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Abstract: We present basic properties and discuss potential insurance applications of a new class of proba-
bility distributions on positive integers with power law tails. The distributions in this class are zero-in�ated
discrete counterparts of the Pareto distribution. In particular, we obtain the probability of ruin in the com-
pound binomial risk model where the claims are zero-in�ated discrete Pareto distributed and correlated by
mixture.
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1 Introduction
Discrete heavy-tailed distributions are an important and active area in non-life insurance research and prac-
tice (see, e.g., [4, 5, 21, 29]). It is well-known that Pareto and Weibull distributions are used in insurance
practice formodelling claim sizes. However, their theoretical implementation in collective riskmodels is non-
trivial. We consider the compound binomial risk model

Ut = u + t −
t∑
i=1

Xi , t ∈ N0 = {0, 1, . . .}, (1)

introduced in [9]. The probability of ruin,

ψ(u) = P(Ut < 0 for some t > 0|U0 = u), (2)

admits an explicit form when the claim amounts {Xi} have zero-modi�ed geometric (ZMG) distribution
ZMG(q, ρ). The latter is given by the probability mass function (PMF) P(Xi = k) = g(k), where

g(k) = qδk0 + (1 − δk0)(1 − q)ρ(1 − ρ)k−1, k ∈ N0, (3)

and δkj is the Kronecker delta function. In this case we have

ψ(u) = min
{
1 − q
ρ

(
1 − ρ
q

)u+1
, 1
}
, (4)

see [34].
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In [8] the authors extended the formula (4) by using a mixing approach as in [1] and [6], and assuming
that given Θ = θ, where Θ is a “mixing" random variable on R+, the claim amounts {Xi} are independent,
identically distributed (IID) zero-modi�ed geometric ZMG(q, ρ) with the success probability

ρ = e−θ . (5)

In this set-up, [8] derived the probability of ruin (2) for three particular cases:

(i) For Θ having exponential distribution with parameter λ, given by the probability density function (PDF)

f (x) = λe−λx , x ∈ R+, (6)

in which case the claim amounts have a zero-modi�ed Yule distribution.
(ii) For Θ having gamma distribution with shape parameter α > 0 and scale parameter λ > 0, given by the
PDF

f (x) = λα
Γ(α) x

α−1e−λx , x ∈ R+. (7)

In this case the claim amounts have the PMF

P(X = k) = qδk0 + (1 − δk0)(1 − q)
k−1∑
j=0

(
k − 1
j

)
(−1)jλα
(λ + j)α , k ∈ N0,

and the probability of ruin can be expressed in terms of incomplete gamma function.
(iii) For Θ having positive stable distribution with index 1/2 (Lévy distribution), given by the PDF

f (x) = τ
2
√
πx3

e−
τ2
4x , x ∈ R+. (8)

In this case the claim amounts have the PMF

P(X = k) = (1 − q)
k−1∑
j=0

(
k − 1
j

)
(−1)je−τ

√
j , k ∈ N0,

and the ruin probability can be expressed in terms of complementary error special function.

The purpose of this note is two-fold. First, we point out that in the above set-up with discrete claims
correlated by mixture and, conditionally on Θ = θ, having ZMG(q, ρ) distribution, it is more convenient to
assume that

ρ = 1 − e−θ (9)

rather than (5) as in [8]. Thus, while in the set-up above the geometric probability of success is taken as e−θ, we
use this expression for the probability of failure. Let us note that a geometric distribution with the probability
of success given by (9) is a discrete version of an exponential one, since the geometric PMF can be derived as
the di�erence of two consecutive exponential tails with parameter θ:

P(X = k) = e−(k−1)θ − e−kθ =
(
1 − e−θ

)(
e−θ
)k−1

, k ∈ N = {1, 2, . . .}.

As shown below, this modi�cation of the approach leads to convenient formulas for the probability of ruin
as well for the tail probabilities (which were considered in Section 4.2 of [8]). As in [8], the mixing variable
Θ will still be taken as exponential, gamma, or positive stable. However, with this choice of Θ, the resulting
distributions of the claim amounts are generally quite di�erent than those obtained by [8]:

(i) For Θ having exponential distribution with parameter λ, the claim amounts are zero-modi�ed discrete
Pareto (10) with tail index α = 1, which is di�erent than the Yule distribution (unless Θ is standard exponen-
tial with λ = 1).
(ii) For Θ having gamma distribution with shape parameter α > 0 and scale parameter λ > 0, the claim
amounts are zero-modi�ed discrete Pareto (10).
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(iii) For Θ having the Lévy stable distribution (8), the claim amounts have a zero-modi�ed discrete Weibull
distribution.

