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Abstract. Seam welds are widely used in assembled structures for connecting 

components. However, the dynamic effects of a seam weld are often difficult to 

characterise in numerical models for several reasons: (1) it is often not wise to 

build a fine mesh on the seam line which will add considerable computational 

cost for a structure with many welds, (2) the mechanical properties of weld ma-

terials are not well known; (3) sometimes some geometric information about 

welds is not known beforehand. In this work, the finite element model of a weld-

ing connection part is developed by employing CSEAM element in NASTRAN 

and its feasibility for representing a seam weld is investigated. Based on this re-

sult, a damage detection method by updating the properties of the built CSEAM 

elements is also proposed for welding quality assurance. The damage takes the 

form of a gap in the weld which causes a sharp change of model strain energy at 

the edges of the gap for certain vibration modes. Specifically, the model strain 

energy shape is used as the objective function. A Kriging model is introduced for 

efficiency and simulation of a T-shaped welded plate structure to demonstrate the 

effectiveness of this method.  
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1 Introduction 

Assembled structures are widely used in civil and mechanical engineering. Different 

structural members are produced independently and then connected together by special 

joining techniques. The joint formed has an important influence on the overall dynam-

ical characteristics of the structure. Thus the accurate representation of the joints in the 

Finite Element (FE) models has significant research value [1]. 

Welding is one of the most commonly used joining techniques, whose FE modelling 

has drawn great attention in the past decades [2]. At the early stage, special elements 

are designed for connection, like partly rigid beam element used in frame structures [3-
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5]. Then, with the development of Computer-aided engineering software, many useful 

connectors are available in structural analysis software packages to represent welded 

joints in the FE model, like RBE2, ACM2 and CWELD [6]. The last one is specially 

designed for spot weld modelling in Nastran [7] and has been wildly used and studied 

by many researchers. References [8, 9] show that after reliable model updating, 

CWELD elements can successfully represent the laser spot weld joints in a top-hat 

structure. Further research by Abu Husain et al. about damage identification [10] and 

uncertainty analysis [11] on that kind of structure also benefits from the superiority of 

the CWELD element. 

Unlike the mature application of spot weld modelling, a seam weld which creates a 

weld seam line to connect parts together has not attracted much research, even though 

it is also widely used. Most research about FE modelling of seam welded joints does 

not focus on reflecting the dynamical characteristics, but on their deformation [12], 

rotational stiffness [13], fatigue capacity [14, 15] and residual stresses [16]. In the field 

of structural dynamics, Zahari et al. [17, 18] studied the modelling of friction stir weld 

joints. But their model is simplistic and thus cannot be used generally. Chee [19] and 

Rahman [20] presented common finite element modelling of T-shaped structures con-

nected by fillet welds. Their focus was on the impact of the types of elements used in 

plates while qualified welding is completed. The joint part modeled by a shell or a solid 

element is not flexible enough to represent the damage in a weld. In most cases, a seam 

weld provides a firm connection. But it may still suffer from cracks, underfill, burn 

through, incomplete fusion, long services, welders’ faults and so on. Therefore, an ef-

fective modelling method of seam welded joints that can properly reflect the welding 

quality and can be further applied in damage identification of the welding part is re-

quired in modern industry. 

 Besides different joint modelling methods, model updating is applied in most of the 

publications mentioned above. In actual applications, geometric and material properties 

of the welding part are often assumed but they may slowly vary over time or their ac-

curate values are not known beforehand. One remedy is to update these models by min-

imizing the differences between the predicted results and the measured experimental 

results by optimization methods. After that, the welding part is regarded as properly 

modelled. More details about model updating methods are given in [21]. 

 Model updating is also an effective means for damage identification, especially 

when an initial model is available. Usually, the stiffness of the models before and after 

damage is compared and the reduction of the stiffness of the later indicates presence of 

damage. Vibration-based damage identification make use of dynamic responses such 

as frequency, mode shape, frequency response function, mode shape curvature and 

modal strain energy (MSE), any of which can be used as a damage index. Among them, 

MSE is adopted in this research as it was found to be more sensitive to damage by 

Alvandi and Cremona [22]. Several works about MSE-based damage identification are 

listed as follows: 

Doebling et al. [23] used MSE as a mode selection criteria as a basis for other meth-

ods. Stubbs et al. [24] proposed a method using the decrease of MSE as an index for 

damage detection and successfully applied it on the I-40 bridge. Cornwell et al. [25] 
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generalized that method to plate-like structures. In these two papers, MSE was calcu-

lated by the curvature of the measured mode shapes. On the other hand, Shi et al. [26-

28] developed a similar method in which the MSE calculation was based on the FE 

model. In addition to localization, he also explored a damage quantification method by 

updating the MSE of suspected damaged elements and derived the sensitivity formulas 

for optimization. Recently, some improvement of that method has been made by Li et 

al. [29] and Moradipour et al. [30, 31]. Artificial Intelligence algorithms were also 

introduced in this method by Seyedpoor [32] and Kaveh et al. [33, 34]. 

