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Résumé

La leucémie myéloïde aiguë (LMA) est fréquente chez l’adulte. Malgré un taux de sur-

vie très faible des patients après 5 ans (environ 27%), le traitement de la LMA a peu changé au 

cours des quarante dernières années. Par le biais d’un criblage de viabilité à haut débit réalisé 

dans le but d’identifier de meilleures molécules anti-LMA, nous avons mis en évidence la ca-

pacité des statines (inhibiteurs de l’hydroxy-methyl-glutary-CoA reductase (HMGCR)) à cibler 

de manière différentielle les différents sous-types de LMA. De manière intéressante, les échan-

tillons de LMA appartenant à des patients classés «bon prognostic», sont 10 fois plus sensibles 

aux statines que les spécimens provenant de patients présentant un pronostic défavorable. Cet 

effet discriminatoire est perdu avec l’analogue de statine A405, synthétisé par notre équipe et 

qui n’a pas d’activité anti-HMGCR, suggérant que l’inhibition d’HMGCR est essentielle pour 

l’effet discriminatoire des statines. Les statines sont des médicaments hypocholestérolémiants 

et sont largement connues pour leur action inhibitrice sur l’HMGCR, une enzyme limitante de 

la voie de synthèse du mévalonate. En plus d’être d’excellents inhibiteurs de la production de 

cholestérol, les statines sont également connues pour leurs effets pléiotropiques sur d’autres 

branches de la voie du mévalonate. Ces branches jouent des rôles importants dans diverses 

fonctions cellulaires telles que la transduction du signal, la synthèse des protéines et la régu-

lation du cytosquelette. Dans cette étude, nous avons émis l’hypothèse selon laquelle l’effet 

anti-LMA différentiel des statines est modulé par une ou plusieurs sous-branche(s) de la voie 

du mévalonate. Comme preuve de principe, nous avons confirmé que la réduction de l’activité 

d’HMGCR, médiée par shARN dans la lignée cellulaire OCI-AML5, conduit à une augmenta-

tion significative de la sensibilité aux statines mais pas à l’analogue A405. Nous avons égale-

ment démontré que la perte complète du récepteur HMGCR, obtenue par CRISPR, est létale et 

que la supplémentation en mévalonate rétablit à la fois la viabilité cellulaire et la sensibilité aux 

statines. Pour disséquer davantage l’activité anti-LMA des statines, nous avons utilisé la tech-

nique d’ARN interférence pour cibler chacune des sous-branches en aval de la production de 

mévalonate et étudier la conséquence de ceci sur la viabilité cellulaire ainsi que sur la sensibilité 

aux statines. Notre étude a montré que la suppression individuelle des enzymes des sous-branch-

es n’affecte pas significativement la sensibilité des cellules OCI-AML-5 aux statines. Fait in-
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téressant, nous avons observé que la réduction de l’enzyme au point de ramification de la voie, 

la farnésyl diphosphate synthase (FDPS), est létale dans les cellules OCI-AML-5. De manière 

surprenante, nous avons également observé que la réduction de FDPS provoque une réponse 

biphasique aux statines. Alors qu’une concentration élevée d’atorvastatine aggrave le phéno-

type causé par la réduction du FDPS, une faible concentration conduit à un sauvetage presque 

complet de ce phénotype. Ces résultats ont permis de mettre en évidence un nouveau mécanisme 

de résistance aux statines dans la LMA. Dans l’ensemble, cette étude souligne l’importance de 

comprendre le contexte métabolique de la LMA avant traitement, afin de prévenir la résistance 

au médicaments.

Mots-clés : Leucémie myéloïde aigüe, Statines, chimiogénomique, métabolisme du cancer, 

identification de cibles, résistance thérapeutique.
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Abstract

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. 

The overall 5-year survival is as low as ~27%; however treatment for AML has only recently 

evolved with marginal impact on this low survival. In a large viability screen performed to iden-

tify better anti-AML molecules, we identified statins (3-Hydroxy-3-Methyl-glutary-CoA reduc-

tase (HMGCR) inhibitors) for their ability to differentially target AML specimens. Interestingly, 

AML specimens belonging to good outcome AML patients were 10 times more sensitive to 

statins compared to specimens belonging to adverse outcome patients. This discriminatory ef-

fect is lost with statin analog A405, synthesized by our team, which lacks anti-HMGCR activity, 

suggesting that HMGCR inhibition is essential for statin’s discriminatory effect. Statins are cho-

lesterol-lowering drugs and are widely known for their inhibitory action on HMGCR, a rate-lim-

iting enzyme in the mevalonate pathway. In addition to being excellent inhibitors of cholesterol 

production, statins are also known for their independent pleiotropic effects attributed by other 

products of the mevalonate pathway. These branches play important roles in various cellular 

functions such as signal transduction, protein synthesis and cytoskeletal regulation. In this study, 

we hypothesized that statin’s anti-AML differential effect is modulated by sub-branch(es) of the 

mevalonate pathway. As proof of principle, we confirmed that shRNA-mediated reduction of 

HMGCR activity in OCI-AML-5 cell line led to a significant increase of sensitivity to statins but 

not to its analog A405. We further demonstrated that complete loss of HMGCR using CRISPR 

technology was lethal and that mevalonate supplementation rescued both cell viability and sen-

sitivity to statins. To further dissect the anti-AML activity of statins, we used RNAi technology 

to target each of the downstream sub-branches of the mevalonate pathway and investigated the 

consequences on cell viability and statin sensitivity. Our study showed that knocking down en-

zymes of single sub-branches did not affect significantly OCI-AML-5 cells sensitivity to statins. 

Interestingly, we observed that reduction of branch point enzyme, farnesyl diphosphate synthase 

(FDPS) was lethal in OCI-AML-5 cells. Unexpectedly, we also observed that FDPS knockdown 

caused a biphasic response to statin. While high concentrations of atorvastatin aggravates the 

phenotype caused by FDPS reduction, low concentrations led to a near complete rescue of this 

phenotype. These results uncovered a novel unsuspected statin resistance mechanism in AML. 
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Overall, this study highlights the importance of understanding the metabolic background of 

AML prior to drug treatment, in order to prevent drug resistance. 

Keywords: Acute myeloid leukemia, statins, chemo-genomics, cancer metabolism, tar-

get identification, therapy resistance
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Chapter 1- Introduction

1.1 Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is the second-most common hematological disorder 

diagnosed in adults. AML is characterized by infiltration of immature myeloid progenitors in 

the bone marrow and peripheral blood [1]. These highly proliferative blasts, often poorly or 

abnormally differentiated lead to the impairment of the normal functions of the blood. AML is 

clinically recognised as a heterogeneous disorder. Several lines of evidence have shown that 

AML occurs as a multi-step transformation process and initiates from mutations in hematopoiet-

ic stem cell (HSC) giving rise to leukemic stem cells (LSC), present at the apex of the neoplastic 

hierarchy [2]. Unfortunately for AML patients, treatment has not advanced much in the past four 

decades and overall 5-year survival remains as low as 27% [3].

1.1.1 Classification of AML

Two principal systems have been established to define AML sub-types: the French-

American-British (FAB) system and the World Health Organization (WHO) system [4]. 

1.1.1.1 FAB classification system 

The FAB system is the oldest system of AML classification and dates back to 1976. It 

uses morphological and cytochemical features to classify AML and defines eight classes that 

ranges from M0 (myeloblasts) to M7 (megakaryocytes) (Table 1) [5]. FAB system classifies 

AML sub-types based on the degree of maturity and resemblance of leukemic blasts with nor-

mal myeloid progenitor cells [6]. The cut-off for AML diagnosis was set at >30% blasts in 

the bone marrow; anything below this cut-off was considered to be myelodysplastic syndrome 

(MDS). The prevalent advantage of this system was the ease of its use; however, it also came 

with several limitations. Some of the major shortcomings lied in the lack of inclusion of clinical 

and cytogenetic data and the lack of reproducibility arising from inter-observer variations [7]. 
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FAB Subtype Name 

M0 Undifferentiated acute myeloblastic leukemia 

M1 Acute myeloblastic leukemia with minimal maturation 

M2 Acute myeloblastic leukemia with maturation 

M3 Acute promyelocytic leukemia 

M4 Acute myelomonocytic leukemia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia 

M7 Acute megakaryoblastic leukemia 

Table 1 : The FAB Classification System
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1.1.1.2 WHO classification system 

In 2001, the WHO system of classification was established to improve AML classifica-

tion and articulate the new advances made in AML diagnosis. Unlike the FAB system, WHO 

classification takes into account genetic alterations, immunophenotypic as well as clinical fea-

tures of AML [8]. This was updated in 2008 [9] followed by further revision in 2016 [10]. The 

current WHO classification of AML consists of four major entities; these include AML with 

recurrent genetic abnormalities, AML with myelodysplasia-related changes, therapy-related 

AML, and AML not otherwise specified (Table 2). The WHO classification additionally lowered 

the threshold for diagnosis to 20% blasts in the blood or bone marrow. One of the limitations of 

the WHO system is that it does not take into account the prognostic relevance of certain muta-

tions in genes such as FLT3-ITD mutation. 
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Table 2 : WHO classification (adapted from [11])

AML with recurrent genetic abnormalities 

• AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

• APL with PML-RARA 

• AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 

• AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 

• AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

• AML with t(6;9)(p23;q34.1);DEK-NUP214 

• AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1 

• AML with BCR-ABL1 

• AML with mutated NPM1 

• AML with biallelic mutations of CEBPA 

• AML with mutated RUNX1 

AML with myelodysplasia-related changes 

• AML with history of  myelodysplastic syndromes (MDS) 

• Morphological evidence of dysplasia in ≥ 2 myeloid cell lineages 

• AML with myelodysplastic related cytogenetic abnormalities including monosomy 
5/monosomy 7 and deletion 5q or 7q 

Therapy related AML 

• AML occurring due to prior treatment of chemotherapy such as alkylating agent or 
radiation therapy 

AML not otherwise specified 

• AML with minimal differentiation 

• AML without maturation 

• AML with maturation 

• Acute myelomonocytic leukemia 

• Acute monoblastic/monocytic leukemia 

• Pure erythroid leukemia 

• Acute megakaryoblastic leukemia 

• Acute basophilic leukemia  

• Acute panmyelosis with myelofibrosis 
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1.1.2 Prognostic factors in AML 

Prognosis in AML depends on several factors including AML sub-type, cytogenetic 

anomalies and mutations as well as age and medical history of patients. Based on these, prog-

nostic factors can be divided into two main categories referred to as patient-related and AML-re-

lated factors [12]. Patient-related factors include age, performance status and organ function 

[13]. Patient age at diagnosis is the major patient-related prognostic factor. Elderly patients 

over 60 years of age are associated with poorer outcomes. Among leukemia-related factors, 

cytogenetic anomalies and gene mutations are central in predicting treatment outcomes of AML 

patients. For instance, AML with translocations in core-binding factor (CBF) transcription fac-

tor complex such as translocation t(8;21) and inversion (16) are generally associated with a 

favorable treatment outcome [14]. On the contrary, if AML patients with CBF anomalies have 

co-existing mutations in the KIT gene, they are associated with an adverse risk [14]. 

