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Abstract

Maintenance of mitochondrial integrity is critical for normal cellular homoeostasis. Most cells respond to stress stimuli
and undergo apoptosis by perturbing mitochondrial structure and function to release proteins, such as cytochrome c,
which are essential for the execution of the intrinsic apoptotic cascade. Cancer cells evade these events by
overexpressing the anti-apoptotic BCL-2 family of proteins on mitochondrial membranes. Inhibitors of the anti-
apoptotic BCL-2 family proteins, also known as BH3 mimetics, antagonise the pro-survival functions of these proteins
and result in rapid apoptosis. Although the precise mechanism by which BH3 mimetics induce apoptosis has been
well characterised, not much is known in terms of the structural changes that occur in mitochondria during apoptosis.
Using a panel of highly selective BH3 mimetics and a wide range of cell lines, we demonstrate that BH3 mimetics
induce extensive mitochondrial fission, accompanied by swelling of the mitochondrial matrix and rupture of the outer
mitochondrial membrane. These changes occur in a BAX/ BAK-dependent manner. Although a major mitochondrial
fission GTPase, DRP-1, has been implicated in mitochondrial apoptosis, our data demonstrate that DRP-1 might
function independently/downstream of BH3 mimetic-mediated mitochondrial fission to facilitate the release of
cytochrome ¢ and apoptosis. Moreover, downregulation of DRP-1 prevented cytochrome c release and apoptosis even
when OPAT, a protein mediating mitochondrial fusion, was silenced. Although BH3 mimetic-mediated displacement
of BAK and other BH3-only proteins from BCL-X; and MCL-1 was unaffected by DRP-1 downregulation, it prevented
BAK activation significantly, thus placing DRP-1 as one of the most critical players, along with BAX and BAK, that

governs BH3 mimetic-mediated cytochrome ¢ release and apoptosis.

Introduction

Most chemotherapeutic agents kill cancer cells by
executing the intrinsic apoptotic pathway, which is char-
acterised by mitochondrial outer membrane permeabili-
zation (MOMP), release of cytochrome ¢ from the inner
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mitochondrial membrane (IMM) and formation of the
apoptosome that activates the initiator and effector cas-
pases. MOMP is regulated by the BCL-2 family, whereby
BAX and BAK, undergo specific conformational changes
to form oligomeric pores that insert into the outer
mitochondrial membrane (OMM) to release cytochrome
¢"?. Activation of BAX and BAK is achieved by several
pro-apoptotic BH3-only members, which are generally
rendered ineffective by sequestration with specific anti-
apoptotic BCL-2 family of proteins, such as BCL-2, BCL-
X, and MCL-1>* These anti-apoptotic proteins are
highly expressed in many cancers and inhibitors known as
BH3 mimetics have been designed to target them in order
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to displace the BH3-only proteins, activate BAX and BAK,
thereby inducing MOMP and apoptosis of cancer cells”.

ABT-737, and its orally available analogue, ABT-263
(Navitoclax) were the first bona fide BH3 mimetics
developed to target BCL-2, BCL-X; and BCL-w®’. Sub-
sequently, BH3 mimetics that specifically target BCL-2
(ABT-199 (Venetoclax), S55746), BCL-X; (A-1331852)
and MCL-1 (A-1210477, S63845, AMG 176 and
AZD5991) have been synthesised® '*. These inhibitors, as
single agents, have demonstrated much promise in treat-
ing a wide variety of haematological malignancies, and
have had limited success in combination with conven-
tional chemotherapy against several solid tumours®'*~'7,
BH3 mimetics induce apoptosis primarily by targeting
protein—protein interactions between the anti- and pro-
apoptotic BCL-2 family members'®. Subsequently, BH3
mimetics have been shown to induce significant structural
changes in the mitochondria, ranging from mitochondrial
matrix swelling to discontinuities in the OMM, upstream
of caspase activation'®?°. Furthermore, BAX and BAK
localise to the breakpoints in OMM and may facilitate
cytochrome ¢ release at such breakpoints'®. Although
BCL-2 family members have been implicated in regulating
mitochondrial membrane dynamics and functions* >,
putative inhibitors of MCL-1 have often resulted in
extensive mitochondrial fission in various cell lines*>~’.
The regulation of this fission and its relationship to BH3
mimetic-mediated apoptosis remains to be determined.

