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Abstract The recognition of traffic scene in still im-

ages is an important yet difficult task in an Intelli-

gent Transportation Systems (ITS). The main difficulty

lies in how to improve the image processing algorithms

against different traffic participants and various layouts

of roads while discriminating different traffic scenes. In

this paper, we attempt to solve the traffic scene recogni-

tion problem by proposing a deep multi-classifier fusion

method in the setting of granular computing. Specifi-

cally, the deep multi-classifier fusion method which in-

volves local deep-learned feature extraction as one end

that is connected to the other end for classification

through a multi-classifier fusion manner. At the local

deep-learned feature extraction end, the operation of

convolution to get feature maps from the local patches

of an image is essentially a form of information granu-
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lation, whereas fusion of classifiers at the classification

end is essentially a form of organization. In addition,

we construct a new traffic scene dataset “WZ-traffic”,

consisting of 6035 labeled images of 20 categories to

evaluate the traffic scene recognition performance. Ex-

tensive experiments over the benchmark dataset FM2

has also shown that the proposed method significantly

outperforms the state-of-the-art approaches for traffic

scene recognition.

Keywords Traffic Scene Recognition · Convolutional

Neural Networks · Multi-classifier Fusion

1 Introduction

Recognizing the traffic scene in front of a vehicle is an

important task for autonomous driving (Huang et al.,

1994). Knowledge of the current traffic scene informa-

tion can have several benefits: e.g., augmenting the driver’s

situational awareness, reducing driver workload, and

automating all/part of the driving process. Despite the

progresses in scene recognition (Dixit et al., 2015; Greene

et al., 2015; Song et al., 2015), understanding the traffic

scene in various environments remains largely unsolved.

This is mainly due to the complexity of traffic situa-

tions. First, many different traffic participants may be

presented and there are a variety of geometric layouts

of roads and crossroads. Furthermore, illumination con-

ditions such as cast shadows caused by infrastructure

or vegetation add extra complexities.

A traffic scene is generally composed of a collec-

tions of entities (e.g. objects) organized in a highly

variable layout. This high variability in appearance has

made reliable visual representation the primary choice

in solving this problem. Among them, an image has
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been represented as bags of locally extracted visual fea-

tures according to bag-of-features (BOF) methods, such

as Scale Invariant Feature Transform (SIFT) (Oquab

et al., 2014) and Histogram of Oriented Gradient (HoG)

(Dalal and Triggs, 2005). For many high level vision

tasks, these features can be pooled into an invariant im-

age representation, e.g., Bag of Visual Words (BoVW)

(Csurka and Perronnin, 2010), Fisher Vectors (FV) (Dixit

et al., 2015), and Vector of Locally Aggregated Descrip-

tors (VLAD) (Jégou et al., 2010).

However, the rich variabilities hidden in the image

cannot be reflected by the dominate patch encoding

strategies, which are based on hand-crafted features.

Recently, Convolutional Neural Networks (CNN) have

brought breakthroughs in image representations by em-

phasizing the significance of learning robust feature rep-

resentations from raw data (Krizhevsky et al., 2012;

Simon et al., 2014). CNN has the ability to detect com-

plex features automatically by training multi-layer of

convolutional filters in an end-to-end network, which is

a prerequisite for many computer vision tasks, such as

action recognition (Yan et al., 2017), vehicle recognition

(Wu et al., 2018) and object detection (Girshick, 2015).

Despite these achievements, there are still some limita-

tions in deep Convolutional Neural Networks, such as

the lack of geometric invariance and the limitations in

transferring information about local elements. Besides,

a single classifier may have its own advantages and dis-

advantages in the classification task (Zhou, 2012). For

the task of traffic scene recognition, a single classifier

may be capable of learning some, but not all, specific

characteristics of traffic scene. So it is worth exploring

multi-classifier fusion applied to traffic scene recogni-

tion to improve the classification performance.

To address the above issues, in this paper, we there-

fore propose a novel traffic scene recognition method-

ology in the setting of granular computing, which in-

volves creation of information granulation by extracting

the CNN features upon local regions of the image for

a compact representation, and design multiple levels of

classifiers fusion method through fusing the outputs of

the two ensemble classifiers (Random Forests and Gra-

dient Boosted Trees) with the outputs of the selected

single classifier. Second, we discuss how to improve the

recognition rate by deep multi-classifier fusion method

from the perspective of granular computing. With these

contributions we are able to create information granula-

tion and diverse classifiers to advance the performance.

