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Abstract

The defences used by organisms against predators display a great degree of variability.

Defence phenotypes can differ substantially among individuals of the same species, and

a single individual can itself deploy a variety of defences. Here, we use a mathematical

model that includes mutation and selection to understand the evolutionary origin of

this variability in a population of a species that deploys defences sequentially (“first”

and “second” defences). Typically, the first defence evolves to have lower variance, i.e.

appears more closely accumulated around the ideal phenotype, than the second defence

(even when the breaching the first defence incurs more fitness loss than breaching the

second defence with the other parameters the same for both defences). However, if

the first defence is much less effective in repelling predators, or is much less tolerant

of deviation from the ideal phenotype, then the first defence can evolve to have higher

variance than the second. Other factors like mutation strength and the losses in the

fitness when each defence fails also influence the defence variance. Larger mutation rate

incurs larger equilibrium variances, and when the comparative importance in fitness of

one defence increases, then the ratio between the variances of this defence and the other

defence decreases. Sequentially acting defences are found in many organisms, so we

encourage empirical research to test our theoretical predictions.
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1 Introduction

Protective defences against organisms’ enemies, such as predators, parasites and pathogens,

are ubiquitous (Cott 1944, Caro 2004, Ruxton et al. 2004, Schoonhoven et al. 2005, Wal-

ters 2011, Magoli 2016) and the study of adaptations for defence is consequently a major

theme in adaptive evolutionary biology.5

Evolutionary studies of defences often focus on one or more perspectives, including:

the evolutionary history of defence mechanisms (Futuyma & Agrawal 2009, Agrawal et

al. 2009, Magoli 2016), their roles in macroevolutionary patterns (Arbuckle & Speed

2015; Harriss & Arbuckle 2016; Blanchard & Moreau 2017), the variety of forms of

defences used in taxonomic groups (e.g. Edmunds 1974, Caro 2004), the influence of10

life-history variation on defence (Norris & Evans, 2000, Zuk & Stoehr 2002, Higginson

& Ruxton 2009, Higginson et al. 2011, 2012), coevolution (Gilman et al. 2012, Britton

et al. 2007) and strategies for optimal investment in defences (Svennungsen et al. 2011,

Broom et al. 2010).

Despite the extensive research in the biology of defence, an area that has received15

relatively little attention is the nature of defensive variation between individuals and

between species. Thus, many studies which seek to understand the function and mode

of action of defensive phenotypes focus (rightly) on species typical defences, rather than

variation within species. The notable exception to this is seen when frequency depen-

dent evolution causes stable polymorphisms in defences, for example those that give20

the greatest net benefit when rare, such as parasitic Batesian mimicry (Ruxton et al.

2004). Some classes of defence are however, very variable within populations. Chemi-

cal defences of plants (More et al. 2014) and animals (Speed, 2012) are, for example,

notoriously variable, both in terms of the concentrations of compounds that can repel

and deter predatory enemies, and even in the mixtures of compounds that are present25

in different individuals (Speed, 2012). Arguably, less is known about variation in other
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forms of defence in animals such as camouflage or warning signals, because of an empha-

sis on species-typical traits. However, the recent onset of methods for measuring colour

patterns is enabling some evaluation of levels of variation in animal colouration, but

overall conclusions cannot be made at present. Similarly, chemical ecologists have for a30

long period been able to evaluate (and demonstrate) variation in secondary metabolites

in plants (Goodger, Capon & Woodrow, 2002). In addition variation in physical de-

fences (density of protective trichome hairs, thickness of cuticles and waxes etc), can be

measured, and reveal the level of variation there is within populations (Mauricio, 1998).

One reason for the interest in the variation of defences is, as described above, that35

they can be very variable indeed. There is an apparent paradox here; traits that are

viewed as vital to survival of individuals are none the less highly variable, suggest-

ing that some individuals are poorly protected in populations. Several explanations

have been proposed including frequency dependence (rare toxins work best) because of

predator-counter adaptation and coevolution (Speed et al., 2006). A second compelling40

explanation is that the effectiveness of some forms of defence saturate at levels that

are phenotypically cheap to achieve by organisms, hence a lot of observed variation is

above a threshold of effectiveness-saturation, of little effect on survival and with little

variation in costs between individuals (Speed et al. 2012). It might be for example that

some defensive chemicals are cheaply synthesised and stored, and the observed levels of45

variation in concentration imply nothing about variation in survival from attack.

Here we propose an additional and potentially predictive explanation for different

levels of variation in different kinds of defence.

We reason that many defences often work in what Frank (1993) calls “sequential

layers”. Defences are in effect ordered as a set of barriers surrounding the organism:50

each one must be crossed in turn by an enemy before it can reach the valuable core

tissues of the victim. As Endler (1991) and others point out (Broom et al, 2010), those

components of sequential defence suites which are met first will be challenged by enemies
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more frequently than those that are met only later in a sequence. A general conclusion is

then that those defences met or deployed early in an encounter with an enemy will have55

a larger contribution to the protection of a victim than those met later. Suppose we

have two defences that act in sequence, and the probability that an enemy successfully

crosses each is 0.5. For each time the first defence is challenged, the second defence is

challenged only half as often, and its contribution to survival is half that of the first.

Put simply then, selection is likely to be weaker on later acting, than on earlier acting60

defences. We may then predict that the mutation-selection equilibrium for a defensive

trait is different depending at what stage in encounters with an enemy it is deployed.

For example, an organism whose only defence is chemical in nature relies very strongly

on that defence and selection to keep it at an optimal value will be very strong. Should

however the organism evolve an effective physical defence that acts before the chemical65

defence, then the chemical defence is used less often and makes a smaller contribution

to survival from an encounter. The “corrupting” effects of mutation will make more

headway against the unifying force of selection toward the optimal value of the trait.

Though it is easy to argue this verbally, here we seek a quantitative analysis to

evaluate the effects of order of deployment on mutation. We present a model that is70

simple in structure (with only two stages) and investigates the dynamical evolution of

paired, sequential defences, seeking out the conditions in which there will be inequalities

in variation between them arising from mutation-selection balance. A key point is that

while we do confirm that the later acting defence may often evolve to be more variable,

we can identify conditions in which the later-acting defences are the least variable.75

Several other theoretical papers look at sequential defences, and though none focus

on the question we ask here about variability, we will briefly comment on their relevance

to our model here.

Broom et al’s (2010) sequential defence model gave different benefit and cost values

to both defences, and found the optimal strategies (none/preattack defence/post attack80
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defence/both defences) in regards to these different benefit and cost values. In the

model due to the order in defence, the relation of benefits and costs of the first defence

can influence the condition when the second defence is used or not; but the relation of

benefits and costs of the second defence can not influence the condition when the first

defence is used or not. So the first defence might be relatively more influential in the85

optimal decision making.

Speed et al (2012), Gilman et al (2012) and Sasaki (2000) gave coevolutionary models

to explore the investments in different defences. In Speed et al (2012), victims could

invest in one or more defences, and coevolution could be the reason for more than one

defence, since when there is not coevolution, plants evolve to invest in only one toxin90

trait. Gilman et al (2012)’s paper showed that increasing the number of defence traits,

and the correlation between traits could help the victims to win the evolutionary contest,

so different defence traits functioning interactively might be the reason why more than

one defence is profitable. Sasaki (2000) found that when the effects of defence genes acts

multiplicatively, different resistant defences exist in either coevolutionary cycle or static95

equilibria depending on the cost of resistance and virulence values. These models gave

reasons for the existence of more than one defences, although these models did not show

the defence variance evolution of each defences as we did.