Mitochondrial structure is maintained through an
intricate balance between the activities of several fusion
and fission proteins, which belong to a conserved family
of GTPases that reside in the OMM or IMM. Mitofusins 1
and 2 (MFN1/ 2) and optic atrophy 1 (OPA1) are essential
for mitochondrial fusion, whereas dynamin related pro-
tein 1 (DRP-1) is essential for mitochondrial fission®®.
Defects in mitochondrial fusion and fission have been
implicated in a range of pathophysiological conditions
including poor brain development, optic atrophy, cardi-
omyopathy and neurodegenerative diseases**°. Mount-
ing evidence now suggests the involvement of several
members of BCL-2 family members, particularly MCL-1,
in the regulation of mitochondrial structure and func-
tion??"2>?°, However, the mechanism by which MCL-1
regulates mitochondrial membrane dynamics and the
potential cross-talk with its conventional role in antag-
onising apoptosis remain to be characterised.

In this study, we use a panel of highly selective BH3
mimetics together with cell lines that depend on specific
BCL-2 family members for survival to demonstrate that
BH3 mimetics induce significant ultrastructural mito-
chondrial changes upstream of caspase activation. DRP-1
plays a role downstream of these changes but upstream of
MOMP to facilitate cytochrome ¢ release and apoptosis,
following exposure to BH3 mimetics.
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Results
BH3 mimetics induce marked mitochondrial structural
changes

Previously, we have reported that BH3 mimetics induce
a novel paradigm of apoptosis characterised by marked
ultrastructural changes in the mitochondria, involving the
loss of mitochondrial cristae and the appearance of breaks
in the OMM, resulting from mitochondrial matrix swel-
ling'>?**!, In cell lines that depend for survival almost
exclusively on BCL-2 (MAVER-1), BCL-X;-(K562) and
MCL-1 (H929)3 2 exposure to the relevant BH3 mimetics,
such as ABT-199, A-1331852 and A-1210477, respec-
tively, resulted in similar mitochondrial matrix swelling
and rupture of the OMM (Fig. 1a—c). Such mitochondrial
changes were also evident in H1299 cells following
exposure to a combination of A-1331852 and A-1210477,
as these cells depend on both BCL-X; and MCL-1 for
survival (Fig. 1d). These mitochondrial ultrastructural
changes were independent of effector caspases, as they
were observed in cells pre-treated with Z-VAD.fmk, a
broad-spectrum caspase inhibitor (Fig. 1). Exposure of the
different cells to their appropriate BH3 mimetic resulted
in mitochondrial membrane depolarisation, loss of cyto-
chrome ¢ and induction of apoptosis, as assessed by
phosphatidylserine externalisation (Supplementary Fig.
S1). Exposure of the cells to Z-VAD.fmk almost com-
pletely inhibited BH3 mimetic-mediated apoptosis,
assessed by PS externalisation, whereas little if any inhi-
bition of cytochrome c release was observed (Supple-
mentary Fig. S1). Taken together these results suggested
that the mitochondrial structural changes occurred
upstream of effector caspase activation and accompanied
cytochrome c release, as well as a loss of mitochondrial
membrane potential.

BH3 mimetic-mediated mitochondrial perturbations occur
in a BAX/BAK-dependent manner

To assess whether BAX and BAK play crucial roles in
BH3 mimetic-mediated ultrastructural changes in mito-
chondria, we exposed HCT-116 WT and BAX/BAK
double knock-out (DKO) cells to a combination of A-
1331852 and A-1210477, as HCT-116 cells also depend
on both BCL-X; and MCL-1 for survival®®>. Exposure of
the HCT-116 WT cells to the BH3 mimetics resulted in
significant mitochondrial matrix swelling accompanied by
a loss of mitochondrial cristae, although rupture of the
OMM was not readily apparent (Fig. 2). However, all
these mitochondrial changes were clearly prevented in the
HCT-116 BAX/BAK DKO cells, demonstrating a
requirement for BAX and/or BAK for the perturbation of
the mitochondria. Since BH3-only members are generally
required to activate BAX and BAK, we wished to assess
whether BH3 mimetics could induce mitochondrial
structural perturbations in the absence of all known pro-
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Fig. 1 BH3 mimetics induce marked ultrastructural changes in mitochondria of different cells. a MAVER-1, b K562, ¢ H929 and d H1299 cells
were exposed to Z-VAD.fmk (30 uM) for 0.5 h, followed by ABT-199 (100 nM), A-1331852 (100 nM), A-1210477 (10 uM), or a combination of A-1331852
(100 nM) and A-1210477 (10 uM), respectively, for 4 h and assessed for mitochondrial structural changes by electron microscopy. Yellow arrowheads
indicate regions of breaks at the outer mitochondrial membrane. Scale bars: 500 nm

