides that 
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are sent to MS. This is because peptide affinity strength (i.e. due to hydrophobic or 

electrostatic interaction) is determined by the amino acids that constitute a peptide and 
peptide length.   

 Once all the sample is processed by MS the extracted m/z spectra are stored for 
identification. Programs such as MaxQuant create libraries specific to digestion used for 

the experiment. Each spectrum is then compared to expected peptides and identified. The 
small differences in mass between the actual measurement and expected mass are then 

further analyzed to determine the post-translational modification specific to each peptide. 
Compiling all the deduced post-translational modification specific to unique peptides 

enables us to understand which proteins are regulated by post-translational modifications 
specific to an experiment.  

 Differential analyses are experiments where an experimental condition is compared 

to a control group lacking that condition. One MS experimental technique used for 
differential analysis is Stable Isotope Labeling with Amino acids in Cell culture (SILAC) [74]. 

This is a reliable way for detecting stimuli specific post-translational protein modifications. 
To perform a SILAC experiment, a sample of cells is grown in a medium containing amino 

acids composed of natural abundant isotopes (e.g. 12C/14N), and the second sample is 
grown in amino acids labeled with stable heavy isotopes (13C and/or 15N labeled arginine 

and/or lysine). By virtue of what is present in the culture media, cells that are lacking 
enzymes for the synthesis of arginine and/or lysine, will eventually incorporate amino acids 

with isotopes (13C or 15N) in all newly synthesized proteins. Thus, by associating an 
experimental condition to peptides with heavy isotopes it becomes possible to make 

differential analysis. These peptides are prepared in the following order: cell lysis, protein 

extraction, enzymatic digestion and phosphopeptide isolation, which are described 
separately in the Method Section 2.3, 2.4. 2.5, and 2.6.   

 

1.7.2 Phospho-kinetic profiles of kinases and phosphatases in sub-minute and half-

hour timescales, in response to osmotic shock 

 To elucidate phosphosites that are regulated over time, budding yeast was first 

exposed to high osmolarity using 0.4 M NaCl. Control cells were grown in light isotope, and 
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cells exposed to NaCl were grown using culture that had heavy isotopes of arginine and 

lysine. Two different timescales were used: 60-second exposure to osmotic shock (same 
data as in Kanshin & Bergeron-Sandoval , et al., 2015 [26]), and 33-minute exposure to 

osmotic shock. In short, these will be referred to as the 60-second response study and 33-
minute response study. As a result of these studies both regulated (phosphorylated) and 

non-regulated (not phosphorylated) phosphopeptides were measured. The general aim 
was to first distinguish between regulated and unregulated phosphopeptides, and then 

extract biological significances.   

1.8 Research project 

 My memoire recapitulates some of the essential results generated in the paper, “A 
Cell-Signalling Network Temporally Resolves Specific versus Promiscuous 

Phosphorylation,” Kanshin & Bergeron-Sandoval et al., 2015 [26], where I contributed to 

the analysis of the data and became a second author. The paper investigates budding 
yeast proteins with dynamic phosphosites (regulated proteins) in response to high 

osmolarity (0.4 M NaCl), over a time period of 0-60 seconds. The second part includes the 
dynamic phosphosites extracted from 0-33 minute data, which was not included in this 

paper, nor analyzed.  
 

1.8.1 Problem and hypothesis  
 

 Finding functional kinases and phosphatases that play an active role in 
osmoadaptation in S. cerevisiae is still an ongoing research field. Much is known in terms 

of the proteins that take a part in the sensing of extracellular osmolarity, and how the HOG-

MAPK pathway relays these signals downstream for the osmoadaptation. However, until 
recently (Kanshin & Bergeron-Sandoval et la., 2015 [26]) proteome-wide kinetics of 

phosphopeptides during osmoadaptation was not studied. The was because the advent of 
sensitive mass spectrometry (MS) and affinity media for phosphopeptide enrichment was 

only possible with leaps made in MS during late 1980s and the discovery of SILAC 
technique in the early 2000s [69][74]. The phosphorylation dynamics could fill some of the 

gaps present in our understating of how signalling works during osmoadaptation. 
 Early on in the research project, it was hypothesized that functional interactions 
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between KPs and their substrates were postulated to be more optimized when compared 

with their off-target (promiscuous) substrates. This also meant that the protein-protein 
interaction network responding specifically to the stimuli would also be more enriched when 

compared to their off-target substrates. This supposition hinges on two ideas. First, 
optimized interactions occur sooner and faster when compared to other non-functional 

interactions. Second, the protein-protein interaction network that responds to a particular 
stimuli becomes more complex as time progresses. Thus, measuring phosphodynamics at 

sub-minute high temporal resolution could provide an accurate, stimulus-specific 
measurement of phosphoproteome changes, and lead to the discovery of more functional 

phosphosites. 
 

 In this memoire, it was hypothesized that cells undergoing osmotic shock —that have 

not crossed the G1/S checkpoint— would have an advantage over those that have crossed 
into S phase. This is because the energy needed for DNA replication is quickly reinvested 

into biological processes that would prepare the cell against stress, which is caused by 
non-ideal environmental conditions, such as abrupt water loss due to high osmolarity. 

However, the osmoadaptation process of budding yeast is far longer than 1 minute. The 
initial phase of the osmoadaptation takes about 30 minutes. During this initial phase cell 

volume is readjusted with the newly synthesized glycerol, and Hog1 over time localizes 
back to the cytosol. The osmoadaptation process completes as cell cycle progression 

restarts, and this happens only after ~70 minutes after the initial osmotic shock (Figure 2). 
Thus, a larger timescale was required to observe the dynamic phosphosites involved in the 

yeast osmoadaptation process. Fortunately, our lab had made another set of experiments 

on budding yeast, looking into the osmoadaptation over a longer time period of 0-33 
minutes. This was never used, probably due to concerns over causality between stimulus 

and cellular response, and perhaps concerns over off-target MS readings masking 
functional interactions. In general, data reproducibility in MS studies has traditionally been 

a struggle. In Kanshin & Bergeron-Sandoval et al., 2015 [26], a preliminary analysis with 
less temporal resolution was made that increased the confidence in the sub-minute MS 

data. In my memoire, it was possible to compare and use the sub-minute data together with 
the 33-minute MS dataset, which was previously not used. Looking at initial results in the 

33-minute data, it was re-hypothesized that it was possible that functional phosphosites 

were not masked by off-target phosphorylation. Consequently, it would mean that the 
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interaction network was not as complicated as initially thought.  

 
 Moreover, it is known that Hog1 is not an essential gene. Yeast cells are able to 

survive osmotic shock without Hog1. Therefore, it is supposed that other pathways are still 
in play during the osmoadaptation process and we may be able to answer how these other 

pathways work together with MAPK-Hog1 signaling. These other rescuing pathways could 
be part of a bigger stress response mechanism that helps cells cope in non-ideal external 

conditions. By making use of the MS data elucidating phosphodynamics on both timescales 
and combining these results with readily available protein-protein interaction datasets could 

help elucidate other processes that occur in osmoadaptation.  

1.8.2 Research objectives 

Studying the structure and the dynamic behavior of networks underlying biological 

processes in response to high osmolarity can possibly be achieved by looking at initial 
response and later response.  Thus, some of the goals are listed below:  

I. Describe the experiment pipeline and how enriched peptides were obtained from the 
SILAC-based MS analysis. Introduce the output generated by the MS analysis and 

introduce the criteria used for identifying high-confidence regulated phosphosites.  

II. Clearly display the discovered regulated phosphosites on both osmosensors branches, 

Sln1 and Sho1, and the subsequent sequential kinases: a MAPK Kinase Kinase 
(MAPKKK), MAPK Kinase (MAPKK) and MAPK, which constitute the classic 

osmoadaptation pathway.   

III. Investigate other pathways, besides MAPK-Hog1, that may be involved in the 

osmoadaptation process. Determine the possible pathways that help yeast cells to 

survive during osmotic shock? Determine if there are other adaptation processes that 
exhibit similarities with the osmoadaptive process and indicate the overlapping dynamic 

phosphosites. 

IV. Cells exposed to high osmolarity require time to adjust. Until they are able to adjust, the 

cell cycle is temporarily stopped. This process probably occurs differently depending 
on which phase of the cell cycle a cell is in. However, G1/S checkpoint was particularly 
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investigated because every cell that will undergo a cell division will likely to remain at 

this checkpoint for a significant amount of time. Determine the possible phosphosites 
that likely may be involved in cell cycle, and even significant in terms of how cells 

commit to cell division.  

V. Determine an empirical formula for all high confidence phosphorylation kinetics for 

peptides (static and dynamic) during the sub-minute and the half-hour timescales of the 
osmoadaptive process. Determine regulated phosphopeptides and global trends using 

clustering.  

VI. Retrieve the regulated KPs during osmoadaptation process during the sub-minute and 

half-hour timescales. Make an interaction network using only KP’s and check whether 
there are overlaps between the networks between responses over these different 

timescales. Determine whether protein abundance is a factor in the kinetics of the 

phosphopeptide. Also project these regulated KPs onto the bow-tie hierarchical network 
(Abd-Rabbo & Michnick, 2017 [65]), to further gain an understanding in biological 

functions.  

VII. Find the regulated genes and/or the specific phosphosites that have a kinetic profile 

within the sub-minute and half-hour timescales of the osmoadaptive process. Perform 
a Gene Ontology analysis on these common genes and update the extensive 

interaction network generated in Kanshin & Bergeron-Sandoval et al., 2015 [26]. 

VIII. Recapitulate some of the data in Kanshin & Bergeron-Sandoval et al., 2015 [26], 

linking phospho-null mutants to the reduced cellular fitness, which in turn underlines 
the biological significance of the discovered dynamic phosphosites.  
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1.9 Contribution of the Author 

The mass spectral data for the sub-minute and half-hour timescales was produced by 
Evgeny Kanshin. I, together with Louis-Philippe Bergeron-Sandoval contributed to the 

phosphoproteomic analysis for the sub-minute timescale, which was used in Kanshin & 
Bergeron-Sandoval et al., 2015 [26]. All in vivo work was made by Louis-Philippe Bergeron-

Sandoval. I created the two empirical models that was used for describing the entire MS 
data, both for the sub-minute and half-hour timescales. I, together with Louis-Philippe 

Bergeron-Sandoval determined the regulated peptides for the sub-minute timescale, which 
was published in the paper [26]. I determined the regulated phosphopeptides for the half-

hour timescale. I made all the bioinformatic analysis comparing these regulated 
phosphopeptides between the sub-minute and the half-hour timescales.   
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2. Methods 
 

2.1 Cell Culture 
 

 Quantitative SILAC mass spectroscopy was performed on the yeast strain S288c. 
This strain lacks genes coding for argininosuccinate lyase (ARG4) and saccharopine 

dehydrogenase (LYS1), S288c LYS1Δ::kanMX; ARG4Δ::kanMX, obtained from Ole 
Jensen, University of Southern Denmark. Control cells were grown in Synthetic Dextrose 

(SD) medium with added light Lysine and Arginine (12C-, 14N-). Cells that were exposed to 

the stimuli were grown in SD medium with added heavy Lysine and Arginine (13C-, 15N-). 
Isotopes were purchased from Cambridge Isotope Laboratories. Cells were inoculated in 

50 ml SD medium that contains 2% glucose, 0.17% yeast nitrogen base without amino 
acids, 0.5% ammonium sulphate and required amino acids. The 50 ml culture would further 

be split into two 25 ml cultures. Light isotopes were added to one and the heavy isotopes 
were added to the other, with the concentration of 20 mg/L for arginine, and 30 mg/L for 

lysine. After incubating cells for about 7 to 9 doubling times, L-proline (20 mg/L) was added 
to the cultures to prevent cells converting arginine to proline. Cells were then grown until 

late-exponential phase, OD600 ~0.8-1, and at this stage the cells had incorporated 100% of 
the isotope labeled arginine and lysine.  