This brings us to the secondmotivation for this paper, which is the introduction of new classes of discrete
probability models resulting from this mixing scheme. Namely, as shown in the sequel, when Θ is gamma
distributed with the PDF (7) and, given Θ = θ, the claim amounts are IID ZMG(q, ρ) with ρ as in (9), the PMF
of the unconditional distribution of the claim amount X becomes

P(X = k) = qδk0 + (1 − δk0)(1 − q)
{(

1
1 + k−1

λ

)α
−
(

1
1 + k

λ

)α}
, k ∈ N0. (10)

We obtain a mixture of a point mass at zero with probability q and a heavy-tail, discrete Pareto (DP) distribu-
tion of [3], given by the PMF

P(X = k) =
(

1
1 + k−1

λ

)α
−
(

1
1 + k

λ

)α
, k ∈ N, (11)

with probability 1 − q. Similarly, when Θ has a positive stable distribution with index α ∈ (0, 1), given by the
Laplace transform (LT)

ϕ(t) = e−τt
α
, t ∈ R+, (12)

and, given Θ = θ, the claim amounts are IID ZMG(q, ρ) with ρ as in (9), then the PMF of the claim amount X
becomes

P(X = k) = qδk0 + (1 − δk0)(1 − q)
{
e−τ(k−1)

α
− e−τk

α}
, k ∈ N0. (13)

We again obtain a mixture, this time involving a discrete version of Weibull distribution with parameter α ∈
(0, 1). Let us note that theory and applications of such zero-modi�ed discrete distributions is an important
area in distribution theory, with applications in manufacturing (see, e.g., [20]), econometrics (see, e.g., [24]),
economics (see, e.g., [2, 16, 31]), and accident analysis (see, e.g., [22, 30]), among others. Suchmodi�cations,
also known as zero-adjusted, zero-altered, or zero-in�ated discrete distributions, have been developed for
many standard discrete distributions to account for disproportionally large (or small) frequencies of zeroes
observed in empirical data, compared with the standard models (see, e.g., [17], pp. 312-318). Popular models
of this type include those based upon Poisson distribution (see, e.g., [10, 11, 13, 14, 23–26, 32]), generalized
Poisson distribution (see, e.g., [12]), binomial distribution (see, e.g., [13]), geometric and negative binomial
distributions (see, e.g., [2, 11, 14–16, 23, 31]), and logarithmic distribution (see, e.g., [18, 27]).

In the ruin theory literature, the binomial riskmodel has been developed in di�erent directions (see, e.g.,
[7, 28, 35, 36]). Ournew, zero-modi�eddiscrete Pareto andWeibull distributionsmayprovide auseful addition
to an actuary’s statistical toolbox, going beyond modeling claim amounts of discrete type. We note that this
mixing approach introduces a dependence structure that produces tractable results in a few instances thatwe
analyze in this paper. Speci�cally, starting from classical ruin theory results for independent light-tail claims,
we explore heavy-tailed scenarioswith conditionally independent claims. In fact, the zero-modi�edDPmodel
with the PMF (10) may be a useful heavy-tail model for the frequency of claims as well, as it can be extended
to a continuous-time, discrete-valued stochastic process in the spirit of the classical Poisson process due to
its fundamental property of in�nite divisibility, established in the sequel.

The rest of the paper is organized as follows. In Section 2we derive the probability of ruin in the above set-
up within a compound binomial risk model with mixed zero-modi�ed geometric claims, including the case
where the claims are conditionally independent, zero-modi�ed discrete Pareto.We exemplify our theorywith
a concrete example with real data from an insurance-reinsurance company. In turn, in Section 3, we focus
on the zero-modi�ed discrete Pareto model, which provided the best �t to the data. Here, we present basic
informationon this newstochasticmodel anddevelop its important properties,which shouldprovide auseful
reference for actuaries and others who use discrete stochastic models in their work.
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2 Compound binomial risk model with mixed zero-modi�ed
geometric claims

Consider again the compound binomial risk model (1) where, given Θ = θ, the {Xi} have ZMG distribution
given by the PMF (3) with the success probability as in (9). To see why the latter condition is more convenient
than the one given by (5), we �rst derive the PDF of the claim amount X. Let FΘ be the cumulative distribution
function (CDF) of themixing variableΘ and let fΘ be the corresponding PDF (if it exists). Clearly,P(X = 0) = q,
while for k ≥ 1, we have:

P(X = k) =
∞∫
0

P(X = k|Θ = θ)dFΘ(θ) =
∞∫
0

(1 − q)(1 − e−θ)(e−θ)k−1dFΘ(θ)

= (1 − q)


∞∫
0

e−θ(k−1)dFΘ(θ) −
∞∫
0

e−θkdFΘ(θ)

 = (1 − q)
{
ϕΘ(k − 1) − ϕΘ(k)

}
,

where ϕΘ is the Laplace transform (LT) of the variable Θ. This leads to a convenient, general formula for the
PMF of X:

P(X = k) = qδk0 + (1 − δk0)(1 − q)
{
ϕΘ(k − 1) − ϕΘ(k)

}
, k ∈ N0. (14)

Note that when Θ has a gamma distribution with the PDF (7), then the LT is given by

ϕΘ(t) =
(

1
1 + t/λ

)α
, t ∈ R+, (15)

and the PMF of the claim amount X turns into that of the zero-modi�ed discrete Pareto (ZMP) distribution,
given by (10). Similarly, when Θ is positive stable with the LT (12), the claim amounts become conditionally

Figure 1: The CDFs under the ZMG and the ZMP models.

independent zero-modi�ed discrete Weibull (13).
When comparing the ZMP and the ZMG models (see in Figures 1 and 2), we notice that for the same

expectation of claims, the PMFs for both models have the same value of q when the zero claims occured,
however, the PMF drops faster under ZMG model, displaying the heavier tail of the ZMP distribution.