2 The Model

We consider a prey species that mounts two sequential defences against predation. We

assume that each individual has a phenotype x describing its first-level defense and a

phenotype y characterising its second-level defense. These phenotypes determine the

success of each defense repelling predation, so not breached by enemies, and we denote

by p1(x) the probability that the first defense holds and by p2(y) the probability that

the second defense holds. We assume that there are ideal values a and b for these
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phenotypes, so that p1(x) is maximal at x = a, and p2(y) is maximal when y = b, and

that the defense will be less likely to hold when the phenotypic values are further away

from these ideal values. Specifically, we assume functional forms

p1(x) = e−ε1−
(x−a)2

α , (1)

p2(y) = e
−ε2− (y−b)2

β , (2)

so that the first (respectively, second) defense will hold with probability e−ε1 (respec-100

tively, e−ε2) when the corresponding phenotype is at its ideal value x = a (respectively,

y = b), and that the tolerance of phenotypic deviations from the ideal will be wide when

α (respectively, β) is large.

Since these defenses are met sequentially, there are three mutually exclusive scenarios:

(1) defense 1 holds, which occurs with probability p1(x); (2) defense 1 fails, but defense105

2 holds, which occurs with probability (1 − p1(x))p2(y); (3) defenses 1 and 2 both fail,

which occurs with probability (1−p1(x))(1−p2(y)). We assume that the prey’s fitnesses

under these three scenarios are f1, f2 and f3 respectively, and note that these represent

increasingly adverse outcomes for the prey so that f1 ≥ f2 ≥ f3 ≥ 0. The average fitness

of an individual with phenotype (x, y) is then given by110

Φ(x, y) = f1p1(x) + f2(1− p1(x))p2(y) + f3(1− p1(x))(1− p2(y)) (3)

We now consider how the population distribution of the phenotypes evolves in time.

We assume non-overlapping generations, and let Nt(xt, yt) represent the density of indi-

viduals with vector of phenotypes (xt, yt) at generation t. We first consider the case where

the phenotype is completely heritable with no mutation. In that case, the abundance of
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individuals with phenotypes (xt, yt) simply changes by Φ(xt, yt) at each generation:115

Nt+1(xt+1, yt+1) = Nt(xt, yt)Φ(xt, yt). (4)

Secondly, we consider the case where phenotype mutates between generations. IfM(xt, yt, xt+1, yt+1)

is the mutation kernel, i.e. the probability density that a parent with phenotype (xt, yt)

has offspring of phenotype (xt+1, yt+1), then

Nt+1(xt+1, yt+1) =

∫ +∞

−∞

∫ +∞

−∞
Nt(xt, yt)Φ(xt, yt)M(xt, yt, xt+1, yt+1)dxt dyt. (5)

We assume that the phenotypes mutate independently with a Gaussian mutation kernel

of the form

M(xt, yt;xt+1, yt+1) =
1

πµ
e
− (xt−xt+1)2−(yt−yt+1)2

µ , (6)

so that µ/2 is the variance in the mutation per generation in either phenotype.

We assume that, at the first generation, the phenotypes are independently normally

distributed with variances v1/2 and w1/2 and means x̄1 and ȳ1 for the first and second

defenses respectively, and n1 the total population number.

N1(x1, y1) = n1
1

π
√
v1w1

e
−(

(x1−x̄1)2

v1
+

(y1−ȳ1)2

w1
)
. (7)

The evolution of the distribution of phenotypes in the population is therefore obtained

by starting with the initial distribution given in eqn. (7) and iterating eqns (4) or (5),

substituting for Φ from eqn. (3), p1 and p2 from eqns. (1) and (2), and M from eqn.

(6). We characterise the population distribution by the means xt and yt and variances
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vt
2 and wt

2 of the phenotypic values, defined as

xt = Et(xt)

yt = Et(yt)

vt
2

= Et((x− xt)2)

wt
2

= Et((y − yt)2),

where Et(·) represents the expectation value at time t, defined as120

Et(f(xt, yt)) =

∫∞
−∞

∫∞
−∞ f(xt, yt)Nt(xt, yt)dxtdyt∫∞
−∞

∫∞
−∞Nt(xt, yt)dxtdyt

for any function f(x, y). Note that the total number of population at t,

nt =

∫ ∞
−∞

∫ ∞
−∞

Nt(xt, yt)dxtdyt.

Also note that the scale of the variance in defence phenotypes is set by the parameters

µ, α, and β. That is, if we increase these three parameters by a common factor, the

equilibrium value of vt and wt will change by the same factor (Appendix B).

To summarise, the parameters, variables and functions are shown in the tables 1,2,3.125

Parameters

µ mutation strength

a, b ideal phenotypes

ε1, ε2 effectiveness

α, β Tolerance of phenotypic deviations from the ideal

f1, f2, f3 conditional fitness

Table 1: Parameter table
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Variables

xt, yt defence phenotype values at time t

x̄t, ȳt means of defence phenotype values at time t

vt
2 ,

wt
2 variances of defence phenotype values at time t

nt total population numbers at time t

Table 2: Variable table

Functions

p1(x), p2(y) probability each defence holds

Φ(x, y) average fitness

M(xt, yt;xt+1, yt+1) Gaussian Mutation Kernal from (xt, yt) to (xt+1, yt+1)

Nt(xt, yt) population density function about (xt, yt)

Table 3: Function table

3 Methods

We use both numerical and analytical approaches to explore how different factors affect

the variances of both defences. The section 3.1 is the numerical approach and the section

3.2 is the analytical approach.

3.1 Numerical integration130

We are not able to find exact closed-form analytical expressions for the mean or variance

of the phenotypes at generation t, so we approximate the continuous distribution of

phenotypic values by a discrete set and iterate (4) or (5) numerically. A each t we replace
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(xt, yt) by the grid of pairs of values {(xti, ytj); i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}}, where

xti = xt1 + (i− 1)∆x, i ∈ {1, 2, . . . , n}

ytj = yt1 + (j − 1)∆y, j ∈ {1, 2, . . . , n}.

In all cases we start with a population with means (x̄1, ȳ1) = (1, 1) and variances

(v1/2, w1/2) = (2, 2), and total population number n1 = 10000. The fitnesses are set to

(f1, f2, f3) = (2, 1, 0.2), the ideal phenotypes to (a, b) = (0, 0), the selection forces are

(α, β) = (5, 5), and the grid is defined by ∆x = ∆y = 0.2, n = 101. All integrals are

approximated as follows:135

∫ +∞

−∞

∫ +∞

−∞
F (xt, yt)dxt dyt ≈

n∑
i=1

n∑
j=1

F (xti, ytj)∆x∆y,

for any function F . The grid of values extends over a range of (n−1)∆x = (n−1)∆y = 20

units, which (for the variance values under consideration) is sufficient for this finite sum

to approximate the infinite range of integration. To avoid numerical overflow, after each

iteration we replace Nt by

Nt(xti, ytj)→ N ′t(xti, ytj) = n1
Nt(xti, ytj)∑n

i=1

∑n
j=1Nt(xti, ytj)∆x∆y

,

so that the population is always normalised to contain n1 = 10000 individuals; this does140

not affect our results, as we are only interested in the relative abundance of different

phenotypes.

For the case where there is no mutation, we use xi1 = yi1 = −9 (so that x extends

over the range x1± 10 and y over the range y1± 10), and iterate eqn. (4) at this grid of

values for 1000 generations.145

For the case where there is mutation, we allow the range of integration to vary as

the mean phenotypic values change to ensure that the range of phenotypic values in the
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population does not stray too close to (or beyond) the edges of the range of integration.

To do this, at each generation we calculate xt and yt, and then set

xt+1,1 = xt −
(n− 1)

2
∆x

yt+1,1 = yt −
(n− 1)

2
∆y,

so that the ranges of x and y grid values at the next generation are centred on xt and

yt respectively. Since the grid of (x, y) values changes between generations, we need

to determine the density of phenotypes evaluated on the current generation’s grid from

the density evaluated on the previous generation’s grid. We do this by assuming that

the density is constant within a range (±∆x
2 ,±

∆y
2 ) from the points on the previous150

generation’s grid. We set µ = 0.02 and iterate eqn. (5) for 1000 generations.