 

2.2 Applying osmotic stress  
 

 Cells incubated with heavy isotopes were grown until late exponential stage (OD600 
~0.8-1) and then treated with NaCl, at a final concentration of 0.4M (using a stock SD 

medium that contains 4M NaCl, at 30 degrees Celsius). Cells incubated with light isotopes 
were also grown until late exponential stage and treated with 2.5 ml SD medium without 

NaCl (at 30 degrees) that would serve as a control. The number of samples collected for 
cells exposed to 0.4M NaCl over 0-60 second and 0-33 minute timescales were 13 and 23 

respectively. Samples, specific to these timescales, were collected over equal time 
intervals. A maximum time resolution of 5 seconds was needed during the 0-60 second 

timescale. In order to achieve this kind of time resolution cells growing in light and heavy 
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isotopes were quickly pooled together (into 50 ml culture) and frozen in a 500 ml liquid 

nitrogen. All these samples were then stored at -80°C.   
 

 
2.3 Cell lysis 

 
 Freezer mill apparatus (Biospec) was used for lysing cells under liquid nitrogen. 

Grinding efficiency was checked by utilization of microscopy. For the 50 ml culture (OD600 
0.8-1), 32 cycles with each cycle containing 2 minute maximum intensity grinding and 2 

minute cool down ensured a 90% and above lysis efficiency. Culture powder was stored at 
-80°C.  

 

2.4 Protein extraction  
 

 TCA was used to concentrate and purify proteins from other cell debris. An equal 
volume of 30% TCA solution was incubated with grounded culture powder for 2 hours. 

These samples were then centrifuged at 20,000x g for 20minutes, at 4°C. Protein pellets 
were washed twice using 10 ml cold 10% TCA, discarding supernatant each time. Final 

wash of the pellet was made using cold acetone, and protein pellets were then resolubilized 
in 8M urea buffer (8 M urea, 100 mM Tris pH8.0, supplemented with HALT phosphatase 

inhibitor cocktail by Pierce). Solubilized proteins are suspended within the supernatant, and 
were further purified by centrifugation at 40,000g for 10 minute. Bicinchoninic acid assay 

(BCA) from Thermo Fisher Scientific is was used to measure protein concentration.  

 
2.5 Enzymatic digestion  

 
 Protein disulfide bridges were broken by incubating samples with dithiothreitol at a 

concentration of 5 mM for 30 minutes at 56 degrees Celsius. Samples were allowed to cool 
down at room temperature. Reduced cysteines were alkylated by treating the sample with 

15 mM iodoacetamide for 30 minutes, in a light sealed container at room temperature. 
Alkylation was stopped using 5mM dithiothreitol for 15 minutes. Samples are diluted 6 times 

using dilution buffer (20 mM TRIS pH 8, 1mM CaCl2), and then trypsin was added at a 

mass ratio of 1:50 (trypsin:substrate). Trypsin digest was done overnight at 37°C and was 
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stopped by adding formic acid at a 1% final concentration. The suspension was purified at 

20,000g for 10 minutes, and desalted using the Oasis HLB cartridges. Peptide elutes were 
flash frozen using liquid nitrogen, and lyophilized using SpeedVac before being stored at -

80°C. 
 

 2.6 Phosphopeptide isolation  
 

 The enrichment of phosphopeptides was done using custom made pipet tips. The 
volume of the pipet tip was 200 μL and it used SDB-XC membrane-TiO2 beads as 

previously described [75]. SDB-XC material is hydrophobic and allows phosphopeptide 
enrichment and desalting. The enrichment protocol consisted of loading, washing and 

elution [76][77]. These columns were first equilibrated with the loading buffer (250 mM lactic 

acid in 70% acetonitrile (ACN) 3% trifluoroacetic acid (TFA)), and then 100 μL of loading 
buffer was used for solubilizing peptides, which was then applied to the column. Each 

column was washed with 100 μL of loading buffer followed by 2 x 100 μl of 125mM 
asparagine and glutamine in 70% ACN 3% TFA and 100 μl of 70% ACN 3% TFA. 

Subsequent washing with 50 μl of 1% FA was used to equilibrate SDB-XC frit material. 
Phosphopeptides were eluted from TiO2 with 2 x 50 μL portions of 500 mM Na2HPO4 pH 

7 and retained on SDB-XC. To desalt, 50 μl of 1% formic acid was used. And the final 
elution from the SDB-XC was made with 50 μl of 50% ACN and 0.5% formic acid. The 

eluted volume was then dried with SpeedVac and stored in -80°C.  
 

2.7 Off-line fractionation of phosphopeptides 

 
 Before MS analysis, SCX chromatography fractionation was utilized to increase the 

coverage range of phosphopeptides. Peptides were solubilized in 100 μl using loading 
buffer (0.2% formic acid and 15% ACN) and loaded onto StageTips containing 6mg of Poly-

sulfoethyl-A SCX phase. These columns were then washed once using 50 μl of loading 
buffer, and then eluted in 100 μl, using a NaCl concentration ramp in the following order: 

40, 70, 100, 150 and 500 mM NaCl in loading buffer. Flow-through and salt fractions were 
then dried using SpeedVac and re-suspended in 15 μl of 4% formic acid, later to be 

analyzed by nanoLC-MS/MS. 
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2.8 NanoLC-MS/MS 

 
 The enriched peptides were analyzed with MS (m/z ratios for the peptides) and 

MS/MS (selected m/z ratios for further spectral analysis), using online reverse phase 
chromatography (HPLC) followed by an electrospray ionization (ESI). The HPLC system 

(Eksigent, Thermo Fisher Scientific) used a reverse‐phase pre-column, where peptides 
were concentrated in 5mm long traps (300 μl inner diameter), and were separated along 

18mm fused silica capillary analytical columns (150 μl inner diameter). Each column would 
pack 3 μm 200Å Magic AQ c18 non-polar reverse-phase material. LC separations were 

performed at a flow rate of 0.6 μl/min using a linear gradient of 5–40% aqueous ACN (0.2% 

FA) in 100 min. After elution, columns were washed with 80% ACN (0.2% FA) and re-
equilibrated with 5% ACN (0.2% FA). The HPLC solvents used were 0.2% formic acid 

(Solvent A), ACN and 0.2% formic acid. Total run time was 125min. This included the 
sample loading and column conditioning. MS spectra were acquired with a resolution of 

240,000 using a lock mass (m/z: 445.120025) followed by up to 12 MS/MS data‐dependent 
scans on the most intense ions using collision induced dissociation. AGC target values for 

MS and MS/MS scans were set to 1e6 (max fill time 500 ms) and 1e5 (max fill time 50 ms), 
respectively. The precursor isolation window was set to m/z 2 with a CID‐normalized 

collision energy of 35. The dynamic exclusion window was set to 60s. 
 

2.9 MS Data processing and analysis 

 
 The acquired MS data were analyzed using MaxQuant software version 1.3.0.3 

[78][79]. A total of 5,904 peptides for the 60s experiment, and 3,564 peptides for the 33min 
experiment were identified using the SGD database. Common laboratory contaminants 

were included in MaxQuant, together with their reversed sequence versions (248 entries). 
The enzyme specificity was set to trypsin with a maximum number of missed cleavages set 

to 2. The precursor mass tolerance was set to 20 ppm for the first search (used for nonlinear 
mass re‐calibration [79], and then to 6 ppm for the main search. Phosphorylations on 

serine, threonine and tyrosine residues were examined (variable modification); 

carbamidomethylation of cysteines were considered as a fixed modification. Peptide site 
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identification false discovery rate (FDR) was set to 1%, the minimum peptide length was 

set to 6, and the “peptide requantification” function was enabled. To correlate identification 
and quantitation results across different runs, the option match between runs (1‐min time 

tolerance) was enabled. MaxQuant parameters can be found in Kanshin & Bergeron-
Sandoval et al., 2015 [26], having file names parameters.txt and experimentDesign.txt.  

 
 Additional conditions were implemented to raise the quality of the data extracted. In 

addition to the FDR, there were three more filters applied to gain high confidence 
phosphopeptide time profiles. First, every time profile needed to have at least 10 data points 

(out of 13 discreet time points that amount to 1 min) for 60s data and 20 data points (out of 
23 discreet time points that amount to 33 min) for 33min data. Second, each identified 

phosphosite had to have a confidence probability higher then >0.75. This probability means 

that if there were two phosphosites on a single peptide the probability of estimating the 
actual site correctly is at least 0.75 (palindrome-like sites decrease this probability). Third, 

every time profile unique to a peptide would need to have at least 3 significant fold change 
values. When these conditions were applied a total of 5,904 high confidence temporal 

profiles (for the 60 second experiment), and 3,564 high confidence temporal profiles (for 
the 33 minute experiment) were extracted.  

 
2.10 Accessing significance of phosphosites 

 
 A standard way of identifying regulated peptides is by using FC values. A FC value 

of 2 corresponds to a two fold up-regulation, and its converse would indicate a down-

regulation of 2 folds. However, the majority of extracted high confidence temporal profiles 
do not have a FC value of 2 or 1/2. To distinguish the modified peptides (dynamic profiles) 

from those that are not modified (static profiles), a statistical test was applied in MaxQuant 
using fold change (FC) values. The test uses a true negative set from all the peptides that 

could not be modified (Kanshin & Bergeron-Sandoval et al. 2015 [26]), and the test used 
significance of p-value<0.05 (with correction for multiple hypothesis testing).  

 For the 60s experiment, using the statistical test provided 638 dynamic profiles. The 
main drawback of using such a method was that it eliminated phosphosites with low FC 

ratios. Therefore, to increase this number, a complimentary analysis was performed that 

would take in account the discrete change in FC ratio. Every kinetic profile was transformed 
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into a signature. Each signature would be a series of positive change (+) and negative 

change (-), i.e a sequence {2,10,1,5} would be transformed to {+, -, +}. This method (up-
down analysis) has been used in genetic expression screens [80][81], and hinges on the 

assumption that transformed random signatures must fluctuate randomly showing no 
correlation.  

 
The probability P (σ) that N + 1 random data points have a signature σ is 

 
    P (σ) = C(σ )/(N + 1)!.    (1) 

 
For example, the frequency C(σ) takes its minimum value when the data are monotonically 

increasing {+,+,+…} that indicate up regulation or decreasing {-,-,-…} that indicate down 

regulation. 
  

The probability that all of the M random signatures have frequency greater than C(σ) is 
 

    A(σ, M) = F (σ )M .    (2) 
 

The cutoff applied to this analysis was A(σ, M)=0.9. The quantity 1/[1 − A(σ, M)] is the 
number of times we would need to repeat a random experiment in order to find a kinetic 

profile with signature σ. In addition to the data filtered with previously defined filters, using 
the up-down analysis added an addition of 116 more profiles. The total dynamic 

phosphopeptides increased to 737. 

 For the selection of the dynamic sites a simpler method was employed on the 33-
minute experiment. FC values were normalized, and the selection criteria utilized both R2 

values and FC values. Equation 4 (Section 2.11) was used for the fitting of the high-
confidence temporal peptide profiles. This equation, within the 0-33 minute bound time 

interval, cannot exhibit rapid fluctuations. A higher R2 value would be used for temporal 
profiles with smaller FC value, and the converse is applied for temporal profiles larger FC 

value. The exact criteria are as follows: R2>0.6 cutoff is satisfied for profiles that have at 
least one log2(FC)>2, R2>0.7 cutoff is applied for 2≥ log2(FC)>1, R2>0.75 cutoff is applied 

for 1≥ log2(FC)>0.6, R2>085 cutoff is applied for 0.6≥ log2(FC)>0.20. The negative values 

were used for the down-regulation. Using this method, a total of 917 dynamic high-
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confidence profiles were extracted from the 33-minute dataset. This method was also 

applied to the 60s experiment (more than 85% of the dynamic profiles were extracted), but 
it was not used for the sake of accurately referencing the Kanshin & Bergeron-Sandoval et 

al. 2015 [26]. The high-confidence peptides 60-second data can be found in Table 1, and 
high confidence peptides 33-minute data can be found in Table 2. 