 In this paper, the CSEAM element of Nastran is adopted to model the seam weld 

joint of a T-shape plate structure. The advantages and disadvantages of this element are 

discussed and its application in damage identification is shown through an FE 

simulation. In the simulation, the damage is in the form of an unwelded gap in the weld 

seam line and model updating method based on MSE is applied to detect the gap. The 

resulting optimization problem is solved by a genetic algorithm while Kriging model is 

added for computational efficiency. 

 

2 Seam welded joint modelling 

The simplest way to join two plates (modelled by shell elements) of a T-shaped struc-

ture together is to delete extra overlapping points at the connection parts, as shown in 

Fig. 2a, Section 4. Thus, the two parts are assumed to be melt together representing the 

weld is firm enough. But in this case, the joint of the model is not adjustable and cannot 

be used for further calibration. 

A smarter approach is to include extra shell or solid elements and delete overlapping 

points between them and the two plates. In this way, the quality of the weld can be 

changed through modifying the parameters of these elements. Model updating methods 

could be applied to make the model more accurate and reliable. 

 However, all of these methods mentioned above are limited by the mesh distribution 

of the two plates. They can hardly work with misalignment of the two meshes especially 

when the two element sizes are different. In order to solve more general problems, in 

this research the CSEAM element of Nastran is explored. This type of element is spe-

cially designed for modelling seam welds and can easily overcome the misalignment 

problem. 

Demonstration about how a CSEAM element works is shown in Fig. 1. At first, two 

pairs of shell elements are built in Patran (Fig. 1a). Then, two hex elements are added 

between those two pairs and each node of the hex elements is connected to the four 

nodes of the corresponding shell elements by RBE3 elements (Fig. 1b). After this, the 

relative displacement between two connected shell elements is limited and a CSEAM 

element is created as such an element set. 
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(a) 

 

(b) 

Fig. 1. Demonstration about how CSEAM element is built in Nastran: (a) Semi-finished structure 

in Patran; (b) CSEAM elements rebuilt in Patran. 

Two shell elements can easily be connected by a CSEAM element whether they are 

parallel or vertical. It is not necessary for the CSEAM element to take the same length 

as the shell elements. Thus it can easily join two plates with different meshes together. 

Obviously, this element can not only be used for a tee joint, but also a lap joint, corner 

joint and edge joint. But it is not included in any pre- or post-processing software pack-

ages, which makes it inaccessible. 

3 Basic theory 

3.1 Model updating method 

When an FE model is built, the discrepancies between the measured and predicted re-

sponses, like natural frequencies and mode shapes, are unavoidable. And the model can 

be improved by systematically adjusting the structural parameters to minimise these 

discrepancies. Such a procedure is called model updating. 

In seam weld joint modelling, even though the welds are well produced, model up-

dating should still be applied to reflect the real firmness. Usually the stiffness of the 

whole seam element is selected as a design parameter and the minimisation is carried 

out via a residual-based objective function: 
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where a

iω and e

iω are the predicted and measured frequencies of the ith mode, respec-

tively. 
iW  indicates the weighting coefficient of the residual of that mode.  

Measured frequencies are enough for updating the intact model. However, in this 

research, the focus is the damage identification of the weld joint. As mentioned before, 

the damage is introduced as a gap within the weld seam representing missing connec-

tion. This time the mode shape must be used to localize the gap. 

Raw mode shape data are not very sensitive to damage. Many methods took ad-

vantage of their derivatives, for example, mode shape curvature, flexibility matrix and 

MSE were used and compared in reference [22]. The MSE is adopted here, whose the-

ory and improvement are shown as follows: 

    Energy stored in the jth element at mode i before and after the occurrence of damage 

is defined as: 

 T d dT d,       ij i j i ij i j iMSE MSE K K      (2) 

where  i is the mode shape vector, jK is the global stiffness matrix of the jth element. 

d  represents the damaged states. 