3.2 Normal approximation

An alternative method for calculating approximately the evolution in time of the popu-

lation is to use a moment closure assumption, which is a well established approximation

method for stochastic systems that cannot be solved exactly. Moment closure assumes155

that the distribution of a random variable is well approximated by a particular paramet-

ric form (Whittle 1957), and then derives (approximate) equations for the parameters of

the distribution. Here, we perform a normal moment closure by assuming that the traits

are normally distributed at a generation t, and then calculate the mean and covariance

matrix at generation t + 1 in terms of the mean and covariance at time t. While the160

trait will not in general be normally distributed (except at the first generation, where

this is assumed), it is reasonable to assume that the iteration equations for the mean

and covariance provide a good enough approximation to the true time evolution of the

system for the purposes of understanding the general behaviour of the model. This is

an uncontrolled approximation, by contrast with the direct numerical solution described165
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in the previous section (which will describe the dynamics exactly in the limit where the

integrals are approximated by sums over a very large and very fine grid), but has the

advantage of being much quicker to evaluate and therefore permits a much wider explo-

ration of parameter space. We have tested our approximation scheme against simulation

results, and find that it reproduces the patterns in the result well for a wide range of170

parameters.

We begin by assuming that the traits are normally distributed at time t, and write

the distribution of traits as

Nt(xt, yt) = nt

√
|Wt|
π

exp
(
− (zt − z̄t)TWt(zt − z̄t)

)
, (8)

where zt =

 xt

yt

 is the vector of defence phenotypes, z̄t =

 x̄t

ȳt

 is the mean vector

of defence phenotypes, and Wt = (2Σt)
−1, where175

Σt = Et

 x2
t xtyt

xtyt y2
t

− Et
 xt

y

Et

(
xt yt

)

is the covariance matrix for the trait.

We can find the population distribution at the next generation by applying the

iteration equation (5), where Φ is defined by equations (1–3) and M from eqn. (6).

After performing the integrals over (xt, yt) (the details are shown in Appendix A), this

leads to180

Nt+1(xt+1, yt+1) = nt
√
|Wt|Θt

4∑
j=1

θt,j
1

2π
√
|Σt+1,j |

exp
(
− 1

2
(zt+1 − z′t+1,j)

TΣ−1
t+1,j(zt+1 − z′t+1,j)

)
,

(9)
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where

z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â)

Σt+1,j =
1

2

(
U−1 + (Σ−1

t + Fj)
−1
)

γ1 = f3

γ2 = (f1 − f3)e−ε1

γ3 = (f2 − f3)e−ε2

γ4 = (f3 − f2)e−(ε1+ε2)

F1 =

 0 0

0 0


F2 =

 1
α 0

0 0


F3 =

 0 0

0 1
β


F4 = F2 + F3

U =

 1
µ 0

0 1
µ


θt,j =

γjst,j

Θt

√
|Wt + Fj |

Θt =
4∑
j=1

γjst,j√
|Wt + Fj |

st,j = exp
( 1

µ
(Wtz̄t + Fj â)T

(
(Wt + Fj)

−1 + µI
)
K−1
t,j (Wtz̄t + Fj â)− z̄tTWtz̄t − âTFj â

)

â =

 a

b


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This shows that Nt+1 is the sum of four normal distributions with different means

and co-variance matrices, so cannot be expressed as a single normal distribution. We

can, however, use this expression to compute the mean and covariance of the traits at

generation t+ 1 (also see equations (A.9), (A.11) in Appendix A):

zt+1 = Et+1(zt+1)

=
4∑
j=1

θt,j(Wt + Fj)
−1(Wtz̄t + Fj â) (10)

Σt+1 = Et+1

 x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

− Et
 xt

y

Et

(
xt yt

)

=
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 +
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T . (11)

From the expression of Fj (j = 1, 2, 3, 4), we can tell from eqn. (10) that the mean

will evolve over time towards the ideal phenotype â. Also z′t+1,j = (Wt + Fj)
−1(Wtz̄t +

Fj â) (j = 1, 2, 3, 4) approaches to the ideal phenotype â, therefore the term
∑4

j=1 θt,j ·

z′t+1,jz
′T
t+1,j− ¯zt+1 ¯zt+1

T in (11) approaches to zero, and the covariance matrix approaches

to the following equation (also see in equation (A.12) in Appendix A),

Σt+1 =
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1. (12)

These equations can be iterated rapidly over time to give an approximation to the

time evolution and equilibrium values of zt and Σt (We can use (11) to do the iteration

for the evolution of zt and Σt, and both (11) and (12) can be used to generate equilibrium

value of Σt).
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In the limit µ→ 0, Equation (12) approaches the limit

Σt+1 =

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 (13)

from which it can be shown that variance of both the first and second defence evolve185

towards zero as time t grows (details in Appendix C). If U 6= 0, however, it can be shown

from (12) that the covariance matrix evolves to a non-zero equilibrium. This shows that

mutation is necessary in order for the traits to be variable.

4 Results

Because of selection, the means of both defences evolve towards the ideal phenotype (this190

can be shown analytically for the normal approximation— see the iteration equation for

the mean (10) — and also see numerical results in Figure 2 (a), (b)). We are interested in

the evolution of the distribution of phenotypes within the population, but in particular

in the variance of the phenotypic values. There are five factors that will influence these

variances.195

1. Mutation

In this model, mutation must be present for phenotypic variance to be maintained

— when there is no mutation, the variances of both traits evolve to be zero. This is is

visible in the numerical results Figure 1 (a), (b), and can be shown analytically for the

Normal approximation (see Appendix C).200
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Figure 1: The evolution of phenotypic variances, obtained using numerical integration.
Dashed lines indicate the case of no mutation, solid lines the case when µ = 0.02.
Red lines indicate the variance in the first defense, black lines the variance in the second
defense. (a) ε1 = 0.1, ε2 = 0, (b) ε1 = 0.1, ε2 = 0.9, (c) ε1 = 0, ε2 = 0, (d) ε1 = 0, ε2 = 0.9.
Other parameters: α = 5, β = 5, (f1, f2, f3) = (2, 1, 0.2).

A special case is that when mutation is zero and the first defence is perfectly effective

(ε1 = 0), i.e. when the defence will succeed with probability 1 if the trait is at its ideal

value x = a. As the first defence evolves close to the ideal phenotype, and first defence
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variance evolves to be zero, the first defence protects all the victims from the enemies so

that the second defence is hardly ever tested and evolves very slowly (Figures 1 (c)(d),205

2 (c)(d), 3 (b)).
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Figure 2: The evolution of phenotypic means, obtained from numerical integration.
Dashed lines indicate the case of no mutation, solid lines the case when µ = 0.02. Red
lines indicate the mean in the first defence, black lines the mean in the second defense.
(a) ε1 = 0.1, ε2 = 0, (b) ε1 = 0.1, ε2 = 0.9, (c) ε1 = 0, ε2 = 0, (d) ε1 = 0, ε2 = 0.9. Other
parameters: α = 5, β = 5, (f1, f2, f3) = (2, 1, 0.2).
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Figure 3: The equilibrium values of the variances, obtained from numerical integration.
Red lines: first defence; black lines: second defence. Dotted lines: µ = 0; dashed lines:
µ = 0.01; solid lines: µ = 0.02. (a) ε1 = 0.1, (b) ε1 = 0. Other parameters: α = 5,
β = 5, (f1, f2, f3) = 2, 1, 0.2.

When there is mutation, the variance of both traits evolve to have positive values

(Figures 1, 3). This is proved for the moment closure approximation in Appendix A.

Stronger mutation lead to higher variances (Figure 3).