 
2.11 Fitting of dynamic profiles  

 
 Using a custom made MATLAB program, all kinetic profiles in the 60s experiment 

were unified by expressing the entire data set with a single equation:  
 

   FC(t)=( 1-c/(exp((t-d)/a)+1) ) +b,    (3) 

 
where a, b, c and d were calculated using a non-linear least square regression model. All 

the kinetic profiles could be represented using only these four parameters. Because 
optimization problems do not always necessarily converge to the global minima it was 

important to supply the regression model with a start value (a=0.219 b=0.308 c=0.711 and 
d=0.571), a lower limit (a=1,b=-1000,c=-1000, and d=-300) and finally an upper limit 

(a=600, b=1000,c=1000 and d=300).  
 However, this empirical formula did not fit well for profiles from 0-33 minute data; the 

regulation pattern observed was more complex. As a result, equation 3 was modified. The 
equation that worked well for all traces was the following: 

 

 FC(t)=( 1-c/(exp((t-d)/a)+1) ) +b + e/exp( ((log(x)-f)/g)^2 ),(4) 
 

where the new term is highlighted. To determine the values for the parameters used in the 
equation the same non-linear least square regression model was used. The following start 

values were entered: a=0.219 b=0 c=0.711, d=0.571, e=0.043, f=10, g=100. The lower limit 
for these parameters were the following: a=1 b=-10 c=-1000, d=-300, e=-10, f=0, g=-100. 

The upper limit for these parameters were the following: a=600 b=10 c=1000, d=300, e=10, 
f=100, g=100.   
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 Furthermore, because the empirical formula gave only 3 kinds of traces for the 60s 

experiment (linear, sigmoid and exponential) we further extracted maximum change, 
FCtmax, by taking the derivative (dFC/dt) and the time at which the maximum change 

occurred (tmax). All these data are listed in Table 1.  
 

2.12 Clustering the kinetic profiles of 60s and 33min data, GO and PPI network 
analysis 

 
 Kinetic profiles were all clustered using “soft” clustering as opposed to “hard” 

clustering methods [82]. One significant advantage of a soft cluster over hard clustering is 
that it can filter out random data. A fuzzy C-means algorithm [83] was implemented using 

the Mfuzz package [84], in an R environment (http://www.r-project.org). For this clustering 

to work, a fuzzifier parameter and the number of clusters must be manually selected and 
entered beforehand. Using the mestimate function, the fuzzier parameter used for this 

analysis was calculated to be 1.242. To find the minimum number of clusters that covered 
most of the data, a range of cluster sizes were empirically tested. For every cluster tested 

a minimum centroid distance was calculated (the minimum distance between two cluster 
centers, using c-means clustering.) [85].  

 Using this method, 6 clusters were chosen for the 60 s data. These 6 clusters contain 
596 kinetic profiles (out of 737) belonging to 332 different proteins. Each profile would have 

a membership value higher than 0.5. These 596 sites would be considered regulated high-
confidence phosphopeptides. The number of clusters required for the 33-minute data 

turned out to be higher. This was because the kinetics of the phosphorylation was more 

complex. The number of cluster size best fit the data was 15. Each profile would have a 
membership value higher than 0.7. These clusters would contain 696 (out of 917) sites 

belonging to 405 different proteins. Similarly, these sites were considered as regulated high 
confidence phosphopeptides. It should be noted that because the peptide regulation 

kinetics are more complex in our 33 minute study, dynamic high-confidence profiles were 
not limited to profiles that were clustered. Thus, the entire 917 profiles were treated as 

regulated peptides (Table 2).  
 Using these dynamic profiles two networks were created for visualizing physical 

interactions of KPs had among each other. Each timescale (the 60-second data and 33-

minute data) had their respective physical interactions network (Biogrid) [86][87]. Results 
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were visualized using Cytoscape; number of interactions were represented using node 

size, phosphatase and kinases were represented with different colors, and interactions 
present in one network was reflected with thinker linking lines on the other network (33 

minute KP net), Figure 14. 
 Similarly, for proteins that were regulated in both timescales, a protein interaction 

network (PPI) was created using STRING [88]. All predicted PPI were based on 
experimental method using a minimum confidence score of 0.9. In addition, to capture 

indirect protein interaction an association matrix was used, which is based on the number 
of links that connect two proteins [89]. This is to account for proteins that are associated 

within a protein complex. Interaction network was retrieved from BioGrid [86][90], Figure 
17.  

 DAVID bioinformatics resource was used to perform gene ontology (GO) enrichment 

analysis [91][92]. The set selected for analysis was for the proteins that had a dynamic 
phosphopeptides in both studies, namely the 60 second and 33 minute data, and these 

were analyzed against the entire S. cerevisiae proteome, Figure 18.  
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Results  
 
 
3.1 Phosphoproteomic landscape of Saccharomyces cerevisiae as a response to 
osmotic shock 
 
 
 The experiment workflow was designed to quantitate the phosphoproteome of yeast 

in response to osmotic shock. Two timescales were investigated: the early cell response 
was measured over the first 0-60 seconds, and the later cellular changes were measured 

over 0-33 minutes. Temporal resolutions for these timescales were 5-second and 1.5-
minute intervals respectively. This made sample preparations step especially important 

since ordinary cell harvesting can take anywhere between 3 to 15 minutes depending on 

the washing steps and centrifugation steps. Consequently, to not skew experimental 
results, the sample preparation needed to not exceed 5s, especially for the early cellular 

response. In order to prepare samples as quickly as possible, and measure the new 
metabolic state of cells, a new method of protein extraction was required (Figure 4A). 

Therefore, in order to stop cellular metabolic activity liquid nitrogen was used. This halted 
protein modification and their degradation. Snap freezing was performed by submerging 

50 ml cultures directly into liquid nitrogen.  
 

 To investigate the peptide regulation that occurs over the first 60 seconds of NaCl 
treatment, 13 frozen cell cultures were used in 13 time points, and to investigate the 0-33 

minutes response 23 frozen cultures were used, for a total of 23 time points. All 

measurements for each time point are a separate mass spectral analysis. Osmotic shock 
was performed on cell cultures growing in heavy isotopic forms of arginine and lysine by 

adding NaCl at a final concentration of 0.4M, whereas control culture were grown in light 
isotropic forms of arginine and lysine. These cultures would then be pooled together just 

before being submerged into liquid nitrogen. These frozen cultures were then ground under 
liquid nitrogen, washed multiple times, purified and phosphopeptides were enriched using 

TiO2 resin and then analyzed using liquid chromatography tandem-mass spectrometry, 
2DLC-MS/MS. (Method Section 2.1-2.7, Figure 4A) [93][94][95]. 

 

 To understand the phosphoproteomic landscape change caused by osmotic shock it 
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is important to define interquartile range (IQR). The overall changes in phosphoproteome 

in response to osmotic stress were measured by the fold change (FC) ratio of peptide 
abundance between the two conditions. Global differences between NaCl treated and of 

control cells were evaluated using Mascot Percolator, by calculating the width of the 
log2(FC) distribution for all phosphopeptides at a given time point (Figure 4B). The 

distribution width is represented as the interquartile range (IQR).  

 
 

Figure 4: The summary of experimental workflow and the global effects of osmotic 
stress. 
(A) Experimental workflow to study phosphoproteome dynamics at high temporal resolution 
and 33-minute timescale. Samples are collected by flash freezing yeast cultures in liquid 
nitrogen to prevent protein modification and degradation.  (B) An increase in width of IQR 
distribution is usually indicative of biological variability caused by a stimulus, in this case 
osmotic stress. Thus, all recorded positive and negative FCs for proteins, upon osmotic 
stress, are represented by an IQR created in Mascot Percolator. (C) Phosphopeptides 
exhibited a progressive increase in IQR over time, reflecting the global effects of osmotic 
stress on the entire phosphoproteome. 
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In the case of NaCl treatment, global phosphorylation changes would cause a 

widening of the FC distribution. At time zero, no significant difference was observed in the 
IQR values for both dynamic and static temporal profiles. This changes progressively as 

time increases and after 15s of exposure to NaCl IQR indicates a significant change in 
global phosphorylation data (Figure 4C). 

 

 
Figure 5: Creation of high confidence temporal profiles. 

(A) Sub-minute phosphoproteomic data reveals 80% of high confidence profiles consists 
of mono-phosphorylated peptides. In contrast, ~90% of the 33-minute phosphoproteomic 
data consists of phosphorylated residues equal to or less than 4. (B) Data for both 
timescales reveal serine residue beings phosphorylated the most, with ~80%. Threonine 
follows with 19%, and tyrosine with 1%. (C) Density distribution of up-down analysis applied 
on 5453 profiles (yellow circle), add a further 116 temporal profiles to selected data. (D) An 
overview of dynamic profiles, static profiles and incomplete profiles. 
 
 
 The enriched phosphopeptides obtained were analyzed by a LC-MS/MS using a 

nanoflow HPLC (Method Section 2.8). The sub-minute response created a total of 
1,507,689 spectra. Among this, 582,259 spectra were uniquely identifiable, with a false 

discovery rate of 1%. These spectra belong to a total of 14,206 unique peptides, which 
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represented a total of 2,419 individual proteins. From these unique peptides 5,453 high 

confidence temporal profiles were created, belonging to 1653 proteins. This procedure was 
also employed on Mascot Percolator for the 0-33 minute response data. As a result, a total 

of 3,564 high-confidence temporal profiles were created, belonging to 1238 unique 
proteins.  

 
 There were in total 3 criteria used in the making of the 5,453 and the 3,564 high 

confidence temporal profiles, in Kanshin & Bergeron-Sandoval et al. 2015 [26], and in this 
study. In order to have a good temporal profile coverage, each profile would at most have 

3 missing FC measurements. Each profile would need to have a phosphosite localization 
confidence greater than 0.75 probability, and each FC value in a temporal profile would 

have a FDR less than 1% at both peptide and protein levels (Method section 2.9). A few 

examples of dynamic, static and incomplete temporal profiles are illustrated in Figure 5D. 
 

 The majority of the peptides from the sub-minute response would yield a mono-
phosphorylated peptide. Whereas, in 33 minute response, there were significantly more 

double, triple and quadruple phosphorylation (Figure 5A). The amino acid that was modified 
the most was serine on both timescale (Figure 5B). 

 
 However, a further selection was made from the created high confidence profiles. 

This was to ensure that each selected profile would represent a rapid phosphorylation or a 
rapid dephosphorylation event. Selected profiles were referred to as either dynamic profiles 

or regulated phosphopeptide, which is used to distinguish them from static profiles. To 

discern these profiles, it was decided that a temporal profile would require at least 3 
significant FC value (Method section 2.10). After applying this criteria only 621 temporal 

profiles were left for 0-60 second timescale (Figure 4C), and for 0-33min timescale there 
remained 1016 profiles.  

 
 However, this pipeline eliminates profiles that have small FC value; 89% of the 

profiles would be lost for the sub-minute response data. Therefore, to further select 
regulated profiles, in Kanshin & Bergeron-Sandoval et al. 2015 [26], an up and down 

analysis was employed. This analysis hinges on the notion that randomly fluctuating data 

are more likely to represent static temporal profiles [80]. Using this analysis 116 profiles 
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that were thought to be static were considered as dynamic (Figure 4C). As for the 0-33 

minute response, a gradual thresholding on the FC values in combination with utilizing R2 
value were used as a criterion to select 917 dynamic temporal profiles (out of 1016). This 

selection method assumes that large FC values measured indicate a dynamic profile, 
unless R2 value for the fitted equation were extremely poor –then it is discarded. This 

method gradually increases its stringency on the R2 value for profiles that have lower FC 
values. A high R2 value indirectly favors continuously increasing and decreasing kinetic 

profiles (Method section 2.11). 
 