The European LeukemiaNet (ELN) system was introduced in 2010 in order to develop a 

standardized approach to stratify AML patients based on their prognosis [16]. The ELN system 

added prognostic significance to the pre-existing AML classification. According to this system, 

risk categories are classified into four groups, namely favorable, intermediate-I, intermediate-II, 

and adverse sub-groups (Table 3). One of the milestones of this system was the sub-division 

of the cytogenetically normal AML (CN-AML) into two groups: favorable and intermediate-I 

subgroups based on mutational status of NPM1, CEBPA, and FLT3 genes. Since its advent, nu-

merous studies have improved the ELN classification by additionally cumulating other genetic 

mutations to the ELN groups [17, 18].



6

Sub-group Cytogenetic/genetic anomalies 

Favorable 

• t(8;21)(q22;q22); RUNX1-RUNX1T1 
• inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-

MYH11 
• Mutated NPM1 without FLT3-ITD (normal karyotype) 
• Mutated CEBPA (normal karyotype) 

Intermediate-I 
• Mutated NPM1 and FLT3-ITD (normal karyotype) 
• Wild-type NPM1 and FLT3-ITD (normal karyotype) 
• Wild-type NPM1 without FLT3-ITD (normal karyotype) 

Intermediate-II 
• t(9;11)(p22;q23); MLLT3-MLL 
• Any cytogenetic anomaly not classified as favorable or 

adverse 

Adverse 

• inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 
• t(6;9)(p23;q34); DEK-NUP214 
• t(v;11)(v;q23); MLL rearranged 
• Monosomy 5 or del(5q); monosomy 7; abnormal 17p; 
• Complex karyotype (≥ 3 chromosomal abnormalities) 

Table 3 : ELN classification (adapted from [15])
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1.1.3 Standard AML therapy

Although several advances in research have improved classification of AML, treatment 

for AML patients has not improved significantly. Standard treatment for AML patients consists 

of two components, referred to as remission (induction) therapy and post-remission therapy. 

AML treatment begins with induction therapy with the aim to completely eradicate morpholog-

ically visible leukemia in the blood and bone marrow and achieve complete remission (CR) in 

AML patients. 

Induction therapy generally consists of a “7+3” regimen, irrespective of mutational 

background and cytogenetic anomalies. This includes continuous intravenous infusion of cy-

tarabine for seven consecutive days followed by anthracycline administration (such as dauno-

rubicin or idarubicin) for the next three days. Both these drugs are responsible for inhibition 

of DNA synthesis. Cytarabine works as an anti-metabolite and incorporates in the DNA, while 

anthracyclines are DNA intercalating agents and inhibit topoisomerase II enzyme. Depending 

on the age of the patients, strength of the therapy varies. Younger AML patients are given more 

intense chemotherapy than older patients (> 60 years) [19]. 

Post-remission therapy aims at eradicating any residual leukemic cells that persist after 

the induction therapy. This generally consists of three types: intensive chemotherapy (consoli-

dation), maintenance therapy and high dose chemotherapy (conditioning) followed by hemato-

poietic stem cell transplantation (HSCT) [12]. For post-remission therapy, the cytogenetic risk 

factors of AML patients are taken into consideration for therapy selection. Patients associated 

with favorable cytogenetics are generally administered with repetitive cycles of high-dose cy-

tarabine (HiDAC) chemotherapy for 3 – 5 days. For patients with intermediate or adverse risk 

AML, HSCT- either allogenic or autogenic- is usually the recommended choice of therapy [20]. 

The major obstacle in allogenic HSCT (allo-HSCT) is the risk of graft-versus-host disease due 

to incompatibility between the donor and the recipient that ultimately leads to the rejection of 

donor’s transplanted hematopoietic stem cells. However, allo-HSCT has the advantage over au-

tologous HSCT of the phenomenon called graft-versus-leukemia effect which refers to the abil-

ity of the donor’s immune system to eliminate host’s leukemic cells. For older AML patients, 
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HSCT is rarely offered and therapy is usually less intensive and consists of one or two cycles of 

high dose chemotherapy [20, 21].

1.2 High-throughput screening approach to identify better an-
ti-AML molecules

As mentioned earlier, AML is a very heterogeneous disease and standard treatment for 

AML remains the same for the past three to four decades. In the search for better therapeutics 

targeted to specific AML sub-groups, we performed a large viability screen with a library of ap-

proximately 5,000 compounds that included chromatin modifiers, kinase inhibitors, off-patent 

drugs, molecules targeting G-protein coupled receptors (GPCRs) and some compounds propri-

etary to IRIC. A major hindrance in the identification of good anti-AML molecules is due to the 

occurrence of AML cells quickly differentiating in culture. This makes current assay conditions 

inefficient in correctly recapitulating in vivo drug responses of AML. To circumvent this lim-

itation, we used novel culture conditions established in the laboratory using the compounds 

UM729 and SR1 that inhibit differentiation of AML cells and allow their maintenance and 

expansion ex vivo [22]. The screen comprised of 20 primary human AML specimens that were 

selected to represent the genetic heterogeneity of AML. Drugs that achieved >50% proliferation 

inhibition of AML cells compared to DMSO treated controls were considered as ‘hits’. 

1.2.1 Identification of statin’s discriminatory effect in AML

One group of hit compounds were statins, HMGCR (hydroxy-methyl-glutaryl-CoA re-

ductase) inhibitors, which had the ability to discriminate between AML specimens. This was 

evident from the unique association between the in vitro statin sensitivity of patient derived 

specimens and the patient’s clinical outcome. Specimens derived from AML patients with a 

good overall survival (OS> 3 years) were more sensitive to statins compared to specimens 

derived from patients with a poor overall survival (OS <1 year) (Figure 1, a and b). We further 

validated this finding in a second screen with specimens that belonged to AML patients with 

either successful treatment outcome (OS > 3 years with standard chemotherapy and no HSCT) 
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Figure 1. Identification of statin’s discriminatory effect in AML. (a) Primary chemical 
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or that were refractory to treatment (OS < 1 year, induction chemotherapy-resistant that relapsed 

irrespective of HSCT) (Figure 1, c and d). We observed a significant 10-fold difference between 
the IC50

 values of the two groups of specimens (Figure 1e), further confirming the results ob-
served in the initial screen. 

1.2.2 HMGCR inhibition is key to statin’s discriminatory effect

Statins work by blocking the activity of the HMGCR enzyme. To identify if statin’s dis-

criminatory effect is indeed mediated via HMGCR inhibition, we questioned if statin analogs 

that lack HMGCR inhibitory activity would retain statin’s discriminatory effect. In collabora-

tion with Anne Marinier’s team at IRIC, we performed structure-activity relationship studies to 

identify analogs of statins that lack anti-HMGCR activity. We identified UM135405 (hereafter, 

A405) an analog of Atorvastatin that completely lost the ability to inhibit HMGCR, as measured 

by in vitro assays (Figure 2, a and b). We found that A405 completely lost the discriminatory ef-

fect observed with the statins (Figure 2c) thus suggesting that HMGCR inhibition is essential for 

statin’s discriminatory effect in AML. Further, we observed that even with the loss of HMGCR 

inhibition, A405 retained some anti-AML activity; this suggested the possibility that a ‘second’ 

target of the statins exists. 

1.2.3 CBF-AML - Most statin-sensitive AML sub-group

In order to improve our understanding of statin’s anti-leukemic effect, we sought to iden-

tify if specific sub-groups, mutations or genetic anomalies could be associated with ex-vivo sta-

tin sensitivity. To this end, we tested statins in a third screen with more than 200 de novo AML 

specimens that were sequenced and characterized with clinical annotations, enabling a complete 

mutational and cytogenetic landscape of AML patient specimens. The screen uncovered that 

specimens belonging to the CBF-AML sub-group were the most statin sensitive among other 

AML specimens (Figure 3a). CBF-AML is associated with chromosomal anomalies with either 

translocation t(8;21) or inversion inv(16)/t(16;16) (inv (16)) that lead to the disruption of the 

core-binding transcription factor essential for the transcription of genes crucial during hemato-

poiesis. We additionally observed that AML with mutations in IDH2 (Isocitrate dehydrogenase 
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isoform 2) gene were the most statin-resistant AML sub-group (Figure 3b).

1.3 Statins: Cholesterol lowering blockbuster drug

Statins are cholesterol-lowering drugs that were identified from fungal origin in the late 
1900s and are widely prescribed for the treatment and prevention of cardiovascular and coro-
nary heart diseases. Interestingly, the beneficial effects of statins are not restricted only to the 
cholesterol pathway. Statins have been implicated for their pleiotropic effects on other mecha-
nisms and signalling pathways through their impact on the mevalonate pathway.

1.3.1 Pharmacology of Statins

1.3.1.1 Mechanism of action

Statins work by inhibiting hydroxylmethyl glutaryl coenzyme A (HMG-CoA) reduc-

tase enzyme and thus, inhibits the formation of mevalonate, the precursor of cholesterol [23]. 

HMG-CoA reductase (HMGCR) catalyses the reduction of HMG-CoA to mevalonate and is 

considered the rate-limiting enzyme of the mevalonate pathway and subsequent cholesterol bio-

synthesis pathway [24]. 

The crystal structure of the catalytic portion of the HMGCR provided a mechanistic in-

sight on statin-mediated HMGCR inhibition [25]. Statins bind and occupy a part of the binding 

pocket for the HMG-CoA, thus inhibiting the access of HMG-CoA to the enzyme’s active site. 

Structural studies revealed that statins competitively inhibit HMGCR for HMG-CoA but not its 

co-enzyme NADPH. Pharmacological studies demonstrated that statins had the ability to bind 

to HMGCR with an affinity of approximately 3 orders of magnitude higher than its endogenous 

substrate, HMG-CoA [26]. The affinity of the enzyme for the inhibitor is in the nanomolar 

range, while that of the HMG-CoA is in the high micromolar range [27]. In other words, statins 

act as competitive antagonists of the HMGCR enzyme and bind to the enzyme with a much 

higher affinity than its original substrate. Thus, statins were found to be remarkably powerful 

drugs to lower blood cholesterol levels via their inhibitory action on the HMGCR.
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1.3.1.2 Chemical structure and functional properties

The structure of statins is similar to the natural substrate of HMGCR, thus bestowing 

them the ability to bind to the enzyme with very high affinity. Chemically, statin structure is con-

stituted of two distinct components covalently linked to each other: a pharmacophore, a moiety 

shared by all statins, and a hydrophobic ring moiety. 

The pharmacophore of statins is a modified HMG-CoA-like moiety (3,5- dihydroxyglu-

taric acid) which structurally resembles the HMGCR substrate HMG-CoA and its intermediate 

transition state, mevaldyl-CoA [25, 28]. The statin pharmacophore is responsible for the binding 

to the active site of the HMGCR enzyme, essential for the binding of HMG-CoA substrate. This 

makes statins capable of inhibiting HMGCR in a competitive, reversible and dose-dependent 

manner [29]. In statins such as lovastatin and simvastatin, the HMG-CoA like moiety is present 

as an inactive lactone form, which is hydrolysed in vivo to expose the active open acid form of 

the pharmacophore [30]. Additionally, the HMGCR enzyme is stereo-selective and 3R,5R ste-

reochemistry of statins allows them to be efficient inhibitors. 