Similar calculations show that that the CDF of the claim distribution in our set-up is given by

P(X ≤ x) = 1 − (1 − q)ϕΘ(bxc), x ∈ R+,
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Figure 2: The PMFs under the ZMG and the ZMP models.

while the survival probability becomes

P(X > x) = (1 − q)ϕΘ(bxc), x ∈ R+,

where bxc denotes the integer part of x (the �oor function). When Θ is either gamma distributed with the PDF
(7) or is positive stable with the LT (12), then the tail probabilities take on particularly simple forms, given by

P(X > x) = (1 − q)
(

1
1 + bxc/λ

)α
and P(X > x) = (1 − q)e−τ(bxc)

α
,

respectively. The above formulas should be contrasted with the rather inconvenient integral that appears in
the �rst paragraph of Section 4.2 in [8].

2.1 The probability of ruin

Let us now derive the probability of ruin under our set-up. First, let us note that the probability of ruin in (4)
becomes

ψ(u) = 1 − q
ρ

(
1 − ρ
q

)u+1
if and only if ρ ≥ 1 − q (the net pro�t condition). To see this, observe that the above holds if and only if

1 − q
ρ

(
1 − ρ
q

)u+1
≤ 1,

which is equivalent to
(1 − ρ)u+1

ρ ≤ q
u+1

1 − q . (16)

Consider the function h(ρ) = (1 − ρ)u+1/ρ, ρ ∈ (0, 1). Since

dh(ρ)
dρ = −(1 − ρ)u (u + 1)ρ + 1 − ρρ2 < 0,

the function h is decreasing on the interval (0, 1), and so (16) is equivalent to ρ ≥ 1 − q as desired.
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Now, if we set 1 − ρ = e−θ, then the net pro�t condition becomes θ > θ*, where θ* = − log q ∈ (0,∞).
Then, analogously to (10) in [8], the probability of ruin can be written as

ψ(u) = FΘ(θ*) + J(u, θ*), (17)

where

J(u, θ*) = 1 − q
qu+1

∞∫
θ*

e−θ(1+u)

1 − e−θ
dFΘ(θ). (18)

One can obtain a compact formula for the above probability in terms of a geometric random variable N ∼
Geo(p), given by the PMF

P(N = k) = p(1 − p)k−1, k ∈ N, (19)

and the probability generating function (PGF)

E
(
sN
)
= sp
1 − s(1 − p) , s ∈ (0, 1), (20)

and the excess random variable
Θ* d= Θ − θ*|Θ ≥ θ*. (21)

If Θ is absolutely continuous, then the PDF of the latter is

fΘ* (θ) =
fΘ(θ + θ*)
1 − FΘ(θ*)

, θ ∈ R+. (22)

The following result provides relevant details.

Proposition 2.1. Let Θ have an absolutely continuous distribution onR+ with the CDF and the PDF denoted by
FΘ and fΘ, respectively, and suppose that, given Θ = θ, the variables {Xi} of the discrete time risk model (1) are
IID modi�ed geometric ZMG(q, ρ) with the PMF (3) and ρ = 1 − e−θ. Then, the probability of ruin is given by

ψ(u) = FΘ(θ*) + [1 − FΘ(θ*)]E
{
e−(u+N)Θ

*}
, (23)

where θ* = − log q, Θ* is the excess random variable given by the PDF (22), and N is a geometric random variable
(19) with parameter p = 1 − q, independent of Θ*.

Proof. Let us work with the quantity J(u, θ*) given by (18). We have

J(u, θ*) = [1 − FΘ(θ*)]
1 − q
q

∞∫
θ*

e−θue−θq−u

1 − e−θ
fΘ(θ)

[1 − FΘ(θ*)]
dθ. (24)

Note that
q−u = e−u log q = eθ

*u ,

so that

J(u, θ*) = [1 − FΘ(θ*)]
1 − q
q

∞∫
θ*

e−u(θ−θ
*)e−θ

1 − e−θ
fΘ(θ)

[1 − FΘ(θ*)]
dθ.

Upon the substitution x = θ − θ* in (24) we obtain

J(u, θ*) = [1 − FΘ(θ*)]
∞∫
0

e−ux (1 − q)e
−x

1 − qe−x fΘ* (x)dx. (25)

We now recognize the term
(1 − q)e−x
1 − qe−x
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under the integral in (25) as the PGF of geometric variable N with the PMF (19) and p = 1 − q, evaluated at
s = e−x (so this is actually the LT of N), so that we can write the above integral as

E
{
e−uΘ

*
E
(
e−Θ

*N |Θ*
)}

= E
{
E
(
e−uΘ

*
e−Θ

*N |Θ*
)}

= E
{
e−(u+N)Θ

*}
,

as desired. This completes the proof.

Routine calculations lead to the following result, describing the special case with gamma-distributed Θ and
zero-modi�ed discrete Pareto (10) correlated claim amounts. Note that the probability of ruin given below
involves the (upper) incomplete gamma function,

Γ(s, x) =
∞∫
x

ts−1e−tdt, (26)

as it does in an analogous problem considered by [8].

Corollary 2.1. Let Θ have a gamma distribution with the PDF (7) and suppose that, given Θ = θ, the variables
{Xi} in (1) be IID modi�ed geometric ZMG(q, ρ) with the PMF (3) and ρ = 1 − e−θ. Then, the probability of ruin
ψ(u) is given by

ψ(u) = 1 − Γ(α, −λ log q)Γ(α) + λα
Γ(α)

1 − q
qu+1

∞∑
k=1

Γ(α, −(k + u + λ) log q)
(k + u + λ)α .

Belowwe present a special case with exponential mixing distribution, where the probability of ruinmay take
on an explicit form.