The rest of the paper is organized as follows. In sec-

tion 2, we briefly offer a brief overview of the traffic

scene recognition, multi-classifier fusion and granular

computing. Section 3 provides a detailed description

of the proposed methods. We also present how gran-

ular computing concepts are employed to design the

framework of deep multi-classifier fusion. In Section 4,

we describe the details of the new traffic scene dataset

”WZ-traffic” which collected from 20 traffic scenes. Be-

sides, we conduct the experimental study on WZ-traffic

and FM2 datasets, and discuss the results in terms of

multiple comparison settings. In Section 5, we highlight

the contribution of this paper and provide some future

directions in this area.

2 Related Work

As an emerging research topic, traffic scene recognition

has recently attracted significant interest (Tang and

Breckon, 2011; Mioulet et al., 2013; Taylor et al., 2016).

In this section, we focus on three relevant research ar-

eas: traffic scene recognition, multi-classifier fusion and

a review of granular computing concepts.

2.1 Traffic scene recognition

Automatic recognition of visual scenes is an impor-

tant issue and plays an important role in automatic

transpertation and traffic surveillance. A number of

studies have been carried out under the daunting chal-

lenges of recognizing traffic scene, mostly aimed at au-

tomatically analyzing the road environment, or detect-

ing and classifying possible objects in the traffic scene,

such as pedestrians and vehicles. For example, Ess et al.

(2009) proposed an urban scene understanding method

by exploiting a pre-training classifier to label the seg-

mentation regions. Besides, a road classification scheme

was introduced by Tang and Breckon (2011), which uti-

lized the color, texture and edge features of the image

sub-region. Then they applied a convolutional network

for the classification task.

Recently, based on the general data mining process,

Taylor et al. (2016) put forward a novel data min-

ing methodology for driving-condition monitoring via

CAN-bus data. In (Lu et al., 2016) a generalized Haar

filter based deep network was applied for the object de-

tection tasks in traffic scene. A novel concept of the

atomic scene has been proposed by Chen et al. (2016),

they established a framework for monocular traffic scene

recognition by decomposing a traffic scene into atomic

scenes.

2.2 Multi-classifier Fusion.

The effectiveness in solving classification tasks has been

proven by many machine learning algorithms, such as
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support vector machine (SVM) (Cortes and Vapnik,

1995), k-nearest neighbours (KNN) (Altman, 1992), de-

cision tree (DT) (Gondy et al., 1993) and random forest

(RF) (Cutler et al., 2004). A simple practice is to re-

tain the best classifier and disregard the others after

evaluating their performance. Alternatively, one could

fuse the information provided by them to achieve a bet-

ter recognition rate. Recently, multi-classifier fusion has

attracted attention in various computer vision tasks

to achieve improved performance. The final result of

the classifiers fusion depends on the method of combin-

ing the decisions from different classifiers in accordance

with the fusion rule.

In (Kuncheva, 2002), six simple classifier fusion meth-

ods were theoretically studied, including minimum, max-

imum, median, average, oracle and majority votes. Due

to the simplicity and good performance of these strate-

gies, they may be the most obvious choice when build-

ing a multi-classifier system.

To determine the support Si(x) for class xi, using

the fusion rule R to perform a majority voting on the

class-related probability predicted by each classifier, it

can be defined as,

Si(x) = R(P1,i(x), , ..., PL,i(x)), i = 1, 2, ...,m. (1)

In the majority voting method, the class label of x

predicted by each classifier should be computed firstly.

Then, the support Si(x) can be robustly estimated as,

Si(x) =
v + 1

L+m
(2)

where v represents the number of votes received by the

class xi. Compared to frequency-based probability esti-

mation, this probability usually does not affect the final

result, while avoiding the problem of certain class labels

that do not appear in the basic classifier output (Duin

and Tax, 1998).

Fusion of feature sets and classifiers for facial expres-

sion recognition has been studied in (Zavaschi et al.,

2013). Toufiq and Isalm (2017) developed a dynamic

decision selection method for face recognition that uses

the least amount of facial information to take correct

decision. In (Nanni and Lumini, 2013), a random sub-

space ensemble of support vector machines (SVM) clas-

sifiers has been trained for scene recognition, and then

the sum rules were used to combine the classifier re-

sults. In this paper, we present a multi-classifier fusion

approach by using various classifiers in the setting of

ensemble learning which leads to an improvement in

the recognition accuracy.

2.3 A review of granular computing concepts

From the aspect of philosophical perspectives, granular

computing is a way of structured problem solving at the

practical level (Yao, 2005b). There are two commonly

concepts in granular computing: granules and granular-

ity (Pedrycz, 2011; Pedrycz and Chen, 2015). In theory,

a granule is defined as a collection of smaller units that

can form a larger unit.