HCT-116 WT HCT-116 OctaKO

o AP AP

DMSO

A-1210477+A-1331852

Fig. 2 BH3 mimetics disrupt mitochondria in a BAX- and BAK-dependent but BH3-independent manner. HCT-116 WT, DKO (BAX/BAK
deficient) and OctaKO cells were exposed to Z-VAD.fmk (30 uM) for 0.5 h, followed by a combination of A-1331852 (100 nM) and A-1210477 (10 pM)
for 4 h and assessed for mitochondrial structural changes by electron microscopy. Scale bars: 500 nm
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Fig. 3 Mitochondrial fission mediated by A-1210477 and S63845 occurs in a DRP-1-dependent manner. a H1299 cells were exposed to Z-
VAD.fmk (30 uM) for 0.5 h, followed by either A-1331852 (100 nM), A-1210477 (10 uM), S63845 (100 nM), or a combination of the different inhibitors
for 4 h and assessed for mitochondrial integrity by immunostaining with HSP70 antibody. b H1299 cells were transfected with control or DRP-1 siRNA
for 72 h and exposed to A-1210477 (10 uM) or S63845 (1 and 10 uM) for 4 h and assessed for mitochondrial integrity. The extent of mitochondrial
fragmentation was quantified by analysing ~100 cells for each condition in three independent experiments. Scale bar: 10 um. Error bars = mean +
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apoptotic BH3-only members. For this, we used HCT-116
OctaKO cells, which lack the BH3-only members namely,
BIM, BID, PUMA, BAD, BIK, HRK, BMF and NOXA™.
Exposure of these cells to a combination of A-1331852
and A-1210477 resulted in mitochondrial structural
changes, characteristic of significant cristae remodelling
(Fig. 2). However, the swelling of mitochondrial matrix
and the accompanying loss of cristae observed in the
HCT-116 WT cells following BH3 mimetics were not
apparent in HCT-116 OctaKO cells (Fig. 2). This is con-
sistent with earlier findings demonstrating that the pro-
apoptotic BH3-only members are dispensable for BH3
mimetic-mediated apoptosis®*. Taken together, our data
demonstrated that the activation of BAX and/or BAK,
either in a BH3-dependent or independent manner, is
essential for the ultrastructural changes observed in the
mitochondria, following exposure to BH3 mimetics.

DRP-1 is not required for the mitochondrial structural
changes that occur during the onset of apoptosis

We previously reported that putative inhibitors of
MCL-1 induced extensive mitochondrial fission and
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suggested that this could be a prerequisite for the ensuing
apoptosis in MCL-1-dependent cell lines**~*’. In support
of this suggestion, exposure of A-1210477 but not A-
1331852 resulted in extensive mitochondrial fission that
resembled mitochondrial fragmentation in H1299 cells
(Fig. 3a, Supplementary Fig. S2). The ability of A-1210477
to induce mitochondrial fission was also clearly evident
when used in combination with A-1331852 to induce
apoptosis in these cells (Fig. 3a, Supplementary Fig. S2).
However, mitochondria in this instance appeared swollen,
potentially indicating swollen matrix and loss of cristae
that were previously observed at the level of electron
microscopy (compare Figs. 1d and 3a). In marked con-
trast, S63845 at a concentration (100 nM) sufficient to
induce apoptosis in a MCL-1-dependent manner>* failed
to demonstrate mitochondrial fission (Fig. 3a, Supple-
mentary Fig. S2). However, S63845 (100 nM) when used
in conjunction with A-1331852 resulted in mitochondrial
structural changes that resembled the swollen mito-
chondria observed following a combination of A-1210477
and A-1331852 (Fig. 3a, Supplementary Fig. S2). Taken
together, our results suggested that mitochondrial fission
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Fig. 4 DRP-1 is not required for mitochondrial fission during BH3 mimetic-mediated apoptosis. H1299 cells were transfected with control,
MCL-1, or BCL-X, siRNAs, either alone or in combination with DRP-1 siRNA for 72 h, then exposed to Z-VAD.fmk (30 uM) for 0.5 h, followed by A-
1210477 (10 uM) and/or A-1331852 (100 nM) for 4 h and assessed for mitochondrial integrity by immunostaining with HSP70 antibody. The boxed
regions in the images are enlarged to show mitochondrial structural changes in the indicated cells. Scale bar: 10 um
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mediated by A-1210477 versus a combination of MCL-1
and BCL-X; inhibitors was distinct. Moreover, while
S63845 failed to exhibit mitochondrial fission at low
concentrations (100-1000 nM), higher concentrations
(10 pM) of S63845 resulted in significant mitochondrial
fission, which mimicked A-1210477-mediated mitochon-
drial fragmentation (Fig. 3b).

