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Abstract

Reducing methane (CH4) emissions without reducing milk production requires an
improvement in feed conversion efficiency: that is an animal’s efficiency in utilising feed for
maintenance and production. Residual feed intake (RFI) is one measure of feed conversion
efficiency; it can be defined as the difference between an animal’s actual intake and its
predicted intake based on its metabolic size and productivity. More efficient animals eat less

than predicted (low RFI); inefficient animals eat more (high RFI).

Enteric CHs4 is an important source of digestible energy loss in ruminants, and research in
beef cattle has reported a positive relationship between RFI and daily CHs production.
Jersey (Jer) cows have also been reported to be more feed efficient than Holstein-Friesian
(HF) cows. Thus, I hypothesized that high feed efficient (low RFI) animals would emit less
CH4 than the lower efficiency (high RFI) animals, and that Jer heifers would have lower CHa

yield than HF heifers.

I measured the CH4 emissions of 56 growing dairy heifers (20-22 mo old) in a 2 x 2 factorial
arrangement: factors included two breeds (HF and Jer; n=28/breed) and two previously
determined RFI categories (low RFI; -2.1 kg DM and high RFI; +2.0 kg DM; n=28/RFI
category). All heifers were co-mingled and offered the same diet of dried lucerne cubes.
Between RFI categories, heifers did not differ in body weight (BW) or BW gain (BWg); but
low RFI heifers had 9.3% and 10.6% lower dry matter intake (DMI) and DMI/kg BW,
respectively, than high RFI heifers. Similarly, RFI category did not affect CH4/d or CHs/kg
BWg; but, CHs/kg DMI was greater in low RFI heifers because of their lower DMI. These
results might reflect more complete digestion of ingested feed in more efficient, low RFI
heifers, consistent with previous reports of greater apparent digestibility of organic matter.
Breed did not affect DMI/kg BW or BWg; Jersey heifers produced less CH4/d, but not CHs4/kg
DMI or CH4/kg BWg. In conclusion, selecting dairy heifers for low RFI is unlikely to affect

daily CHs4 production (g/d), but may increase CH, yield (g/kg DMI).
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