Corollary 2.2. Let Θ have an exponential distribution with parameter λ > 0 and suppose that, given Θ = θ, the
variables {Xi} in (1) are IID modi�ed geometric ZMG(q, ρ)with the PMF (3) and ρ = 1− e−θ. Then, if λ ∈ N, the
probability of ruin is given by

ψ(u) = (1 − q)
{
1 − λ

qu+1

[
log(1 − q) +

u+λ∑
k=1

qk
k

]}
.

Remark 2.1. Figure 3 shows a comparison of the ruin probabilities under two di�erent settings with condi-
tional ZMG claims, where, given Θ = θ, the geometric probability of success is given either by (5) as in [8] or
by (9), as proposed in this paper. Moreover, in each cases Θ has gamma distribution (7), with parameters αi,
λi, i = 1, 2, satisfying the condition

1 −
( λ1
λ1 + 1

)α1 = ( λ2
λ2 + 1

)α2 ,
so that the expected geometric probabilities of success coincide,E(ρ1) = E(ρ2). As can be seen in Figure 3, the
ruin probability curves under our model drop faster then those under the model of [8]. Note that the settings
for the parameter λ a�ect the position of the ruin probability curves. In addition, according to the expression
of the ruin probability given by [8], the equations only accept the integer initial capitals.
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Figure 3: Ruin probabilities under our settings and [8]’s settings for ZMP model.

Figure 4: Ruin probabilities under the ZMG and the ZMP models.
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Remark 2.2. As can be seen from the ruin probability formula in the ZMP case, the probability of ruin con-
verges to a non-zero level as u →∞, which is due to the net pro�t condition being violated. Therefore, in the
ZMP model the ruin probability is more stable for large u compared with its behavior under the ZMG model.
Furthermore, the rate of convergence can vary with the parameters, as can be seen in the example given in
Table 2, by the parameters 1-4 provided in Table 1 below. When comparing Set 1 with Set 2, and Set 2 with Set
3, one can notice that larger λ and smaller α lead to a larger probability of ruin and faster convergence (the
di�erence in ruin probabilities between u = n and u = n + 1 is smaller than 10−8). In other words, larger λ
and lower α �atten the ruin probability. According to Set 4, one can see that as the probability q of no claims
increases, the ruin probability decreases. Moreover, starting with u = 53, the probability is already conver-
gent to the level where the net pro�t condition is violated.We also notice that the decrease is of 9.719% (from
ψ(0) = 54.1% to ψ(53) = 44.39%). This decrease is larger than the one in the case of Set 1, which was only
0.028% (from ψ(0) = 86.6% to ψ(20) = 86.36%). Thus, the larger the q, the lower the ruin probability, the
steeper the decrease, and the slower the convergence.

Table 1: Parameters’ coe�cients.

Set 1 2 3 4
α 2 2 4 2
λ 5 10 5 5
q 0.2 0.2 0.2 0.5

Table 2: Results for the speed of convergence.

Set 1 2 3 4
ψ(0) 0.86584 0.99264 0.49289 0.54108
ψ(∞) 0.86356 0.99263 0.46225 0.44389

convergent after u = 20 15 24 53

The result below provides the ruin probability for the special case where Θ is Levy stable with index
α = 1/2 and PDF (8), in which casewe have conditionally independent zero-modi�ed discreteWeibull (ZMW)
claim amounts, with the PMF (13) and α = 1/2. As in the analogous problem considered by [8], the probability
of ruin can be expressed in terms of the complementary error special function

erfc(z) = 1 − erf (z) = 2√
π

∞∫
x

e−t
2
dt. (27)

Corollary 2.3. Let Θ be a Lévy stable random variable with the PMF (8) and suppose that, given Θ = θ, the
variables {Xi} in (1) are IIDmodi�ed geometric ZMG(q, ρ)with the PMF (3) and ρ = 1−e−θ. Then the probability
of ruin is given by

ψ(u) = erfc
(

τ
2
√
− log q

)
+ 1 − q
qu+1

∞∑
k=1

{
qu+kerf

(
τ

2
√
− log q

)

−
∞∑
n=0

(−1)nτ2n+1(u + k)n+ 1
2

n!
√
π(2n + 1)4n

Γ
(
−2n − 12 , −(u + k) log q

)}
,

where Γ(·, ·) and erfc(·) are given by (26) and (27), respectively.
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Proof. Let θ* = − log q. Then, by taking into account the PDF of Θ given by (8) and Proposition 2.1, we obtain

ψ(u) = FΘ(θ*) + (1 − FΘ(θ*))E
{
e−(u+N)Θ

*}

= erfc
(

τ
2
√
θ*

)
+ (1 − FΘ(θ*))

∞∑
k=1

∞∫
0

fΘ(θ + θ*)
1 − FΘ(θ*)

e−(u+k)θ(1 − q)qk−1dθ

= erfc
(

τ
2
√
θ*

)
+
∞∑
k=1

∞∫
0

fΘ(θ + θ*)e−(u+k)θ(1 − q)qk−1dθ

= erfc
(

τ
2
√
θ*

)
+
∞∑
k=1

(1 − q)qk−1e(u+k)θ
*
∞∫
θ*

fΘ(t)e−(u+k)tdt

= erfc
(

τ
2
√
θ*

)
+
∞∑
k=1

(1 − q)qk−1q−(u+k)
∞∫
θ*

fΘ(t)e−(u+k)tdt

= erfc
(

τ
2
√
θ*

)
+ 1 − q
qu+1

∞∑
k=1

∞∫
θ*

fΘ(t)e−(u+k)tdt,

where in the last equality we used
∞∫
θ*

fΘ(t)e−(u+k)tdt =
∞∫
θ*

e−(u+k)θd
{
erfc

(
τ

2
√
θ

)}

= e−(u+k)θ
*
erfc

(
τ

2
√
θ*

)
+ (u + k)

∞∫
θ*

e−(u+k)θerfc
(

τ
2
√
θ

)
dθ.

