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ABSTRACT

In this study, we examine the development length requirements for laminar Couette-Poiseuille flows

in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through

a square duct, using a combination of numerical and experimental approaches. The parameter

space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven

flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds

numbers (Re). The results indicate an increase in the development length (L) with r. Consistent

with the findings of Durst et al. [1], L was observed to be of the order of the channel height in the

limit as Re→ 0, irrespective of the condition at the inlet. This, however, changes at high Reynolds

numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile

at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic

inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven

flow is approached. Finally, we develop correlations for predicting L in these flows and, for the
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first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well

as fully-developed velocity profiles, and observe good agreement between experiment, analytical

solution, and numerical simulation results in the 3D case.
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INTRODUCTION

Laminar flow development and entrance effects in ducts have been the subject of extensive

research, due to their huge importance in practical applications as well as in fundamental studies

on the characteristics of duct flows [2, 3]. From a prescribed velocity profile at the inlet, a flow

field evolves in the streamwise direction, satisfying the no-slip condition at the walls; boundary

layers which grow with distance from the inlet are thus formed. Eventually, these boundary layers

coalesce and the velocity profile becomes invariant with streamwise distance, the flow having

become “fully developed”. The distance from the inlet at which this occurs is referred to as the

development or entry length (L). The entrance region is usually associated with a higher pressure

drop than in fully developed flow due to the increased shear stress at the wall, hence a knowledge

of L is very important in making predictions about skin friction drag and heat transfer.

Although the flow development phenomenon is well understood, it is surprising that corre-

lations which accurately predict the entry length have only been developed fairly recently (see

e.g. [1, 4–7]). Using simple scaling arguments, [1] showed the important roles played by both

molecular diffusion as well as convection in the flow development process. The former was ignored

in most previous studies (see [1] for a summary of results from previous investigations), thus

leading to a wide variation in the predicted value of L. For Reynolds numbers, Re = ρUbD/µ (ρ, µ

and Ub represent density, dynamic viscosity, bulk velocity and channel height, respectively, while

D is the characteristic length scale of a duct, such as the pipe diameter or channel height) tending

to zero where diffusion dominates, L/D is essentially a constant, independent of the Reynolds

number; however, at Re → ∞, L/D varies linearly with Reynolds number, due to the dominance

of convection. Hence an appropriate expression for the development length should be of the form

L/D = C0 + C1Re. (1)

In turbulent flows, the chaotic mixing by randomly fluctuating eddies causes the effect of molec-

ular diffusion to be overshadowed; therefore, the entry lengths are much smaller than in laminar

flow due to the diffusive nature of these eddies [8]. However, it should be noted that most duct flows

3



Journal of Fluids Engineering

(such as those in a pipe or square duct) are linearly stable at all Reynolds numbers [9], hence a

laminar flow can, theoretically, be maintained indefinitely. L is thus expected to become very large

as Re → ∞. For Laminar flow of a Newtonian fluid in pipes and two-dimensional channels, the

following non-linear equations respectively hold [1]

L/D = [(0.619)
8
5 + (0.0567Re)

8
5 ]

5
8 (2)

L/D = [(0.631)
8
5 + (0.0442Re)

8
5 ]

5
8 . (3)

Similar correlations have also been proposed for concentric annuli [4] as well as non-Newtonian

flows [5,6].

Furthermore, there have been studies on the effect of wall slip [10–12], compressibil-

ity [13] and sinusoidal pulsations [14] on the development length, and formulations for

ducts of different aspect ratios have been given [15]. The focus has been mainly on pressure-

driven (Poiseuille) flows, hence wall-driven (Couette) flows will be explored in this study. These

are encountered in a wide range of industrial applications such as in cooling systems of rotating

machinery [16], filtration devices [17] and catalytic chemical reactors [18] among others. We inves-

tigate the combined effects of a pressure gradient and wall translation on the entry lengths in a 2D

channel, and extend the results to the 3D case of flow in a square duct. It is surprising how little

data there is in the literature – either numerical or experimental – for Couette-Poiseuille flow

in this geometry. Even the laminar analytical solution for fully-developed flow [26] has only

been published very recently and this has never been confirmed experimentally. As such,

we present the first ever experimental measurements of laminar Couette-Poiseuille flow in

a square duct both developing and fully-developed for a number of different conditions. We

also provide extensive new numerical simulations for the development length in this set-up
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and obtain simple correlations for estimating the entry length in Couette-Poiseuille flows

over the full range of wall-to-bulk velocity ratios, r (spanning from the purely pressure-

driven case to purely wall-driven flow).