We previously reported that A-1210477-mediated
mitochondrial fission occurred in a DRP-1-dependent
manner”’. A similar dependence on DRP-1 was also
observed in cells exhibiting extensive mitochondrial fis-
sion, following exposure to high concentrations of S63845
(Fig. 3b). Thus both the MCL-1 inhibitors, A-1210477 and
$63845, induced mitochondrial fission, which was clearly
dependent on DRP-1 (Fig. 3b). We wished to assess if
such mitochondrial fission was a prerequisite for apop-
tosis induction. Since H1299 cells depend on both BCL-
X1, and MCL-1 for survival, we exposed cells to either A-
1210477 or A-1331852 and simultaneously silenced the
expression levels of either BCL-X; or MCL-1 to facilitate
apoptosis. Although downregulation of BCL-XL or MCL-
1 did not result in mitochondrial fission and maintained
the filamentous structure, exposure of the cells to A-
1210477 resulted in significant mitochondrial fission,
which resembled fragmented mitochondria (Fig. 4a-d,
Supplementary Fig. S3). In the MCL-1-downregulated
cells, A-1210477 still retained its ability to cause mito-
chondrial fragmentation (Fig. 4e), but when BCL-X| was
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downregulated, A-1210477 resulted in mitochondrial
structural changes that resembled matrix swelling (Fig. 4f,
Supplementary Fig. S3), as previously described (Fig. 1d).
In contrast, exposure to A-1331852 only resulted in
similar mitochondrial swelling when MCL-1 was also
downregulated (Fig. 4g—1, Supplementary Fig. S3). These
results suggested that mitochondrial fission, mediated by
MCL-1 inhibitors, appeared to exhibit a distinct mor-
phology from that observed following the induction of
apoptosis. This was more apparent following DRP-1
downregulation, which prevented A-1210477-mediated
mitochondrial fission (Fig. 4m, n), but did not appear to
alter mitochondrial swelling observed during apoptosis
induction (Fig. 40, q, Supplementary Fig. S3). Taken
together, these results exclude an involvement of DRP-1
in the early mitochondrial structural changes including
mitochondrial swelling associated with the onset of
apoptosis (Fig. 4).

Consistent with the above hypothesis, electron micro-
graphs revealed marked structural alterations of the
mitochondria in cells exposed to both A-121077 and A-
1331852, characterised by breaks in the OMM (denoted
by the yellow arrowheads), mitochondrial matrix swelling
and a concomitant loss of cristae (Fig. 5a). Down-
regulation of DRP-1 alone resulted in elongated mito-
chondria, consistent with its known role in mitochondrial
fission (Fig. 5a). However, the mitochondria in the DRP-1-
downregulated cells following exposure to BH3 mimetics
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Fig. 5 DRP-1 regulates BH3 mimetic-induced cytochrome c release and apoptosis downstream of mitochondrial cristae remodelling. a
Electron microscopy of H1299 cells, transfected with DRP-1 siRNA for 72 h in the presence or absence of the indicated BH3 mimetics for 2 h. Breaks in
the outer mitochondrial membrane are indicated by the yellow arrowhead. Scale bars = 10 nm. b H1299 cells were transfected with DRP-1 siRNA or
GFP-DRP-1 K38A plasmid for 72 h, exposed to Z-VADfmk (30 uM) for 0.5 h, followed by a combination of A-1331852 (100 nM) and A-1210477 (10 uM)
for 4 h and the extent of cytochrome c released from mitochondria assessed by confocal microscopy. The boxed regions in the images are enlarged
to show mitochondrial structural changes in the indicated cells. The extent of cytochrome c release was quantified by counting at least 100 cells from
three independent experiments. ¢ Same as b, but the extent of cytochrome c release as well as OPA1 processing and the silencing efficiency of DRP-
1 siRNA were analysed by western blotting. d H1299 cells were transfected with the indicated siRNAs for 72 h, treated as described in b and the
extent of cytochrome c release assessed and quantified. The extent of cytochrome c¢ release was quantified by counting at least 100 cells from three
independent experiments. e Same as d but the cells were exposed to BH3 mimetics in the absence of Z-VAD.fmk and the extent of apoptosis
assessed by PS externalisation from at least three independent experiments. All scale bars, unless indicated: 10 um. Error bars = mean + SEM.
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appeared visibly swollen with intact cristae and few if any
breaks in the OMM (Fig. 5a). Taken together, our data
suggested that mitochondrial fission observed following
exposure to MCL-1 inhibitors was distinct from the
structural perturbations (characterised by OMM breaks
and IMM swelling) observed as a result of apoptosis
induction.