3.2 Dynamic phosphosites on the MAPK-HOG pathway upon osmotic stress  
 
 
 Osmotic shock has a profound effect on yeast cells. It causes temporary cell cycle 
arrest, influences endocytosis, alters transcription state, and impacts cellular 

morphogenesis. One particular pathway that is instantly associated with osmotic shock is 
the yeast HOG (High Osmolarity Glycerol) pathway itself.    

 On both timescales we found Hog1 residues at T174 and Y176 exhibited fast 
phosphorylation kinetics, Figure 6. These sites are known to activate Hog1 and cause it to 

localize to the nucleus. The cellular response to osmolarity starts as soon as 15 seconds 
after exposure to NaCl, Figure 6. A maximum FC of 64 was measured at the 5 minute. For 

this reason, sample preparation needs to be extremely fast. All regulated sites exhibited a 
sigmoidal shape. Interestingly, despite the fact that these phosphosites reached a 

maximum FC value within 0-60 seconds time interval, its maximum FC value was actually 

measured within the 0-33 minute time interval. Unfortunately, the mono-phosphorylated 
phosphosites, T174 and Y176, observed in 0-60 second timescale were labeled as di-

phosphorylated by Mascot for the 0-33 minute timescale. Despite this, these kinetic profiles 
have similarities between these two timescales. Their FC value increases over time and 

remains mostly constant until the end of the experiment, just like seen in the sub-minute 
timescale. In addition, the 0-33 minute raw MS data for Hog1, indicated in blue and green 

(Figure 6), were identified to have a phosphorylation number of 1, and the top trace (red) 
had a phosphorylation number of 2. Due to these two reasons it was reasonable to assume 

that Hog1 over two timescales were comparable. It is thought that Y176 is contributing 
more than T174 for the kinetic profile labeled in green, and T174 was the major contributor 

to the kinetic profile labeled in blue. However, this is not known for certain. It is thought that 
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different oxidation identification by Mascot may have resulted in di-phosphorylation 

labelling of Hog1 for the halfhour timescale. 
  

 Upon osmotic shock, signals from osmosensors converge onto a scaffold/MAPKK 
Pbs2, and residues S514 and T518 are phosphorylated, which in turn activate Hog1. Our 

study also revealed that Pbs2 has a dynamic phosphosite at residue S514 on both 
timescales. A maximum FC of 6 was measured within 3 minutes and the FC remains mostly 

constant over the remaining 30 minutes, (Figure 6).  
 Some dynamic phosphosites were also found in the Sln1 and Sho1 osmosensing 

branches. Sln1 protein is an irregular kinase that can phosphorylate histidine residues. It 
acts on Ypd1 and Ssk1 through a two-component phosphorelay mechanism [96]. Our 

experimental setup was not configured to measure phosphate bonds on histidine and 

aspartate. Despite this, there were dynamic phosphorylation on regular residues (T, Y and 
S). A rapid Ssk2 dephosphorylation was observed at residue S118 in 0-60 second time 

interval, with log2 FC value of -2. This de-phosphorylation has continued on in the 0-33 
minute time interval, reaching a minimum log2 FC value of -4. After 5 minutes exposure to 

NaCl, the de-phosphorylation value remains constant and does not significantly change. 
Interestingly, in regard to the continuity between two different timescales (0-60 second and 

0-33 minute), the rapid phosphorylation of Ssk2 at residue S54/S57 switches to a rapid de-
phosphorylation at the 0-33 minute timescale.  

 
 Sho1 branch has two sub-branches: the Hkr1 and the Msb3 sub-branch. The Hkr1 

sub-branch is named after its osmosensor Hkr1 protein. Hrk1 is highly glycosylated and 

contains two extracellular domains responsible for activating Hog1. However, not much is 
known about this sensor. Two regulated sites were identified at S37 and at S139. Both of 

these kinetic sites were present in 60-second and 33-minute timescales. Interestingly S139 
seems static at 60s timescale, but then undergoes a significant FC in the 0-33 timescale. 

This might be because it is di-phosphorylated, and S141 may be more important at a later 
time. These sites were not found in literature. 

 Bem1 is involved in cell polarity and morphogenesis and is bound to the intracellular 
domain of Msb2, recruiting the kinases Ste20 and Cla4 to the membrane. Either of these 

two kinases could be activating the kinase Ste11 [97]. Bem1 does not exhibit a strong FC 

within the first 60s at residues S48/S49/S50/T51, however few minutes after, a log2 FC of 
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2 was measured. This penta-phosphorylated peptide  

 
Figure 6: Dynamic phosphorylation of HOG MAPK pathway over 0-60 seconds and 
0-33 minutes time frames 
Schematic model of the Hog pathway is shown in the center. The Sln1 branch is shown in 
green and Sho1 branch shown in Blue. Sho1 branch is further divided into 2 as Msb2 and 
Hrk1 sub-branch, named after the osmosensing counterparts. Out of 21 proteins shown 11 
proteins were present in either 60 second or 33 minute response data. These are 
underlined by a red shadow drop. Double asterisk (**) indicates independent kinetic profiles 
with different MS Mascot IDs, which are all di-phosphorylated. 
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also undergoes slow dephosphorylation over the 33-minute timescale. However, it is 
difficult to compare this peptide over two timescale as it is first di-phosphorylated and later 
it is penta-phosphorylated.   
  

 Changes in phosphorylation of both PAK-like kinases Ste20 (T203 and S206/S169) 
and Cla4 (S367 and S444/S445/S447) were also measured. However, we did not observe 

any dynamic phosphorylation on the MAPKKK Ste11, where both sub-branches of Sho1 
converge. 

 
 Furthermore, a single dynamic phosphosite was recovered on Ste50, at residue 

S202. This was achieved by slightly relaxing the selection criteria for creating high-
confidence dynamic peptides (described in method section 2.11). It turns out that residue 

S202 is reported to be one of the three phosphorylated residues with (S/T)-P consensuses. 

It is reported that this site maybe a substrate for either Hog1, Fus3, or Kss1, which arises 
from mating pathway cross-talk [98].  

 
 

3.3 The role of TORC1 and TORC2 in osmoadaptation  

Another SILAC phosphoproteomic study was done on Saccharomyces cerevisiae 

investigating hot-cold stress, Kanshin et al., 2015 [25]. In this study cells were exposed to 
stress over 22 minutes, which had a temporal resolution of 2 minutes. Interestingly, the 

main complex involved in the adaptation to hot/cold stress was identified to be target of 
rapamycin complex 1, TORC1 via Sch9. It is intriguing that some of the proteins involved 

in the adaptation to hot/cold stress were also the same proteins involved in the adaptation 
to osmotic shock. Furthermore, a significant number of phosphosites were found in both 

the osmoadaptation data and in the hot/cold adaptation data. These sites are highlighted 
with the asterisk in Figure 7, and their hot/cold responses are adapted and shown in Figure 

8. 
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Figure 7: The possible involvement of TORC1 and TORC2 during osmoadaptation.  
(A) Osmoregulated 8 proteins are curated. These proteins are also shown to be regulated 
as cells are exposed to hot/cold stress. Apart from Nup60 and Tpk3, every other protein 
has a dynamic phosphosites on both timescales; 0-60 second and 0-33 minute. (B) A model 
showing how TORC1 and TORC2 regulate Msn2/4. Because these proteins are regulated 
during osmotic shock, it is argued that these pathways may also be utilized during cellular 
osmoadaptation. 
 
 One striking outcome from the phosphoproteome study on hot/cold stress was that 

proteins were shown to be bidirectional. This means that either stress, hot or cold, would 
have its own unique response; either phosphorylation or de-phosphorylation. Some were 

found to be temperature independent (static), meaning that phosphorylation or 
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dephosphorylation was not observed regardless of the hot or cold exposure. Regulated 

phosphopeptides during the osmoadaptation process mostly resembled phosphopeptides 
response from cells that were exposed to heat. When osmoregulated phosphoproteins from 

0-33 timescale are compared to the hot/cold stress, proteins such as Msn2 (S633, 
S288/T292), Msn4 (S263, S558, and 488), Nup60 (S10), Tpk3 (S15), Rgt1 (S410) and 

Bcy1 (S84 and S83/S84, for 60-second data) all underwent dephosphorylation. However, 
this does not account for every phosphopeptide; one of the main regulators, Sch9, exhibits 

a cold response kinetic at residue S726. Another cold response protein is Rgt1 
(S283/S284/S287).  

 
Figure 8: The phospho-kinetic profiles of budding yeast when exposed to hot/cold 
stress.  
Kinetic phosphosites in response to hot (shown in red) and cold (shown in blue) that overlap 
with osmotic shock over a time period of 22 minutes, adapted figure from Kanshin et al., 
2015 [25]. 
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 It is striking to observe the extent of regulated phosphosites that are in common 
between osmotic stress and hot/cold stress. Furthermore, it is possible to state that heat 

stress is closer to osmotic stress in terms of the number of phosphosites that respond the 
same way.  

 In addition to the similarities of phosphopeptides between cold/hot and osmostress, 
another interesting protein identified, whose function was only recently elucidated, was the 

PhosphatidylInositol(3)-phosphate Binding, PIB2. PIB2 is involved in the activation of the 
TORC1 complex [99]. This protein is regulated in response to osmotic stress: there were 

two mono-phosphorylated residues at S113 and S381, which exhibited kinetic profiles on 
two timescales. Moreover, Pib2 had 7 dynamic phosphosite in 0-60 second time interval 

(Table 1).   

 
3.4 Osmoadaptation regulating the canonical G1 checkpoint 
 
 Much work has been done to determine what constitutes the most up upstream 

activator of cell cycle entry in S. cerevisiae. The most upstream canonical activation of cell 
cycle is linked to the release of CLN3 mRNA from the Whi3 protein. This allows CLN3 

mRNA to be translates and form the Cdc28/Cln3 complex, which in turn causes the cell to 
pass the G1/S cell cycle checkpoint (the START mechanism) [35][100][101][102]. However, 

we do not know what causes the release of CLN3 mRNA. Interestingly, osmotic shock 
regulates 67% of the proteins involved (6/9) in the canonical G1 checkpoint. These proteins 

have kinetic phosphosites in both 0-60 second and 0-33 minute timescales (Figure 9A). If 

we assume that what causes cell cycle to stop also takes part in its start, then some 
identified phosphosites could play a role in the cell cycle START mechanism. Since there 

are many proteins being regulated during osmotic shock, it raises the possibility that there 
may be more than one target that needs regulation simultaneously for cells to release the 

CLN3 mRNA from the Whi3 protein. 
 Within the first 60 seconds of osmotic stress an inhibitor of the cell cycle Whi5 is 

dephosphorylated at residue S88. The residue S88 is one of the 3 documented HOG1 
phosphorylation sites [103]. At the 33-minute timescale no data is available for S88, but 

other phosphopeptides, including residues S161 and S154/S156 are identified to be de-
phosphorylated and one peptide is tetra-phosphorylated at residues S59/S62/T57/T67. 
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Interestingly, in total, our study has picked up on the 6/12 known targets of CDK 

phosphorylation on Whi5 [104]. And T57 and T67 are among the new unreported sites that 
could play a role in the securing the Whi5 inhibition of the SBF complex (Swi6/Swi4/Stb1) 

that activates transcription. 
 Furthermore, within the 0-33 min timescale, Cdc28, a kinase known to drive cell cycle 

was identified to be regulated. The data indicates a gradual phosphorylation at residues 
T18/T19 that reaches a FC value of 2 at 28 minutes (Figure 9A). 

 
Figure 9: Majority of the cell cycle entry proteins are regulated in response to 
osmotic shock. 
(A) Are some of the proteins that take a part in the G1/S transition for the cell cycle, which 
also have a dynamic regulated phosphosite. (B) Is the schematic of the major players of 
the G1/S checkpoint that initiate cell cycle. 
  