The latter component of the statins, the hydrophobic rigid ring moiety, is essential for 

the forming binding interactions with the HMGCR enzyme. These interactions aid in improving 

the proximity of the inhibitor with the enzyme and reduce the competition of the enzyme’s nat-

ural HMG-CoA substrate. Different statins have different ring moieties. For instance, partially 

reduced naphthalene ring is present as a substituent in statins such as lovastatin, simvastatin 

and pravastatin, while atorvastatin and cerivastatin contain a pyrole and pyridine group respec-

tively [23]. Differences in the chemical structures of the ring moiety across statins not only 

have an impact on statin’s mode of binding but also governs the distinct molecular and clinical 

properties of the statins. Moreover, the substituents of the ring structures affects the solubility 

of the statins and consequently several of their pharmacokinetic characteristics, including drug 

absorption, distribution, metabolism and excretion [31]. 

1.3.2 Types of statins

Depending on their origin, statins are classified into two types: type I and type II. Type 
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I statins consist of naturally occurring statins that were first discovered as secondary metabo-

lites in fungi. Endo et al., the pioneers in the discovery of statins, identified the world’s first 

fungal-derived statin Mevastatin, isolated from Penicillium citrinum [32]. Other naturally oc-

curring statins belonging to type I class include simvastatin, lovastatin and pravastatin and 

share structural homology to Mevastatin. The structural similarity arises from their common 

hydroxy-hexahydro naphthalene ring system, that contains different substituent side chains at-

tached to it [33]. Type II statins, on the other hand, contain synthetically derived statins. The 

structures of type II statins are very different from natural statins but contain the statin pharma-

cophore, HMG CoA-like moiety essential for the HMGCR inhibition (Figure 4). These include 

cerivastatin, atorvastatin, fluvastatin, rosuvastatin as well as pitavastatin and have differences 

in their bioavailability, half-lives, metabolism, excretion and other pharmacokinetic properties 

[34].

Statins are classified based on their solubility properties and hydrophilicity. The com-

mon pharmacophore of statins inherently imparts a ‘hydrophilic’ nature to the statins due to its 

strong polar hydroxyl, carboxylate component. The ring moiety further contributes to statin’s 

overall hydrophilic or lipophilic characteristics. Among lipophilic statins are atorvastatin, flu-

vastatin, cerivastatin and simvastatin, while rosuvastatin and pravastatin are hydrophilic statins. 

These solubility characteristics of statins have been found to play a major role not only on cho-

lesterol inhibition effects but also its pleiotropic effects. Several clinical studies have been per-

formed to explore the differences between the lipophilic and hydrophobic statins and assess the 

benefits of both [35-37]. Hydrophilic statins are more hepato-selective because they specifically 

require active transport to enter into the liver, which is the major site for cholesterol synthesis 

and thus claimed to have lesser toxic effects. On the other hand, lipophilic statins, by the virtue 

of their hydrophobic nature, can enter through passive diffusion across cell membranes of both 

hepatic as well as non-hepatic tissue. Some studies demonstrated using in vitro experiments 

that lipophilic statins had a higher propensity to cause statin-induced myopathies compared to 

hydrophilic statins [38]. 
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Figure 4. Statin structures. Chemical structures of statins and derivatives. The pharmacophore, 
HMG-CoA-like moiety (encircled) is shared among statins.
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1.4 The Mevalonate Pathway

1.4.1 Cancer metabolism & the mevalonate pathway

Reprogramming of cellular energy metabolism in tumor cells is now recognised as an 

important hallmark of cancer [39]. Tumor cells have been found to alter their metabolism in or-

der to supply macromolecular precursors and provide energy to support their abnormal growth 

and survival [40]. Metabolic reprogramming in tumors could occur as a direct consequence of 

mutations in genes encoding for enzymes involved in metabolism. Examples of these include 

mutations in genes encoding for enzymes of the Krebs cycle such as isocitrate dehydrogenase 

(IDH), fumarate hydratase (FH), succinate dehydrogenase (SDH) [41, 42]. Altered metabolic 

activity could additionally occur as a result of the activation of signalling cascades that promote 

an increase in the anabolic program. These include mutations in genes encoding for key players 

in the PI3K-AKT-mTOR that lead to over-activation of the signalling network [43], or due to 

the altered activity of enzymes in metabolic pathways such as aerobic glycolysis and the meva-

lonate pathway [44, 45]. 

The mevalonate pathway is an important biosynthetic pathway for the synthesis of cho-

lesterol and other isoprenoid-derived intermediates that are vital for cellular function and surviv-

al. This anabolic pathway is controlled by the activity of HMGCR, which converts HMG-CoA 

to mevalonate. Several studies have provided evidences demonstrating the mevalonate pathway 

as being oncogenic. In B-cell chronic lymphocytic leukemia (CLL), mevalonic acid was found 

to acquire the ability to cause transformation [46]. Work from another study showed that ectopic 

expression of the HMGCR enzyme was capable of promoting transformation in primary mouse 

embryonic fibroblasts, suggesting that HMGCR plays a role as an oncogenic metabolite [47]. 

Data analysis of primary breast cancer patient specimens has also shown that higher expression 

of genes associated with the mevalonate pathway correlate with poor prognosis and reduced 

survival [47]. Additionally, in vivo studies have further demonstrated that administration of 

mevalonate to mice with breast cancer xenografts promotes tumor growth [48]. Thus, there are 

increasing evidences that the mevalonate pathway plays a significant role in cancer, strongly 

suggesting the therapeutic potential of targeting the mevalonate pathway.
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1.4.2 Mevalonate pathway derived branches and their metabolites

The mevalonate pathway was initially identified for its role in cholesterol biosynthesis. 

Several studies on the fate of mevalonate later proved that products of the mevalonate path-

way were steadily incorporated into proteins as well [49, 50]. This led to the identification of 

isoprenoid moieties and their role in protein post-translational modifications. Isoprenoids are 

derived from a common 5-carbon compound building block isopentenyl diphosphate (IPP) and 

its isomer dimethylallyl diphosphate (DMAPP). Sequential head-to-head or head-to-tail con-

densations lead to the formation of several complex isoprenoid moieties that are then added 

onto biological molecules. Thus, the mevalonate pathway is essential for the formation of sterol 

and non-sterol isoprenoids (Figure 5) and each of these branches are briefly described in the 

following sections below.

Cholesterol branch. The first committed step in the process of cholesterol biosynthesis is 

the formation of squalene from farnesyl diphosphate (FPP) catalysed by the squalene synthase 

enzyme (FDFT). Squalene undergoes cyclization reactions to form lanosterol and after a series 

of additional reactions, cholesterol is formed. 

Cholesterol plays an important role in steroidogenesis as a precursor of steroid hor-

mones, essential for tumor growth and progression, implicating its usefulness as a therapeutic 

target [51, 52]. Cholesterol is an essential component of the cellular membrane as well as lipid 

rafts. Thus, cholesterol is required in rapidly proliferating cells for its incorporation into cell 

membranes. Moreover, lipid rafts play a key role in signal transduction. Lipid raft depletion by 

cholesterol-depleting drugs leads to increased apoptosis in cancers such as breast cancer and 

prostate cancer [53]. Studies in AML have proved that upregulation of cholesterol is essential 

for survival of leukemic cells and inhibition of cholesterol synthesis can sensitize AML cells to 

therapeutics [54, 55]. Further, leukemic cells, but not normal mononuclear cells, have aberrant 

feedback repression of cholesterol synthesis which is associated with an increase in cell survival 

[56]. 

Protein isoprenylation branch. Isoprenylation is a process involving post-translational 
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Figure 5. The mevalonate pathway. Schematic representation of the mevalonate pathway and 
the formation of steroid and non-steroid isoprenoid end products. Inhibition of HMGCR via 
statins blocks the production of mevalonate, the precursor of downstream sub-branches of the 
mevalonate pathway that are critical for cell proliferation and survival.
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lipid modification of proteins by covalent attachment of 15-carbon farnesyl or 20-carbon gera-

nylgeranyl isoprenoid groups to conserved cysteine residues at the C-terminus of proteins. This 

enhances the overall lipophilicity of proteins and facilitates interactions with cell membranes. 

Thus, prenylation enables proteins to perform functions such as signal transduction and vesic-

ular trafficking. 

There are three types of prenyltransferase enzymes involved in post-translational modi-

fication of proteins: farnesyl transferase (FT), geranylgeranyl transferase I (GGT-I) and geranyl-

geranyl transferase II (GGT-II). FT transfers a farnesyl moiety onto the cysteine of proteins with 

C-terminal CaaX motif (C- cysteine, a – any aliphatic amino acid, and X - usually methionine/

glutamine/serine/alanine/cysteine). GGT-I transfers the geranylgeranyl moiety onto the cysteine 

of a closely identical CaaX motif (X -either leucine/isoleucine). The two enzymes share a com-

mon farnesyl tranferase α subunit (FNTA) and distinct catalytic subunits, farnesyl tranferase β 

subunit (FNTB) and geranylgeranyl transferase type I β subunit (PGGT1B) in FT and GGT- I 

respectively, that determine the specificity of the prenyl groups to be transferred. On the con-

trary, GGT-II enzyme transfers two geranylgeranyl moieties onto cysteine residues of a rather 

distinct CXC or CC motifs. The enzyme requires the presence of rab escort protein (REP) for 

the addition of the prenyl groups on the protein [57]. The main targets of GGT-II enzyme are 

Rab proteins, which are essential for vesicular trafficking. Hence, GGT-II is also referred to as 

Rab geranylgeranyl transferase [58, 59]. Some of the prenylated proteins modified by FT and 

GGT-1 include nuclear surface membrane proteins (lamins) and GTP-binding proteins (Ras, 

Rho, Rac, Rap, etc.). Ras proteins play an important role in proliferation, differentiation and sur-

vival, and mutations in these proteins (H-Ras, K-Ras and N-Ras) lead to aberrant signaling and 

tumor initiation. [60, 61]. Thus, inhibition of prenylation has been shown to alter Ras function-

ality and thus suggested as a therapeutic target. Isoprenylated proteins often undergo additional 

processing steps involving proteolysis and methyl-esterification by isoprenylcysteine carboxyl 

methyltransferase (ICMT) that further increase hydrophobic interactions. 

Genetic screens performed in the past have also revealed the importance of the inhibition 

of the prenylation branch in driving statin’s anti-tumor activity. Linda Penn’s group demon-
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strated with genome-wide dropout RNAi screen that knocking down of genes encoding Gera-

nylgeranyl diphosphate synthase 1 (GGPS1) enzyme (upstream to the geranylgeranylation and 

the ubiquinone branch) enhanced statin-induced apoptosis in lung cancer [62]. The screen also 

revealed that knocking down genes upstream to the mevalonate pathway and essential for the 

regulation of the mevalonate pathway, such as HMG-CoA synthase (HMGCS1) and sterol regu-

latory element binding transcription factor 2 (SREBP2) enhanced sensitivity to statins. Another 

study from Todd Golub’s group used an in vivo RNAi pooled screen to target the enzymes in 

the mevalonate pathway in AML and showed that enzymes involved in the farnesylation and 

geranylgeranylation such as FNTA and ICMT genes were crucial for driving leukemic activity 

in LSCs [63].

Dolichol branch. Dolichol is a metabolite derived from isoprenoid molecules essential 

for synthesis of glycoproteins. Phosphorylated dolichols are also known to be components of 

cellular membranes to increase membrane fluidity [64]. Some studies suggest that repression 

of dolichol synthesis slows cancer cell proliferation due to a decrease in the expression of gly-

cosylated IGF-I receptor that is essential for transition to the S phase of the cell cycle [65]. In 

AML, a study showed that reduction of dolichol pools led to loss of the glycosylated tyrosine 

kinase receptor FLT3 leading to mislocalization and altered signalling of the receptor, thus sug-

gesting statins could overcome tyrosine kinase inhibitor (TKI) resistance in FLT3/ITD AML 

[66].