DRP-1 is critical for the release of cytochrome ¢ from
mitochondria during apoptosis

Permeabilisation of the OMM, otherwise known as
MOMP, occurs as a consequence of BAX and/or BAK
oligomerization and is generally accompanied by the
release of mitochondrial cytochrome c into the cytosol.
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Exposure of cells to a combination of A-1210477 and A-
1331852 resulted in an almost complete release of mito-
chondrial cytochrome c into the cytosol (Fig. 5b, ). This
was markedly inhibited in cells, following inactivation of
DRP-1 using siRNA or overexpression of the DRP-1 K38A
plasmid (Fig. 5b, c), thus placing DRP-1 upstream of
cytochrome ¢ release. While cytochrome ¢ was still
retained in mitochondria following DRP-1 down-
regulation, mitochondria in these cells appeared swollen
(Fig. 5b), consistent with those observed in the electron
micrographs (Fig. 5a). As cytochrome c release occurs as a
consequence of mitochondrial cristae remodelling?’5 ,
exposure to BH3 mimetics not only resulted in the release
of mitochondrial cytochrome ¢ but also caused a loss of
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the high molecular weight isoforms of OPA1, character-
istic of mitochondrial cristae remodelling (Fig. 5¢). While
downregulation of DRP-1 markedly diminished BH3
mimetic-mediated release of cytochrome ¢, it did not
prevent BH3 mimetic-mediated loss of OPA1 (Fig. 5c),
thus placing DRP-1 upstream of cytochrome ¢ release but
downstream of mitochondrial cristae remodelling. This
was further confirmed following exposure of DRP-1 and/
or OPAl-downregulated cells to BH3 mimetics. While
downregulation of OPAI1 resulted in significant mito-
chondrial fission, as well as a near-complete release of
cytochrome ¢ following BH3 mimetics, a simultaneous
downregulation of DRP-1 diminished these effects (Fig.
5d). Similarly downregulation of DRP-1 prevented BH3
mimetic-induced apoptosis, even in the absence of OPA1
(Fig. 5e), thus placing DRP-1 downstream of OPA1 pro-
teolysis but upstream of cytochrome c release in BH3
mimetic-mediated apoptosis.
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DRP-1 is critical for BAK activation during BH3 mimetic-
mediated apoptosis

Our results indicated that BH3 mimetics could induce
structural perturbations in the mitochondria, char-
acterised by OPA1 proteolysis, cristae remodelling and the
accompanying redistribution of cytochrome ¢ from cristae
to mitochondrial inner membrane space, all irrespective of
the presence or absence of DRP-1. Since the role of DRP-1
was placed upstream of cytochrome c release, we wished
to assess whether DRP-1 impacted on any upstream events
during BH3 mimetic-mediated apoptosis. The primary
function of BH3 mimetics is to disrupt the protein—protein
interactions between the anti-apoptotic (BCL-X; and
MCL-1, in this instance) and pro-apoptotic members of
the BCL-2 family. The released pro-apoptotic proteins
could then activate the effector proteins (BAK, in H1299
as these cells lack BAX) to oligomerise on mitochondrial
membranes to subsequently release cytochrome c (Fig. 6a).
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Fig. 6 DRP-1 regulates BH3 mimetic-induced activation of BAK. a Scheme demonstrating the primary mechanism of action of BH3 mimetics and
the downstream events that culminate in apoptosis. b Immunoprecipitation of BCL-X, and MCL-1 was carried out in H1299 cells, transfected with
control or DRP-1 siRNA, followed by exposure to Z-VAD.fmk (30 uM) for 0.5 h and a combination of A-1331852 (100 nM) and A-1210477 (10 uM) for
4 h, and the eluted complexes were immunoblotted for the indicated proteins. ¢ H1299 cells were treated as b and the extent of BAK activation was
assessed by flow cytometry from at least three independent experiments. Error bars = mean + SEM. Statistical analysis was conducted by one-way
ANOVA (***P < 0.001). d Western blots of different molecular weight fractions from size exclusion chromatography showing BAK oligomerisation in
H1299 cells upon exposure to A-1331852 (100 nM) and A-1210477 (10 uM) for 2 h. e Immunoprecipitation of active BAK in H1299 cells treated as b,
and the eluted complexes were immunoblotted for the indicated proteins. f Representative images of cells showing BAK activation and DRP-1
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Immunoprecipitation of BCL-X; and MCL-1 to identify
their associated pro-apoptotic proteins revealed that in
H1299 cells, BIM and BAK were bound to both BCL-X;,
and MCL-1, whereas NOXA and BAD exclusively bound
to MCL-1 and BCL-X;, respectively (Fig. 6b). Exposure of
these cells to a combination of A-1331852 and A-1210477
resulted in displacement of most of these pro-apoptotic
proteins from their corresponding ant-apoptotic partners
(Fig. 6b). Importantly, none of these interactions/dis-
placements were altered in cells following DRP-1 down-
regulation, thus suggesting that DRP-1 played no role in
the early events of BH3 mimetic-mediated apoptosis. Since
BAK and other BH3-only proteins were released following
BH3 mimetics, we next wished to assess if BAK activation
was altered in the absence of DRP-1. Downregulation of
DRP-1 resulted in a significant decrease in BH3 mimetic-
mediated activation of BAK (Fig. 6¢), suggesting that DRP-
1 was critical in the activation of BAK during BH3
mimetic-mediated apoptosis. Although the requirement of
DRP-1 for BAK activation could be demonstrated, no
binding of DRP-1 to the oligomerised/active BAK was
observed in these cells (Fig. 6d—f), thus suggesting the
involvement of other protein(s) in BAK activation imme-
diately preceding cytochrome ¢ release. Taken together,
our data confirm that DRP-1 plays a critical role at the
level of BAK activation, facilitating OMM breaks, cyto-
chrome c release and apoptosis.