 Upstream of the canonical cell cycle driver, Cdc28-Cln3 dimer complex, is a CLN3 

RNA binding protein Whi3. This protein is known to sequester the CLN3 mRNA to the ER 
via its polyQ track [105]. In addition, Whi3 is also a target of Cdc28, and is capable of 

binding to mRNAs of 262 genes [100]. On both time intervals, the 0-60 seconds and the 0-
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33 minute, a consistent dephosphorylation of Whi3 at residue s225 is observed (Figure 

9A), and a steady state in the FC is reached after 10 minutes of stress. The position of the 
regulated phosphosite is between Cdc28 interaction domain, 121-220, and polyQ track, 

247-277, which could serve as an important modulating site for the sequestration of CLN3 
mRNA to the ER. The residues T479 and S477/T479 are also regulated and these sites 

are closer to the N-terminus where an RNA binding domain is present. A steady state in 
FC is reached within first few minutes. All 3 dynamic phosphosites have been confirmed by 

other mass spectral studies [106].  
 

 Interestingly, contrary to expectations, a MAP kinase Slt2 that activates a subset of 
G1/S-regulated cell wall biogenesis genes through its physical association with and 

phosphorylation of SBF [107] showed no differential phosphorylation (static). However, the 

pheromone-activated CDK inhibitor Far1 was identified to be regulated. It is unclear if this 
serves as a feedback mechanism ensuring a robust response or a cross-talk between 

mitogen response pathways. 
 

 

3.5 Global dynamic properties of osmotic shock in sub-minute and 33-minute 
timescales and activation of HOG signalling.  

 Global dynamic peptide properties of kinases and phosphatases were examined 
using a fuzzy c-means clustering. The 0-60 second experiment results were grouped into 
6 distinct clusters. These clusters were sufficient to represent most of the kinetic profiles 
(cluster membership > 0.5, Methods 2.12, Table 1). In total 596 (81%, 596/737) profiles 
were clustered. There were 112 unique genes that populated phosphorylation clusters, 168 
unique genes that only populated de-phosphorylation clusters and 55 genes had mixed 
properties (Figure 10A-9B). The mixed group includes proteins like Whi3 and Sla1 (Figure 
10B).  

 Sla1 is an endocytic protein known to physically interact with 20 other kinases and 2 

phosphatases (Biogrid). Among them are 7 kinase, Akl1, Cdc28, Prk1, Rck2, Cbk1, Bck1 
and Pkc1, and one phosphatase, Ppz1, that was shown to be regulated. Similarly, Whi3, 

an mRNA binding protein, involved with G1/S cell cycle checkpoint, is known to physically 
interact with 15 kinase and 3 phosphatases (Biogrid). Among these interactions are 7  
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Figure 10 | Global kinetic analysis of signalling response, sub-minute study. 
(A) Fuzzy c-means clustered regulated peptides into 6 distinct kinetic profiles (left panels). 
The cluster membership of the kinetic profiles are represented by color code (right panel). 
There are 596 dynamic phosphosites having a membership value above 0.5, displayed as 
a heat map. Peptides were either phosphorylated (blue box), dephosphorylated (green box) 
or both (orange box). These dynamic sites belong to 332 distinct proteins (B) Examples of 
regulated phosphosites sites from each group are presented. (C) Fitting of kinetic profiles 
to a reverse fermi Dirac function enabled the extraction of maximum rates of Fold Change 
(dFC/dtmax) (right panel), as well as times at this occurred (tmax). (D) The distribution of 
the rates (dFC/dtmax) from the 596 dynamic sites on a log10 scale are shown (left panel). 
68% per cent of maximum rates of Fold Change fall within one order of magnitude 72.5% 
of clustered profiles are sigmoidal in shape (see Figure 11) and reach tmax within a time 
window of 60 seconds (green bars in right panel). No sigmoidal-like profiles reached tmax 
at 0 or 60s (respectively represented as red and blue bars) in contrast to exponential or 
linear-like profiles. See also Figure 11 and Table 1. Modified from Kanshin & Bergeron-
Sandoval et al., 2015 [26]. 
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kinases, Cla4, Fpk1, Ksp1, Swe1, Tpk3, Cdc28 and Kic1, and one phosphatase, Msg5, 
were discovered to be regulated during osmotic shock. There are few new potential 

candidates that could regulate Whi3 and Sla1, at the residues shown in Figure 10B, upon 
osmotic shock.  

 To characterize the temporal nature of phosphorylation and de-phosphorylation of 
peptides, a simple reverse Fermi-Dirac function was empirically fitted (Figure 10C). Two 

parameters were extracted from the fitted equation: maximum rate of FC corresponding to 
an increase or decrease in phosphorylation (dFC/dtmax), and the time at which the 

maximum rate was observed (tmax) (Figure 10D, Method 2.11, Table 1). 

 The clustered profiles describing the sub-minute study were remarkably simple. The 

very first moments of peptide phosphorylation are measured in this timescale. The kinetics 
of the phosphosites that were discovered was either sigmoidal, linear or exponential. 

Notably, 72.5% of dynamic profiles were sigmoidal in shape (Figure 11), and most profiles 
approach their maxima (or minima) within 60 seconds (Figure 10D right panel). Considering 

that it was possible to characterize the kinetics into 3 distinct response curves — and 6 if 
we consider phosphorylation and dephosphorylation— it was quite elegant to only have 

high resolution that would capture the first moments of kinase activity and regulation. 
However, there were some profiles (114 in total) that did not cluster and there were 

discarded in Kanshin & Bergeron-Sandoval et al., 2015 [26].  

 Notably, 98.5% of maximum change (FCtmax) values were all within 2 orders of 

magnitude and 68.3% of these rates fall within 1 order of magnitude (Figure 10D left panel). 

This is an interesting finding as one could expect reaction rates of kinases and 
phosphatases to have a broader distribution due to differences in substrate abundance, 

subcellular localizations, complexes and other physical characteristics.  

 

 The landscape of the phosphosites kinetics on the 0-33 minute timescale was more 
complex. For example, a regulated peptide could start with phosphorylation, and there 

would be enough time to also observe its dephosphorylation. This was something that was 
not observed in 0-60 second time interval. Thus, because the longer timescale was more 

complex in terms of kinetic profiles more clusters groups were needed; in total 15 clusters 
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were required to represent the majority of the data, (Figure 12B). Some notable genes that 

exhibit a complex kinetic profile encode a protein involved in mRNA decapping, Not3 at 
residues S450/S454, and a polyamine transporter, Tpo3 at residue S55 (Table 2). These 

phosphopeptides are present in the 0-60 second and the 0-33 minute time intervals and 
were either be phosphorylate then dephosphorylated or vice versa.  

 
 

 

Figure 11: Analysis of the 6 kinetic profiles used for clustering sub-minute 
responses.  

(A) Reverse Fermi-Dirac equation resulting in sigmoid (top), exponential (middle) and linear 
(bottom). Dashed lines are indicating dephosphorylation. The first derivative is shown in 
blue and second derivative shown in red. The shapes were sorted according to second 
order local max and min values and max-min difference. The occurrence of these shapes 
in the dynamic profiles is indicated on the right as a percentage. (B) Distribution on a log10 
scale of the second derivative max-min difference for the dynamic profiles. We determined 
a cut off of 4e-05 for the max-min difference to sort linear-like profiles.  		 	 
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Figure 12: Global kinetic analysis of signalling response, half-hour study. 
(A) 696 regulated peptides were clustered into 15 distinct kinetic profiles using fuzzy C-
means (cluster membership > 0.7). These dynamic peptides were from 405 distinct 
proteins. (B) Is the occupancy of the cluster IDs; IDs 2, 4 and 15 had the highest 
occupancies, with more than 80 members each. (C) The reverse Fermi-Dirac equation with 
the added term (shown in grey) was used in the fitting of each temporal profile (Method 
2.11 and Method 2.12). 

 

The function used for representing the data over the 0-33 minute timescale was also a 

reverse Fermi-Dirac function, but with a single added term highlighted in grey (Figure 12C). 
This term would help the function accommodate the switch in regulation (i.e. Figure 12A, 

cluster ID 4, 12 and 14). In total 696 (76%, 696/917) regulated phosphosites were clustered 
(cluster membership > 0.7). These clustered peptides belong to 405 unique proteins (Figure 

12A). The most populated IDs were 2, 4 and 15. These clusters respectively illustrate the 

rapid sub-minute phosphorylation and a gradual de-phosphorylation (ID 2), slower 
phosphorylation and a gradual de-phosphorylation (ID 4), and sub-minute phosphorylation 

followed by fast de-phosphorylation and a gradual phosphorylation (ID 15).   
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 For determining the dynamics of phosphopeptide, only clustered profiles were 

selected as dynamic profiles in the sub-minute data (Kanshin & Bergeron-Sandoval et al., 
2015 [26]). This was not applied for 0-33 minute data because peptide profiles were more 

complex in 33-minute study and cluster size was empirically chosen to maximize data 
coverage. Even though there were 696 profiles clustered within 15 clusters, the dynamic 

profile number was 917 (Method section 2.10, Table 2). 

 
3.6 Dynamic phosphorylation suggests a dense kinase-phosphatase network 
 
 The origins of signalling becomes exponentially more complex as it propagates over 

time because cells exhibit promiscuous phosphorylation, cross-talk together with the main 
stimulus specific main response (Figure 13A). In light of this, it was initially hypothesized 

that the main stimulus specific response was carried by the KP network. Therefore, the KP 

network was assumed to be faster compared to the more disorganized signalling cascade, 
which is a combination of cross-talk and promiscuous interactions. Indeed, the entire sub-

minute regulation data, consisting of 5453 high quality profiles, supports the idea of 
networks become more complex over time. The number of phosphosites that were 

regulated within the first 5 seconds was 84, and it increases all the way up to 704 between 
55-60 seconds (Figure 13B).  

 

Figure 13: The origins of the signal propagation complexity. 
(A) Propagation of signalling cascade causing a dense protein-protein interaction mesh 
(dark lines) composed of kinases and phosphatases (green and blue dots), which result in 
main and complementary responses to osmotic shock. We hypothesized that stimulus-
specific signalling may occur faster than promiscuous signalling. (B) The global sub-minute 
response data showing the number of phosphosites that undergo a significant fold change 
(time at FCtmax) increases over time (84 to 704 sites from 5 to 60 s after osmotic shock), 
adapted from Kanshin & Bergeron-Sandoval et al., 2015 [26].  
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 The kinetic profile over 0-33 minute timescale was more complex compared with 0-

60 second data. To be able to compare kinetic phosphosites from both timescales the time 
at half maximum FC was extracted from each regulated profile. It was found that most of 

the kinetic profiles in 0-60 second data had a significant change in the FC at 20-35 seconds 
after exposure to stimulus (Figure 14A). The KPs corresponding to this data did not show 

a significant difference compared to the rest of the regulated phosphosites  

 
Figure 14: Protein abundance and time at significant FC for KPs vs non-KPs 
(A) Is the normalized probability histogram indicating the time at which a significant change 
in FC has occurred for sub-minute data (596 profiles) and (B) 33 minute data (917 profiles). 
Both figures compare KPs with respect to the rest of the data. (C-D) Is the same data but 
compares them to protein abundance obtained from the Pax-db database [108]. 
 
(Figure 14A). Interestingly, for the half-hour data, most of the dynamic profiles did show a 

significant change within the first 3 minutes. Moreover, the KPs corresponding to this data, 
as opposed to the sub-minute data, were enriched for at 0-1.5 minute, when compared to 

the remaining dynamic data (Figure 14B). The probability of finding KPs does decreased 

after 1.5 minute of stimulus exposure. This probability does slightly increase again at 11.5 
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minute. This may be an indicative of the triggering of a second wave of KP activation. KPs 

found in the second wave are: Alk2, Cdc28, Fpk1, Gin4, Isr1, Kcc4, Kin1, Kin2, Ppz1, Prk1 
and Prr1. 