Various granules involves horizontal relationships and

hierarchical relationship. If different granules involves

horizontal relationships when if they are located in the

same or different levels of granularity. Otherwise, these

granules are in hierarchical relationships. For structural

information processing, there are different levels of gran-

ularity for different sizes of granules. In ensemble learn-

ing, an ensemble of classifiers is viewed as a granule.

Also, if the combination of classifiers involves different

levels, each level represents a level of granularity.

In general, there are two main operations in granular

computing including granulation and organization. The

granulation operation aims at decomposing larger gran-

ule in a higher level of granularity into smaller gran-

ules in a lower level of granularity, while organization

intends to integrate several parts into one. When de-

signing the top-down and bottom-up approaches from

a computer science perspective (Yao, 2005a), the oper-

ations of granulation and organization are widely used,

respectively (Liu et al., 2018).

In the content of set theory, a set of any formal-

ism is regarded as a granule and each element in a set

can be viewed as a particle. There are different for-

malisms of sets such as probabilistic sets (Liu et al.,

2016), fuzzy sets (Zadeh, 1965; Lee and Chen, 2008)

and rough sets (Pedrycz, 2011). They belong to infor-

mation granulation which is one of the fundamental of

granular computing. In particular, a probability set can

be considered a deterministic set when all elements be-

long to the set. Probabilistic sets provide a chance space

to each set and view it as a granule. The chance space

will be divided into subspaces which can be viewed as

particles that are considered to be randomly selected to

activate the occurrence of an event. Therefore, a whole

chance space integrates all these particles.

The fuzzy sets views each set as a granule and gives

each element a certain degree of membership in that set

(Chen and Wang, 1995; Chen and Tanuwijaya, 2011).

In other words, each element belongs to a certain de-

gree of fuzzy set. In the setting of granular computing,

a particle represents each part divided from the mem-

bership. In the context of rough set context, each set is

viewed as a granule. As described in (Liu et al., 2016),



4 Fangyu Wu1* et al.

rough set uses a boundary region to recover some ele-

ments with insufficient information.

Based on the above description, granular computing

is effective in simplifying complex problems by breaking

it down into several sub-problems in practice. It can also

be used to quantitatively measure qualitative properties

in the context of information granulation. In practical

applications, the theory of granular computing has been

widely used to promote other research fields, such as

computational intelligence (Ejegwa, 2018; Khan et al.,

2018) and artificial intelligence (Garg and Kaur, 2018;

Mandal and Ranadive, 2018).

3 Overview of The Proposed Method

In this section, we describe the details of local deep-

learned feature extraction and present the multi-classifier

fusion framework. As illustration in Figure 1, the pro-

posed method consists of four steps: 1) generating re-

gion proposal, 2) transfer learning, 3) reduction of fea-

ture dimension, and 4) classification. The main com-

ponents in our method will be described in detail. In

addition, we will analyze the creativity of the method

from the perspective of granular computing.

3.1 Region proposal and transfer learning

In the setting of granular computing(Liu and Cocea,

2018), a granule generally represents a large particle,

which consists of smaller particles that can form a larger

unit. Different with most existing methods which use

global features extracted from whole images, we con-

sider each image x as a granular and obtain a collection

of local features from sub-granule: x = {x1, x2, ....xn}.
So we capture context information from neighboring

scenes and objects while preserving key local features.

We start our work with a set of region proposals from

images to pursue accuracy with affordable computing

costs, each region proposal is viewed as a sub-granule of

the original image. After observing the experimental re-

sults, we find that the top 1000 ranked region proposals

are sufficient for the representation of an image.

Once we have the 1000 region proposals which were

generated from the original images by EdgeBoxes al-

gorithm, we start the transfer learning in the second

stage. We formalize transfer learning as follows: Given

a source domain DS and a target domain DT , the learn-

ing task for DS and DT are TS and TT , respectively. We

aim to use the knowledge from DS and TS to boost the

learning ability of the target predictive function fT (·)
in TT , where DS 6= DT , TS 6= TT . Transfer learning