NUMERICAL SIMULATIONS

The governing transport equations for the Couette-Poiseuille flow problem are those express-

ing conservation of mass and momentum. For 3D flow, the equations respectively read

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4)

ρ

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

ρ

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

ρ

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
, (5)

where x, y and z represent the streamwise, transverse and spanwise co-ordinates, respectively,

and u, v and w are the corresponding velocity components. Equations 4 and 5 simplify to the
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following in the 2-D channel

∂u

∂x
+
∂v

∂y
= 0 (6)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (7)

In solving the above equations numerically, the commercial software, ANSYS Fluent, was

utilised. This package has been extensively used in fluid dynamics research (see e.g. [6,19–23]).

The momentum equations are discretised using the second-order upwind scheme, while coupling

between velocity and pressure is implemented using the semi-implicit method for pressure-linked

equations (SIMPLE, see [24]).

Figures 1 and 2 show the schematics of the computational domain for the numerical simu-

lations and the co-ordinate systems employed. At the walls, the no slip boundary condition (i.e

fluid velocity at the boundary is equal to the wall velocity) is imposed. Two types of inlet boundary

conditions are examined. In the first, a uniform velocity profile (most commonly used in research

on development length) is applied at the inlet. For this case, the entire top wall is made to translate

(see Figs. 1a and 2a). In the second case, a parabolic velocity profile (corresponding to that of the

fully-developed pressure-driven flow at a given bulk velocity) is introduced at the inlet (see Figs.

1b and 2b), and wall motion is imposed only after a streamwise distance of a few duct heights (D)

from the inlet. This position is taken as the x = 0 location (in the previous case, x = 0 is located
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at the duct inlet). The wall motion is terminated at a few Ds from the outlet to match the configu-

ration of the experimental setup which will be described in the section on experimental studies. In

all cases, zero axial gradients are imposed at the outlet and the length of the moving-wall region

was set to be a function of the Reynolds number, at least three times as long as the development

length being computed. Computations on longer domains yielded identical results to those based

on the above criterion, thus indicating that the solutions obtained are independent of the domain

length.

By convention, the development length is usually defined as the axial distance from the x = 0

location, for the maximum velocity, umax, to monotonically [1] attain a value which is within one

percent of its fully developed analytical value. The choice of 1% is rather arbitrary as the exact

fully developed value is approached asymptotically. For a purely pressure-driven flow developing

from a uniform velocity profile at the inlet, umax corresponds to the centreline velocity. However,

in Couette-Poiseuille flows, the wall-normal location of umax is shifted towards the moving wall

as r increases. In the limiting case of purely wall-driven flow, the peak velocity is located at the

moving wall. The flow at this location instantaneously becomes fully developed as a result of the

no-slip condition, hence in calculating the development length for this case, it is more appropriate

to examine the entire velocity profile. In this study, a comparison between the entry length values

obtained using both the local (based on umax location) and global (based on entire velocity profile)

criteria is made.

The laminar flow analytical solutions for fully-developed 2D Couette-Poiseuille flow [25] is given

by

u =
1

2µ

dp

dx

[
y2 − h2

]
+
Uw
2

[
y

h
+ 1

]
, (8)

where h is the channel half height and the co-ordinate system is based on that of Fig. 1. It can be

shown that equation 8 is simply a linear combination of the expressions for the purely pressure-

driven and purely wall-driven flows (a consequence of the “fully developed” nature of the flow
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such that equation 5 becomes linear). For Poiseuille flow in a square duct, the following analytical

solution [25] holds

u = Ub
48

π3

∞∑
i=1,3,5,...