2. Order of defence in the sequence210

When the first and second defence have the same effectiveness (ε1 = ε2) and the

tolerance range is the same for both defences (α = β), then the first defence variance

is always lower than the second defence variance (i.e., the first defence clusters more

closely than the second around its ideal phenotype), no matter what the conditional

fitness values are. This is shown in figure 6, where var1/var2< 1 (in which var1 stands215

for the first defence variance, and var2 stands for the second defence variance) along the

line ε1 = ε2; even in figure 6 (a), where f1 is only a little higher than f2 so that it makes

little difference whether the first defence holds or does not, the first defence variance is

still a little smaller than the second defence when ε1 = ε2.
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3. Effectiveness of defences220

(1) If the first defence is less effective than the second defence (ε1 > ε2), then the first

defence variance can be larger than the second defence variance (in Figure 6, var1/var2>

1 when ε1 > ε2). The threshold value for the ineffectiveness ε1 of the first defence,

above which the first defence has higher variance than the second, depends also on the

conditional fitness values (see the contour lines above the red contour line given different225

fitness values in Figure 6 (a-c) described also in “Conditional fitness” below).

(2) When the effectiveness of the first defence increases, the first defence variance

decreases and the second defence variances increases. When the effectiveness of the

second defence increases, the opposite occurs (see Figure 4).
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Figure 4: The effect of effectiveness on equilibrium variance. Red lines: first defence;
black lines: second defence. Dotted lines: ε1 = 1.1; dashed lines: ε1 = 1.3; solid lines:
ε1 = 1.5. Other parameters: α = 5, β = 5, (f1, f2, f3) = (2, 1, 0.2), µ = 0.02.
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4. Tolerance of phenotypic deviations from the ideal230

We refer to the quantities α and β as the “tolerance of phenotypic deviations from

the ideal” on the two defensive traits, because they quantify how sensitive the fitness

is to deviations from the ideal trait value. However, the variances of the traits do not

depend on these quantities in a straightforward way. When the tolerance of deviation

from the ideal on a trait is wide, the variance in that trait has a positive relationship with235

the tolerance as would usually be expected in a mutation-selection balance (Figure 5 (a),

(e), large values of α or β). However, when the tolerance is narrowed beyond a threshold

value, the variance in that trait starts to increase. This is because mutation limits

how small the variance in a trait can become, so that as α (for example) decreases more

individuals have a maladapted first defence, which as a result is increasingly likely to fail.240

Since this defence is very likely to fail anyway, its importance in determining the animal’s

relative fitness actually decreases, and the variance of that trait increases, as α decreases

further. (Figure 5 (a), (e), small values of α or β). Increasing the ineffectiveness of a

defence (ε1 or ε2) makes this effect stronger, so that the positive relationship starts at

a smaller value of the tolerance. Since narrowing one defence’s tolerance makes it more245

likely to fail, and therefore makes the other defence more important, the variance in the

other defence consequentially decreases (Figure 5 (b), (d)). Because the first defence

variance and second defence variance can either increase or decrease as the tolerance

values change, the ratio of these variances can either increase or decrease (Figure 5 (c),

(f)).250
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Figure 5: The effect of tolerance of phenotypic deviations from the ideal on equilibrium
variances. Red line: ε1 = 0, ε2 = 0; yellow line: ε1 = 0, ε2 = 0.9; green line: ε1 = 5,
ε2 = 0; black line: ε1 = 5, ε2 = 0.9; In (a,b,c) β = 5, and in (d,e,f) α = 5. Other
parameters: (f1, f2, f3) = (2, 1, 0.2), µ = 0.02. These results were obtained by the the
Normal Approximation (12), which is much faster than the numerical iteration.

5. Conditional fitness

We change the relative values of f1

f2
(the ratio between the conditional fitness f1 while

the first defence holds and the conditional fitness f2 while the first defence fails) and

f2

f3
(the ratio between the conditional fitness f2 while the second defence holds and the

conditional fitness f3 while the second defence fails) to see the relative importance of the255

first and second defences. When the relative fitness value f1

f2
increases and f2

f3
decreases,

meaning that the first defence becomes more important, then var1/var2 decreases (given

the same ε1 and ε2). This can be seen in Figure 6(a), where f1

f2
is lowest and f2

f3
is highest,

the value of var1/var2 (keeping the same values of (ε1, ε2))is highest; and in Figure 6(c)
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where f1

f2
is highest and f2

f3
is lowest, the value of var1/var2 is lowest. As seen in Figure260

6, the second defence must be much more effective than the first defence (ε2 � ε1, the

upper-left side of red solid lines) for the first defence variance to be larger than the second

defence variance. Note that here only three typical cases of fitness values are showed

(in Figure 6(a)(b)(c) respectively) because for the other values (e.g. f2 = 0 which may

correspond to that a victim animal is killed when the second defence is breached, or the265

other values of f2 > 0 which may correspond to that a victim plant is still alive when

the second defence is breached), the figures are similar and the relation showed above

keep the same.
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Figure 6: Contours of var1/var2 in the (ε1, ε2) plane, for different conditional fitness
values. Red solid line: the contour line var1/var2=1 (above which var1/var2> 1, below
which var1/var2 < 1) (red line is not visible in (c) as it occurs only when ε1 > 2, which
is out off the range of ε1-axis); green dashed line: the line ε1 = ε2. (a) (f1, f2, f3) =
(2, 1.9, 0.2), (b) (f1, f2, f3) = (2, 1, 0.2), (c) (f1, f2, f3) = (2, 0.3, 0.2). Other parameters:
α = 5, β = 5, µ = 0.02. These results were obtained by the the Normal Approximation
(12), which is much faster than the numerical iteration.

23



5 Discussion270

In this paper we aimed to predict and explain patterns in the variation of anti-predator

defences, when those defences are deployed in a predictable sequence. It is well known

that defences can be variable in a population, but there is relatively little systematic

evaluation of patterns of variation, even though diversifying evolutionary mechanisms

are easily identified (Speed et al., 2012; Moore et al., 2014; Barnett, 2014; Speed, 2015;275

Jeckel et al., 2015). It is our contention that the sequential nature of defence may of-

ten cause predictable patterns of diversity, allowing testable hypotheses about defence

variation. Hence, we built and interrogated a model representing both the selection and

mutation mechanisms on the evolution of population distribution of two sequential de-

fences. By using both analytical and numerical methods, we get the evolution processes280

and equilibrium evolution values of the variances in both defences. We first briefly ac-

count for the major determinants of defence variation in our model and subsequently

relate its general findings to a wider set of defences and to other theoretical treatments

of defence evolution.

285

Factors predicted to be influential in defence variance

(1) Mutation. Mutation is the reason of why there are defence variances in our

model. In the absence of mutation, both defence variances will evolve toward zero,

whereas if there is mutation, equilibria of mutation and selection that give variances

> 0. Unsurprisingly, the stronger the mutation is, the larger the two defence variances290

evolve to be.

(2) Order of defence in the sequence. If the first defence and the second defence

are as effective as each other, and the tolerance range is the same for both defences,

then the first defence distribution evolves to have smaller variance than the second

defence distribution (see Results, Figure 6). That means the first defence is more closely295
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gathered around the ideal phenotype and therefore has more influence in protecting the

victims from being attacked. Hence, the model demonstrates our verbal argument in

the introduction: that earlier acting defences can often evolve to lower levels of variation

than later acting defences.

(3) Effectiveness of defences. Whether the defences are effective enough in the en-300

vironment (in the sense of successfully repelling an enemy) is also important to the

evolution of population variance. If the first defence in a sequence is not as effective in

repelling predators as the second defence, then the force of selection can be felt most

strongly on the second defence, with the consequence that it has a lower equilibrium

variance than the first defence. This is counter to the intuition in our Introduction, that305

defences deployed earlier are less variable than those deployed later in sequence, and

shows the value of a formal model.

(4) Tolerance of phenotypic deviations from the ideal. We consider that effectiveness

of a defence in repelling enemies becomes weaker as the phenotype diverges from the

ideal value for the relevant trait. A key measure in this model is therefore how much310

defensive effectiveness is lost for an incremental deviation from the ideal phenotypic

value: in effect the tolerance of the phenotype in relation to its defensive function (α, β).