In traditional MSE methods, the elemental modal strain energy change ratio is used 

as a good indicator for damage localization and is defined as: 
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But in this case, damage exists in the weld part whose mode shapes cannot be measured 

directly. Thus the measured MSEs of joint elements are unavailable and equation (3) is 

unusable. 

To solve this problem, in this paper a new MSE-based model updating method is 

proposed for seam weld joint damage identification. This method utilizes the MSE of 

the shell elements of the horizontal plate connected by the weld joint to localize the 

gap. Assuming the vertical plate is in bending, the MSE of the shell elements of the 

horizontal plate will increase and decrease sharply across the seam line at the edge of 

the gap. If the theoretical model predicted MSEs are closest to the experimental ones, 

it can be regarded as properly updated and the reduction of the design parameter shows 

the location of the gap. The objective function to maximise this MSE shape similarities 

is defined as: 

 
T

min f


 


MSEa MSEe

MSEa MSEe
  (4) 

where a ‘-’ is added to turn the maximum problem into a minimum problem. MSEa  

and MSEe are theoretical and experimental MSE vectors of the shell elements along 

the weld seam line for a certain mode, respectively. One row of shell elements nearest 

and parallel to the weld is enough to localize a gap in the weld. 
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3.2 Kriging surrogate model 

To solve the optimization problem in equation(4), it is not wise to use sensitivity based 

method as formulas will be complex and it is time-consuming to extract global stiffness 

and mass matrices from a structural analysis software. Instead, one of the famous evo-

lutionary algorithms, genetic algorithm (GA), is applied. 

GA is commonly used to generate a high-quality solution to optimization problems 

by using bio-inspired operators such as mutation, crossover and selection. It has a 

higher probability of identifying a global optimum solution than the gradient-based ap-

proach. Even if the process of computing gradient is impossible, it can still be applied.  

 Direct utilization of GA can easily solve the problem. However, GA usually requires 

many calculations of the objective function to get a result. Each of them needs to invoke 

Nastran to get the dynamic responses of the structure with the changed parameters. The 

whole process incurs a high computational workload. 

To decrease the time taken for Nastran to calculate responses, a Kriging model is 

first established and then inserted into the GA process. A Kriging model is a surrogate 

model based on a stochastic process. It maps the input parameters to the corresponding 

responses mathematically which can be written as: 

 ( ) ( ) ( ),     1,2, ,i i iy z i n  T
x f x β x   (5) 

where ( )f x  is a polynomial vector of the sample x , β is the vector of the linear regres-

sion coefficients to be estimated and ( )z x  represents errors and is assumed to be a sto-

chastic process that follows a normal distribution of 2(0, )N   with a zero mean and 

standard deviation  . 

After the initial sampling of the design parameters (input) and the corresponding 

objective function values (output), a surrogate model is built for fast calculating output 

at random input points instead of invoking Nastran. In this way, much time saving is 

made when applying GA. 

In the event that the initial sampled Kriging model is not precise enough to get proper 

results, new samples should be added to make the model more reliable especially in the 

area around the minimum. A Kriging model can predict the response of a new point 

and its mean square error. If the distance between the new point and the existing sample 

points is longer, this error is larger. A balance about the value and error must be rea-

sonably considered to find the most likely minimum point. Such a point will be added 

to the samples and the Kriging model will be renewed until convergence. 

This method is called efficient global optimization. For more details and formulas 

of this methods and Kriging model, the readers are referred to references [35, 36]. The 

procedure to implement this method to solve optimization problems is concluded as 

follows: 

 

Step 1: Generate initial sample points of the updating parameters. 

Step 2: Run the FE analysis program to calculate the objective function output vector 

of the sample points and construct the initial Kriging Model. 

Step 3: Find the the most likely minimum point of the current Kriging model by GA 

and add it into the set of the sample points. 
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Step 4: Calculate the response output of the new sample point and reconstruct the 

Kriging model by the all sample points and response output. 

Step 5: Check whether the procedure has converged. If so, then stop and the sample 

point leading to the minimum objective function value is the updating result. Otherwise, 

go back to step 3 and continue adding new sample points. 

 

4 Numerical simulation 

In this section, a finite element simulation is used to test the performance and robustness 

of the presented method.  As shown in Fig. 2, two plates are connected together to 

simulate a tee weld joint configuration with free edge conditions. 

 

 

 

(a) 

 

(b) 

Fig. 2. Illustrations of two T-shape models used in simulation by Patran: (a) Fine mesh with 

merged-node joint (b) General mesh with CSEAM element joint. 