(−1)(i−1)/2
[
1− cosh(iπy/2a)

cosh(iπb/2a)

]
cos(iπz/2a)

i3

1− 192a
π5b

∞∑
i=1,3,5,...

tanh(iπb/2a)
i5

, (9)

where a and b are as indicated in Fig. 2. Similarly, for the purely wall-driven flow with a single

moving wall, the analytical solution [26] is

u = Uw

(
1− z

2
+

∞∑
n=1

2(−1)n

nπ
. sin

[
nπ

2
(1− z)

]
.
cosh(nπy/2)

cosh(nπ/2)

)
. (10)

The Couette-Poiseuille equation is then a linear combination of equation 9 and 10; simulation

results from ANSYS Fluent are in excellent agreement with the resulting analytical solution for the

fully-developed flow (see Fig. 3).

Mesh Independence Studies

To select a suitable mesh for the numerical simulations, a series of computations were carried

out at Re = 0.5, 1 and 100, using different grids. For the 2D case, three structured cartesian

meshes (M1, M2 and M3) were examined both for Poiseuille (r = 0) and Couette-Poiseuille flow

with r = 1.

The accuracy of the fully developed profiles obtained from the simulations was estimated from

the relative error

E =

∣∣∣∣umax − umax,aumax,a

∣∣∣∣× 100, (11)
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where umax,a is the fully developed analytical value of the maximum streamwise velocity. The error

(e) in the development length estimates (LFluent) from the meshes was also determined from

e =

∣∣∣∣LFluent − LextrapLextrap

∣∣∣∣× 100, (12)

where Lextrap is the development length obtained from a Richardson extrapolation [24] of the

results, and provides an estimate of the development length which is more accurate than the

solution from the finest grid, M3. By fitting the values of E to an equation of the form E = (∆x)p+c,

the accuracy, p, of the numerical scheme was estimated to be second order (i.e. p = 2). This value

of p was used in computing the Richardson extrapolations.

Results of the grid independence study in the 2D channel are summarised in Tab. 1. It can be

observed that in meshes M2 and M3, the error values are small (E is less than 0.08%, while e is

smaller than 0.7%). Since the difference in the value of L/D obtained from both meshes is less

than 0.5%, all other simulations were conducted on grid M2.

For simulations in a square duct, six different meshes were tested (see Tab. 2). In all the grids,

E is less than 0.4%, indicating that the fully developed flow fields from the simulations are highly

accurate. However, for grids M1, M2, M3 and M4, all uniform meshes, the error in the development

length estimates are large (e = 10.58% in the finest uniform mesh, M4). In M4, the total number

of cells required for the simulation at ReD = 1 was about twelve million, hence the computational

cost, in terms of memory requirement and simulation time was very high. Therefore, a further

refinement was not feasible, given the limited computational resources available. Instead, non-

uniform meshes, M5 and M6 were tested. These grids are symmetrically stretched in the cross-

sectional plane of the duct, such that the size of the maximum grid cell at the centre is four times

larger than the smallest grid at the wall. Uniform streamwise spacing is employed in the moving-

wall section, with the number of cells given by Nx = Ny.Lw/D (where Lw is the length of the

moving wall). Twenty grid cells, each, were employed in the two regions with stationary top walls

(see Fig. 2b), the spacing increasing with distance from the moving wall. In mesh M6, e is less
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than 1.5%. Since the simulations at higher Reynolds numbers required longer domains, hence

larger number of grid cells, this mesh was used for subsequent computations as it allowed for a

good compromise between accuracy and computational cost.

Development Length Computations in a 2D Channel

Figures 4a and b show the variation of development length with Reynolds number for Couette-

Poiseuille flows in a 2D channel with uniform and parabolic inlet velocity profiles, respectively. The

results cover wall to bulk velocity ratios spanning from zero (purely pressure-driven) to two (purely

wall-driven). Here, the definition of L based on umax location is employed, except for the purely

wall-driven case where the global entry length is computed.