Ubiquinone branch. Ubiquinone or Coenzyme Q10 (CoQ10) is synthesized via conden-

sation reactions using geranylgeranyl pyrophosphate as a substrate. This is an essential com-

ponent of complex I of the electron transport chain (ETC) in the mitochondria. The reduced 

form of ubiquinone, ubiquinol has been well established for its anti-oxidant properties and is 

known to protect the phospholipids of cell membranes as well as the serum lipoproteins [67]. In 

liver cancer, studies showed evidence that ubiquinone branch is critical for carcinogenesis and 

supplementation of ubiquinone could reverse the anti-tumor activity of statins [68]. Contrarily, 

a study demonstrated that ubiquinone supplementation was not sufficient to rescue the statin’s 

inhibitory effect in AML cells [69].
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Heme A branch. Heme A serves as a vital electron carrier of the cytochrome oxidase 

(COX) in the mitochondrial complex IV: cytochrome C oxidase of the ETC. Synthesis of Heme 

A begins with the farnesylation by Cox10 enzyme of Heme B (protoheme) into Heme O. Heme 

O undergoes a few additional modifications to form Heme A [70, 71]. The farnesylation serves 

as a lipophilic anchor for the positioning of Heme A within the COX complex [72]. Studies in 

ovarian and endometrial cancer have demonstrated that complex IV inhibition leads to degrada-

tion of the hypoxia-inducible factor-1α (HIF-1α) which is well associated with tumor metasta-

sis, angiogenesis and therapy resistance [73, 74]. A study performed in AML with mutant IDH 

showed that suppression of the cytochrome C oxidase leads to the sensitization of the AML 

sub-group to BCL-2 inhibitors [75]. 

i6A-tRNA branch. This branch involves the post transcriptional modification of tRNA 

and is driven by the tRNA isopentenyltransferase 1 (TRIT1) enzyme [76]. TRIT1 modifies 

tRNA by the addition of isopentenyl on the adenosine 37 residue to form N6-isopentenylade-

nosine (i6A) tRNA [77]. In mammalian cells, the only tRNA with such modification is the Sele-

nocysteyl (Sec) tRNA (tRNA ([Ser]Sec)) and is essential for selenoprotein production. The i6A 

modification on the tRNA enables the decoding of specific stop codons, UGA as selenocysteines 

in selenoproteins [78]. Selenoproteins have been well studied for their role in maintaining the 

cellular redox homeostasis [79]. In leukemia, studies have suggested that selenoproteins have a 

protective function and play a role in LSC apoptosis [80]. Another study in lung cancer showed 

that TRIT1 could possibly play a tumor suppressor role as TRIT1 expression negatively cor-

related with lung carcinogenesis [81].

1.4.3 Regulation of the mevalonate pathway

The fine tuning of the mevalonate pathway is crucial for cells to receive the right sup-

ply of metabolites supporting growth without over accumulation of toxic products, including 

cholesterol [50]. The HMGCR enzyme, the rate-determining enzyme of the pathway, is subject 

to tight regulation and controlled by multivalent feedback mechanisms at the transcriptional, 

translational and post-translational level. At the transcriptional level, shortage of cholesterol or 

steroid isoprenoids activates sterol regulatory element binding proteins (SREBP), that enhances 
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transcription of genes of the cholesterol synthesis enzymes as well as the low density lipopro-

tein receptor (LDL) by binding to promoter regions containing sterol regulatory elements (SRE) 

[82]. Non-steroid derived isoprenoids regulate HMGCR at the translational level by undefined 

mechanisms [24]. Stability and activity of HMGCR is regulated by post-translational mecha-

nisms. HMGCR enzyme is rapidly degraded by the 26S proteasome through its interaction with 

gp78, ubiquitin-E3 ligase; mediated again by both mevalonate derived sterols and non-sterols 

[83]. Finally, activity of HMGCR is regulated by inactivating phosphorylation by AMP-activat-

ed protein kinase (AMPK), an enzyme subject to activation by the AMP: ATP ratio in the cell 

[84]. Therefore, HMGCR is the master regulator of controlling the flux of metabolites in the 

mevalonate pathway.

1.5 Clinical applications of statins in cancer

Studies have demonstrated that statin usage is associated with 20-28% reduction in over-

all cancer incidence [1]. One instance of this was described in a study by Farwell et al. that 

revealed that total cancer incidence was 9.4% in statin users with cardiovascular diseases com-

pared to non-statin users with cancer incidence of 13.2% [2]. Likewise, several observational 

and meta-analysis studies has shown that statin usage was associated with lower cancer risks in 

cases of prostate, hepatocellular, gastric and esophageal cancers [3-6]. Meta-analyses and the 

pre-clinical results obtained with statins rationalized the repositioning of statins as anti-cancer 

agents and statins made their way into clinical trials for cancer patients. In the early 1990s, 

Lovastatin was the first statin to be approved to enter into a clinical trial for patients with solid 

tumors. Lovastatin dosage of 25 mg/kg/day was administered to cancer patients for seven con-

secutive days which resulted in statin plasma concentrations of 0.1 to 3.9 μM [7]. This dosage 

was 50 times higher than the dose administered to treat hypocholesteremia and the major side 

effects of statins was the lovastatin-induced myopathy. Although this toxicity could be reversed 

by the co-administration of ubiquinone to patients, large interpatient variability was reported 

and there was no correlation between the extent of the inhibitory effect or the plasma drug con-

centrations with the dosage administered [7]. Several other clinical trials have followed suit and 

as of now (July 2018), https://www.clinicaltrials.gov/ reports a total of 154 entries for statins 
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that are or have been part of clinic trials for cancer. These include atorvastatin, lovastatin, sim-

vastatin, fluvastatin, rosuvastatin and pravastatin for several solid tumors as well as hematolog-

ical cancers, including AML. In AML, statins including atorvastatin, lovastatin and pravastatin 

were approved to enter clinical trials. In order to assess the safety and efficacy of lovastatin in 

AML, a clinical trial was initiated and AML patients were administered with 10–20 mg/kg/day 

for 2 weeks. However, due to high drug-related toxicity issues, the full regimen of the lovastatin 

could not be completed and the trial had to be terminated [8]. In another single case study, an 

elderly female with relapsed AML was administered with a reduced lovastatin dose of 2 mg/kg/

day for a prolonged period of 54 days. In this case, AML blast counts decreased during the treat-

ment and reduced counts were maintained for three months post-treatment [9]. Other clinical 

trials of statins for treatment of AML patients are summarised in table 4. Although data from the 

clinical trials with statins in AML provides some promising results, understanding how statin’s 

mediate their anti-AML effect will be very crucial to decrease the toxicity issues and side-effects 

and completely benefit patients.
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Statin AML Study 
phase 

Dosing 
schedule 

Study 
status 

Results: 
Response 

rate/ 
Survival 

Reference 

Atorvastatin  
(n=50) 

Tumor 
protein 53 
(p53) 
mutated 
and wild 
type AML 
patients 

Phase I 

80 mg/day 
Atorvastatin, 
1 - 4 weeks 
before 
surgery 

Not yet 
recruiting None 

NCT0356

0882 

Lovastatin 
(n=23) 

Refractory 
or relapsed 
AML 

Phase 
I/II 

0.5 
mg/kg/day 
Lovastatin 
(days 1-7), at 
day 14, 
lovastatin 
doses given 
in two fold 
increments 
(upto 24 
mg/kg/day) 
3.0 g/m2   
HiDAC 
Cytarabine 
every 12 
hours (day 3- 
7) 

Terminated 

CR of 
53.8% 
(No 
statistical 
analysis 
provided)  

NCT0058

3102 

Pravastatin 
(n=6) 

Refractory 
or relapsed 
AML 

Phase 
I/II 

Pravastatin 
(days 1-10), 
Cyclosporine 
(days 5-9), 
Etopside 
(days 5-9), 
mitoxantrone 
hydrochlorid
e (days 5-9) 

Terminated No CR 
achieved 

NCT0134

2887 
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Pravastatin  
(n=36) 

Relapsed 
AML 

Phase 
II 

1280 mg/day 
Pravastatin 
(Days 1-8), 
1.5g/ m2 

Cytarabine 
(days 4-6), 
12 mg/m2 
Idurubicin 
(days 4-6) 

Completed 

Response 
rate of 
75% , 
Median 
OS 12 
months 

[85] 

Pravastatin  
(n=24) 

Newly 
diagnosed 
AML/MD
S 

Phase 
II 

1280 mg/day 
Pravastatin 
(Days 1-8), 
1.5g/ m2 

Cytarabine 
(days 4-7), 
12 mg/m2 
Idurubicin 
(days 4-6) 

Completed 
Good CR 
in 50% 
patients 

NCT0183

1232  

[86] 

Pravastatin 
(n=37) 

Acute 
myeloblast
ic 
leukemia 

Phase I 

40- 1680 
mg/day 
Pravastatin 
(Days 1-8) 
1.5g/ m2 

Cytarabine 
(days 4-7), 
12 mg/m2 
Idurubicin 
(days 4-6) 

Completed CR of 
73% 

[87] 

 

Table 4 : Summary of clinical trials involving statins in AML treatment
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General rationale and hypothesis

AML is a clinically heterogeneous disease and is characterised by several distinct molec-

ular and cytogenetic anomalies. The heterogeneous nature of AML is thought to be responsible 

for current therapeutics to perform inefficiently in patients which highlights the requirement for 

sub-group specific anti-AML therapy. The need for better therapeutics is more urgently required 

for adverse outcome AML patients, who are often refractory to treatment and relapse after ther-

apy. Identification of drug-targetable networks in both good- and poor-outcome AML is a requi-

site for the development of efficient sub-group specific anti-AML therapy. 

We previously identified statin’s ability to discriminate between AML specimens de-

pending on the treatment outcome of patients they originated from. Preliminary investigation in 

the Sauvageau lab demonstrated that the HMGCR inhibition is essential for statin’s differential 

anti-AML activity. This suggested that the mevalonate pathway is somehow more crucial for 

the leukemic activity in the good-outcome AML patient samples; thus making them more sen-

sitive to statins compared to the poor-outcome patient samples. As previously described, the 

mevalonate pathway bifurcates into different biosynthetic sub-branches and play crucial roles in 

several cellular functions. Moreover, many of these branches have previously been implicated 

in several different cancers, including AML. These preliminary evidences led us to hypothe-

size that statin’s HMGCR-dependent anti-AML effect is modulated by sub-branch(es) of 

the mevalonate pathway.  The goal of the project is to identify components or mechanisms that 

drive statin sensitivity using genetic and chemical approaches.

Specific Objectives

1) Identify statin sensitive cell lines.

2) Validate that HMGCR is the target for statin induced anti-AML activity.