The sizes of the two plates are set to 200×200 mm (horizontal) and 200×120 mm (ver-

tical) with 6 mm thickness. They share the same material properties: Young’s modulus 
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of 70 GPa, mass density of 2769 kg/m3 and Poisson’s ratio of 0.33. They are welded 

across the middle line of the horizontal plate. Two different models are constructed 

with shell elements. 

In the 1st model shown in Fig. 2a, very fine mesh (element size is set to 1mm) is 

distributed onto both plates. Their connected parts, edge and middle line, are over-

lapped. Welding connection is constructed by merging the 2 nodes at the same location 

as mentioned in Section 2. The purple line shows the nodes that have been merged. 

Also, a gap is left in the middle of the weld seam representing the part of the welding 

failure (damage). The responses of this model are regarded as experimental responses. 

In the 2nd model shown in Fig. 2b, the element size is set to 10mm for general use. 

There is a small distance between the two plates due to thickness of the horizontal plate. 

20 CSEAM elements are created on both sides of the vertical plate to join the two plates 

together element by element, which cannot be seen in Patran. The material properties 

of these elements are set the same as the plates initially. Then their Young’s modulus 

(E) is updated based on the first five frequencies of the 1st model without damage by 

equation (1). The updated E is 28 GPa and the improvement in frequencies is shown in 

Table 1. 

Table 1. Natural frequency improvement after updating. 

Mode 1st model (Hz) 
Original 2nd 

model(Hz) 

Updated 2nd 

model(Hz) 

1 401.3 442.1 398.9 

2 459.8 463.1 456.3 

3 642.6 668.0 651.2 

4 680.3 694.5 656.9 

5 897.5 920.7 909.8 

Average error  3.9% 1.5% 

 

The proposed method is applied to identify the damage gap in the 1st model. The left 

edge point and length of the gap is chosen as updating parameters a and b, respectively. 

They both change from 0 to 20 with the constraint: a+b ≤ 20 (unit: cm). As the gap 

represents the welding fault, the connection stiffness is 0 in the gap. During the updating 

process, E of each CSEAM element is multiplied by a factor which equals the propor-

tion of its element length that is not covered by the gap represented by a and b. 

In this simulation, the MSE of the 1st mode is used for damage identification. As 

shown in Fig. 3 and Fig. 4, in this mode the vertical plate is bending laterally across the 

seam line and the MSE values of the elements near the edges of the gap are extremely 

high, which indicates that the model updating procedure will get correct results. 

All of the MSEs used are extracted from the output files of Nastran while 100 ele-

ments’ MSEs of the 1st model are added to be used in equation (4) with the MSE of 1 

element of the 2nd model in the same area. After the optimization, the updated a and b 

are compared with their actual values in Table 2. It is clear that the damage gap can be 
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identified correctly with a tiny error by this method. This error is caused by inevitable 

modelling error which influences the updating result of the gap length more. 

 

Fig. 3. Mode shape of Mode 1 of the 1st model and each element’s MSE shown in color. 

Table 2. Actual location and updating results of the gap. 

Parame-

ters 
Actual value 

Updating results 

without noise 
Error  

Updating results 

with noise 
Error  

a 7.9 8.06 2% 8.14 3% 

b 4.5 4.2 6.7% 4.0 11% 

 

To check the robustness of the proposed method, 30 percent white Gaussian noise is 

added to the experimental MSE of the 1st model. The contaminated MSE of the hori-

zontal plate is shown in Fig. 4 and the updating result by these data is also listed in 

Table 2. This time the error of the result is larger caused by noise, but is still acceptable 

for damage localisation.  
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Fig. 4. Contaminated MSE of the horizontal plate of the 1st model in mode 1. 

It should be noted that although considerable noise has been added to represent the real 

response, in practice the error of the measured MSE could be even larger. This is be-

cause the angular displacements are difficult to measure and play an important role in 

equation (2) especially for shell elements. So research about how to effectively measure 

and calculate MSE and the noise influence based on it should be further explored. 

 

5 Conclusions  

In this paper, the finite element modelling of seam weld joint based on CSEAM element 

is presented. This element performs well in connecting two shell element meshes to-

gether and can be conveniently used in model updating and damage identification. A 

Kriging surrogate model updating method using model strain energy is then proposed 

to detect and localise the damage caused by a welding fault in the form of a gap. The 

simulation results show that this method can localize the gap correctly and is robust 

when the experimental test results are fairly accurate. 
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