is particularly relevant when, given labeled source do-

main data DS and target domain data DT , we find that

|DT | � |DS |.
In this paper, we transfer knowledge from the Im-

ageNet object recognition task P1 to the target prob-

lem of traffic scene recognition P2. In P1, we have the

task of object classification with source domain data

D1 = {(x1i , y1i)} from ImageNet that consists of nat-

ural images x1i ∈ X1 with labels. In P2, we have a

traffic scene prediction task with target domain data

D2 = {(x2i , y2i)} that consists of traffic scene images

x2i ∈ X2 and image labels. ImageNet is an object classi-

fication image dataset which consists of 14 million im-

ages belonging to 1000 classes, major breakthroughs

have been achieved with the help of sufficient data and

CNN models in many computer vision tasks. CNN mod-

els trained on the ImageNet dataset are recognized as

good generic feature extractors, with low-level and mid-

level features such as edges and corners that are able

to generalize to many new tasks. We achieve knowl-

edge transfer using the parameters from VGG16 mod-

els trained on ImageNet. The VGG16 model has been

fine-tuned on the traffic scene dataset using SGD with

momentum.

We consider two ways of adapting the original VGG16

network. The first approach is to add a dropout layer

before the final convolutional layer to reduce the risk of

overfitting. Second, we modify the last fully-connected

layer to have K neurons to predict the K- classes, where

K is the number of the traffic scene types in the train-

ing set. We regard the traffic scene recognition as a

multi-class classification problem, and apply the cross-

entropy loss to transfer the model outputs to the value

of probability for all classes. This corresponds to

l = −
K∑

k=1

log(σp(k)q(k)) (3)

where σ denotes the softmax activation function, p(k) ∈
[0, 1] is the predictive probability of the input image be-

longing to class K, and q(k) denotes the ground truth

distribution. Different with some methods which ob-

tain feature from pooling layer, we extract the 4096-

dimensional feature vector from the first full connection

layer (FC6) for the region proposals generated from

each image. However, it’s time-consuming to extract

feature of multiple regions (sub-granule) in CNN. To

reduce the computational cost and run time, we imple-

ment our algorithm on top of a fast R-CNN (Girshick,

2015), in which the RoI projection scheme will complete

the feature extraction of an image in only one feed for-

ward process. Fast R-CNN is originally used for object

detection and requires object category labels and an-

notations of bounding boxes. Usually, the annotations
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Fig. 1 The workflow of our proposed traffic scene recognition system. The granulation operation includes generate region
proposals (sub-granule) for each image (granule) and perform transfer learning to obtain local deep-learned feature. In the
organization operation, we analyze the principle component to reorganize the local deep-learned feature and reduce the dimen-
sion of it. Besides, the type of traffic scenes can be recognized with multi-classifier fusion that also belongs to the organization
operation.

are done manually in general applications. In our work,

the parts instances are viewed as objects and annotated

automatically. We show the feature extraction process

in Figure 2.

3.2 Dimensionality reduction

As has being pointed out in (Jégou et al., 2010), reduc-

ing the dimension of the original feature appropriately

would further improve the recognition performance. There-
fore, after extracting the CNN features from regions, we

used principal component analysis (Abdi and Williams,

2010) to reduce feature dimension. However, it is not

practical to perform conventional PCA training on all

features due to the large number of features. We first

select some sample features randomly for training and

reduce the CNN features from 4096 to 256 dimensions.

Then we perform PCA on all remaining features. In

addition, we further investigate the effect of feature di-

mensions on overall recognition performance by com-

paring the performance of 512 dimensions.

3.3 Design of Multi-classifier Fusion Framework

There are two principles for multi-classifier fusion: a)

each individual classifier has its own advantages; b) as

indicated in (Zhou, 2012), complementary advantages

could to be achieved by encouraging diversity among

different classifiers.

Algorithm 1 Proposed traffic scene recognition

pipeline
Input: Static traffic scene recognition dataset D including

Dtrain, Dval and Dtest

Output: The prediction labels for Dtest

/*Granulation operation*/
1: Create region proposal (sub-granule) for traffic scene im-

ages (granule) in D.
2: Perform transfer learning using Dtrain and Dval (see

Section 3.1).
3: Extract the local deep-learnt feature matrix Htrain, Hval

and Htest of selected regions for each images in Dtrain,
Dval and Dtest.

/*Organization operation*/
4: Analyze the principal components in Htrain to obtain

the transformation matrix T .
5: for i = 1 to Dtrain do
6: Use the first i transformation vectors of T to compute

Htraintransform
by projecting Htrain to the subspace

of principal components.
7: Evaluate the performance of Htraintransform

and save
the result as scoresi

8: end for
9: Obtain the i in which the Htraintransform

achieves the
best scores. Tselect is the first i transformation vectors of
T .