3) Identify sub-branch(es) of the mevalonate pathway, downstream of HMGCR, contrib-

uting to anti-AML activity of statins.
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Chapter 2: Results

2.1 Identification of statin sensitive cell lines 

In order to identify a suitable model system to approach our hypothesis, we tested a se-

ries of cell lines for statin sensitivity. We chose AML cell lines with cytogenetic anomalies of the 

CBF-AML sub-group such as Kasumi-1 and SKNO-1 (t(8;21)), ME-1 (inv (16)) as well as non-

CBF-AML cell line OCI-AML-5 cells. We tested statin sensitivity of cell lines and performed 

flow-cytometric assessment using a viability dye and a fixed volume of beads in order to mea-

sure viable cell counts. Cell viability was assessed as a measure of viable (PI or 7-AAD nega-

tive) cells as a percentage of the mock (DMSO) treated cells. Our methodology is advantageous 

over other assays as it is a direct measure of cell viability rather than an indirect estimation of 

viable cells obtained by measuring general metabolism or enzyme activity (in assays such as 

MTT reduction assays or ATP assays). Cell death was assessed by measuring the percentage 

of PI/7-AAD positive cells as compared to mock (DMSO) treated cells. All experiments were 

performed in serum-starved conditions in order to avoid compensatory effects of cholesterol or 

other lipids in the serum. We observed that OCI-AML-5 cells and Kasumi-1 cells were sensitive 

to statins (Figure 6) and good model cell lines to carry out our objectives. Other cell lines tested, 

the SKNO-1 cell line had a very long doubling period (~50 hours) and ME-1 cell line had poor 

viability recovery in DMSO (control condition) and hence, were not continued in the study. 

2.2 Validation that HMGCR is the target for statin induced an-
ti-AML activity

2.2.1 shHMGCR cloned in a doxycycline-inducible system

The pharmacological target of statins is known to be HMGCR. As a proof-of-principle 

experiment, we sought to validate that HMGCR is the target of statin induced anti-AML activity 

in OCI-AML-5 cells. In order to approach this objective, we wished to knockdown the HMGCR 

enzyme and to observe changes in statin sensitivity. We expected to observe an increase in sensi-

tivity upon HMGCR knockdown. We designed shRNAs targeting the HMGCR gene in a tet-in-
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ducible system in order to avoid any lethal effects caused by HMGCR loss. The expression of 

shRNA and GFP marker was controlled by T3G promoter and presence of doxycycline allowed 

the binding of the rtTA to T3G promoter and expressed the shRNA and GFP (Figure 7, a and b). 

The shRNAs were stably integrated via lentiviral transduction. Although the Kasumi-1 cell line 

was a good genetic model to recapitulate the CBF-AML patient specimens, we observed very 

poor transduction efficiency. The use of other transduction methods such as spinoculation and 

retronectin bound virus-mediated infection also failed to achieve good infection efficiency and 

good viability. We therefore chose to use the other statin-sensitive model OCI-AML-5 cell line 

which was the most statin sensitive cell line among the ones tested.

We were able to successfully transduce shRNAs expressing viruses into the OCI-AML-5 

cell line. We observed an efficient induction of GFP expression within 24 hours post doxycycline 

treatment, with >90% cell population turning GFP+ upon dox-induction (Figure 7c, left panel). 

As a prerequisite, we tested whether the presence of doxycycline had an effect on anti-AML 

activity of both statins and A405 and found no change in sensitivity to the drugs (Figure 7d). 

Thus, doxycycline did not affect the sensitivity of statins or A405 in OCI-AML-5 cells. Finally, 

in order to validate our knockdown efficiency, we used quantitative real-time PCR (qRT-PCR) 

to measure HMGCR knockdown at the mRNA level. We observed up to 80% knockdown of 

HMGCR mRNA levels compared to the non-targeting control (Figure 7c, right panel). 

2.2.2 Reducing HMGCR levels sensitizes OCI-AML-5 cells to statins

In order to validate if HMGCR is the target of statin-mediated cytotoxic activity, we 

investigated the impact of HMGCR knockdown on statin sensitivity. We induced the shRNA tar-

geting either HMGCR or Renilla luciferase (non-targeting control, NT) and tested the response 

to statins by monitoring shifts in the IC50 values (Figure 8a). This was determined by cell viabil-

ity assays after four days of drug treatment. We observed that HMGCR silencing rendered the 

OCI-AML-5 cells more sensitive towards both atorvastatin and cerivastatin and changes in sen-

sitivity corresponded to the level of knockdown; with cells with the most efficient knockdown 

being the most sensitive (~10 fold increase in sensitivity) (Figure 8b, top and middle panel). To 

determine if increased sensitivity following HMGCR knockdown was specific to statins, we 
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tested the response of OCI-AML-5 cells with silenced HMGCR to A405 analog. We used the 

A405 analog as a negative control as its anti-AML effect is independent of HMGCR inhibition 

and thus, HMGCR knockdown should not affect sensitivity. As expected, we observed no sig-

nificant change in sensitivity with A405 irrespective of the knockdown levels (Figure 8b, lower 

panel). Thus, these results indicated that HMGCR knockdown sensitizes OCI-AML-5 cells to 

statins, but not to A405.

2.2.3 Mevalonate completely rescues the effect of statins

An intriguing, yet interesting observation made at this point of our study was that during 

the four days of the assay, we did not observe any decrease in viable cell counts in OCI-AML-5 

cells with HMGCR silencing (Figure 9). These preliminary results suggested that HMGCR 

silencing alone was not sufficient to genetically phenocopy the effect of statins in OCI-AML-5 

cells. We reasoned that this observation could be either explained by the possibility of a poten-

tial second target of statins being activated in these cells or that remnant HMGCR levels were 

sufficient to sustain cell survival. Detection of total HMGCR protein levels alone with a western 

blot would not be sufficient to explain our intriguing observations, but rather total activity levels 

of HMGCR in the engineered cells would need to be analysed by measuring the conversion of 

HMG-CoA into mevalonate by liquid chromatography and mass spectrometry [88]. Instead, as 

an alternative approach, in order to rule out the possibility of the ‘additional target’, we chose to 

ask if the downstream product of HMGCR, mevalonate could rescue the cytotoxic effect of the 

statin. To this end, we treated OCI-AML-5 cells with cerivastatin in a dose dependent manner in 

the presence or absence of 5mM mevalonic acid for four days and cell viability was determined. 

We observed that mevalonate was sufficient to completely rescue the effect of the statin (Figure 

10). 

2.2.4 Complete loss of HMGCR is lethal in OCI-AML-5 cells

We further investigated if complete loss of HMGCR in OCI-AML-5 cells would phe-

nocopy the effect of the statins. To this end, we used CRISPR/Cas9 technology to genetically 

knock out HMGCR in OCI-AML-5 cells. We designed sgRNA targeting the HMGCR gene and 
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Figure 10. Mevalonate completely rescues the effect of statins. Dose response assays of OCI-
AML-5 cells with cerivastatin with and without the supplementation of 5mM mevalonate (curves 
in green and black respectively). Pilot experiments showed that 5mM was found to be optimal 
for assay. Inhibition of proliferation, measured by calculating viable cell counts as a percentage 
of the DMSO or DMSO with mevalonate-treated (control) conditions. (Done in duplicates; Rep-
resentative of n=3 independent experiments)
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using lentiviruses, infected these into clonal OCI-AML-5 cells expressing an inducible Cas-

9 cassette and investigated the effect of loss of HMGCR in OCI-AML-5 cells (Figure 11a). 

Western blot analysis in OCI-AML-5 cells expressing Cas9 revealed that HMGCR levels were 

completely depleted by sg2 HMGCR and sg3 HMGCR (Figure 11c), which resulted in rapid 

cell death (Figure 11b). Thus, complete loss of HMGCR was lethal in OCI-AML-5 cells and 

knocking out HMGCR genetically phenocopied the effect of statins.

 Thus, with both genetic and chemical approaches, we validated that HMGCR is indeed 

the target of statin-mediated cytotoxic activity in OCI-AML-5 cells and thus, this model system 

could be exploited to dissect the mevalonate pathway.

2.3 Identification of sub-branch(es) downstream of HMGCR con-
tributing to the anti-AML effect of statins 

With our model system validated, we sought out to investigate which of the downstream 

branch(es) were essential for mediating statin’s cytotoxic activity. A majority of the genes cod-

ing for enzymes in the mevalonate pathway are essential. Thus, we chose to use inducible RNAi 

technology to knockdown the enzymes of the different branches of the mevalonate pathway and 

observe changes in statin sensitivity. OCI-AML-5 cells were transduced with 2-3 shRNAs tar-

geting the key enzymes of the mevalonate pathway. Similar to the previous experiments, A405 

was used as a negative control. Knockdown efficiencies were validated at the mRNA level by 

q-RT-PCR. Changes in sensitivity to statins and A405 upon knockdown of the branches was 

compared to OCI-AML-5 cells with sh2 HMGCR as a positive control (as we observe a signif-

icant shift in IC50 values) and the non-targeting shRNA control as a negative control (represen-

tative from the screen in Figure 12a). 

Enzymes tested in the screen included FDFT (squalene synthase; cholesterol sub-branch) 

FNTA (common subunit of FT and GGT-I), FNTB (catalytic subunit of FT), PGGT1B (catalytic 

subunit of GGT-I), RABGGTB (catalytic subunit of GGT-II), ICMT (essential for final meth-

ylation post-translation modification for both farnesylated and geranygeranylated proteins), 

PDSS1 (ubiquinone sub-branch), GGPS1 (common to both ubiquinone and geranylgeranylated 
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Figure 12. RNAi screen on the mevalonate pathway. Enzymes in the mevalonate pathway were 
knocked down with RNAi technology and dose response assays were performed. Representative 
result from the screen depicted in (a). Dose response curves of OCI-AML-5 cells upon knocking 
down HMGCR or FNTA after 4 days of treatment with atorvastatin or A405 (top panel). Assess-
ment of FNTA knockdown efficiency by qRT-PCR (bottom right) and fold change in IC50 values 
of respective dose response curves compared to control cells containing shRNA targeting Lucif-
erase renilla (bottom left). Fold changes calculated by (IC50 value of shRenilla)/( IC50 value of 
shFNTA) (b) Schematic representation of mevalonate enzymes targeted in the RNAi screen (left 
panel). Summary of RNAi screen (right panel) describing fold changes in IC50 values of dose 
response curves compared to control cells containing shRNA targeting Luciferase renilla (top 
panel) and knock-down efficiencies of shRNA assessed by qRT-PCR (bottom panel). shRNA 
targeting HMGCR used as a positive control and shows the largest increase in sensitivity and 
thus, largest fold change in IC50 values. (Done in quadreplicates, n=1 independent experiment). 
*Results with shRNA targeting FDPS described in Figure 13.
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proteins), COX10 (Heme sub-branch), TRIT1 (i6A t-RNA sub-branch), FDPS (branch-point 

enzyme) (Figure 12b, left panel). We observed no significant shifts in IC50 values by knocking 

down single branches of the mevalonate pathway upon statin treatment (Figure 12b, and Appen-

dix I). Most of the branches tested had good knockdown levels for targeted enzymes, except for 

GGPS1 enzyme, which will need to be repeated with better a knockdown. Finally, all the recom-

binant cells lines tested had IC50 values > 3 µM for A405 and we did not observe any changes in 

sensitivity upon knockdown of the targeted enzymes as expected. 