When cells experience osmotic shock a barrage of phosphorylation occurs within 
the first two minutes. Since abundant proteins are more likely to physically come into the 

vicinity of kinases, there is an increase in the probability that abundant proteins could skew 
the data. Therefore, we next wanted to examine whether there was a correlation between 

protein abundance and the time at which a significant FC had occurred. To that end, 
Figures 14C-D does not indicate any enrichment of abundant proteins being 

phosphorylated within the initial response. This result indicates that KPs and their 
substrates have enough specificity preventing non-specific (promiscuous) phosphorylation 

dominating KP activity. 

 

 
Figure 15: Physical interaction network of KPs, sub-minute and half-hour response.   
(A) Physical interaction network of KPs that have a dynamic profile within the sub-minute 
response to osmotic shock. Size of the nodes indicates the number of interactions each KP 
makes. Red depicts kinases and blue depicts phosphatases. Hog1, Ksp1, Ptk2 and Akl1 
are proteins that are connected the most. (B) Physical interaction network of KPs that have 
a dynamic profile in the 33 minute response to osmotic shock. Here Cdc28 overtakes Hog1 
in terms of partners it has a potential to interact with. Bold interaction lines indicate the 
interactions present in sub-minute response, whereas the thin lines are new emerging 
interactions that are unique to 33 minute response. Physical interactions are obtained from 
BioGrid. 

 
 Saccharomyces cerevisiae has 129 kinases and 30 phosphatases in total, according 

to yeastkinome.org. From our MS analysis, upon exposure to high osmolarity, we found 
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24% (31/129) of kinases and 10% of phosphatase (3/30) had a dynamic profile within the 

sub-minute study.  Furthermore, on the longer timescale (0-33 minute), we found 33% of 
kinases (43/129) and 10% of phosphatase (3/30) had a dynamic profile. The KPs that had 

kinetic profiles are highly interconnected, creating a dense interwoven interaction network. 
Approximately 85% (29/34) of the KPs in our sub-minute study physically interacted with 

each other (Figure 15A). Whereas, this number drops to 74% (34/46), for the half-hour 
study (Figure 15B). 

 

 
Figure 16: Dynamic KPs profiles mostly fall into the core component of the KP 
architecture. 
(A) Indicate the functional GO terms enriched in the KP architecture diagram, adapted from 
Abd-Rabbo & Michnick, 2017. (B) 40% of the proteins that make up the core component 
have a high-confidence dynamic profile both in the sub-minute and 33-minute study. When 
high-confidence profiles are slightly relaxed, profile numbers increase and further populate 
the core component (Table 1). (C) Proteins that are scaffold-associated are enriched in the 
core level (adapted from Abd-Rabbo & Michnick, 2017). 
 

Even though there is a slight reduction in the participation of KPs in the 33-minute response, 
the physical interaction network is clearly more dense and interconnected when compared 
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with the sub-minute network.   

 The total number of KPs that are regulated in S. cerevisiae is 159. Under stimuli-
specific conditions, the KP interaction networks can be represented by Figure 15. It was 

hypothesized that regulated KPs could have similar topological network properties between 
themselves. To determine this these 159 proteins were projected to a KP architecture 

curated in Abd-Rabbo & Michnick, 2017 [64]. The core level, in this architecture, has the 
least member count and highest node connection. Both studies, the 0-60 second and the 

0-33 minute, are enriched in the core component. Dynamic KPs made up 40% of all the 
core members (Figure 16B). This was not very surprising since the GO enrichment of the 

core component indicates GO terms like osmosensing, cell cycle, activation of protein 
kinase activity, bud neck, and positive regulation of MAPK cascade (Figure 16A). 

Furthermore, one other unique property of the core components is that the proteins that 

make up this level are associated with scaffold proteins (Figure 16C). This possibly 
suggests that scaffolds could be one of the reasons why we only observe an order of 

magnitude of difference within FCmax values for the 68.3% profiles.  As scaffolds bring 
together proteins that are shown to increase efficiency of PPIs. Moreover, core enrichment 

also indicates that osmotic stress triggers the decision-making step, and consequently 
control systems that have feedback features. 

 
3.7 Genes and phosphosites commonly regulated in sub-minute and half-hour 
timescales 
 
 In Kanshin et al., 2015 [25], proteins with regulated phosphorylation sites were used 

to make a protein-protein interaction network, curated using BioGrid. The network is divided 

into four distinct regions. These regions are 
1.  general stress response that included transcription factors Msn2 and Msn4, (shown 

in purple); 
2.  morphogenesis, polarization and septum destruction that included Cbk1, (shown in 

light green); 
3.  septin ring assembly, vacuole inheritance and cytokinesis, (shown in purple); and  

4.  actin cytoskeleton clathrin-mediated endocytosis (CME) that included Las17 and 
Pkc1 (shown in darker green), Figure 17. 
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To identify stimuli specific cellular responses the 0-60 second time interval was 

chosen rather than the 0-33 minute time interval. However, 0-33 minute data also seem to 
confirm a stimulus-specific response. Notably, 58% of the proteins with changes in 

phosphorylation in the sub-minute response also changed in the 33 minute time interval. 
Approximately 62% of the protein-protein interaction network curated in Kanshin & 

Bergeron-Sandoval et al., 2015 [26], from sub-minute data, bottom right panel of Figure 17, 
was also discovered in the 33 minute study, Upper left panel of Figure 17. 

 
 

 
 

Figure 17: Protein-Protein interactions common between sub-minute and half-hour 
studies. 
The protein-protein interaction network on the bottom right is curated in Kanshin et al., 2015 
[25]. The network presented on the upper left consists of regulated proteins from both 
studies (0-60 second and 0-33 minute time intervals). 

 
In addition, there is a very good overlap of phosphosites between the two 

timescales. In total there were 161 phosphosites discovered that were regulated in both the 
0-60 second and the 0-33 minute study (Table 3). These phosphosites belong to 100 

unique proteins. A GO analysis was made on these 100 protein (Figure 18). Among the 
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161 dynamic phosphopeptide, only 45 were identical phosphosites; 33 sites were mono-

phosphorylated and 8 were double phosphorylated (Table 3). The reason why the overlap 
drops was due to the fact that there were more multiple phosphorylated phosphopeptides 

found in the 0-33 minute data.   
 
 

 
 

Figure 18: Go analysis on proteins that have conserved sites between sub-minute 
and half-hour studies.   
Significantly enriched (P<0.01) GO terms among phosphoproteins containing dynamic 
phosphosites. Gene ontology enrichment analysis were performed with DAVID 
bioinformatics resources using the entire S. cerevisiae proteome as background. 

 
 

The enriched GO terms show that the MAPK signalling pathway, osmosensors and 

endocytosis were still enriched in the 33-minute study indicating that proteins involved in 
osmotic stress would continuously need to be regulated and maintain an active state 

throughout the osmoadaptation process. This comes as no surprise as cell cycle only 
resumes after 74 minutes from exposure to high osmolality. After the more obvious GO 

terms, we found that cellular bud neck, cytoplasmic mRNA processing body, and cellular 
bud tip were among second most significant GO terms. Interestingly, mRNA binding 

proteins, stress granules and processing body GO terms were also enriched.  

 



	

52	

3.8 Proving causality between dynamic phosphosite and functionality  
  
 For some of the discovered dynamic phosphosites the causal relationship between 
the phosphosite and the osmotic shock was tested using cellular fitness assay. To 
maximize the sensitivity of this fitness assay, wildtype (WT) cells would be competed 
against their phospho-null counterparts. Replacing the phosphorylated residue with an 
alanine via site directed mutagenesis created phospho-null mutants, rendering this site 
non-phosphorylatable. Thus, competitive cellular fitness would measure relative growth 
under differential conditions. 

 In Kanshin & Bergeron-Sandoval et al., 2015 [26], all the phospho-null mutant and 
WT cells were expressed from a plasmid flanked by native promoters and terminators [109]. 
Each phospho-null strain was also transformed with a plasmid coding for mCherry 
monomeric RFP and the wild-type strains with a plasmid coding for EYFP (Extended 
Experimental Procedures, Kanshin & Bergeron-Sandoval et al., 2015 [26]). Growth 
competition assays began with equal numbers of mutant and WT cells. The competing 
cultures were maintained in exponential growth phase for 5 days. Population was once 
more adjusted to exponential growth pace and monitored over 120 hours. The population 
amplitudes were measured by fluorescence spectroscopy (Figure 19). Competition assays 
were performed in low fluorescence medium (LFM) or LFM medium plus 1 M NaCl to detect 
phosphosites that have impact on fitness in a different cellular context.  

Proteins that are known to play an important role in response to osmotic shock are 

Hog1, Gpd1 (an enzyme responsible for the synthesis of glycerol) and Rck2 (a protein 
kinase involved in response to osmotic stress). Gpd1 S23A and S24 A showed growth 

deficit but the S27A mutant did not (Figure 19). This shows that Gpd1 S27A is not required 
in the osmoadaptive process. However, this site was shown to have a dynamic FC in our 

sub-minute response study (Figure 20A). The phospho-null mutants of Hog1, T174A and 
Y176A both had impaired growth compared to the WT, in both LFM and NaCl condition. 

 
Rck2, which is activated by hyper osmotic shock and is a known substrate of Hog1 

[29], surprisingly showed an increase in fitness for a T379A mutation. However, further 

study will be needed to determine why this happens.  
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Figure 19: Fitness of phospho-null mutants was assessed by competition growth 
under high salt and non-stressed conditions . 
Competition growth assays between mutants and their WT counterparts were made using 
specific fluorescent reporters. Phospho-null mutants where tagged with mCherry (empty 
squares and red curve) and the wild-type strains where tagged with EYFP (dark diamonds 
and grey curve) strains. Control assay (LFM) was performed using BY4741 strain 
expressing either mCherry or EYFP and were competed with its mutant counterpart to 
access normal population fluctuations. 
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Figure 20: Dynamic phosphosites of Gpd1 and Rck2. 
(A) Dynamic phosphosites on Gpd1 at sub-minute response (left panel) and at 33-minute 
response (right panel). (B) Dynamic phosphosites on Rck2 at only sub-minute response. 
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4.	Discussion		
 

 

The pipeline used for creating the temporal profiles for the 0-33 minute is very 

similar to that utilized in Kanshin & Bergeron-Sandoval et al., 2015 [26]. However, phospho-
kinetic profiles from the different timescales did not have the same amount of data point. 

Each temporal profile from the 0-60 second timescale had to have at least 10 FC value (out 
of 13), and for the longer timescale this number was 20 (out of 23). This difference affected 

the number of high confidence temporal profiles extracted. Consequently, we were able to 
generate more temporal profiles out from the 0-60 second timescale experiment (5,453 

profiles), compared to the 0-33 minute timescale experiment (3,564 profiles). Surprisingly, 
there were more dynamic profiles found in the 0-33 minute time interval: 28% (1016/3564) 

of the data was considered to be dynamic, whereas this number was 13% (712/5453) for 
the 0-60 second time interval. In addition, a simple selection criteria were used for selecting 

dynamic profiles. These criteria utilized both FC values and R2 values (Section 2.10). In 

spite of this the number of dynamic profiles that were clustered were about the same 
between the two timescales: 612 for the 0-33 minute timescale versus 596 for the 0-60 

timescale. Due to the complexity of the dynamic profiles over the longer timescale, 15 
clusters (Figure 12A) were used as opposed to 6 clusters that was used for the shorter 

timescale (Figure 10A). We did not discard dynamic profiles from the 0-33 minute time 
interval that was not clustered like in Kanshin & Bergeron-Sandoval et al., 2015 [26], for 

the 0-60 second data. The amino acid that was most phosphorylated in both timescales 
were serine (~80%), this was followed by threonine (~19%) and tyrosine (~1%). Moreover, 

for reasons that remain unclear multi-phosphorylated peptides made up the majority of the 

longer timescale and mono-phosphorylated peptides were more prevalent in the sub-
minute timescale (Figure 5A).  