10: Compute Ltrain, Lval and Ltest by projecting Htrain,
Hval and Htest to the principal components subspace
using Wselect

11: Train three basic classifiers KNN, SVM and MLP and
two decision tree ensembles RF and GBT using Ltrain,
Lval.

12: Obtain the posterior probability matrix Ptest of three
basic classifiers and two decision tree ensembles on Ltest

13: Fuse the multiple Ptest using algebraic rules.

.
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Fig. 2 The process of deep feature extraction. Forward the input traffic scene images (granule) contains a set of region
proposals (sub-granule ) through CNN model, after generating the conv5 feature map of image, the RoI pooling layer will
extract features with one feed forward process.

Fig. 3 Pipeline of the multi-classifier fusion. Step 1: train three single classifiers; Step 2: In order to increase the diversity
of decision tree classifiers, two decision tree sets are trained by using RF and GBT respectively; Step 3: the trained single
classifiers is combined with the decision tree sets through algebraic fusion.

Fig.3 shows the process of multi-classifier fusion.

Firstly, we train several single classifiers including the

popular SVM, KNN and MLP that have different learn-

ing strategies. To boost the recognition performance,

in step 2, more diverse decision trees are obtained by

training two decision tree ensembles including Random
Forests and Gradient Boosted Trees. To reduce the risk

of over-fitting and improve the level of generalization,

we adopt the 10-fold cross validation to train and val-

idate each classifier.. Finally, we apply the algebraic

rule to fuse the results of the two ensemble classifiers

with single classifiers for further improving the recogni-

tion performance. In particular, the proposed method

involves the different levels of granularity. Each ensem-

ble can be viewed as a granule, Random Forests and

Gradient Boosted Trees are two independent granules.

The final ensemble are organized to include the two en-

sembles and the single classifiers. Each of the levels of

ensembles actually represents a level of granularity.

Voting is the most popular method of classifier com-

bination in the field of classifier fusion. In particular,

voting-based set classification can be achieved by se-

lecting the classes provided by most classifiers as their

output, i.e. majority voting. In particular, classes pro-

vided by most classifiers will be selected as outputs,

i.e. majority voting. In this way, voting-based ensemble

classification will be realized.

Different with majority voting, weighted voting is

another way of voting in which the class output is cal-
culated with the weight of each single classifier. The

class that obtains the highest weight will be derived for

finally classifying an instance. The overall confidence

(accuracy) of a classifier evaluated on a validation set

will be used to estimate the weight of this classifier.

The precision or recall for a specific class are also

used to measure the confidence in the class level (Liu

and Gegov, 2015). Also, due to the high degree of di-

versity between different instances, the confidence in

classifying an instance cannot be represented by the

confidence level measured for the classifier or each in-

dividual class. In our proposed framework, we use alge-

braic rules (Zhou, 2012), which are basically based on

the median/maximum/average of hidden output (pos-

terior probability of each class) to achieve the fusion

of these classifiers trained by using different learning

algorithms. Our traffic scene recognition algorithm is

summarized in Algorithm 1.
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3.4 Application of granular computing concepts

We design the deep multi-classifier fusion method in the

setting of granular computing, which is a paradigm of

information processing. In the local deep-learned fea-

ture extraction part, granulation is operated through

decomposing the information of original images into

multiple region proposals which involves local informa-

tion. Organization is operated through analyzing the

principal components to reduce the feature dimension.

Different with general feature selection, we reorganize

the various feature into a low-dimension feature with

no information loss. A principal component is a feature

that is regarded as a large information particle, which

contains a plurality of features called small information

particles. The whole process of dimensionality reduc-

tion belongs to information fusion, which utilizes orga-

nizational operations in granular computing.

On the other hand, the framework of multi-classifiers

fusion involves multiple levels of classifiers fusion, and

we view each of the levels as a specific level of granular-

ity. In this setting, a primary ensemble containing three

base classifiers is viewed as a granule at the basic level

of granularity, whereas the final ensembles that may in-

volves both base classifiers and lower level ensembles is

viewed as a granule at the top level of granularity.

Multi-classifier Fusion vs. Deep multi-classifier

fusion. Multi-classifier fusion and the proposed deep

multi-classifier fusion have the same objective of out-

putting the prediction labels for testing data. Multi-

classifier fusion focuses on classification task and lever-

ages different classifiers to improve the performance.

Deep multi-classifier fusion seamlessly integrates the

two components including local deep-learned features

extraction framework (step 1 to step 3) and multi-classifier

fusion into a unified system. In principle, the two com-

ponents should collaborate with each other effectively:

the former operation of granulation is essentially de-

composition of a whole into multiple parts in a top-

down information processing manner through extrac-

tion features for local patches through the FC6 layer

of CNN, whereas the latter organization operation is

essentially integration of multiple parts into a whole in

a bottom-up information processing manner through

achieving the complementary advantages of different

classifiers.