Finally, the substitution

erfc
(

τ
2
√
θ

)
= 1 − 2√

π

∞∑
n=0

(−1)n( τ2 )
2n+1

n!(2n + 1) θ−n−
1
2

leads to
∞∫
θ*

fΘ(t)e−(u+k)tdt =

e−(u+k)θ
*
erfc

(
τ

2
√
θ*

)
+ (u + k)

∞∫
θ*

e−(u+k)θ
(
1 − 2√

π

∞∑
n=0

(−1)n( τ2 )
2n+1

n!(2n + 1) θ−n−
1
2

)
dθ

= e−(u+k)θ
*
erfc

(
τ

2
√
θ*

)
−
∞∑
n=0

(−1)nτ2n+1(u + k)n+ 1
2

n!
√
π(2n + 1)4n

Γ
(
−2n − 12 , (u + k)θ*

)
,

and the result follows.

Remark 2.3. Let L = FΘ(θ*) be the level at which the net pro�t condition is violated. In Figure 5, one can set up
the same level L of ψ(u) as u →∞ for both, zero modi�ed Pareto andWeibull models (denoted, respectively,
by ZMP and ZMW). From Figure 5, one can see that the ruin probability curve is steeper under the ZMPmodel
and it starts from a higher initial ruin probability ψ(0).

Table 3 below shows that, when we increase the value of τ (the parameter in the ZMW model) from 1 to
1.1, the ruin probability curve decreases by 3%at given level L. This can be observed by increasing the expec-
tation of the claims. Additionally, a smaller τ corresponds to a larger ruin probability and faster convergence
to level L.
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Figure 5: Ruin probabilities under the ZMP and ZMWmodels with a same level of limu→∞ ψ(u).

Table 3: Results for the speed of convergence under the ZMWmodel.

Set α = 1 α = 1.1
ψ(0) 0.60338 0.57028
ψ(∞) 0.57776 0.54037

convergent after u = 50 70

2.2 Illustrative data example

As an illustration, we �t the three zero-modi�ed models, ZMG, ZMP and ZMW, to data from a non-life rein-
surance company. The data were skewed and scaled for con�dentiality reasons. Claims data span the time
period of 11 years, with claims recorded on amonthly basis. The zero and the non-zero frequencies are shown
in Table 4 given below. Zero claims refer to accidents that the company paid nothing for, due to deductibles
or other contracts considerations. The model frequency q of zero claims is estimated by the corresponding
sample frequency, q̂, resulting in q̂ = 0.218. The parameters of all three models are estimated by the method
of moments, and are provided in Table 5 below. Figure 6 illustrates the ruin probabilities under the three
models.

Table 4: The structure of the analyzed reinsurance data set.

Zero claims Non-zero claims Total claims
Number 97 348 445

Remark 2.4. Note that while �tting the data, we will keep the same net pro�t condition, meaning the same θ*

in (23). In the Figure 5, the levels of convergence F(θ*) are di�erent due to di�erent distributions F.
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Table 5: Estimated parameters of the three considered models.

ZMG ZMP ZMW St.Er
q̂ 0.218 0.218 0.218 N/A
ρ̂ 0.480 N/A N/A 0.0053
λ̂ N/A 2.110 N/A 0.0052
α̂ N/A 2.012 N/A 0.0055
τ̂ N/A N/A 0.968 0.0020
SSE 0.028 0.005 0.002 N/A

Figure 6: Ruin probabilities for the three considered models.

Table 6: Ruin probabilities for three considered models.

u ψ(u)ZMG ψ(u)ZMP ψ(u)ZMW
0 0.954 0.818 0.650
1 0.919 0.772 0.625
2 0.885 0.749 0.614
3 0.852 0.736 0.608
4 0.821 0.727 0.603
5 0.791 0.720 0.601
10 0.656 0.704 0.593
15 0.544 0.698 0.590
25 0.374 0.692 0.588
30 0.311 0.690 0.587
40 0.214 0.688 0.586
50 0.147 0.687 0.585
51-100 0.146-0.005 0.687-0.685 0.585-0.584
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To measure the goodness-of-�t, we use P-P plots and the sum of the squared errors (SSE), shown in Figure 7
andTable 5, respectively. Based on the results ZMWandZMPpresent amuchbetter �t thanZMG. Furthermore,
our data analysis leads to the same conclusion as that provided by our theoretical results. Namely, while
the ZMG model has the largest ruin probability when u = 0, it decays very quickly as the initial investment
increases. As far as the ZMP and ZMWmodels, the ruin probability under the ZMPmodel is always larger than
that under the ZMWmodel.

Figure 7: PP-Plots for the three considered models.