If tolerance of phenotypic deviation is narrow, then even when the phenotype is similar

to the ideal phenotype, the defence is likely to fail and be breached. On the contrary, if

the tolerance is very wide and permissive, even the phenotype is quite dissimilar to the315

ideal phenotype, the defence is likely to hold. Both the first and second defence variances

will evolve to be high when the tolerance is very narrow or wide. When the tolerance

is very wide, the phenotypes quite different from the ideal phenotypes are effective to

protect the victims, then the population variance could evolve to be very large. When the

tolerance is very narrow, even the phenotypes are quite similar as the ideal phenotypes320

are useless in protecting the victims, then it will not be profitable for the phenotypes

to evolve to be similar to the ideal phenotypes, so the population variance will also be

25



very wide. An interesting result pertains now if the first defence is subject to narrow

tolerance and the second defence to wider tolerance. Here the first defence can be of

little use, and contributes little to prey survival, hence mutation accumulates and the325

phenotype becomes variable. Variation in the second defence however is fundamental to

prey survival, hence the model predicts a lower equilibrium value for mutation (Figure

5). This gives us an additional scenario in which the first defence may evolve to a higher

level of variation than the second.

(5) Conditional Fitness. In our model, the relative importance of whether the first330

defence holds to whether the second defence holds are described by the relative con-

ditional fitness values. When the relative conditional fitness value f1

f2
increases (which

means that the importance of holding the first defence increases) and the relative condi-

tional fitness value f2

f3
decreases (which means that the importance of holding the second

defence increases), then the ratio between the first defence variance and the second de-335

fence variance decreases. The contrary is true when the conditions are reversed.

Application to biological and other contexts

Sequentially-layered defences are very common in biological and other contexts.

Many plants and animals present their enemies with layered defences. John Endler340

for example (1991) argued that an attack by a predator on its (animal) prey is typically

composed of a sequence of six stages: (i) encounter (spatial proximity), (ii) detection,

(iii) identification, (iv) approach, (v) subjugation and ultimately (vi) consumption. At

each stage in this sequence the prey organism can put up one or more lines of defence

with the aim of preventing, interrupting and stopping the attack. An animal prey may345

for example hide (to prevent encounter, i, and detection, ii), use masquerade and cryptic

colouration (to prevent detection and identification, ii, iii), perhaps form aggressive de-

fensive groups (to prevent approach, iv). They may alternatively have a startle display

or use vigilance and rapid escape behaviours (to prevent approach, iv). They may vio-
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lently retaliate (to prevent subjugation, v.) perhaps using stings, spines or bites and/or350

deploy irritating or toxic chemicals (to prevent subjugation and consumption, v, vi). At

each stage in the sequence Endler identified, one or more defences could be deployed

by a prey animal, and they could often operate sequentially, some defences typically

used only if earlier-acting defences have failed to stop the predation event. Here we

have simplified to two layers, but the model could be extended to larger set of defences.355

An important point is, however, that we expect sequentially acting defences to be very

common in organismal defence, hence our model has generality.

One very general result is greater variation in later-acting defences. There is some

evidence supportive of a key feature of the model, that later-acting defences are used

less often than earlier defences, and thus contribute less to fitness. A meta-analysis360

of studies of plant-herbivore interactions shows that variation in earlier-acting defences

(physical, morphological, physiology, chemical defences) in plants is better in predicting

herbivores’ damage than later defences (toxic secondary metabolites; Carmona et al,

2011, Cardenas et al., 2014). A number of authors have remarked on the high levels of

variability in defensive toxins (see review in Speed et al. 2012), but we do not know of365

studies that measure the variability of sets of defences and relate these to their use in a

sequence. We suggest that this is an interesting area for valuable empirical research.

We note that anti-pathogen systems (skin, immune responses) are also usually lay-

ered in their organisation, hence the model could be elaborated to consider these kinds

of defensive systems. There are also interesting parallels between the organisation of bio-370

logical and human military defences. Both concern protection of valuable yet vulnerable

targets, seeking optimal deployment of costly defensive “assets”. A relevant military

tactic is “layered defence” in which sets of defensive resources, such as inter-ballistic

missiles, are deployed in sequence; when a first line of defence fails against an incoming

threat a second line of defence activates to minimise further risk, and after that perhaps375

a third or fourth defence, and so on. In the military theory literature, layered defence has
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been described and modelled by Wilkening (2000). We suggest that it might be an inter-

esting question to determine whether, in military contexts and perhaps cyber-security,

later-acting defences are more variable in their form and effectiveness than earlier-acting

defences.380

Developments of the model

We would draw the reader’s attention to some key assumptions in the model. First,

we assume that there is an optimal value for each defence, and any deviation from that

is punished by reduced efficiency in repelling enemies. This assumption does simplify385

implementation, giving us a clear set of results, but it does bring some limitations. On

the one hand, this assumption may fit morphological defences well - for example defen-

sive spines may need to be the right size to repel certain enemies. It does not represent

some kinds of chemical defence as well however. Here concentrations that are too low

may lead to reduced efficiency, but higher and higher values probably become more ef-390

fective at anti-predator defence, albeit in a saturating manner, not less. In this case the

model would have to be modified to incorporate this asymmetry in defensive benefit. An

interesting question is whether the distribution of naturally occurring defensive toxins is

asymmetric in this manner. Secondly, we assumed that once each defence is breached,

it cannot be healed (e.g. the spines of golden barrel cactus Echinocactus grusonii once395

moved from areole cannot grow back), in comparison to that for some organisms, defences

can replenish when damaged (e.g. the claw of Florida stone crab, Menippe mercenaria

can grow back when broken with the diaphragm at the claw joint intact). Also for the

case such as different parts of plants maybe attacked independently, defences can be

breached several times in these different parts. Since our model is based on an average400

fitness, it can describe qualitatively the dependence of the relative variances on fitness

costs and tolerances in the above cases, but it would be good to be further modified in

the case of multiple successive breaches of each defence (where the organism heals be-
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tween each attack) and may also for the case when different parts of plants are breached

independently. Finally, we have deliberately excluded costs of defences in the model, in405

part to keep the structure simple and predictions tractable, but there is profitable scope

for including costs in a more complex development. We note that studies of prey defence

can not always identify measurable costs to defence in any case (Zvereva & Kozlov 2016).

6 Conclusion410

We aimed to explore the patterns of the defence variations when defences are deployed

in sequence. We built a model with two sequential defences, and use both selection and

mutation as the evolutionary mechanisms on the evolution of population distribution

of the two defences. Through both analytical and numerical methods, we found that

typically the earlier defence has lower variance than the later defence, which means that415

the earlier defence phenotypes are more closely accumulated around the ideal phenotype

than the later defence phenotypes. This matches with intuition and some research that

the earlier defences have higher probability in use and therefore probably have higher

anti-predator effect. Besides, our formal model also gives a broader explanation that

when the first defence is less effective in repelling the predators, or the first defence is420

less tolerant of phenotypic deviations from the ideal, then the first defence could evolve

to have higher variance than the second defence. Sequential defences are widely seen

in different defence systems, therefore our model might be predictive in a wide range

of areas. Since the empirical research of sequential defence variances is rare, related

research could be valuable.425
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8 Appendix

8.1 Appendix A

To get the population distribution at the next generation Nt+1(xt+1, yt+1) (equation (9))

we first write the fitness function in matrix form. From (1) and (2), the fitness function

(3) can be written as515

Φ(xt, yt) = f3+(f1−f3)e−ε1−
(xt−a)2

α +(f2−f3)e
−ε2− (yt−b)

2

β +(f3−f2)e−ε1−
(xt−a)2

α e
−ε2− (yt−b)

2

β

=

4∑
j=1

γj exp
(
− (zt − â)TFj(zt − â)

)
(A.1)

where,

γ1 = f3, γ2 = (f1 − f3)e−ε1 , γ3 = (f2 − f3)e−ε2 , γ4 = (f3 − f2)e−(ε1+ε2),

F1 =

 0 0

0 0

 , F2 =

 1
α 0

0 0

 , F3 =

 0 0

0 1
β

 , F4 =

 1
α 0

0 1
β



zt − â =

 xt − a

yt − b

 , â =

 a

b


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The mutation function (6) can be written as

M(xt, yt;xt+1, yt+1) =
1

πµ
exp

(
− (zt − zt+1)TU(zt − zt+1)

)
(A.2)

where zt − zt+1 =

 xt − xt+1

yt − yt+1

, U =

 1
µ 0

0 1
µ

.