4 Experiments and Results

We will first describe the implementation details, and

then briefly outline the experimental set up and perfor-

mance comparison on the WZ-traffic dataset and FM2

dataset.

4.1 Implementation Details

Deep Feature Extraction. Our experiments were con-

ducted under the Linux operating system. The imple-

mentation of the deep feature extraction was under-

taken on the Caffe deep learning framework (Jia et al.,

2014). We employed the VGG16, VGG1024 and Cafenet

models which were pre-trained on ImageNet, and then

fine-tuned on specific datasets. We set the maximum

number of training iterations and the learning rate to

10000 and 0.0001, respectively. Other parameters are

the same as fast R-CNN (Girshick, 2015).

Setting of Multi-classifier Fusion. The multi-classifier

fusion experiment was built on the KNIME Analysis

Platform, which has abundant nodes for applying ma-

chine learning algorithms. All experiments were con-

ducted with 10-fold cross-validation. We divided each

dataset into 10 parts including 7 parts for training and

1 parts for validation and the rest for testing. The per-

formance of three popular standard learning methods,

SVM, KNN and MLP, were first evaluated. We used the

RBF kernel in the SVM learner and set the values of

the sigma and overlap penalty to 13 and 1, respectively.

For K nearest neighbor, we set the value of K equal

to 7. In addition, we trained the MLP classifier through

150 iterations with 2 hidden layers and 10 units in each

layer. Secondly, we used the random forest learner (RF)

and Gradient boosted trees learner (GBT) to improve

the performance of decision tree learning. As for ran-

dom forest learner, the information gain ratio was used

for for split criterion in tree ensemble learner, we set

the ensemble size which means the number of decision

trees that make up a random forest to 150. In addition,

for gradient boosted trees learner, the tree depth, num-

ber of models and learning rate were set as 10, 20 and

0.1, respectively. In multi-classifier fusion stage, mean,

median, maximum rule of algebraic fusion were used to

boost the prediction accuracy.

4.2 WZ-traffic dataset

To facilitate the research on traffic scene recognition,

we created a new dataset of labeled traffic scenes, called

the WZ-traffic dataset (Wu, 2019). It contains 6035 la-

beled images of 20 categories: highway, country road,

gas station, indoor parking, outdoor parking, crossing,

city stress, scenic gate, bridge, car wash, train station,

autodrome, traffic circle, tunnel, tunnel entrance, bus

station, booth, bus parking and traffic jams. The images

were collected by us from both the image search engine

as well as personal photographs, and took into account

sufficient variations in the background and viewpoints.
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Table 1 VGG16: Mean AP result on the WZ-traffic dataset
(Wu, 2019) with different methods.

Method Mean AP(%)

FC6 features (pre-trained model)
83.12

(Simonyan and Zisserman, 2014)
FC6 features (fine-tuned model) 85.71
1000 regions+FC6 features+PCA256 87.43
1000 regions+FC6 features+PCA512 87.10
2000 regions+FC6 features+PCA256 87.30
3000 regions+FC6 features+PCA256 87.12

Fig.4 presents sample examples from the corresponding

traffic scene categories in this dataset.

Fig. 4 Some examples of the WZ-traffic dataset.

We followed the step of deep feature extraction as

previously explained, and applied multiple classifiers

fusion for the final prediction. To compare and evalu-

ate the performance from different models, we selected

the pre-trained CNN models VGG16, VGG-M-1024 and

CaffeNet for following fine-tuning. We implemented the

training process in the fast R-CNN framework (Gir-

shick, 2015). After applying the region proposal algo-

rithm EdgeBoxes (Zitnick and Dollár, 2014) on each

image, and we extracted FC6 features from each region.

Multi-classifier fusion was accomplished after PCA di-

mensionality reduction and feature clustering. More de-

tails about the experiment procedure are described as

follows:

(1) Result from VGG16.

First, the fine-tuned CNN model and the pre-trained

CNN model were applied for extracting FC6 features.

As shown in Table 1, with the same experimental set-

ting, the fine-tuned model obtains about a 3% improve-

ment (from 83.12% to 85.71%) in recognition perfor-

mance. This result indicates that the fine tuning of the

CNN model can significantly boost the feature repre-

Table 2 VGG16: Mean AP result on the WZ-traffic dataset
(Wu, 2019) with individual and fusion classifiers.