3 A zero-modi�ed discrete Pareto distribution
In this section we present basic properties of zero-modi�ed Pareto distribution, given by the PMF (10). We
shall use the notation ZMDP(α, λ, q), or in short ZMDP, for this distribution. Some of our results presented
below shall be stated in an alternative parameterization, which conveniently accounts for the special special
case α = ∞, corresponding to the zero-modi�ed geometric distribution given by (3). Namely, as in [3], we
replace α with its reciprocal and instead of λ we set ρ = 1 − exp(−1/(αλ)), so that 1/λ = −α log(1 − ρ) and the
PMF (10) takes on the form

P(X = k) = qδk0 + (1 − δk0)(1 − q)
{(

1
1 − α(k − 1) log(1 − ρ)

) 1
α

−
(

1
1 − αk log(1 − ρ)

) 1
α
}
,

with k ∈ N0. We use ZMDP*(α, ρ, q) for the zero-modi�ed discrete Pareto distribution with the above PMF.
As shown below, the parameter α ≥ 0 is a tail parameter, ρ ∈ [0, 1] has to do with the “size" of X, while the
parameter q ∈ [0, 1] controls the point mass at zero.

The main motivation for the re-parameterization is that the distribution can be de�ned at the boundary
case α = 0, which is understood as the limit of the ZMDP*(α, ρ, q) distribution with ρ ∈ (0, 1) as α converges
to zero. It follows that in the limit we obtain the zero-modi�ed geometric distribution (3). On the other hand,
we do not get a proper distribution when α →∞. We also have a few other special cases as follows:

(i) If q = 1 the distribution is a point mass at k = 0.
(ii) If q = 0, we get the discrete Pareto distribution.
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(iii) If q ∈ (0, 1) and ρ = 1, the distribution is a point mass at k = 1.
As mentioned above, the parameter α controls the tails of the ZMDP distributions, which follow a power law
just as they do in the case of DP distribution. The following result, which is straightforward to prove using
the ZMDP survival function, makes this more precise.

Proposition 3.1. If X ∼ ZMDP(α, λ, q) then

P(X > x) ∼ (1 − q)λαx−α , as x →∞.

Next, we argue that in some sense the parameter λ > 0 controls the “size" of the ZMDP random variable,
although it is not a scale parameter in the usual sense. As we show below, as λ is increasing, the distribution
is increasing in a stochastic sense. Recall that a random variable X2 is said to be stochastically larger than a
random variable X1 if F2(x) ≤ F1(x) for all x, where F1 and F2 are the CDFs of X1 and X2, respectively. The
following result, which is an extension of an analogous property of DP distribution, is a simple consequence
of the particular form of the CDF of ZMDP distribution given in Proposition 3.3 below.

Proposition 3.2. If X1 ∼ ZMDP(α, λ1, q) and X2 ∼ ZMDP(α, λ2, q), where λ1 < λ2, then X2 is stochastically
larger than X1.

3.1 The CDF and the quantile functions

In order to describe the CDF, the survival function (SF), and the quantile function connected with the ZMDP
model, it is convenient to use the standard �oor and ceiling functions. Recall that, for x ∈ R, the �oor func-
tion, often denoted by bxc, is the largest integer that is less than or equal to x. Similarly, the ceiling function,
often denoted by dxe, is the smallest integer that is larger than or equal to x. With this notation, the CDF and
the SF of a ZMDPmodel admit the expressions given in the following result, whose elementary proof shall be
omitted.

Proposition 3.3. The CDF and the SF of X ∼ ZMDP*(α, ρ, q) are given by

F(x) = P(X ≤ x) =

1 − (1 − q)
(

1
1−α log(1−ρ)bxc

) 1
α , for x ≥ 0,

0, otherwise,

and

S(x) = P(X > x) =

(1 − q)
(

1
1−α log(1−ρ)bxc

) 1
α , for x ≥ 0,

1, otherwise,
(28)

respectively.

In turn, the quantile function
Q(u) = inf{x : F(x) ≥ u}, u ∈ (0, 1),

of the ZMDP model is obtained by inverting its CDF, leading to the result below.

Proposition 3.4. The quantile function of X ∼ ZMDP*(α, ρ, q) is given by

Q(q) =


⌈
− 1α

1
log(1−ρ)

(1−q)α−(1−u)α
(1−u)α

⌉
, for q < u < 1,

0, for 0 < u ≤ q.
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3.2 Moments and related parameters

We start with probability generating function (PGF) of a ZMDP random variable X, de�ned as

G(s) = EsX =
∞∑
n=0

snP(X = n), s ∈ (0, 1).

Perhaps the most convenient way to derive it is through the mixture representation (3.10) coupled with the
formula for the PGF of the DP distribution (see [3], Proposition 2.6). This immediately produces the result
below.

Proposition 3.5. The PGF of X ∼ ZMDP*(α, ρ, q) is given by

G(s) = s + (1 − s)
{
q − (1 − q)

∞∑
n=1

(
1

1 − α log(1 − ρ)n

) 1
α

sn
}
, s ∈ (0, 1). (29)

The formulas for the moments connected with the ZMDP distribution are straightforward to derive when we
take into accountmixture representation on Proposition (3.10) and results on themoments of the DP distribu-
tion (see [3], Proposition 2.7). Note that according to Proposition 3.1, themomentsEXr of X ∼ ZMDP*(α, ρ, q),
where r > 0, are �nite if and only if r < 1/α. The following result, which is straightforward to derive, provides
further details.

Proposition 3.6. Let X ∼ ZMDP*(α, ρ, q) and r > 0. Then EXr exists if and only if r < 1/α, in which case we
have

EXr = (1 − q)
{
1 +

∞∑
n=1

(
nαr

1 − α log(1 − ρ)n

) 1
α
[(

1 + 1
n

)r
− 1
]}

.