 
There are 25 proteins that make up the osmosensing branch and the yeast high 

osmolarity MAPK module. We were able to find phosphopeptides for only 44% (11/25) of 
these proteins. There were two reasons for this: first, the signal transduction did not all 

depend on S/Y/T phosphorylation; and second, trypsin digest did not produce >95% protein 
coverage for every protein. However, the main phosphosites that activate Hog1 (T174 and 
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Y176) were identified on both timescales. These sites were discovered to be 

phosphorylated within seconds after exposure to high osmolarity. On the longer timescale, 
we were able to show that these sites remained phosphorylates as long as 33 minutes, 

which was the duration of our experiment. These sites activate Hog1, and the activation is 
maintained throughout the experiment. Because yeast takes approximately 70 minutes to 

adapt to high osmolarity, it was not possible to conclude its deactivation with its 
dephosphorylation. Because the Hog1 phosphopeptides, in the 33-minute data, were di-

phosphorylated (as opposed to mono-phosphorylation) it was difficult to directly compare 
them to the traces obtained from the sub-minute data. However, because these traces were 

very similar, it motivated us to look at Hog1 MS raw data for the 0-33 minute timescale. In 
Section 3.2, it was argued that Hog1 kinetic profiles within the sub-minute and the half-hour 

timescales were similar (Figure 6). Furthermore, Mascot identification of phosphorylation 

labeling has resulted in the assumption that one of the amino acid residue were more 
prevalent within the di-phosphorylated peptide. However, further verification is required to 

clearly show the mono-phosphorylated peptides from Hog1, for amino acids T174 and 
Y176, during osmoadaptation for the half-hour timescale.   

 
The linear cascade shown in Figure 6 only represents a simplified model for the 

yeast Hog1 MAPK pathway. In reality, there are feedback control mechanisms that are in 
play that are used in the signal fidelity and robustness. Hog1 has been shown that it could 

regulate itself via phosphorylating the MAPKKK-Ssk2 at residues S54, S57, S68, S74, S78, 
T172, T178 and T194. We were able to capture 2 of these residues (S54 and S57), which 

was implicated in the fine-tuning of the basal activity of Hog1 for a successful 

osmoadaptation (Sharifian et al., 2015). Furthermore, Hog1 was shown to phosphorylate 
Ssk1, at residues S193 and S195, in vivo and in vitro (Sharifian et al., 2015). These sites 

were identified in the 0-33 minute timescale experiment. In addition, we were able to reveal 
other regulated phosphosites that have not been reported for Ssk1 and Ssk2 that could 

also contribute to the signal fidelity and robustness that could arise from a feedback control 
system during osmoadaptation. More recent studies have begun to distinguish differences 

in terms of how signal propagates in the Sln1 and Sho1 branches of the osmoadaptation 
process [34].  

 

 The MAPKKK-Ste50/Ste11 dimer that Sho1 branch converges to was not identified 
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in our study. However, when the stringency was lowered, we did discover one regulated 

site on Ste50 at residue S202. This site is one of the five MAPK consensus sequences (S 
or T followed by P). Furthermore, when Ste50 is digested with trypsin it produces two 

peptides that contain 21 serine (58%) and 11 tyrosine (50%), which are too large to detect 
using MS. In future experiments a protein of interest list should be created for the purpose 

of improving the protein coverage for these selected proteins. A complimentarily digestion 
to trypsin could vastly improve data quality and protein coverage.  

 
Pbs2 does not seem to activate Hog1 via signal pulsing: a fast phosphorylation 

followed by a fast dephosphorylation. Like Hog1, it is probably continuously active 
throughout osmoadaptation process. The study by Granados et al., 2017 [34], has 

interestingly shown that modulating extracellular osmolarity influences the way cells 

respond. Future experiments could also test whether fluctuating extracellular osmolarity 
causes Pbs2 and Hog1 to have a different phosphorylation/dephosphorylation patterns 

during the osmoadaptive process. 
  

 The significance of HOG1 in osmoregulation is evident, however it should be noted 
that this is not an essential gene. Cells with HOG1Δ can still proliferate when exposed to 

0.2M NaCl, and survive at 0.4M NaCl (Introduction 1.2). Cells are able to survive under 
high osmolarity most probably because there are other pathways that either work together 

with the MAPK-Hog1 or take over in the absence of Hog1. However, there are evidences 
pointing towards the importance of TORC1 and TORC2. Cells experiencing high osmolarity 

have TORC2-YPK1 kinase to modulate the glycerol synthesis and FPS1 activity 

[28][31][32][33]. In addition, the dramatic overlap of dynamic phosphosites between 
osmoadaptation and cold/heat stress was remarkable. There were 13 dynamic 

phosphosites that links the activity of TORC1 to osmoadaptation during both timescales 
(Figure 7 and Figure 8).  

 
 Some of the common transcription factors regulated in heat shock and osmotic shock 

are the following: Msn2 (S288 and S633) and Msn4 (S263, S316, S488 and S558). All 
these sites are located within PKA recognition motif. TORC1, known mostly for its role in 

nitrogen and amino acid starvation, could also be a candidate as an osmotic stress 

regulator [110]. TORC1 via an AGC family protein kinase, Sch9, is known to regulate the 
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PKA activity [111]. Furthermore, from the similar kinetic profiles in Figure7 and Figure8, it 

became evident that osmotic shock was closer to heat stress than it was to cold stress. 
Moreover, in support of this, Winkler et al., 2002 [112] has also shown that heat stress can 

activate MAPK-Hog1. It is yet to be determined whether TORC1 is actively involved in the 
osmoadaptive response by stopping the cell cycle. One possible TORC1 substrate that 

could be involved in regulating cell cycle is the transcription repressor Dot6. This protein is 
a known substrate of Sch9 [113], and is reported to be a negative regulator of the cell cycle 

by means of ribosome biogenesis [114].  Our phosphoproteomic study has identified 
residues S313, S318, S322, S424, S313/S318, in Dot6, during the 0-60 second time 

interval, and five phosphopeptides S245/S247/S253/T251, S563/S569/S580, 
S321/S322/S326/S327/S331/T330, S281/S282/S296/S297, and S313/S318, in the 0-33 

minute time interval to have a dynamic phosphorylation. Other notable substrates of Sch9 

are Maf1, Stb3 and Tod6, which were also shown to have dynamic phosphorylation during 
osmoadaptation (Table1 and Table2) [111][115].  

  
 Another set of proteins that are candidates for regulating the cell cycle are the 

proteins of the G1/S checkpoint. Another reason to look at this phase is that G1 phase is 
by far the longest cell cycle phase in budding yeast. Therefore, it is more probable that 

phosphopeptides entering MS come from this phase. Cells exposed to high osmolarity 
temporarily stop cell cycle progression at the G1/S checkpoint [37]. We discovered that 

67% of the proteins involved in the G1/S checkpoint have a dynamic phosphosite during 
osmotic shock. Because so many sites are simultaneously regulated, it is possible that the 

upstream components of the G1/S checkpoint do not constitute a linear signalling cascade. 

This would mean that the processing of the signal is more likely to involve feedback 
systems much like those seen in the Sln1 osmosensing branch. Furthermore, a linear 

signalling pathway leading to an RNA binding protein Whi3, resulting in the dimer kinase 
Cdc28/Cln3, which in turn releases the transcription inhibitor Whi5 from SBF factor, should 

in principle not depend on a bottleneck. If this were the case, this would make an organism 
very susceptible to random and deleterious mutations. If we assume that these discovered 

dynamic sites, which are responsible for stopping the cell cycle, are also regulating its start, 
then these sites can be used for designing experiments that help probe the kind of control 

mechanisms that take part in the START.  
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More specifically, Whi3 residues T479 and S477/T479 were identified to be regulated 

during osmoadaptation process. These sites are closer to the N-terminus where there is an 
RNA binding domain, which may be involved in the release of the CLN3 mRNA. This could 

potentially be an important post-translational modification for the START mechanism. In 
addition, it should be noted that the MBF transcription factor, known to be regulated along 

with SBF at the START, was not identified to be regulated in our study. This could be 
indicative that the regulation of the SBF transcription factor is sufficient for halting cell cycle.  

 
 Furthermore, a well know cell cycle kinase Cdc28, at residues T18/T19, was also 

identified to have a dynamic phosphorylation over 0-33 minute timescale. This site is 
significant as it is conserved from yeast to vertebrates. In vertebrates both sites are 

phosphorylated for full CDK activity [116][117], whereas in Fission yeast, a protein kinase 

Wee1 (homolog of Swi1) was shown to only phosphorylate residue T19 [118]. These 
phosphorylation sites are close to an ATP binding site. It was suggested that the activity on 

ATP binding site could be modulating the Cdc28 kinase activity [116].  
 

 Cells undergoing osmoadaptation must temporarily stop cell cycle. However, this 
does not necessarily have to be at the G1/S transition. Cells could also utilize other 

checkpoints such as G2/M checkpoint or spindle checkpoint to temporality stop cell cycle. 
Therefore, cells are likely to exhibit a heterogeneous response when exposed to high 

osmolarity, which is to some extent contrary to the genes under the control of general stress 
response element (STRE). For future experiments, it is important to consider the cell cycle 

synchronization of the budding yeast. This can be achieved by treating the culture with an 

alpha factor pheromone prior to osmotic shock. These experiments can improve our 
understanding of cell cycle specific STRE-regulated genes during the osmoadaptation 

process. These genes can be influential in determining pathways capable of temporarily 
stopping cell cycle and consequently cell cycle regulation.  

 

To gain a more general perspective on the regulated phosphosites, we decided to 
cluster every identified dynamic phosphosite. In total there were 596 profiles that were 
clustered into 6 cluster groups for the 0-60 second timescale, and 696 profiles were 
clustered into 15 cluster groups for the 0-33 minute timescale. It is also very interesting that 
98.5% of maximum change (FCtmax) values fell within 2 orders of magnitude, and 68.3% 
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of these rates fall within 1 order of magnitude for the sub-minute data (Figure 10D). The 
sigmoidal curve was the most observed response type (73%) in the sub-minute study 
(Figure 11). This kind of response may be a way to filter out high frequency noise caused 
by extracellular or intracellular origins. Furthermore, the	sigmoid curve assures that any 
random, or short duration signals do not result in a cellular response. This kind of signal 
processing could prevent cells to respond incorrectly to an applied stimulus. A narrow range 
of rates could also favor an organization of enzymes and their substrates into complexes 
or physical localization to specific cellular compartments [119][120]. None of the traces 
exhibited dephosphorylation after phosphorylation or vice versa within the 0-60 second 
timescale, however in 0-33 minute timescale this was observed. The resolution in the 0-33 
timescale was lower than the sub-minute study, 1.5 minute as opposed to 5 seconds. 
However, this temporal resolution was mostly sufficient for the half-hour study, except the 
very beginning. There was sufficient time to observe multiple 
phosphorylation/dephosphorylation events for phosphopeptides. It was interesting to 
observe the level of continuity in FC for every dynamic phosphopeptide. This feature of the 
traces raises our confidence that these data are not affected by random factors. In addition, 
there were some clusters, such as cluster ID 7,8 and 13 that had their FC reach to a 
maximum value and they remain mostly constant like those seen in Pbs2 and Hog1 (Figure 
12A and Figure 6). These traces may be belonging to proteins that are constantly active 
during osmoadaptation, possibly within a complex or a cytoplasmic body. The maximum 
phosphorylation rates were not measured for the temporal profiles that were from the 0-33 
minute timescale. This was because a significant number of dynamic traces could have 
multiple peaks and troughs that are more challenging to interpret.  