Method (VGG16) Mean AP(%)

MLP (Gardner and Dorling, 1998) 87.43
SVM (Cortes and Vapnik, 1995) 88.26
KNN (Altman, 1992) 86.57
RF (Cutler et al., 2004) 86.43
GBT (Friedman, 2002) 88.06

Median-based fusion 89.90
Maxmium-based fusion 90.15
Mean-based fusion 90.30

sentation ability. Then, we provided recognition results

for 2000 and 3000 boxes per image to verify that 1000

regions per image are sufficient for deep feature repre-

sentation. From Table 1, we can clearly observed that

1000 boxes yields the best performance. To reduce the

feature dimension, the PCA was used to reduce the

CNN features from 4096 dimensions to 256. We re-

peated the same experimental process and reduced the

CNN features to 512 dimensions for comparison. It can

be clearly seen from Table 1, the mAP results of 512

dimensions are slightly worse. Hence, the CNN features

of 1000 regions with 256 dimensions will be the focus

for most of the experiments.

Table 2 shows the results for different single clas-

sifiers and multi-classifier fusion. The outputs of the

two ensemble classifiers (Random Forests and Gradient

Boosted Trees) were fused with the outputs of the 3

single classifiers for advancing the performance further.

The three multi-classifier fusion methods prove their

capabilities of improving the recognition performance

comparing with the single classifiers. The highest recog-
nition rates was obtained from the mean-based fusion

method. Overall, the results show very supportive evi-

dence for multi-classifier fusion towards advancing the

overall classification performance.

(2) Results from VGG-M-1024 and CaffeNet.

To compare the performance with other CNN mod-

els, we select the middle scale CNN model VGG-M-1024

and small scale CNN model CaffeNet. The experiments

were undertaken using the same conditions as VGG 16.

Comparing the deep multi-classifier fusion methods re-

sult with VGG-M-1024 and CaffeNet which are 88.90%

and 88.11%, respectively, in terms of the recognition

rate, VGG16 performs better than VGG-M-1024 and

CaffeNet models. Fig.5 shows the confusion matrix of

our best recognition results on the WZ-traffic dataset.

From the confusion matrix, we can observe that the

proposed method performed well in recognizing tunnel,

traffic circle and car wash. For the other types of traffic

scene, our method also performed reasonably well.
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Fig. 5 Confusion matrix of the best recognition results on the WZ-traffic dataset (Wu, 2019) (mean AP is 90.30%). The labels
in the leftmost column and on the bottom represent the ground truth, the number in each row represents the corresponding
prediction results.

4.3 FM2 dataset

The FM2 dataset has been introduced by Sikiric et al.

(Sikiric et al., 2014) and contains 6237 traffic scene im-

ages from the perspective of the driver. The images were

extracted from videos of several drives on European

roads, obtained using a camera installed in a vehicle.

The traffic scene consists of dense traffic,highway, over-

pass, road, tunnel, exit, toll booth and settlement. Fig.6

provides some examples of the traffic dataset FM2.

Fig. 6 Some examples of the FM2 Dataset (Sikiric et al.,
2014).

There is no ground-truth region provided in FM2

dataset, therefore, we fine-tuned the pre-trained VGG16

model which achieved the best performance on the WZ-

traffic dataset compared with VGG-M-1024 and Caf-

feNet. When the training process of CNN model was

completed, we extracted the CNN features for the top

Table 3 VGG16: Mean AP result on the FM2 dataset
(Sikiric et al., 2014) with individual and fusion classifiers.

Method (VGG16) Mean AP(%)

FC6 features(pre-trained model)
93.41

(Simonyan and Zisserman, 2014)
FC6 features(fine-tuned model) 95.65
PCA256+FC6 features 96.25

Table 4 VGG16: Mean AP result on the FM2 dataset
(Sikiric et al., 2014) with individual and fusion classifiers.

Method (VGG16) Mean AP(%)

MLP (Gardner and Dorling, 1998) 96.25
SVM (Cortes and Vapnik, 1995) 96.46
KNN (Altman, 1992) 95.87
RF (Cutler et al., 2004) 96.13
GBT (Friedman, 2002) 95.70

Median-based fusion 96.82
Maxmium-based fusion 96.95
Mean-based fusion 97.12

1000 regions that produced from Edgeboxes. Multi-classifier

fusion was accomplished after PCA dimensionality re-

duction. We can observe the following results from Ta-

ble 3 and Table 4: On this dataset, satisfactory results

are obtained when only the image-level CNN features

are considered. Besides, the performance increased 0.87%

(from 96.25% to 97.12%) when we implement the multi-

classifier fusion on CNN feature. This improvement proves

the complementarity of multi-classifier fusion and CNN
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features. Compared with the other methods shown in

Table 5, we also obtained the most state-of-the-art re-

sults on FM2 dataset.