In particular, the mean exists whenever α < 1, and simpli�es to

EX = (1 − q)
∞∑
n=0

(
1

1 − α log(1 − ρ)n

) 1
α

= cαρ,qζ
(
1
α , −

1
α log(1 − ρ)

)
,

where

cα,p,q = (1 − q)
(

1
−α log(1 − ρ)

) 1
α

and

ζ (s, p) =
∞∑
n=0

(
1

n + p

)s
is theHurwitz-zeta function. Note that in the special case of ZMDP*(α, ρ, q) distributionwith −α log(1−ρ) = 1
the r-the moment takes on the form

EXr = (1 − q)
∞∑
n=0

(n + 1)r − nr

(1 + n) 1α
.

Further, in this case the mean is given by EX = (1 − q)ξ (1/α), where

ξ (s) =
∞∑
k=1

1
ks , s > 1,

is the Riemann-zeta special function.

3.3 Stability properties

Due to the close connection between ZMDP and DP distributions, it is not surprising that the stability prop-
erties of the letter (see, e.g, Section 3.1 of [3]) carry over, with some modi�cations, to the former.

Brought to you by | University of Liverpool Sydney Jones Library
Authenticated

Download Date | 7/18/19 10:17 AM



230 | Corina D. Constantinescu, Tomasz J. Kozubowski, and Haoyu H. Qian

3.3.1 Stability connected with minima

Our �rst result is related to theminimum of independent ZMDP variables. Due to the particular form of ZMDP
survival function, it can be seen that the minimumMn = min1≤i≤n{Xi} of n IID ZMDP variables {Xi}will also
have ZMDP distribution, but with di�erent parameters. Indeed, if the SF of the {Xi} is given by S(x) as in (28),
then the SF of Mn is of the form

Sn(x) = P(Mn > x) = [S(x)]n = (1 − qn)
(

1
1 − αn log(1 − ρn)bxc

) 1
αn
, x ≥ 0, (30)

where
αn = α/n, ρn = 1 − (1 − ρ)n , qn = 1 − (1 − q)n , (31)

which is seen to be a SF of the ZMDP distribution. In turn, if the SF of Mn is of the form (30), then it follows
that the SF of the Xi must be given by (28). This leads to the following result, which is an extension of similar
property of DP distributions [3, 19]).

Proposition 3.7. Let X1, X2, . . . , Xn be non negative IID integer-valued random variables and let Mn =
min1≤i≤n Xi, n ∈ N. Then Mn is ZMDP if and only if the {Xi} are ZMDP, in which case we have Mn ∼
ZMDP*(αn , ρn , qn) and Xi ∼ ZMDP*(α, ρ, q), with the parameters connected through (31).

This result can be extended to the case of independent but not necessarily identically distributed ZMDP vari-
ables, as long as they have a common “scale" parameter.

Proposition 3.8. Let Xi ∼ ZMDP(αi , λ, qi) for i = 1, 2, . . . , n, and let Mn = min1≤i≤n{Xi}. Then Mn ∼
ZMDP(α, λ, q), where α =

∑n
i=1 αi and q = 1 −

∏n
i=1 qi.

3.3.2 Stability of the conditional tail

We now consider the “tail" random variable Xu, which is also known as the excess, de�ned as X − u given
that X ≥ u, where u ∈ N0 is interpreted as a threshold beyond which we have an observation. Recall that the
geometric distribution (supported on N0) is stable, in the sense that the variables Xu and X have the same
distribution for each u ∈ N0 when X is geometric. As shown below, if X is ZMDP then Xu is also ZMDP for
each u ∈ N0, although their distributions have di�erent parameters. This result extends similar property of
DP distribution to the ZMDP case [3] .

Proposition 3.9. Let X ∼ ZMDP(α, λ, q). Then for any u ∈ N the random variable Xu, de�ned as X − u given
X ≥ u, has ZMDP(α, λu , qu) distribution, where

λu = λ + u and qu = 1 −
(
1 − 1

λ + u

)α
.

3.4 Stochastic representations

Here, we present several useful stochastic representations of the ZMDP distribution. We start with its basic
relation to the DP model of [3].

Proposition 3.10. If X ∼ ZMDP(α, λ, q) then
X d= IN,

where the variables I and N are independent, I has a Bernoulli distribution with parameter 1 − q, and N ∼
DP(α, λ) with the PMF (11).
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Since, as shown in Proposition 3.4 of [3], the variable N from Proposition 3.10 is (conditionally) geometric
with parameter ρ = 1 − eθ given that Θ = θ, where Θ is a gamma variable given by the LT (15), we obtain the
following representation.

Proposition 3.11. Suppose that Θ has gammadistributionwith the LT (15) and the PDF (7). Further, given Θ = θ,
let X have a ZMG distribution with the PMF (3) where ρ = 1 − e−θ. Then X ∼ ZMDP(α, λ, q).

One can also relate the ZMDP distribution to randomly stopped Poisson process. Indeed, it is well-known
that if {N(t), t ∈ R+} is a standard Poisson process and Z is standard exponential variable, independent of
Z, then N(Z/β) has a geometric distribution (supported on N0) with parameter ρ = β/(β + 1). In particular,
when β = eθ − 1, then ρ = 1 − e−θ. Consequently, in view of Proposition 3.11, we obtain the following result.