Then from (8), (A.1) and (A.2), the population distribution density iteration function

(5) is as follows.520

Nt+1(xt+1, yt+1) =
nt
√
|Wt|

π2µ

∫ +∞

−∞

∫ +∞

−∞

4∑
j=1

γj exp
(
−(zt−z̄t)TWt(zt−z̄t)−(zt−â)TFj(zt−â)

−(zt − zt+1)TU(zt − zt+1)
)
dxtdyt (A.3)

Since zt is a normal distributed vector, we collect terms for zt, let Kt,j = Wt+Fj+U ,

and complete the square for zt:

Nt+1(xt+1, yt+1) =
nt
√
|Wt|

π2µ

∫ +∞

−∞

∫ +∞

−∞

4∑
j=1

γj exp
(
−zTt Kt,jzt+2(Wtz̄t+Fj â+Uzt+1)T zt

−(z̄t
TWtz̄t + âTFj â+ zTt+1Uzt+1)

)
dxtdyt

=
nt
√
|Wt|

π2µ

∫ +∞

−∞

∫ +∞

−∞

4∑
j=1

γj exp
(
−(zt−K−1

t,j (Wtz̄t+Fj â+Uzt+1))TKt,j(zt−K−1
t,j (Wtz̄t+Fj â+Uzt+1))

+(Wtz̄t+Fj â+Uzt+1)TK−1
t,j (Wtz̄t+Fj â+Uzt+1)−(z̄t

TWtz̄t+â
TFj â+zTt+1Uzt+1)

)
dxtdyt
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From the fact that the integral of normal density function equals 1, the above is525

equivalent to

Nt+1(xt+1, yt+1) =
nt
√
|Wt|

π2µ

4∑
j=1

γj
π√
|Kt,j |

exp
(

(Wtz̄t+Fj â+Uzt+1)TK−1
t,j (Wtz̄t+Fj â+Uzt+1)

−(z̄t
TWtz̄t + âTFj â+ zTt+1Uzt+1)

)
(A.4)

Since zt+1 is the next generation defence phenotype vector, if we collect terms for

zt+1, given that U =

 1
µ 0

0 1
µ

, we have

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
zTt+1(I − (µKt,j)

−1)zt+1

+2
1

µ
(Wtz̄t + Fj â)TK−1

t,j zt+1 + (Wtz̄t + Fj â)TK−1
t,j (Wtz̄t + Fj â)− z̄tTWtz̄t − âTFj â

)
To complete a square, the above is equivalent to530

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

+
1

µ
z′Tt+1,j(I − (µKt,j)

−1)z′t+1,j + (Wtz̄t + Fj â)TK−1
t,j (Wtz̄t + Fj â)− z̄tTWtz̄t − âTFj â

)
where z′t+1,j = (I − (µKt,j)

−1)−1K−1
t,j (Wtz̄t + Fj â) = (Kt,j − 1

µI)−1(Wtz̄t + Fj â) =

(Wt + Fj)
−1(Wtz̄t + Fj â). If we put the expression of z′t+1,j into the second term in the

exponential bracket, and combine the second term with the third term, we have
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Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

535

+
1

µ
(Wtz̄t + Fj â)T

(
(Kt,j −

1

µ
I)−1K−1

t,j + µK−1
t,j

)
(Wtz̄t + Fj â)− z̄tTWtz̄t − âTFj â

)
Since Kt,j = Wt + Fj + U , we have

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

+
1

µ
(Wtz̄t + Fj â)T

(
(Wt + Fj)

−1K−1
t,j + µK−1

t,j

)
(Wtz̄t + Fj â)− z̄tTWtz̄t − âTFj â

)
If we let st,j = exp

(
1
µ(Wtz̄t+Fj â)T

(
(Wt+Fj)

−1 +µI
)
K−1
t,j (Wtz̄t+Fj â)− z̄tTWtz̄t−

âTFj â
)

, then

Nt+1(xt+1, yt+1) =
nt
πµ

√
|Wt|

4∑
j=1

γj√
|Kt,j |

st,j exp
(
− 1

µ
(zt+1−z′t+1,j)

T (I−(µKt,j)
−1)(zt+1−z′t+1,j)

)

Then we can write it into the normal distribution form:540

Nt+1(xt+1, yt+1) = nt
√
|Wt|

4∑
j=1

γjst,j√
|Wt + Fj |

√
|(I − (µKt,j)−1)|

πµ
exp

(
− 1

µ
(zt+1 − z′t+1,j)

T (I − (µKt,j)
−1)(zt+1 − z′t+1,j)

)
This is a combination of four normal distribution functions, with mean z′t+1,j =
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(Wt + Fj)
−1(Wtz̄t + Fj â), and variance

Σt+1,j =
µ

2
(I − (µKt,j)

−1)−1 =
µ

2
(Kt,j −

1

µ
I)−1Kt,j =

µ

2
(Wt + Fj)

−1(Wt + Fj + U)

=
µ

2
I +

1

2
(Wt + Fj)

−1 =
1

2

(
U−1 + (Wt + Fj)

−1
)

=
1

2

(
U−1 + (

1

2
Σ−1
t + Fj)

−1
)

=
1

2
U−1 + (Σ−1

t + 2Fj)
−1 j = 1, 2, 3, 4 (A.5)

So the next generation population function can be written as545

Nt+1(xt+1, yt+1) = nt
√
|Wt|

4∑
j=1

γjst,j√
|Wt + Fj |

1

2π
√
|Σt+1,j |

exp
(
−1

2
(zt+1−z′t+1,j)

TΣ−1
t+1,j(zt+1−z′t+1,j)

)

Let Θt =
∑4

j=1
γjst,j√
|Wt+Fj |

, and θt,j =
γjst,j

Θt
√
|Wt+Fj |

(j = 1, 2, 3, 4) then
∑4

j=1 θt,j = 1.

Then the above is equivalent to

Nt+1(xt+1, yt+1) = nt
√
|Wt|Θt

4∑
j=1

θt,j
1

2π
√
|Σt+1,j |

exp
(
−1

2
(zt+1−z′t+1,j)

TΣ−1
t+1,j(zt+1−z′t+1,j)

)

Therefore, the probability density function in the next generation can be written

as

f(xt+1, yt+1) = Nt+1(xt+1, yt+1)/

∫ +∞

−∞

∫ +∞

−∞
Nt+1(xt+1, yt+1)dzt+1

=
4∑
j=1

θt,j
1

2π
√
|Σt+1,j |

exp
(
− 1

2
(zt+1 − z′t+1,j)

TΣ−1
t+1,j(zt+1 − z′t+1,j)

)
(A.6)

550

=

4∑
j=1

θt,jfj(xt+1, yt+1)
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Therefore the population distribution probability density function in the (t + 1)-th

generation is written as a combination of four normal probability density functions

z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â) (A.7)

and covariance matrix

Σt+1,j =
1

2
U−1 + (Σ−1

t + 2Fj)
−1 j = 1, 2, 3, 4 (A.8)

Note that the integral of f(xt+1, yt+1) in respect of (xt+1, yt+1) equals 1, which is the

property of the probability density function. We use ENj (·) to denote the expectation

of each of the four corresponding normal population distribution function.