KPs have a significant impact in regulating the cell; a recent study has estimated 

that KP’s could regulate as much as 60% of all the budding yeast proteome [55]. This 
motivated us to examine the KPs with dynamic phosphorylation. The number of KPs that 

were regulated in the 0-60 second timescale was 34; 24% (31/129) of them were kinases 
and 10% of them were phosphatases (3/30). In the longer timescale (0-33 minute) the total 

number of regulated KPs increased to 46; 33% of them were kinases (43/129) and 10% of 
them were phosphatases (3/30). 

 
It was hypothesized that the functional phosphorylation of KP-substrates occurs 

more rapidly following osmotic shock. These functional phosphorylations should overtake 
promiscuous phosphorylation arising from random PPIs that in principle result is a slower 
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phosphorylation rate (Figure 13A). For simplicity the time at which FCmax/2 was used over 

time at which maximum phosphorylation rate was observed (Timemax, Figure 10D). To 
examine this hypothesis, we extracted the time at which FCmax/2 was observed from both 

sub-minute and half-hour timescales. It was assumed that KPs would more likely form 
faster interaction networks among each other, much like in MAPK [65]. Contrary to these 

assumptions, we did not observe a difference between KPs and rest of the other proteins 
for the sub-minute timescale (Figure 14A). However, this was not the case for the 0-33 

minute timescale. KPs were 15% more enriched when compared with the rest of the 
remaining proteins that were active within the first 1.5 minute (Figure 14B). Approximately 

43% for KP’s alone underwent dynamic regulation satisfying a significant FC of FCmax /2 
within the first 1.5 minutes. This is another line of evidence that promiscuous interactions 

do not dominate larger timescales; relevant peptides undergo a significant FC at the 

beginning and not as much in the end. We also examined the correlation between protein 
abundance with time at which FCmax/2 was observed. However, it was found that 

abundance did not affect the time at which significant FC (FCmax/2) was measured. Thus, 
it led to us to conclude that KPs and their substrate have enough specificity, and that less 

abundant KPs were also regulated within the first minute of the 0-33 minute timescale. A 
similar finding was also reported in [121]. In line with this conclusion, regulated KPs were 

also more present in the core level (Figure 16B), and this level is associated with scaffold 
proteins, which could increase PPI efficiency.   

 

With the longer timescale there were two concerns: (1) promiscuous 
phosphorylation out numbering relevant stimuli-specific phosphorylation modifications, (2) 
protein degradation or synthesis masking the post-translational modification. Although 
these two factors might have affected MS results, significant phosphoproteomic overlaps 
between the two timescales provides evidence that this is not the case. Furthermore, 
another phosphoproteomic study on budding yeast has also shown that protein abundance, 
over the 0-22 minute time interval, did not alter protein degradation significantly when 
exposed to cold/heat stress [25]. 

 

To further investigate how KPs could regulate themselves two KP interaction 

networks were created (Figure 15). There were two data used in the making of these 
networks: the proteins used had to have a dynamic phosphosite for that specific timescale, 
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and physical interaction between proteins had to be reported in Biogrid. The most 

connected node found in the sub-minute timescale belonged to Hog1. However, this was 
replaced by Cdc28 in the longer timescale. This could be indicative of how cells adapt to 

high osmolarity; Hog1 being responsible for the fast sensing and finer adaptation, and 
Cdc28 for stopping and adjusting the cell cycle.  

 
Both of these KP interaction networks were projected on to a hierarchical KP 

structure made up of three layers (top, core and bottom), Abd-Rabbo & Michnick, 2017 
[65]. As a result, both of these networks were enriched with the core layer (Figure 16B). 

This layer is enriched with proteins involved with scaffolds, and due to the bow-tie 
architecture, it is associated with feedback features and signal integrity.  

 

It was initially thought that capturing early signalling events (phosphorylation or 
dephosphorylation) immediately after osmotic shock could only be possible for 0-60 second 

experiment. However, the constant FC observed for some significant proteins such as 
Hog1 and Pbs2, the enrichment of proteins related to osmoadaptation, and the protein 

abundance independent nature of FC values all contribute to the fact that stimuli-specific 
response can still be probed over the half-hour timescale. Furthermore, it is likely that 

stochastic interactions probably do not dominate these interactions due to a narrow FC rate 
observed in sub-minute timescale. Possibly proteins complexes, granules, and processing 

bodies and other liquid bodies also contribute to how cell swiftly adapt to stress. It is 
reported that yeast Hog1 is also sequestered in stress bodies and p-bodies upon high 

temperature stress [122]. 

 
The continuity of specific phosphosites between both timescales were also 

examined. There were 161 temporal profiles belonging to 100 proteins with at least one 
phosphosite in common. When we look at the number of proteins that were regulated in 

both timescales (not only matching phosphosites), this number increases to 332. However, 
because multi-phosphorylated peptides make up the majority of the data for the half-hour  

timescale, this resulted in the decrease of the exact phosphosite match to only 45 peptides 
(Table 3).  
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Furthermore, the phosphorylation and dephosphorylation of these 45 sites were 

investigated. The goal was to examine whether any discontinuity occurred in terms of 
phosphorylation becoming dephosphorylation or vice versa (switching) between the two 

experiments. Switching occurred mostly on phosphopeptides that had double-
phosphorylation. There were 5 dynamic temporal profiles (out of 45) that exhibited 

switching, and four of them were double phosphorylated (total double-phosphorylated 
peptide number was 8/45). From MS data only, it was not possible to account for a 

mechanistic or a functional insight into this switching. This is because some proteins, such 
as Pib2, have only recently been studied, and for other proteins, such as Bem1, Swi4 and 

Not4, would require more dedicated experiments to be designed.  
 

 To further gain biological functions, a GO analysis was made on the 100 proteins 

that were shown to have regulated phosphopeptide during both timescales (Figure 18). 
Enriched terms such as MAPK signalling pathway, osmosensors and endocytosis were still 

present in the 33-minute study. This was also indicative of the fact that promiscuous 
phosphorylation were not dominating the half-hour experiment, and that meaningful and 

functional phosphorylations were measured.  
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5. Conclusions and Perspective  
 

It is possible to gauge osmoadaptation processes from stimulus-specific 
measurements of phosphoproteome changes for short and longer timescales. Tandem 

mass spectroscopy (LC-MS/MS) was employed to measure phosphoproteome changes, 
which in turn reveal regulated phosphopeptides under osmotic shock. The goal of my 

memoir was to investigate osmotic shock and find proteins that were regulated by 
phosphorylation over on two different timescales.  

 
Our study has discovered stimulus-specific regulation of proteins on two different 

timescales: the 0-60 second and the 0-33 minute. The method described and used 

demonstrates that minute amounts of cellular materials are sufficient for generating 
hundreds of stimuli-specific dynamic phosphosites. The data generated could serve as a 

stepping-stone to elucidate other less verified molecular pathways involved in cell cycle 
and osmoadaptive process.  

 
There were 161 phosphopeptides that were regulated both in 0-60 second and in 0-

33 minute time interval. This list of phosphopeptides made up almost ~30% and ~20% of 
all the dynamic phosphosites discovered within the sub-minute experiment and the 33-

minute experiment, respectively. Other longer timescale experiments can also be found in 
the literature. One specific example was published in Kanshin et al., 2015 [25]. It examined 

the hot/cold stress on budding yeast over a 0-22 minute timescale. Interestingly, the 

hot/cold stress data also overlapped with our osmotic stress data that suggests the 
involvement of TORC1 in osmoadaptation. 

 
Overlap between dynamic phosphosites associated with hot/cold stress and osmotic 

stress led to the hypothesis that pathways other than MAPK-Hog1 may be involved for the 
survival of S. cerevisiae in high osmotic stress. The fact that HOG1 gene not being an 

essential gene for the survival of S. cerevisiae also supported this hypothesis. In the future 
it will be interesting to exactly elucidate the cooperation between MAPK-Hog1 pathway and 

other complexes such as TORC1 and TORC2 in the osmoadaptive process. Some notable 
substrates that are regulated downstream of these complexes are Sch9 and Fsp1 (Figure 
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7). 

 
During osmotic stress, cells temporarily stop cell cycle to divert its energy into 

adapting to the changing less favorable environment. This was the motivation when 
examining the G1/S checkpoint. Contrary to our expectations, 67% of the proteins involved 

in the G1/S checkpoint were discovered to have a dynamic phosphosite. Some of these 
phosphosites belong to Whi3, which is an RNA binding protein know to sequester a key 

cyclin, Cln3 mRNA, and Whi5, which is a cell cycle START transcriptional repressor. Cells 
do have other checkpoints, and these could also be utilized during the osmoadaptation 

process. However, because G1 phase is the longest cell cycle phase [35], it is expected 
that there would be more cells in this phase, which in turn increases the phosphopeptide 

count and MS data quality.  

 
Moreover, the MAPK-Hog1 pathway was also examined on both timescales. Many 

of the proteins that was found to have a dynamic phosphosite in the sub-minute timescale 
also have a dynamic phosphosites in the half-hour timescale. It was initially assumed that 

larger timescales would be dominated by promiscuous phosphorylation due to the finite MS 
readouts (Kanshin & Bergeron-Sandoval et al., 2015 [26]). However, the overlap between 

these two different timescales proves otherwise. Unfortunately, phosphosites T174 and 
Y176 were not discovered on mono-phosphorylated peptides for direct comparison. 

However, their response curves were similar: they remained mostly constant over the entire 
osmoadaptive process. In general, when gathering dynamic phosphosites, one difficulty to 

address is the causal relationship between kinase and its substrate. For example, it is not 

possible to clearly demonstrate which kinases directly regulate Hog1. Due to this constraint, 
newer mass spectrometry strategies involve using kinase inhibitors together with machine 

learning techniques to address some of these limitations [121]. In addition, it was found 
that abundance did not affect the time at which significant FC (FCmax/2) occurred. Thus, it 

led to us to conclude that KPs and their substrate have enough specificity, and that less 
abundant KPs were also regulated within the first minute of the 0-33 minute timescale.  

 
This study has made it possible to start contemplating the link between signaling 

rates and the kinetics of phosphopeptides during osmoadaptation. Linking phosphorylation 

kinetics to biological traits can have profound consequences in our understanding of how 
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a cell functions. For example, comparing the phosphorylation kinetics between the two 

osmosensing branches, Sho1 and Sln1, and projecting these kinetics to other features such 
as signal fidelity, robustness and responsiveness is a substantial task. To this end, much 

work is still required. This includes the verification of the kinetic phosphosites found in this 
study, capturing other phosphopeptides that were lost due to using trypsin digestion, 

capturing other phosphorylation events such as Sln1p-Ypd1-Ssk1p two-component 
system, and also maximizing the mono-phosphorylated peptides, which would in turn yield 

higher data quality. 
 

The phosphoproteomic analysis has found 24% (31/129) of kinases and 10% of 
phosphatases (3/30) to have a dynamic profile within the sub-minute timescale. And on the 

half-hour timescale, 33% of kinases (43/129) and 10% of phosphatases (3/30) revealed a 

dynamic profile. The KPs that had these kinetic profiles are highly interconnected, creating 
a dense interwoven interaction network. The most connected node in the sub-minute 

timescale was Hog1. However, this was replaced by Cdc28 in the longer timescale (Figure 
15). This could be indicative of how cells adapt to high osmolarity over time. Moreover, 

gene ontology on the 100 protein that have seen regulation on both timescales revealed 
an enrichment of GO terms such as cellular bud neck, cytoplasmic mRNA processing body, 

endocytosis, negative regulation of translation (Figure 18). Finally, adding in account of the 
continuity measured in these kinetic profiles for peptides undergoing phosphorylation or 

dephosphorylation, SILAC coupled to LC-MS/MS is probably one of the best stimuli-specific 
high-throughput method for predicting functional phosphosites in cells.   
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