Proposition 3.12. If X ∼ ZMDP(α, λ, q), then

X d= I[N(T) + 1],

where all the variables on the right-hand-side of (3.12) are independent, I has Bernoulli distribution with param-
eter 1 − q,

T d= Z
eΘ − 1

,

the variable Z is standard exponential, Θ has gamma distribution with the PDF (7), and {N(t), t ∈ R+} is a
standard Poisson process.

3.5 Divisibility properties

Recall that the probability distribution of a random variable X is in�nitely divisible (ID) if for each n ∈ N we
have the equality in distribution

X d= Xn,1 + · · · + Xn,n , (32)

where the {Xn,j} (1 ≤ j ≤ n) are IID random variables. Additionally, if the distribution of X is supported onN0,
then it is discrete in�nitely divisible if it is ID and the variables {Xn,j} in (32) are supported on N0 as well. As
shown in [3], the DP distribution is ID (and its shifted version, supported on N0, is discrete ID). However, as
shown below, the in�nite divisibility of zero-modi�ed DP distribution depends on its parameters. Generally
speaking, if X ∼ ZMDP(α, λ, q) then the discrete ID property holds when the values of q are near 1 and does
not hold if q is near zero. The following result summarizes these facts.

Proposition 3.13. Let X ∼ ZMDP(α, λ, q). Then the distribution of X is discrete ID (and thus ID) when

1
1 + dα,λ

≤ q ≤ 1 (33)

and it is not discrete ID when
0 ≤ q < 1

1 + 2dα,λ
, (34)

where

dα,λ =
[(

λ
λ + 1

)α
−
(

λ
λ + 2

)α] [
1 −
(

λ
λ + 1

)α]−2
. (35)

Proof. To prove discrete ID we shall use a su�cient condition for this property, stating that the sequence
of probabilities (pk)k∈N0 , where pk = P(X = k), is log-convex, that is pk > 0 for all k and the sequence
(pk+1/pk)k∈N0 is non-decreasing (see, e.g., [33], Theorem 10.1, p. 60). We use this condition to establish dis-
crete ID of ZMDP distribution with parameters satisfying (33) and q < 1, as for q = 1 the distribution reduces
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to a point mass at zero, which is clearly discrete ID. In this case the probabilities are positive, so it remains to
show the inequality

pk
pk−1

≤ pk+1pk
, k ∈ N, (36)

where the {pk} are given by the right-hand-side of (10). For n = 1, this inequality produces (1 − q)/q ≤ dα,λ
with dα,λ as in (35), and results in (33) upon solving for q. Next, we establish (36) for any k ≥ 2, which we
accomplish by showing that the function pk+1/pk of real argument k is increasing on (1,∞). To this end,
consider the function

g(x) =
1 −
(

λ+x
λ+x+1

)α
(

λ+x
λ+x−1

)α
− 1

, x > 1, (37)

which, according to (10), represents the ratio px+1/px of ZMDP probabilities (evaluated at real argument x >
1). By examining its derivative,we show that the function g is indeed increasing. Straightforward albeit rather
lengthy algebra leads to the following expression for the derivative of g:

g′(x) = α(λ + x)α−1(λ + x − 1)α−1h(x)
[(λ + x)α − (λ + x − 1)α]2(λ + x + 1)α+1 , x > 1,

where
h(x) = (λ + x − 1)α+1 + (λ + x + 1)α+1 − 2(λ + x)α+1, x > 1.

Our objective is to show that h(x) > 0 (x > 1), in which case the derivative in (37) is positive and the function g
is increasing. By setting y = λ+ x−1, we see that the condition h(x) > 0 (x > 1) is equivalent to w(y) < w(y+1)
(y > λ), where w(y) = (y+1)α+1 − yα+1. However, the later inequality is true since the function w is increasing,
as can be veri�ed by taking its derivative. This completes the �rst part of the result.

We nowmove to the second part of the result, and show that the distribution of X is not discrete ID when
q satis�es the inequality (34). This is clear when q = 0, since in this case the distribution is supported on N
(as p0 = q = 0) and consequently can not be discrete ID (see, e.g., [33], p. 23). Further, it is well-known that
the characteristic sequence (rk)k∈N0 of a discrete ID distribution must be non-negative [33], Theorem 4.4, p.
36, where the elements of the sequence rk are de�ned via the relations

(n + 1)pn+1 =
n∑
k=0

pkrn−k , n ∈ N0. (38)

Solving (38) for r0 and r1 leads to r0 = p1/p0 and r1 = (2p2 − p1r0)/p0, respectively, and the condition r1 ≥ 0
becomes (1 − q)/q ≤ 2dα,λ upon taking into account the particular form (10) of ZMDP probabilities. Since the
last inequality is equivalent to q ≥ 1/(1 + 2dα,λ), the distribution can not be discrete ID under (34). The proof
is now complete.

Remark 3.1. The property of discrete ID shown above allows one to construct a continuous-time, discrete-
valued stochastic processes based on the ZMDP distribution with appropriate parameters. For example, if
1/(1 + dα,λ) ≤ q < 1, we can de�ne a Lévy motion {X(t), t > 0}, a process with independent and stationary
increments, where X(1) is ZMDP(α, λ, q) with the PGF G given by (29) while for each t > 0 the PGF of X(t) is
Gt. Similar construction is possible for the un-modi�ed, regular DP distribution as well. Such processes may
prove to be useful tools for modeling the claim arrival processes of actuarial risk theory.
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