Therefore the mean in the next generation is

¯zt+1 = E(zt+1) =

∫ +∞

−∞

∫ +∞

−∞
zt+1f(xt+1, yt+1)dzt+1

555

=
4∑
j=1

θt,j

∫ +∞

−∞

∫ +∞

−∞
zt+1fi(xt+1, yt+1)dzt+1

=
4∑
j=1

θt,jENj (zt+1)

=

4∑
j=1

θt,jz
′
t+1,j

=

4∑
j=1

θt,j(Wt + Fj)
−1(Wtz̄t + Fj â) (A.9)

This is the iteration equations for the mean between generations.
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The above also equals

z̄t+1 =
4∑
j=1

θt,j(Wt + Fj)
−1Wtz̄t +

4∑
j=1

θt,j(Wt + Fj)
−1Fj â (A.10)

The above is a first-order difference equation. Since∑4
j=1 θt,j(Wt + Fj)

−1Wt +
∑4

j=1 θt,j(Wt + Fj)
−1Fj = I, the mean z̄t+1 will gradually560

approach to the equilibrium –the ideal phenotype â as t increases. This equilibrium

value can be got by letting both z̄t+1 and zt in the above equation equal zT and solve

the equation, we will have that zT = â.

For variance, we have the covariance matrix in the next generation

Σt+1 = E

 x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

− E
 xt+1

yt+1

E

(
xt+1 yt+1

)
565

=

∫ +∞

−∞

∫ +∞

−∞

 x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

 · 4∑
j=1

θt,jfi(xt+1, yt+1)dzt+1 − ¯zt+1 ¯zt+1
T

=
4∑
j=1

θt,j ·

 ENj (x
2
t+1) ENj (xt+1yt+1)

ENj (xt+1yt+1) ENj (y
2
t+1)

− ¯zt+1 ¯zt+1
T

=
4∑
j=1

θt,j ·

 V arNj (xt+1) + ENj (xt+1)2 CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1)

CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1) V arNj (yt+1) + ENj (yt+1)2


− ¯zt+1 ¯zt+1

T

=

4∑
j=1

θt,j · Σt+1,j +

4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T

=

4∑
j=1

θt,j

(1

2
U−1 + (Σ−1

t + 2Fj)
−1
)

+

4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T
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=
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 +

4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T (A.11)

where z′t+1,j is the j-th mean shown in (A.7).570

Now we can use the variance iteration equations from (A.11) to get the evolution

of variance across generations. As z̄t approaches to the ideal phenotype â as t → +∞,

so does ¯zt+1 and z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â) (j = 1, 2, 3, 4) also approaches to

the ideal phenotype â. Therefore the term
∑4

j=1 θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T in (A.11)

approaches to zero, so covariance matrix (A.11) approaches to the following equation as575

time grows.

Σt+1 =
1

2
U−1 +

4∑
j=1

θt,j(Σ
−1
t + 2Fj)

−1 (A.12)

which is larger than 1
2U
−1, since 1

2

∑4
j=1 θt,j(Σ

−1
t + Fj)

−1 is larger than zero, so as t

goes to infinity, the equilibrium value of Σt will be larger than 1
2U
−1. Therefore, if there

is mutation (U > 0), variances of both defences will be positive (larger than µ
2 ).

8.2 Appendix B580

The scale of the variance in defence phenotypes is set by the parameters µ, α, and β. In

this appendix, we show that if we increase these three parameters by a common factor,

the equilibrium value of vt and wt will change by the same factor.

Let Pt(x, y) denote the probability distribution of traits at time t, where

Pt(x, y) =
Nt(x, y)∫ ∫
Nt(x, y)dx dy

.

The integration limits are from −∞ to ∞, and are suppressed throughout this section
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for brevity. From eqn. (5), the dynamics of Pt is determined by

Pt+1(x, y) =
Nt+1(x, y)∫ ∫
Nt+1(x, y)dx dy

=

∫ ∫
Pt(x

′, y′)Φ(x′, y′)M(x′, y′, x, y)dx′ dy′∫ ∫
Pt(x′, y′)Φ(x′, y′)dx′ dy′

,

where we have used the fact that
∫ ∫

M(x′, y′, x, y)dx dy = 1. Over time, Pt will approach585

an equilibrium P∗(x, t) = limt→∞ Pt(x, t), where

P∗(x, y) =

∫ ∫
P∗(x

′, y′)Φ(x′, y′)M(x′, y′, x, y)dx′ dy′∫ ∫
P∗(x′, y′)Φ(x′, y′)dx′ dy′

. (B.1)

From Eqns. (1–3) and (6), Φ and M can be written in the form

Φ(x, y) = Φ̃

(
x− a
α1/2

,
y − b
β1/2

)
(B.2)

M(x′, y′, x, y) =
1

µ
M̃

(
x− x′

µ1/2
,
y − y′

µ1/2

)
, (B.3)

where

Φ̃(u, v) = f1e
−ε1−u2

+
(

1− e−ε1−u2
)(

(f2 − f3) e−ε2−v
2

+ f3

)
(B.4)

M̃(u, v) =
1

π
e−u

2−v2
. (B.5)

We now substitute eqns. (B.2) and (B.3) into Eqn. (B.1), make the change of
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variables

ξ =
x− a
µ1/2

ξ′ =
x′ − a
µ1/2

η =
y − b
µ1/2

η′ =
y′ − b
µ1/2

,

and further define (without loss of generality)

P∗(x, y) =
1

µ
P̃∗(ξ, η), (B.6)

to give

P̃∗(ξ, η) =

∫ ∫
P̃∗(ξ

′, η′)Φ̃

((µ
α

)1/2
ξ′,
(
µ
β

)1/2
η′
)
M̃(ξ − ξ′, η − η′)dξ′ dη′

∫ ∫
P̃∗(ξ′, η′)Φ̃

((µ
α

)1/2
ξ′,
(
µ
β

)1/2
η′
)
dξ′ dη′

. (B.7)

Note that, from eqns. (B.4,B.5), neither Φ̃ nor M̃ have any explicit dependence on µ,

α, or β so these parameters only enter into eqn. (B.7) through the ratios µ
α and µ

β in590

the arguments to Φ̃. This means that the solution P̃∗(ξ, η) to eqn. (B.7) can be written

in the form

P̃∗(ξ, η) = p

(
ξ, η,

µ

α
,
µ

β

)
,

where p does not depend explicity on µ, α, or β except through its third and fourth

arguments. This means that P∗ takes the form

P∗(x, y) =
1

µ
p

(
x− a
µ1/2

,
y − b
µ1/2

,
µ

α
,
µ

β

)
.

In other words, when traits are measured as a difference from their optimum in units of595
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µ1/2, their distribution depends only on the ratios of α and β to µ.

We note that P∗ is a probability density so we have
∫ ∫

P∗ (x, y) dx dy = 1. Also, we

can show that
∫ ∫

(x − a)P∗(x, y)dx dy =
∫ ∫

ξP̃∗ (ξ, η) dξ dη = 0. This follows because

M̃and Φ̃ are even functions of their arguments, so from eqn (B.7) if P∗(ξ, η) = P̂ (ξ, η)

is a solution then so is P∗(ξ, η) = P̂ (−ξ, η). Since this solution is unique we must have

P∗(ξ, η) = P∗(−ξ, η), which implies
∫ ∫

ξP̃∗ (ξ, η) dξ dη = 0. Therefore, the mean of the

first defensive trait at equilibrium is

x∗ =

∫ ∫
xP∗(x, y)dx dy

= a

∫ ∫
P∗(x, y)dx dy +

∫ ∫
(x− a)P∗(x, y)dx dy

= a.

The equilibrium variance of the first defensive trait is then

v∗ =

∫ ∫
(x− x∗)2 P∗(x, y)dx dy

=
1

µ

∫ ∫
(x− a)2 p

(
x− a
µ1/2

,
y − b
µ1/2

,
µ

α
,
µ

β

)
dx dy

= µ

∫ ∫
ξ2p

(
ξ, η,

µ

α
,
µ

β

)
dξ dη.