For purely pressure-driven flow with uniform inlet velocity, the results are in good agreement

with the correlation of Durst et al. [1]. An increase in development length with r can be observed,

thus indicating that longer ducts are required for fully developed wall-driven flows. In the creeping

flow regime (Re→ 0), where diffusion dominates, L is essentially constant, and its value is of the

order of the channel height, irrespective of the inlet boundary condition. For the case with parabolic

inlet velocity profile at r = 2/3, it so happens that at the umax location, the fully-developed velocity

is close to the value at the inlet, hence a drop in L/D in the low Reynolds number regime can be

observed. This effect appears to be less significant at high Reynolds numbers. In all the cases

considered, L/D increases linearly with Re for Re > 50, while a non-linear behaviour can be

observed in the region 2 < Re < 50, consistent with the findings of [1], [6] and [4].

As shown earlier, the problem setup for the data of Fig. 4b is such that the moving wall is

situated between two stationary walls, hence a further developing region is expected before the

end of the translating wall is reached. Here, the velocity profile gradually changes to match the

conditions in the stationary-wall region downstream. As this requires information to be propagated

in the upstream direction, the process is dominated by molecular diffusion, and as expected, this

development length was found to be of order D.

Estimates of L using the global entry length criteria were also obtained in this study. The plots

follow the same trend as Figs. 4a and b hence they are not presented here. However, in Fig. 5a,

the percentage difference in the entry length estimates from both definitions for Re > 50 is given
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for the cases with parabolic inlet velocity profiles. It can be observed that the umax criteria results

in an under-prediction of L, hence for subsequent analyses, the global entry length criteria is used.

In Fig. 5b, the effect of inlet boundary condition on the development length (also for Re > 50) is

shown. The L values for flows developing from uniform and parabolic velocity profiles at the inlet

can be observed to become increasingly the same as the ratio of wall to bulk velocity is increased.

This indicates that the cross-stream diffusion transport becomes less important as r gets higher.

However, there continues to remain a finite difference in the L estimates for flows with different

inlet boundary conditions even in the limiting case of purely wall-driven flow (about 7%), hence

diffusion cannot be totally neglected.

An attempt to collapse the L versus Re data at different r values onto a single plot was un-

successful. Unfortunately, the only length scale present in this problem is the channel height, D.

Normalising the development length by the half-height merely caused the entire data to be scaled

by a factor of two in the vertical axis. Similarly, expressing the Reynolds number in terms of umax

or centreline velocity, did not yield a collapse. This is also the case for the 3D results which will

be discussed later. In obtaining suitable correlations for the development length, we adopt a prag-

matic approach. For Re < 1, a reasonable estimate of the entry length for practical applications

can be obtained by taking L to be O(D). For Re > 50, we compute the value of the coefficient C1

in equation 1 at all wall-to-bulk velocity ratios considered. The results are plotted in Figs. 6a and

b. The data are well fit (R2 = 0.9995 and 0.9978 respectively) by the following power-law relations

for the cases with uniform and parabolic inlet velocity profiles respectively:

C1 = 0.04484 + 0.04123r1.27 (13)

C1 = 0.06167r1.123, (14)

hence accurate predictions of L at high Reynolds numbers can be made by simply using the
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expression L/D = C1Re. For the case with uniform inlet velocity, C1 reduces to the value given

by [1] at r = 0. Similarly, for parabolic inlet velocity, the curve of Fig. 6b extrapolates to zero at

r = 0 as expected.

Development Length Computations in a Square Duct

For an investigation of the entry length requirements in a 3D flow, we consider a duct of square

cross-section. In computing L for this case, the velocity profiles along the vertical and horizontal

wall-bisectors were examined. In the purely pressure-driven flow with a uniform inlet velocity

profile, the development length can be observed to be greater than in a 2D channel (see Fig. 7,

where the correlation of [1] for channel and pipe flow are included), hence 3D effects introduced

by the side walls cannot be neglected.

The L/D estimates in the square duct are much closer to those in the pipe. A possible reason

for the observed difference is the non-uniform distribution of the wall shear stress in the former,

especially, close to the corners. It is therefore expected that similar results will be obtained in both

geometries if the square duct corners are rounded. A better collapse in the correlations of [1]

for pipes and 2D channels can be observed when the Reynolds number is expressed in terms of

the centreline velocity, Uc (see inset of Fig. 7), but L/D is still slightly higher in the duct (with a

maximum difference of about 20%).