We describe the details about the experimental pro-

cess and the three comparison settings as follows:

(1) CNN features.

We directly extracted the CNN features from the

first fully connected layers of the fine-tuned VGG16

model for each images without applying the region pro-

posal algorithm to generate candidate objects. As shown

in Table 3, the mAP accuracy is 95.65%. We evaluate

the stand-alone performance of the fine-tuned VGG16

model by comparing the results of pre-trained VGG16

model in Table 3. The fine-tuned model leading to over

2.24% improvement (from 93.41% to 95.65%) over the

pre-trained model.

(2) Dimension reduction.

In the test phase, we used the Edgeboxes algorithm

to generate 1000 region proposal for each image, which

are represented by 4096-dimensional CNN features. To

reduce the amount of feature computation and improve

the performance, we perform dimension reduction on

CNN feature through PCA algorithm and reduce the

CNN features to 256 dimensions. Table 3 shows the

mAP accuracy increases 0.6% (from 95.65% to 96.25%).

In this setting, the multi-classifier fusion has not been

taken into account.

(3) Deep multi-classifier fusion.

Finally, we fuse the hidden outputs (probability for

each class) of SVM, KNN, MLP, RF and GBT classifiers

through the mean, median, maximum rule of algebraic

fusion. Table 4 shows the detailed comparison results

between our methods and five single classifiers baseline

methods. Experimental results indicate that adding the

multi-classifier fusion does improve the overall perfor-

mance and the best performance in terms of mAP accu-

racy of mean-based fusion is 97.12%, Fig.7 presents the

confusion matrices of the best recognition results on the

FM2 database. From the confusion matrix, we can see

that the proposed method recognizes most of the traf-

fic scene well, such as highway, tunnel and settlement.

Fig.8 shows some correctly recognized examples in this

dataset. For example, our method recognized Fig.8(a)

as booth with a 99.99% (0.9999) probability. We also

compared our method with the state-of-the-art method

in Table 5, and the comparisons indicate the competi-

tiveness of the proposed method on the FM2 dataset.

5 Conclusion

In this paper, we have proposed a traffic scene recogni-

tion system using local deep-learned features and multi-

Fig. 7 Confusion matrix of the best recognition result (mean
AP is 97.12%) on the FM2 database (Sikiric et al., 2014). The
labels in the leftmost column and on the bottom represent the
ground truth, the number in each row represents the corre-
sponding prediction results.

Fig. 8 Some examples of correct recognition in the FM2
dataset (Sikiric et al., 2014), the predicted label and corre-
sponding probability are provided for each image.

Table 5 Mean AP result on the traffic scene dataset FM2
with previous results in (Sikiric et al., 2014).

Method Mean AP(%)

BoW (Csurka et al., 2004) 93.55
LLC (Wang et al., 2010) 92.68
SFV (Krapac et al., 2011) 95.09
GIST (Oliva and Torralba, 2001) 93.30
Ours (Deep Multiple Classifiers Fusion) 97.12

classifiers fusion in the setting of granular computing.

We have designed to create information granulation

through extracting CNN features of region proposal

generated for each image. In addition, organization is

operated by analyzing the principal components to re-

duce the feature dimension. The multi-classifier fusion

method which involves multiple levels of granularity to

improve the performance. In practice, we use the lo-

cal deep-learned features to train three basic classifiers,

namely KNN, SVM and MLP. Furthermore, RF and

GBT are used to train two decision tree ensembles. Fi-

nally, we apply the three algebraic rules, mean, median

and maximum to fuse the above classifiers. We conduct
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experiments on two different traffic scene datasets, in-

cluding public dataset and our own dataset. The exper-

imental results show that the information of the local

patches and the global background are significant to im-

prove the performance of traffic scene recognition, while

the deep multi-classifiers fusion method brings perfor-

mance improvement to traffic scene recognition. In the

future, the deep multi-classifier fusion will be further

improved to study the relationship between classes in a

granular computing setup. Specifically, we will identify

the relationships between information granules where

each class is viewed as a granule. Besides, it is worth

of future research to use fuzzy sets (Chen and Chang,

2011; Cheng et al., 2016; Chen and Huang, 2003) to

deal with the deep multiple classifiers fusion.
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