Interestingly, in contrast to HMGCR, knocking down the branch-point enzyme FDPS 

alone (Figure 13a) led to drastic decrease in the total viable cell counts after 4-days of dox-in-

duction (Figure 13b, left panel). This occurred with concurrent increase in cell death by 50%-

60% for all three shRNAs tested (Figure 13b, right panel). Thus, knockdown of the FDPS en-

zyme was lethal to OCI-AML-5 cells. When the response of OCI-AML-5 cells to statins upon 

knockdown of FDPS was tested, we observed a biphasic dose response (Figure 13c). At high 

concentrations of atorvastatin, we observed a lethal effect in cells. However, at a certain window 

of atorvastatin concentration (1μM – 0.1 μM), we were able to rescue the lethality caused by 

the FDPS depletion (Figure 13, c and d). At very low atorvastatin concentrations, we lost the 

‘rescue’ effect of statins. This effect was specific to the statin as it was not observed with A405 

treatment (Figure 13c). 
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Figure 13. FDPS knockdown lethal in OCI-AML-5 cells, rescuable by statins. (a) Assessment 
of FDPS knockdown efficiency by qRT-PCR. (b) Assessment of viable cell counts (left) and cell 
death (right) upon four days of HMGCR or FDPS knockdown in OCI-AML-5 cells. Viable cell 
counts are represented as a percentage of the control cells containing shRNA targeting Luciferase 
renilla. (c) Dose response curves of OCI-AML-5 cells upon knocking down HMGCR or FDPS 
after 4 days of treatment with atorvastatin (left) or A405 (right). Horizontal axis represents viable 
cell counts as a percentage of cells in control (DMSO treated) conditions. (d) GFP expression 
measured by flow cytometry in DMSO treated or statin treated conditions at day 1 or day 4 
of doxycycline treatment. (Done in quadreplicates, Representative of n=2 independent experi-
ments)
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Chapter 3- Methods

3.1 AML cell lines

AML cell lines Kasumi-1 and ME-1 were cultured in RPMI 1640 (Gibco) with 20% heat 

inactivated serum (Gibco). SKNO-1 and OCI-AML-5 cells were cultured in RPMI 1640 and 

DMEM (Gibco) respectively with 10% heat inactivated serum and 10 ng/ml GM-CSF. 

3.2 Assessment of statin-mediated anti-AML effect

AML cell lines were washed with IMDM media to deplete the presence of serum and 

transferred in serum-free media which included IMDM (Gibco), 15% BSA-Insulin-transferrin 

(BIT 9500, Stem cell technologies), and 0.1M β-Mercaptoethanol. In case of OCI-AML-5 cells, 

10 ng/ml GM-CSF was supplemented to the media. Cells were treated with Atorvastatin, Ceri-

vastatin or UM0135405 in a dose dependent manner or solvent control (0.1% DMSO) in 384 

well plates (Corning 3701). Four days post drug treatment, viable cell counts were determined 

with a viability dye, 7-AAD or PI and a fixed volume of beads (CountBright Absolute Count-

ing Beads). Experiments were performed with iQue High Throughput Screener (Intellicyt) and 

subsequent analyses were performed with the iQue software. Dose response analysis and IC50 

values were determined using Graphpad prism (v6.0).

3.3 RNAi and CRISPR-Cas9

shRNA targeting candidate genes were designed using prediction algorithms described 

in [89] and cloned into doxycycline inducible vector T3G-GFP-miRE-Pgk-Puro-rtTA. Control 

vector (shNT) contained shRNA targeting Renilla luciferase. The sgRNAs targeting HMGCR 

were designed from Sabatani & Lander group [90] and was cloned in plko/tRFP657 lentivirus 

according to the protocol “Genome-scale CRISPR Knock-Out (GeCKO)” from the Zhang lab 

(http://genome-engineering.org/gecko/wp-content/uploads/2013/12/lentiCRISPRv2-and-len-

tiGuide-oligo-cloning-protocol.pdf”). Viruses were transduced in a tetracycline inducible OCI-

AML-5 Cas9 cell line.
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3.4 Lentiviral production and transduction

HEK293T cells were transfected with 3.33 µg PAX2 packaging plasmid and 1 µg VSV-G 

envelope plasmid along with 5 µg lentiviral plasmids using 20 µL jetPRIME reagent (Poly-

Plus Transfection) according to manufacturer’s instructions. Viral supernatant was harvested 48 

hours post-transfection and 1 mL soup was added to 300,000 OCI-AML-5 cells in 6 well plates 

(Sarstedt) along with 3 µg/mL polybrene. Cells were spinoculated by centrifuging them at 32ºC 

at 1000g for 1.5 hours. Viral soup was then replaced with fresh media (DMEM + 10% Hi-FBS). 

For shRNA lentiviral infections, 48 hours post infection, cells were washed and media was re-

placed by 2 µg/mL puromycin containing media. After puromycin selection for 48 hours, cells 

were washed in order to remove the uninfected dead cells. Infection efficiency, determined by 

percentage of GFP+ cells, was assessed with flow cytometry using the BD FACS Canto II and 

always resulted in ≥85% GFP+ cells. 

3.4 Real time PCR

Knockdown efficiency was assessed 48 hours post dox-induction. RNA was isolated from 

cells using TRIzol (ThermoFisher) reagent according to manufacturer`s instructions. cDNA was 

prepared from the isolated RNA with M-MLV reverse transcriptase (Invitrogen) and random 

primers (ThermoFisher). Quantitative real time PCR was performed for the candidate shRNA 

genes using validated Universal ProbeLibrary assays (Roche) on the Viia7 Real time PCR sys-

tem (Applied Biosystems). Relative mRNA levels were normalized to GAPDH and EIF4H and 

knockdown efficiency was analysed using Expression Suite software v1.1 (ThermoFisher). 

3.5 Western blot analyses

OCI-AML-5 Cas9 cells containing sgRNAs targeting HMGCR were treated with and 

without doxycycline in the presence or absence of mevalonate, and whole cell extracts were 

isolated in Laemmli buffer and loaded onto 7.5% SDS-PAGE gels. Proteins were then trans-

ferred to activated PVDF membranes, followed by blocking with 5% milk solution prepared 

in Tris-buffered saline containing 0.1% Tween-20 (TBST) buffer. Membranes were then in-
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cubated with 1.3 µg/mL primary rabbit anti-HMGCR antibody (Abcam, ab214018) diluted in 

TBST containing 5% BSA overnight at 4°C. Membranes were washed thoroughly three times 

with TBST followed by incubation with secondary anti-rabbit antibody conjugated to horse-

radish peroxidase (HRP) in TBST with 5% milk solution for 1h at room temperature. These 

were washed again three times with TBST and developed with Immobilon Western Chemilu-

minescent HRP Substrate (Millipore). Images were captured and analysed using ImageQuant 

LAS4000 (GE Healthcare Life Sciences).

3.6 Screening of mevalonate pathway branches

AML cell lines stably transduced with the shRNAs were washed twice with IMDM 

media and cells were transferred to in serum-free media containing with 2µg/mL doxycycline 

for overnight serum starvation. Cells were treated with Atorvastatin or A405 in a dose depen-

dent manner or solvent control (0.1% DMSO) in 384 well plates (Corning 3701) using Echo 

555 (Labcyte) machine. Doxycycline was replenished every two days to maintain expression 

of shRNAs. Four days post drug treatment, viable GFP+ cell counts were determined with a 

viability dye, 7-AAD and a fixed volume of beads (CountBright Absolute Counting Beads). 

Experiments were performed with Yeti flow cytometer and subsequent analyses were performed 

with the Flow Jo v10 software. Dose response analysis and IC50 values were determined using 

Graphpad prism (v6.0).
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Chapter 4- Discussion

Heterogeneity of statin responses in AML specimens 

Our study adeptly exemplifies how chemo-genomic investigation of AML proved to be 

key in improvement of AML therapy. We used high-throughput screening approaches to inves-

tigate AML responses with the aim to identify small molecules that target specific AML sub-

groups. One such chemical screen enabled us to identify the heterogeneity of statin responses in 

AML. We found this heterogeneity of AML specimens was associated with the clinical outcome 

of AML patients. Further investigation with larger cohorts of AML specimens enabled us to 

identify that specific sub-groups of AML, with genetic anomalies in their CBF transcription 

factor, such as inv(16) and t(8,21), were associated with increased statin sensitivity, while AML 

with mutations in IDH genes were associated with statin resistance. Thus, our study emphasised 

the importance of the mutational landscape in AML in predicting responses to AML therapy. 

Heterogeneity in statin responses have previously been reported in multiple myeloma 

(MM) [91]. Clendening et al. observed that only a subset of MM cell lines as well as primary 

MM specimens were sensitive to statins. In this context, they identified that such differences in 

statin sensitivity were owing to the altered feedback regulation in MM cells; with sensitive MM 

cells being unable to turn on their feedback upon statin mediated HMGCR inhibition. In our 

case however, transcriptomic data of primary AML specimens showed that there were no such 

significant alterations of enzymes involved in HMGCR feedback regulation upon statin treat-

ment among sensitive and resistant cells (Jana Krosl et al., unpublished data from our group). 

Further analyses of activity and protein levels of enzymes involved in feedback mechanisms in 

the AML specimens would be worth investigating. 

The molecular mechanisms mediating differential statin response in cytogenetic AML 

sub-groups is yet to be elucidated. Several studies have demonstrated that statin impairs glucose 

uptake and inhibits the glycolysis pathway [92, 93]. Interestingly, tumor cells with mutated IDH 

activity are known to switch off the glycolytic pathway and are dependent on glutaminolysis 

to fuel their energy requirements [94]. It is tempting to speculate that in AML with IDH muta-
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tions, statins further augment the tumor addiction to glutamine and this could possibly explain 

the statin resistance. Further, a study exploring glycolytic metabolism demonstrated that AML 

cells with high glycolytic metabolism were predictive of better overall survival [95]. It would 

be interesting to investigate the glycolytic metabolic flux in both good outcome AML (such as 

CBF AML) as well as IDH mutated AML and monitor the effect of statin on rewiring the me-

tabolism in AML cells. Interestingly, there is evidence that IDH1 gene promoter contains SRE 

elements and that IDH1 gene expression is upregulated by SREBP upon lipid starvation [96]. 

This raises the possibility that statin-mediated cholesterol depletion in IDH mutated AML cells 

would increase the mutant IDH gene expression and this might explain the resistance observed 

with these specimens. 

Chemo-genomic dissection of the mevalonate pathway in OCI-AML-5 cells

Preliminary experiments presented here pave the way to further dissection of the meva-

lonate pathway in AML. As loss of majority of the enzymes of the mevalonate pathway have 

been shown to be lethal [97], our choice of RNAi technology was advantageous over the CRIS-

PR/Cas-9 system. RNAi system enabled us to leverage AML cells by reducing levels of the 

pathway enzymes, and observing changes in statin responses. We found that OCI-AML-5 was 

a good model cell line to investigate the contribution of the branches as they were highly statin 

sensitive, easily transducible and had a short doubling period. As a pre-requisite, we performed 

a proof-of-principle experiment in order to determine if OCI-AML-5 cells was indeed a good 

model in order to investigate the sub-branches of the mevalonate pathway. As expected, we ob-

served that knocking down HMGCR, the target of statins, we were able to increase sensitivity 

to statins such as atorvastatin and cerivastatin in OCI-AML-5 cells and the degree of sensitivity 

corresponded to the level of knockdown. Thus, limiting cellular levels of HMGCR enzyme in 

cells increased sensitivity to statin-mediated inhibition. Further, we observed that this increased 

sensitivity upon HMGCR depletion was specific to statins and was not observed in the negative 

control, A405. Thus, with RNAi tools we were able to validate that HMGCR is the target of the 

statins in OCI-AML-5 cells. These results also suggested that sensitivity of AML cells to statins 

could be explained by endogenous levels of HMGCR in AML cells and this could possibly 
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explain the discriminatory effect we observed in AML samples. However, transcriptomic data 

of AML specimens did not show any significant changes in HMGCR mRNA levels between 

sensitive and resistant AML specimens (Jana Krosl et al., unpublished data from our group). 