Figure 8a shows the variation of development length in a square duct with Re for r ranging from

2/3 to 4 (purely wall-driven flow; unlike in the 2D channel, Ub=Uw/4 in this case, where Uw is the

wall velocity, therefore, Uw/Ub = r = 4). Here, a parabolic velocity profile is imposed at the inlet.

As a result of the computational difficulties discussed earlier, only a limited number of simulations

were conducted at Re > 10. The development length can be observed to become larger with

increasing r, similar to the observations in the 2D channel. Figure 8b shows the variation of L with

r in the limit as Re→ 0. As expected, L is higher in ducts with uniform inlet velocity profiles.

The data is fairly well fitted (R2 = 0.985) by a linear curve: L/D = C0 = 0.1366r + 0.7673. For

the simulations with parabolic inlet velocities, a line with the same slope, but a smaller intercept

(0.49), fits well to the data in the region 0.5 < r < 4. It should be noted that the development

length in the limiting case of purely pressure-driven flow (i.e. r = 0) must be equal to zero, as a
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result of the inlet boundary condition, hence it is not surprising that there is a non-linear behaviour

in the region, r < 0.5. In Fig. 8a, the data points at Re > 10 appear to diverge after being roughly

parallel in the creeping-flow regime, hence values of the slope, C1, in the Re→∞ limit cannot be

inferred from the plots in Fig. 8b. For r = 2/3, where numerical data up to Re = 200 has been

obtained, a linear fit to the data points indicates that C1 ≈ 0.0477 in the high Reynolds number

limit.

EXPERIMENTAL STUDIES

In an effort to investigate the effect of wall motion on the laminar flow fields in ducts, a new

test-section for examining these flows was designed and constructed at the Fluids Engineering

laboratory in the University of Liverpool. This section was incorporated into the square duct rig

described in [27]. The numerical simulation data previously presented were used as a guide

in deciding on the dimensions of the facility. Here, we present the results of the detailed tests

conducted to determine the laminar flow entry length requirements and thus provide validation

for the square duct simulations. The new rig can also be used for turbulent flow investigations;

however, as the focus of this paper is on laminar flows, these are not included. Figure 9 shows the

Couette-Poiseille flow test-section. Translatory motion is implemented using an endless stainless

steel belt driven by three pulleys, one of which is connected to an electric motor. This arrangement

results in a moving wall of length 6.25D. The experimental setup matches the configuration of Fig.

2b. The test-section is enclosed in a casing made of PVC plastic, which contains the working

fluid, and glass windows are provided to allow for optical access to the flow for laser Doppler

velocimetry (LDV) measurements. The entire square duct rig consists of nine additional stainless

steel modules (eight modules before the moving-wall section and one after), each having a length

of 1.2 m and cross-sectional dimensions 80 mm × 80 mm. Transition sections designed to vary in

cross-section from circular to square or vice versa are also introduced at the inlet and outlet of the

duct to ensure smoothly varying flow.

The Poiseuille component was generated by pumping fluid through the duct at different flow

rates. To these pressure-driven flows, a Couette component was introduced by translating the

13



Journal of Fluids Engineering

stainless steel belt. In all the measurements, the wall moves in the same direction as the bulk flow

and Glycerol/water solution (70/30% by volume) with an Ekman number of about 12 was employed

as working fluid. The results of laminar flow simulations at Ek = 12 (Coriolis body force included)

are identical to those in which no body forces are included; hence Coriolis effects [27, 28] are

negligible at this Ekman number.

Figures 10a and b show the velocity data at different distances from the inlet in Couette-

Poiseuille flows with r = 1.7 and 1 and Re = 67 and 76, respectively. The measurement locations

(y/D = 0.3 and 1, respectively) correspond to positions of maximum streamwise velocity in the

analytical solution. The uncertainty in the LDV data is estimated to be about 3% (as indicated by

the error bars), hence, the criteria that the velocity profile be within 1% of the laminar analytical

solution is rather stringent. This explains why an accurate experimental determination of L has

so far been unsuccessful [1]. In Fig. 10a (r ≈ 1.7), an increase in the measured velocity with

increasing streamwise distance can be observed, with a plateau region occurring at about x/D &

4. However, in all but the first data point, the analytical solution is within the error bounds of the

measurements.