Discussion

BH3 mimetics, in particular ABT-737 and ABT-199,
induce a novel paradigm of cell death, characterised by
excessive swelling of mitochondrial matrix and dis-
continuities in the OMM in BCL-2-dependent chronic
lymphocytic leukaemia cells'”*'. BH3 mimetics targeting
BCL-X; and MCL-1 also induce similar mitochondrial
ultrastructural changes in cells that exclusively depend on
BCL-X; and MCL-1, respectively (Fig. 1)%°. However, cells
exposed to the MCL-1 inhibitor, A-1210477, exhibit
marked mitochondrial changes, in particular mitochon-
drial fission, irrespective of their dependencies on a spe-
cific BCL-2 family member for survival (Fig. 3). This is in
agreement with our previous findings*’. Mitochondrial
fission mediated by A-1210477 alone did not result in
apoptosis in these cell lines, even after prolonged expo-
sure’’. This was most probably because most cell lines
derived from solid tumours depend on both BCL-X; and
MCL-1 for survival, and inhibition of MCL-1 alone was
not sufficient to result in apoptosis. This was further
supported by our observation that inhibition of MCL-1
using A-1210477 while resulting in extensive mitochon-
drial fission did not induce OMM breaks and cell death,
unless the activity of BCL-X;, was also neutralised.

Although A-1210477-mediated mitochondrial fission
did not necessarily result in apoptosis, it was difficult to
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ascertain whether such fission was a prerequisite for
apoptosis. This difficulty was partly because DRP-1
appeared to play important but distinct roles both in A-
1210477-mediated mitochondrial fission and BH3
mimetic-mediated apoptosis®’. Moreover, DRP-1 also
interacted with MCL-1 and BCL-X;, thus coupling
mitochondrial fission and apoptosis®>*"*°. However, with
the development of more potent inhibitors, such as
S63845, we have demonstrated that mitochondrial fission
does not occur at concentrations sufficient to inhibit
MCL-1 (Fig. 3). Furthermore, while mitochondrial fission
induced by A-1210477 and high concentrations of S63845
was mediated by DRP-1, mitochondrial swelling that
occurred at the onset of apoptosis induction was largely
independent of DRP-1 (Figs. 3 and 4), thus differentiating
the distinct types of mitochondrial fission.