Assessment of both the activity and the protein levels of HMGCR in the sensitive and resistant 

AML would be interesting to investigate. 

Interestingly, although we observed a considerable increase in statin sensitivity when 

HMGCR levels are knocked down, we were unable to genetically phenocopy the effect of 

the statins by knocking down HMGCR alone. Pioneering work of Brown and Goldstein have 

demonstrated the extent of the tight regulation of HMGCR and that active HMGCR levels as 

low as 20% are sufficient for mediating normal cellular functions [50]. We speculated that our 

observations could be explained by this threshold maintained in the cells engineered to express 

reduced level of HMGCR. We additionally questioned if our observations occurred as a result 

of other pathways, additional to the mevalonate pathway, promoting leukemic effect in OCI-

AML-5 cells. However, upon further investigation, our results showed that exogenous supply 

of mevalonate could rescue the cytotoxic effects of the statins in OCI-AML-5 cells. Moreover, 

complete loss of HMGCR was lethal to these cells. Our data confirmed that mevalonate derived 

products downstream of HMGCR were sufficient to compensate the anti-leukemic effect of 

the statins and was essential for AML cells survival. Thus, both genetically and chemically we 

showed that HMGCR is the target of the statins in OCI-AML-5 cells and validated the OCI-

AML-5 model system. 

With our model system validated, we investigated if inhibition of any of the branches 

would act in concert with statin’s cytotoxic effect. Our preliminary results demonstrated that 

knocking down enzymes of single sub-branches of the mevalonate pathway was not sufficient 

to increase sensitivity to statins. Further, simultaneous depletion of both farnesylation and ge-

ranylgeranylation (type I) of proteins by knocking down the common sub-unit, FNTA of these 

enzymes mediating prenylation did not increase statin-sensitivity of OCI-AML-5 cells. Fur-

ther, simultaneous depletion of all three prenylated proteins by knocking down the common 

post-translational methylation enzyme, ICMT did not increase statin-sensitivity of OCI-AML-5 
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cells either. Several groups have demonstrated that statin’s anti-tumor effects are mediated via 

the inhibition of protein prenylation, via farnesyl transferase or geranylgeranyl I transferase 

[63, 98]. Contrary to this, in our study, we did not observe any significant changes in statin 

sensitivity upon knocking down these branches. This discrepancy could be explained by the 

differences in culture conditions used to perform experiments; we used serum-free conditions 

and depleted cells of serum to prevent the compensation of statin’s effect by cholesterol/lipid 

components present in the serum. Moreover, for all of the branches of the mevalonate pathway, 

except GGPS1 enzyme, we were successful in obtaining good knockdown levels (as assessed by 

qRT-PCR). Of note, it will be very important to investigate the protein levels of each enzymes 

tested as well as their activity to further validate the contribution of these branches in statin’s 

effect, as it is known that this pathway is tightly regulated at both transcriptional and post-trans-

lational levels. This would be important to further confirm that single knockdown of branches is 

not sufficient to increase statin sensitivity. 

Additionally, it would be interesting to investigate the impact of complete knockout of 

pathway enzymes on statin’s effect in different cell contexts: sensitive versus resistant cell mod-

els. OCI-AML-3, AML-2, HL-60, U937, NB-4, ML-1 are a few AML cell lines that could be 

investigated for their statin sensitivity/resistance.  Comparison of results obtained from both the 

shRNA and sgRNA screen would be interesting to investigate. Such approaches of performing 

parallel screens have been found to be more beneficial in identification of drug targets and iden-

tifying drug resistance mechanisms [99]. An important consideration to be made is that among 

the cell lines tested, OCI-AML-5 cells had the shortest doubling time and were the most statin 

sensitive. Thus, it is likely that these cells have higher cellular requirements for cholesterol or 

other mevalonate pathway derived metabolites to support their rapid growth. It would be im-

portant to investigate if there is a correlation between the growth rates of AML cells and their 

statin sensitivity and if differences in the growth rates could affect the discriminatory effect of 

statins. Finally, in order to assess the compensatory mechanisms of any of the sub-branches 

of the pathway over the other, it would be important to perform combinatorial knockdowns of 

two or more branches and investigate changes in statin sensitivity. We could additionally use 

chemical inhibitors to investigate the mevalonate pathway by using commercially available 
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compounds targeting these branches. These include farnesyl transferase inhibitors (Lonafarnib, 

FTI-176, FTI-277), geranylgeranyl transferase I inhibitor (GGTI- 2133, GGTI- 286, GGTI- 

298), cholesterol synthesis inhibitors (zaragozic acid, lapaquistat), and ubiquinone and choles-

terol synthesis inhibitor (perillyl alcohol), among others. 

Lethality of FDPS knockdown in OCI-AML-5 cells is rescued by low doses of 
statins

We investigated the role of branch point enzyme FDPS in OCI-AML-5 cells and found 

that depleting FDPS levels led to a dramatic decrease in viable cell counts accompanied with 

a substantial increase in cell death. This data suggested that FDPS plays a critical role in the 

proliferation and survival of leukemic cells. High protein and activity levels of FDPS have 

been previously associated with high-grade gliomas and FDPS was considered as a candidate 

oncometabolite as well [100]. Intriguingly, our data showed that lethality of FDPS knockdown 

could be rescued by treatment with statins. Furthermore, atorvastatin (but not A405) showed 

a biphasic response in cells engineered to express low level of FDPS. This was unexpected 

because, as FDPS is downstream to HMGCR, we predicted a similar ‘increased statin sensitiv-

ity’ phenotype as we observed by knocking down HMGCR. Indeed, while high levels of statin 

expectedly exacerbates the phenotype triggered by lowering FDPS levels in OCI-AML-5 cells, 

low dose of statin, on the contrary led to a near complete rescue of this phenotype. Importantly, 

this observation was specific to atorvastatin, as exposure to any doses of A405 analog was un-

able to rescue the lethal effects of the FDPS knockdown. This led us to speculate how partially 

inhibiting HMGCR with low concentrations of statin could rescue the cytotoxic effects of the 

FDPS knockdown. 

One possible explanation for these findings lies in the regulatory mechanisms exerted 

on the feedback system of the pathway. HMGCR is the rate-limiting enzyme of the mevalonate 

pathway and thus, the mevalonate pathway is tightly controlled via regulation of HMGCR. This 

occurs at the transcriptional, translational and post-translational level. On the contrary, there are 

no evidences indicating that FDPS is as robustly regulated as HMGCR. This raises the possi-

bility that regulation of the mevalonate pathway occurs more efficiently via the feedback mech-
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anisms of HMGCR rather than FDPS. Moreover, early biochemical studies on the mevalonate 

pathway have demonstrated that statin inhibition on the HMGCR was used as a tool to amplify 

the regulatory mechanism on the mevalonate pathway [50]. Based on these findings, we could 

hypothesize that partial inhibition of HMGCR with low doses of statin leads to the activation 

of the feedback system and possibly stabilizes the FDPS enzyme (Figure 14a). This hypothe-

sis could be tested by determining the stability of the FDPS using the classical cycloheximide 

pulse-chase assay with or without statin treatment. Moreover, activity of FDPS enzyme in AML 

cells could also be determined by measuring the rates of formation of FPP and GPP products 

from radioactively labelled IPP substrate. 

The biphasic response curves of statin in FDPS low context are reminiscent of hormetic 

dose-response models, wherein a low dose of a compound (or condition) has a stimulatory or 

beneficial effect while high doses of the compound (or condition) have an inhibitory or toxic 

effect [101]. Cellular responses to reactive oxygen species (ROS) is often used to exemplify 

this phenomenon [102-104]. Interestingly, the literature suggests that IPP, the substrate of FDPS 

plays the role as a powerful antioxidant [105]. This led us to hypothesize that AML cells that 

have low basal levels of ROS are more susceptible to FDPS depletion. Thus, knocking down 

FDPS enzyme would increase levels of the upstream substrate, IPP and over accumulation of 

this antioxidant in the cell would lead to cell death (Figure 14b). On the other hand, partial 

inhibition of HMGCR with low concentration of statin would decrease the production of IPP, 

therefore avoiding FDPS-mediated cell death. In order to test this hypothesis, we would have to 

investigate the basal ROS levels in both statin sensitive and resistant AML cells and IPP: FPP 

ratio will have to be measured upon statin treatment. Moreover, performing a metabolomics 

analysis on statin-sensitive versus resistant AML cells would be key in identifying alterations in 

the flux of the mevalonate pathway. 

To summarize, this project demonstrated that both the genetic and metabolic background 

of AML play key roles in driving statin sensitivity in AML. Moreover, this project highlighted 

the importance of elucidating the metabolic background in AML to prevent statin resistance in 

AML patients. 
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Figure 14. Proposed models explaining rescue mechanisms of cell lethality mediated by 
loss of FDPS. (a) Feedback mechanism model is based on the hypothesis that FDPS is not as 
well-regulated as HMGCR. Knocking down FDPS leads to decreased production of downstream 
metabolites of mevalonate pathway (red arrows) leading to cell lethality. Partial inhibition of 
HMGCR by low doses of statin (indicated in blue) leads to the activation of the feedback system, 
and possibly stabilizes the FDPS enzyme leading to formation of downstream metabolites of 
mevalonate pathway (blue arrows). (b) Model based on the hypothesis that Isopentenyl pyro-
phosphate (IPP), a potent antioxidant over-accumulates in cells upon FDPS depletion leading to 
cell lethality (red arrows). Partial inhibition of HMGCR leads to a decrease in the production of 
IPP (blue arrows), bringing levels of the anti-oxidant back to normal.
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Dose response curves of mevalonate pathway sub-branches from the RNAi screen. Schemat-
ic representation of the mevalonate pathway depicted in left panel. Large green arrow depicts 
branch targeted. Dose response curves of OCI-AML-5 cells upon knocking down HMGCR or 
genes indicated after 4 days of treatment with atorvastatin (top left) or A405 (top right). Horizon-
tal axis represents inhibition of proliferation as a percentage of cells in control (DMSO treated) 
conditions. Assessment of knockdown efficiencies by qRT-PCR (bottom right) and fold change 
in IC50 values of dose response curves compared to control cells containing shRNA targeting 
Luciferase renilla (bottom left). Fold changes calculated by (IC50 value of shRenilla)/( IC50 val-
ue of shFNTA)  (Done in quadreplicates, n=1 independent experiment)
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97mer oligo 