For r ≈ 1 (Fig. 10b), it appears that the flow is already fully-developed at the first measurement

location accessible by the LDV probe (x/D ≈ 2.35). This is consistent with the simulation results

(see Fig. 8).

From the afore-reported measurements, it is clear that at the Reynolds numbers considered,

fully-developed flows can be obtained at x/D ≈ 4.69 (the furthest downstream position accessible

by the LDV probe). Figure 11 shows the velocity profiles at this location. Measurements of the

developing profile at x/D ≈ 2.5 and r ≈ 1.7 are also included. The agreement with the analytical

solution as well as numerical simulation resullts from ANSYS Fluent is striking. To the best of the

authors’ knowledge, this is the first time such measurements are reported.

CONCLUSIONS

The results of numerical simulations and experiments conducted to determine the develo-

ment/entry lengths (L) in laminar Couette-Poiseuille flows through a 2D channel and a 3D square
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duct have been presented. The development lengths were observed to be higher than those in

purely pressure-driven flows, L becoming larger as the wall-to-bulk velocity ratio is increased. An

attempt to collapse the data onto a single curve, using various velocity and length scales, was not

successful. However, suitable correlations for predicting L in the low and high Reynolds number

limits have been developed. Consistent with the findings of Durst et al. [1], L was observed to

be essentially constant, and of the order of the channel height, D, in the creeping-flow regime

(i.e. as Re → 0). However, for Re & 50, the development length increased linearly with Reynolds

number. The inlet boundary condition was found to be important, as L was observed to be higher

in flows with uniform velocity profiles at the inlet than those with parabolic velocity profiles. How-

ever, the entry length estimates obtained from both inlet conditions were found to be increasingly

similar as the purely wall-driven flow limit is approached. LDV measurements in a test section

designed to investigate these flows indicate that fully-developed flow fields can be obtained at the

Reynolds numbers tested. The experimental data in the fully-developed region at r = 1.7 and 1

agree well with the laminar analytical solution. Measurements in the developing region are also in

good agreement with the numerical simulation results.

——
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Fig. 1. Computational domain and boundary conditions for the flow in a 2-D channel: (a) uniform inlet velocity, (b) parabolic velocity

profile at the inlet.
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Fig. 2. Computational domain and boundary conditions for the flow in a square duct: (a) uniform inlet velocity, (b) parabolic velocity

profile at the inlet. Moving wall is shaded.
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motion is introduced at the top wall.
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Fig. 4. Development lengths in a 2D channel at different wall to bulk velocity ratios: (a) Uniform inlet velocity. (b) Parabolic velocity

profile at the inlet. L is the entry length at the wall-normal location corresponding to umax.
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Fig. 5. Development length computations in a 2D channel at high Reynolds numbers: (a) Influence of entry length definition. (b) Effect

of inlet boundary condition. Lglobal is the global entry length while Llocal is the development length computed at the wall-normal

location corresponding to umax. Plots show results atRe > 50.
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Fig. 6. Correlations forC1: (a) Uniform inlet velocity. (b) Parabolic velocity profile at the inlet

27



Journal of Fluids Engineering

10-1 100 101 102 103

Re

10-1

100

101

102

L
/
D

Square duct

Channel

Pipe

10 -1 100 101 102 103

Rec

100

101

L
/D

Fig. 7. Development lengths in purely pressure-driven flows. Inset shows better collapse when centreline velocity scaling is used to

define Re (Rec = ρUcD/µ).