Our data in the HCT-116 WT and BAX/BAK DKO
cells convincingly demonstrate that BH3 mimetic-
mediated OMM breaks and swelling of matrix compart-
ment are essential for BAX/BAK to facilitate cytochrome
c release (Fig. 2). The inability of HCT-116 OctaKO cells
to prevent BH3 mimetic-mediated mitochondrial changes
further supports our findings that BAX and BAK but not
the known BH3-only members are critical for BH3
mimetic-mediated apoptosis®>>**, How BAX and BAK
localise to the sites of OMM breaks to facilitate cyto-
chrome c release is not entirely known. The involvement
of DRP-1, Dynamin-2, and even membranes of the
endoplasmic reticulum in these events have been pre-
viously proposed®”~*2, Downregulation of DRP-1 or its
receptors, MID49 and MID51, have been shown to
antagonise cytochrome c¢ release and apoptosis in
response to a wide variety of apoptotic stimuli*’>. DRP-1
functions downstream of OPAl-mediated cristae remo-
delling (Fig. 5), to activate BAK (Fig. 6), which in turn
precedes BAK oligomerisation and membrane insertion
for the execution of MOMP and apoptosis. However,
mitochondrial cristae remodelling requires the presence
of BAX and BAK (Fig. 2)**. Thus DRP-1 could function
either downstream or independent of OPA1 proteolysis to
activate BAK and ensuing apoptosis. Taken together, our
data suggest that BH3 mimetics most likely activate BAX/
BAK independently of the eight known BH3-only mem-
bers, which further results in OPAl-mediated cristae
remodelling to redistribute cytochrome ¢ within the
mitochondria, thus priming the mitochondria to undergo
MOMP, upon sensing the stress signal. DRP-1 plays a
critical role at this stage to activate BAK and/or BAX to
insert these effector proteins on mitochondrial mem-
branes. This along with the constriction of the primed
mitochondria by DRP-1 constitute the so-called stress
signals that cause OMM breaks, efficiently releasing the
redistributed cytochrome c into the cytosol and initiating
apoptosis.
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Materials and methods
Cell culture

H1299 (purchased from ATCC), K562 (provided by
Prof. R. Clark, University of Liverpool) and MAVER-1
cells (provided by Dr. J. Slupsky, University of Liverpool)
were cultured in RPMI 1640 medium (Life Technologies).
H929 cells (purchased from DMSZ, Braunshweig,
Germany) were cultured in RPMI 1640 medium supple-
mented with 0.05 mM B-mercaptoethanol (BME). Colon
cancer cell lines HCT-116 (wild-type and DKO) (from R.
J. Youle, National Institute of Health, USA) and HCT-
116-OctaKO?® were cultured in McCoy’s 5A Modified
media. All culture media were supplemented with 10%
EBS (Life Technologies) and maintained at 37°C in a
humidified atmosphere of 5% CO,. All cell lines used in
this study were subjected to short tandem repeat (STR)
profiling to ensure quality and integrity.

Reagents

ABT-199, A-1210477 and Z-VAD.FMK from Selleck
(Houston, TX, USA), S63845 from Active Biochem
(Kowloon, Hong Kong) and A-1331852 from AbbVie Inc.
(North Chicago, IL, USA) were used. Antibodies against
HSP70 (cat#ab2799) from Abcam (Cambridge, UK),
OPA1 (cat#612607), cytochrome c (cat#556432) and
DRP-1 (cat#611113) from BD Biosciences (San Jose, CA,
USA); BCL-X; (cat#2762), BIM (cat#2933) and BAD
(cat#9292) from Cell Signalling Technology (MA, USA);
BAK (AB-1) (cat#AM-03) and NOXA (cat#OP180) from
Millipore (Watford, UK) and MCL-1 (cat#sc-819), BAK
(cat#sc-832) and GAPDH (cat#sc-25778) from Santa Cruz
Biotechnologies (Santa Cruz, CA, USA) were used. All
other reagents were obtained from Sigma Aldrich (St.
Louis, MO, USA).

Overexpression and genetic silencing

For transient overexpression studies, cells were trans-
fected with GFP-DRP1 K38A plasmid (provided by Dr. E.
Bampton, University of Leicester, UK), using TransIT-LT-
1 transfection reagent (Mirus Bio LLC, Madison, WI,
USA), according to the manufacturer’s protocol. For RNA
interference, cells were transfected with 10 nM of siRNAs
against DRP-1 (s104274235), MCL-1 (s8585 or
S102781205) or BCL-X; siRNA (s1920) purchased from
Qiagen Ltd (Manchester, UK) or ThermoFisher Scientific
(Waltham, MA, USA). Cells were transfected using 0.33%
(v/v) Interferin reagent (Polyplus Transfection Inc., NY)
to culture media, according to the manufacturer’s proto-
col and processed 72 h after transfection.