HMGCR sh2 
TGCTGTTGACAGTGAGCGAAACAAGAATATTGTATGTTAATAGTGAAGCCACAGAT

GTATTAACATACAATATTCTTGTTGTGCCTACTGCCTCGGA 

HMGCR sh3 
TGCTGTTGACAGTGAGCGCCAGCAGAGTTATTGAATCTTATAGTGAAGCCACAGATG

TATAAGATTCAATAACTCTGCTGATGCCTACTGCCTCGGA 

FNTA sh1 
TGCTGTTGACAGTGAGCGCAAGGAAGACATTCTTAATAAATAGTGAAGCCACAGAT

GTATTTATTAAGAATGTCTTCCTTATGCCTACTGCCTCGGA 

FNTA sh2 
TGCTGTTGACAGTGAGCGACAGCGTGATGAAAGAAGTGAATAGTGAAGCCACAGAT

GTATTCACTTCTTTCATCACGCTGCTGCCTACTGCCTCGGA 

FNTA sh3 
TGCTGTTGACAGTGAGCGCAAGCATTAGAGTTATGTGAAATAGTGAAGCCACAGAT

GTATTTCACATAACTCTAATGCTTTTGCCTACTGCCTCGGA 

FNTB sh1 
TGCTGTTGACAGTGAGCGATCCGAGTTCTTTCACCTACTATAGTGAAGCCACAGATG

TATAGTAGGTGAAAGAACTCGGAGTGCCTACTGCCTCGGA 

FNTB sh2 
TGCTGTTGACAGTGAGCGAACCAAGATGAGTTCTCTGTAATAGTGAAGCCACAGAT

GTATTACAGAGAACTCATCTTGGTGTGCCTACTGCCTCGGA 

FNTB sh3 
TGCTGTTGACAGTGAGCGCACAGGCAAAAGTAGAAGAAAATAGTGAAGCCACAGAT

GTATTTTCTTCTACTTTTGCCTGTTTGCCTACTGCCTCGGA 

PGGT1B sh1 
TGCTGTTGACAGTGAGCGCAAGGAGATTGTTTGAAGACAATAGTGAAGCCACAGAT

GTATTGTCTTCAAACAATCTCCTTTTGCCTACTGCCTCGGA 

PGGT1B sh2 
TGCTGTTGACAGTGAGCGCAAGGTAGAGTCTTACAATCAATAGTGAAGCCACAGAT

GTATTGATTGTAAGACTCTACCTTTTGCCTACTGCCTCGGA 

PGGT1B sh3 
TGCTGTTGACAGTGAGCGCCAGAAGACAGATCAAATCTAATAGTGAAGCCACAGAT

GTATTAGATTTGATCTGTCTTCTGTTGCCTACTGCCTCGGA 

RABGGTB sh1 
TGCTGTTGACAGTGAGCGAAAGGATGTTATTATCAAGTCATAGTGAAGCCACAGAT

GTATGACTTGATAATAACATCCTTCTGCCTACTGCCTCGGA 

RABGGTB sh2 
TGCTGTTGACAGTGAGCGACCGGAGAAGTTACCAGATGTATAGTGAAGCCACAGAT

GTATACATCTGGTAACTTCTCCGGCTGCCTACTGCCTCGGA 

RABGGTB sh3 
TGCTGTTGACAGTGAGCGCCAAGTCAGTTGCATCAAGTAATAGTGAAGCCACAGAT

GTATTACTTGATGCAACTGACTTGTTGCCTACTGCCTCGGA 

shRNA



ix

FDFT1 sh1 
TGCTGTTGACAGTGAGCGCCAGTTAGATGTTTCCTAAGAATAGTGAAGCCACAGATG

TATTCTTAGGAAACATCTAACTGTTGCCTACTGCCTCGGA 

FDFT1 sh2 
TGCTGTTGACAGTGAGCGACCGACTCAGACCCATCTTCTATAGTGAAGCCACAGATG

TATAGAAGATGGGTCTGAGTCGGGTGCCTACTGCCTCGGA 

FDFT1 sh3 
TGCTGTTGACAGTGAGCGAAGCAGGTATGTTAAGAAGTTATAGTGAAGCCACAGAT

GTATAACTTCTTAACATACCTGCTCTGCCTACTGCCTCGGA 

COX10  sh1 
TGCTGTTGACAGTGAGCGCCAGCTCAGTCAGTGAATACAATAGTGAAGCCACAGAT

GTATTGTATTCACTGACTGAGCTGATGCCTACTGCCTCGGA 

COX10  sh2 
TGCTGTTGACAGTGAGCGCTAGAACAAGATTATAAACGAATAGTGAAGCCACAGAT

GTATTCGTTTATAATCTTGTTCTAATGCCTACTGCCTCGGA 

COX10  sh3 
TGCTGTTGACAGTGAGCGCACCATAGTCCTTCTAACAATATAGTGAAGCCACAGATG

TATATTGTTAGAAGGACTATGGTTTGCCTACTGCCTCGGA 

PDSS1 sh1 
TGCTGTTGACAGTGAGCGCCGGGTCAAAAGAAAATGAGAATAGTGAAGCCACAGAT

GTATTCTCATTTTCTTTTGACCCGATGCCTACTGCCTCGGA 

PDSS1 sh2 
TGCTGTTGACAGTGAGCGCCACGATGACGTTATTGACGATTAGTGAAGCCACAGAT

GTAATCGTCAATAACGTCATCGTGATGCCTACTGCCTCGGA 

PDSS1 sh3 
TGCTGTTGACAGTGAGCGCCCACCTGAATCTGTCATTCTATAGTGAAGCCACAGATG

TATAGAATGACAGATTCAGGTGGTTGCCTACTGCCTCGGA 

TRIT1 sh1 
TGCTGTTGACAGTGAGCGCTCAGAAGAATGTTTCGGAAAATAGTGAAGCCACAGAT

GTATTTTCCGAAACATTCTTCTGATTGCCTACTGCCTCGGA 

TRIT1 sh2 
TGCTGTTGACAGTGAGCGATCAGATGCTGTCAACACCATATAGTGAAGCCACAGAT

GTATATGGTGTTGACAGCATCTGAGTGCCTACTGCCTCGGA 

TRIT1 sh3 
TGCTGTTGACAGTGAGCGATCCAATAAAGATGCCATACAATAGTGAAGCCACAGAT

GTATTGTATGGCATCTTTATTGGAGTGCCTACTGCCTCGGA 

FDPS sh1 
TGCTGTTGACAGTGAGCGAAGCAGTGTTCTTGCAATATGATAGTGAAGCCACAGAT

GTATCATATTGCAAGAACACTGCTGTGCCTACTGCCTCGGA 

FDPS sh2 
TGCTGTTGACAGTGAGCGCTCCTGCAGAGTTCCTATCAGATAGTGAAGCCACAGATG

TATCTGATAGGAACTCTGCAGGAATGCCTACTGCCTCGGA 

FDPS sh3 
TGCTGTTGACAGTGAGCGCCCAGATCCTGAAGGAAAATTATAGTGAAGCCACAGAT

GTATAATTTTCCTTCAGGATCTGGTTGCCTACTGCCTCGGA 

GGPS1 sh1 
TGCTGTTGACAGTGAGCGAACCGATTAGCTTTGAAGTTTATAGTGAAGCCACAGATG

TATAAACTTCAAAGCTAATCGGTCTGCCTACTGCCTCGGA 



x

sgRNA

GGPS1 sh2 
TGCTGTTGACAGTGAGCGCAACACTGACTATAGAAACAAATAGTGAAGCCACAGAT

GTATTTGTTTCTATAGTCAGTGTTATGCCTACTGCCTCGGA 

ICMT sh1 
TGCTGTTGACAGTGAGCGACAGAGTGTAAGTAAAGGATAATAGTGAAGCCACAGAT

GTATTATCCTTTACTTACACTCTGGTGCCTACTGCCTCGGA 

ICMT sh2 
TGCTGTTGACAGTGAGCGCCAGCTCCTGTTGTCAGTGATATAGTGAAGCCACAGATG

TATATCACTGACAACAGGAGCTGATGCCTACTGCCTCGGA 

  Sense strand 

HMGCR sg1 AGAGAGATAAAACTGCCAGA 

HMGCR sg2 AGGGTTCGCAGTGATAAAGG 

HMGCR sg3 GTCCAGGTCAGGGGATGCCA 
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mRNA target Accession # Probe 
ID Left primer Right Primer Slopes derived from 

standard curves 

3-hydroxy-3-
methylglutaryl-CoA 
reductase (HMGCR) 

NM_000859.2, 
NM_001130996.1, 
NM_001364187.1 

85 gacgcaaccttt
atatccgttt 

ttgaaagtgctttct
ctgtaccc 

3.16 (Obtained from the 
IRIC genomic platform) 

Homo sapiens tRNA 
isopentenyltransferas

e 1 (TRIT1) 

NM_017646.5, 
NM_001312691.1, 
NM_001312692.1 

46 acaaacgccta
agccaggt 

ttcctgtttcttcaa
aaacttgc -3.138 ± 0.2158 

Homo sapiens 
farnesyltransferase, 
CAAX box, alpha 

(FNTA) 

NM_002027.2 68 
acttcagaagga
tctacatgagga

a 

tactcgcctatgat
gccaaa -3.356 ± 0.05896 

Homo sapiens 
farnesyltransferase, 

CAAX box, beta 
(FNTB) 

NM_002028.3 16 ggaggtgaggt
ggatgtgag 

ggagtgatgatgt
tggtcagc -3.378 ± 0.2198 

Homo sapiens 
protein 

geranylgeranyltransf
erase type I subunit 

beta (PGGT1B) 

NM_005023.3 24 
aaaagccatca
cctatattagaa

gga 

aggcaatgccac
aaaaagtt -3.198 ± 0.04871 

Homo sapiens Rab 
geranylgeranyltransf

erase beta subunit 
(RABGGTB) 

NM_004582.3 67 
aaaggtctacag
aaagaagatgg

ttc 

ccgcacaaaaag
agaatcttg -3.631 ± 0.1062 

Homo sapiens 
COX10 heme 

A:farnesyltransferase 
cytochrome c oxidase 

assembly factor 
(COX10) 

NM_001303.3 72 ggaaagagatg
aagctgcaag 

tgcagtggtactta
caaccagag -3.309 ± 0.08428 
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Homo sapiens 
decaprenyl 

diphosphate synthase 
subunit 1 (PDSS1) 

NM_001321979.1, 
NM_001321978.1, 

NM_014317.4 
80 gatcatgcgac

ggttcagt 
ggttgtttgttgca

caccat -3.550 to -3.148 

Homo sapiens 
farnesyl-diphosphate 
farnesyltransferase 1 

(FDFT1) 

NM_004462.4, 
NM_001287747.1, 
NM_001287748.1, 
NM_001287751.1, 
NM_001287756.1, 
NM_001287742.1, 
NM_001287743.1, 
NM_001287744.1, 
NM_001287749.1, 
NM_001287750.1 

26 tctgaacagga
gtgggacaa 

aaagacgggaaa
ggccaat -3.371 ± 0.02159 

Homo sapiens 
farnesyl diphosphate 

synthase (FDPS) 

NM_001135821.1, 
NM_002004.3, 

NM_001135822.1, 
NM_001242825.1, 
NM_001242824.1 

18 
tctactccttcta
ccttcctatagct

g 

tctgaaagaactc
ccccatc -3.361 ± 0.07833 

Homo sapiens 
geranylgeranyl 

diphosphate synthase 
1 (GGPS1) 

NM_001037277.1 55 agcactccggtc
ctttttct 

tggttaaaaagca
aaacttgtgg -3.090 ± 0.1593 

Homo sapiens 
isoprenylcysteine 

carboxyl 
methyltransferase 

(ICMT) 

NM_012405.3 66 tcttggttagagt
tcacacttgaaa 

cagacattctccg
aagaccac -3.345 ± 0.08594 