28



Journal of Fluids Engineering

10-1 100 101 102

Re

10-1

100

101

L
/
D

r = 2/3
r = 1
r = 2
r = 3
r = 4
L/D = 0.0477Re

0 1 2 3 4
r

0

0.5

1

1.5

L
/
D

Parabolic inlet
Uniform inlet
L/D = 0.1366r + 0.7673
L/D = 0.1366r + 0.49

(a)

(b)
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Fig. 9. Experimental test section for the study of wall-driven flows: (a) Side view. (b) Front view. (1) electric motor; (2) stainless

steel belt; (3) pulleys; (4) tracking screw; (5) square duct; (6) water-tight casing; (7) borosilicate glass window. Flow is in the positive x

direction.
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Fig. 10. Couette-Poiseuille flow development. (a) r ≈ 1.7 and Re ≈ 63. (b) r ≈ 1 and Re ≈ 76. Measurements have

been taken at y/D = 0.3 in (a) and y/D = 0.1 in (b) along the vertical wall bisector, corresponding to the respective maximum

velocity locations. Error bars representing±3% measurement uncertainty have been included.
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Fig. 11. Velocity profiles in laminar Couette-Poiseuille flows in a square duct: (a) fully-developed profiles along the wall bisectors

at x/D ≈ 4.69, Re ≈ 63 and r ≈ 1.7; (b) fully-developed profile taken at the same streamwise location and Re as (a)

at y/D = 0.375 (10 mm from moving wall); (c) velocity profiles along the wall bisectors in developing flow at x/D ≈ 2.5,

Re ≈ 63 and r ≈ 1.7; (d) fully-developed profiles at x/D ≈ 4.69, Re ≈ 76 and r ≈ 1. Unfilled symbols represent

profiles along the vertical plane (from the bottom stationary wall to the top moving wall), while filled symbols represent those along the

horizontal plane (from one stationary side wall to the other). Solid lines represent the laminar flow analytical solution for fully-developed

flow, while dash-dotted lines represent the developing flow numerical simulation results from ANSYS Fluent.
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TABLES

Table 1. Grid independence study for Couette-Poiseuille flow in a two-dimensional channel with uniform inlet velocity profile. Ny and

Nx are the number of cells in the wall-normal and streamwise directions respectively, whileLw is the length of the moving wall.

Mesh Ny ×Nx ∆x/D = ∆y/D umax/Ub E(%) L/D e(%)

r = 0 (purely pressure-driven flow), Re = 0.5

M1 40× 40Lw/D 0.025 1.49496 0.274 0.650 2.52

M2 80× 80Lw/D 0.0125 1.49953 0.072 0.638 0.63

M3 160× 160Lw/D 0.00625 1.49988 0.019 0.635 0.16

Richardson extrapolation 0.634

r = 0, Re = 100

M1 40× 40Lw/D 0.025 1.49792 0.139 4.865 3.53

M2 80× 80Lw/D 0.0125 1.49942 0.039 4.723 0.51

M3 160× 160Lw/D 0.00625 1.49984 0.011 4.705 0.13

Richardson extrapolation 4.699

r = 1, Re = 0.5

M1 40× 40Lw/D 0.025 1.33208 0.132 0.877 1.50

M2 80× 80Lw/D 0.0125 1.33302 0.034 0.867 0.35

M3 160× 160Lw/D 0.00625 1.33325 0.006 0.865 0.12

Richardson extrapolation 0.864
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Table 2. Grid independence study for Couette-Poiseuille flow in a square duct at Re = 1 and r = 2/3. Inlet velocity profile is

parabolic.

Mesh Ny ×Nx ∆y/D = ∆z/D umax/Ub E(%) L/D e(%)

Uniform mesh

M1 50× 50× 50Lw/D 0.0200 1.92086 0.370 0.84 55.84

M2 60× 60× 60Lw/D 0.0167 1.92266 0.277 0.783 45.27

M3 100× 100× 100Lw/D 0.0100 1.92626 0.090 0.62 15.03

M4 120× 120× 120Lw/D 0.0083 1.92630 0.088 0.596 10.58

Richardson extrapolation 0.539

Non-uniform mesh

M5 90× 90× (90Lw/D + 40) 1.92446 0.184 0.556 3.15

M6 95× 95× (95Lw/D + 40) 1.92582 0.114 0.547 1.48
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