Microscopy

For electron microscopy, cells were fixed in 2.5% (w/v)
glutaraldehyde and 2mM calcium chloride in 0.1 M
cacodylate buffer (pH 7.4). This was followed by heavy
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metal staining, which consisted of two consecutive
osmium tetroxide steps (2% (w/v) OsO4 in ddh,O), fol-
lowed by 1% (w/v) aqueous uranyl acetate. To prevent
precipitation artefacts, the cells were washed copiously
with ddH,O between each staining step. All fixation and
staining steps were performed in a Pelco Biowave®Pro
(Ted Pella Inc., Redding, California, USA) at 100w 20Hg,
for 3 min and 1 min, respectively. Dehydration was in a
graded ethanol series before filtration and embedding in
medium premix resin (TAAB, Reading, UK). Seventy to
74 nm serial sections were cut using a UC6 ultra micro-
tome (Leica Microsystems, Wetzlar, Germany) and col-
lected on Formvar (0.25% (w/v) in chloroform (TAAB,
Reading, UK) coated Gilder 200 mesh copper grids
(GGO017/C; TAAB, Reading, UK). Images were acquired
on a 120 kV Tecnai G2 Spirit BioTWIN (FEL Hillsboro,
Oregon, USA) using a MegaView III camera and analySIS
software (Olympus, Germany). For immunocytochem-
istry, cells grown on coverslips were fixed with 4% (w/v)
paraformaldehyde, permeabilised with 0.5% (v/v) Triton
X-100 in PBS, followed by incubations with primary
antibodies (diluted 1:250 in 3% BSA in PBS), the appro-
priate fluorophore-conjugated secondary antibodies
(diluted 1:1000 in 3% BSA in PBS), mounted on glass
slides and imaged using a 3i Marianas spinning disk
confocal microscope, fitted with a Plan-Apochromat x63/
1.4 NA oil objective, M27 and a Hamamatsu ORCA-
Flash4.0 v2 sCMOS Camera (all from Intelligent Imaging
Innovations, GmbH, Germany).

Cytochrome c release assay

Approximately 10° cells were washed in cold PBS and
resuspended in mitochondrial isolation buffer (250 mM
sucrose, 20 mM HEPES, pH 7.4, 5 mM MgCl, and 10 mM
KCI) containing 0.01% digitonin. Cells were left on ice
for 5 min followed by centrifugation at 13000 g for 3 min
at 4 °C. Subsequently, the supernatant (cytosolic fraction)
and pellet (mitochondrial fraction) were processed for
western blotting.

Size exclusion chromatography, immunoprecipitation and
western blotting

Size exclusion chromatography and immunoprecipi-
tation experiments were carried out as previously
described'®?”. Western blotting was carried out
according to standard protocols. Briefly, 50 pug of total
protein lysate was subjected to SDS-PAGE electro-
phoresis. Subsequently proteins were transferred to
nitrocellulose membrane, probed with appropriate pri-
mary antibodies (diluted 1:1000 in Tris-buffered saline
with 0.1% Tween-20), species-specific secondary anti-
bodies (diluted 1:2000 in Tris-buffered saline with 0.1%
Tween-20) and protein bands visualised with ECL
reagents (GE Healthcare).
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Flow cytometry

The extent of apoptosis in cells following different
treatments was quantified by using an Attune NxT flow
cytometer (ThermoFisher Scientific, Paisley, UK) follow-
ing staining of the cells with AnnexinV-FITC and propi-
dium  iodide to  measure  phosphatidylserine
externalisation, as previously described*”. Loss in mito-
chondrial membrane potential (y,) was assessed as
described previously'® by staining cells with TMRE, a
lipophilic fluorescent dye that accumulates in the mito-
chondria in relation to the membrane potential, and
quantified by flow cytometry. For BAK activation, cells
were fixed with 2% paraformaldehyde at room tempera-
ture for 10 min, washed with PBS and resuspended in a
buffer containing 0.1% saponin and 0.5% BSA in PBS for
10 min. The cell suspension was then incubated with
0.1 mg/ml of anti-BAK AB-1 (Calbiochem Research Bio-
chemicals—now Merck, cat# AM-03) antibody for 1h at
4 °C, followed by further incubation with goat-anti-mouse
IgG-AlexaFluor-488 conjugated secondary antibody for
1h at 4°C, before being subjected to flow cytometry.

Statistical analysis

Statistical analysis was conducted by using one-way
ANOVA with Bonferroni’s multiple comparison test was
performed to evaluate differences between numerical
variables. Asterisks depicted correspond to the following p
values: *p < 0.05, **p < 0.005 and ***p < 0.001.
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