Therefore, v∗
µ depends on µ, α, or β through the ratios µ

α and µ
β only. This means that,

if µ, α, and β are increased by a common factor λ, which means that µ
α and µ

β are

unchanged, then v∗ increases by the same factor λ. A similar argument can be made for

the variance of the second trait.600
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8.3 Appendix C When there is no mutation force, the variances of both

the first and second defences approaches to zero

When there is no mutation, the population distribution function in the (t+ 1)-th gener-

ation is the density iteration equations (4):

Nt+1(xt+1, yt+1) = Nt(xt, yt)Φ(xt, yt)

From (8) and (A.1),605

Nt+1(xt+1, yt+1) =
nt
√
|Wt|
π

4∑
j=1

γj exp
(
− (zt − z̄t)TWt(zt − z̄t)− (zt − â)TFj(zt − â)

)

Collecting the terms for zt,

Nt+1(xt+1, yt+1) =
nt
√
|Wt|
π

4∑
j=1

γj exp
(
−zTt (Wt+Fj)zt+2(z̄t

TWt+â
TFj)zt−(z̄t

TWtz̄t+â
TFj â)

)

If we complete a square for zt, the above is equivalent to

Nt+1(xt+1, yt+1) =
nt
√
|Wt|
π

4∑
j=1

γj exp
(
− (zt − z′t+1,j)

T (Wt + Fj)(zt − z′t+1,j)

+(Wtz̄t + Fj â)T (Wt + Fj)
−1(Wtz̄t + Fj â)− (z̄t

TWtz̄t + âTFj â)
)

where

z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â)

If we let st,j = exp
(

(Wtz̄t + Fj â)T (Wt + Fj)
−1(Wtz̄t + Fj â) − (z̄t

TWtz̄t + âTFj â)
)
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then the above is equivalent to
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=
nt
π

√
|Wt|

4∑
j=1

γjst,j exp
(
− (zt − z′t+1,j)

T (Wt + Fj)(zt − z′t+1,j)
)

If we make it in a normal distribution form,

= nt
√
|Wt|

4∑
j=1

γjst,j√
|Wt + Fj |

√
|Wt + Fj |
π

exp
(
− (zt+1− z′t+1,j)

T (Wt +Fj)(zt+1− z′t+1,j)
)

which is equivalent to

= nt
√
|Wt|Θt

4∑
j=1

θt,j

√
|Wt + Fj |
π

exp
(
− (zt+1 − z′t+1,j)

T (Wt + Fj)(zt+1 − z′t+1,j)
)

t = 1, 2, 3, ... (C.1)

where Θt =
∑4

j=1
γjst,j√
|Wt+Fj |

, and θt,j =
γjst,j

Θt
√
|Wt+Fj |

(j = 1, 2, 3, 4). Note that∑4
j=1 θt,j = 1615

From the above population distribution function, the probability density function

in the next generation can be written as

f(xt+1, yt+1) = N(xt+1, yt+1)/

∫ +∞

−∞

∫ +∞

−∞
N(xt+1, yt+1)

=
4∑
j=1

θt,j

√
|Wt + Fj |
π

exp
(
− (zt+1 − z′t+1,j)

T (Wt + Fj)(zt+1 − z′t+1,j)
)
dzt+1 (C.2)

=
4∑
j=1

θt,jfj(xt+1, yt+1)

where
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θt,j =
γjst,j

Θt

√
|Wt + Fj |

620

Θt =
4∑
j=1

γjst,j√
|Wt + Fj |

st,j = exp
(

(Wtz̄t + Fj â)T (Wt + Fj)
−1(Wtz̄t + Fj â)− (z̄t

TWtz̄t + âTFj â)
)

Therefore the population distribution probability density function in the (t + 1)-th

generation is written as a combination of four normal probability density functions (each

has mean z′t+1,j = (Wt+Fj)
−1(Wtz̄t+Fj â), covariance matirx Σt+1,j = 1

2(Wt+Fj)
−1 = 1

2(

frac12Σ−1
t +Fj)

−1 = (Σ−1
t +2Fj)

−1, j = 1, 2, 3, 4). Note that the integral of f(xt+1, yt+1)625

in respect of (xt+1, yt+1) equals 1, which is the property of the probability density func-

tion. Let ENj (·) denote the expectation of each of the four corresponding normal popu-

lation distribution function. Then the mean in the next generation is

¯zt+1 = E(zt+1) =

∫ +∞

−∞

∫ +∞

−∞
zt+1f(xt+1, yt+1)dzt+1 =

4∑
j=1

θt,j

∫ +∞

−∞

∫ +∞

−∞
zt+1fi(xt+1, yt+1)dzt+1

=
4∑
j=1

θt,jENj (zt+1) =
4∑
j=1

θt,jz
′
t+1,j =

4∑
j=1

θt,j(Wt + Fj)
−1(Wtz̄t + Fj â) (C.3)

The above also equals to

¯zt+1 =
4∑
j=1

θt,j(Wt + Fj)
−1Wtz̄t +

4∑
j=1

θt,j(Wt + Fj)
−1Fj â

As mentioned in Appendix A, since
∑4

j=1 θt,j(Wt+Fj)
−1Wt+

∑4
j=1 θt,j(Wt+Fj)

−1Fj =630

I, the mean zt+1 will gradually approach to the ideal phenotype as t increases.

Now for variance, we have the covariance matrix in the next generation is
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Σt+1 = E

 x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

− E
 xt+1

yt+1

E

(
xt+1 yt+1

)

=

∫ +∞

−∞

∫ +∞

−∞

 x2
t+1 xt+1yt+1

xt+1yt+1 y2
t+1

 · 4∑
j=1

θt,jfi(xt+1, yt+1)dzt+1 − ¯zt+1 ¯zt+1
T

=
4∑
j=1

θt,j ·

 ENj (x
2
t+1) ENj (xt+1yt+1)

ENj (xt+1yt+1) ENj (y
2
t+1)

− ¯zt+1 ¯zt+1
T

=
4∑
j=1

θt,j ·

 V arNj (xt+1) + ENj (xt+1)2 CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1)

CovNj (xt+1, yt+1) + ENj (xt+1)ENj (yt+1) V arNj (yt+1) + ENj (yt+1)2


635

− ¯zt+1 ¯zt+1
T

=
4∑
j=1

θt,j · Σt+1,j +
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T

where Σt+1,j is the jth covariance matrix from the jth integral, z′t+1,j is jth mean

from the jth integral. So the above is equivalent to

=
4∑
j=1

θt,j · (Σ−1
t + 2Fj)

−1 +
4∑
j=1

θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T (C.4)

Now we can use the variance iteration equations from (C.4) to get the evolution of

variance across generations. As z̄t approaches to the ideal phenotype â as t → +∞,

so does ¯zt+1 and z′t+1,j = (Wt + Fj)
−1(Wtz̄t + Fj â) (j = 1, 2, 3, 4) also approaches to

the ideal phenotype â. Therefore the term
∑4

j=1 θt,j · z′t+1,jz
′T
t+1,j − ¯zt+1 ¯zt+1

T in (A.11)

approaches to zero, so covariance matrix (A.11) approaches to the following equation as
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time grows.

Σt+1 =
4∑
j=1

θt,j · (Σ−1
t + 2Fj)

−1 (C.5)

If there is an equilibrium, as time t grows as large as T (a very large number), the above

equation (C.5) approaches to

ΣT =
4∑
j=1

θT,j · (Σ−1
T + 2Fj)

−1 (C.6)

If we write Σ−1
T =

 a c

c b

, then the equation (C.6) can be written as

 a c

c b


−1

= θT,1

 a c

c b


−1

+ θT,2

 a+ 2
α c

c b


−1

+ θT,3

 a c

c b+ 2
β


−1

+ θT,4

 a+ 2
α c

c b+ 2
β


−1

which is equivalent to

(2− θT,1)
1

ab− c2

 b −c

−c a

 = θT,2
1

(a+ 2
α)b− c2

 b −c

−c a+ 2
α


+ θT,3

1

a(b+ 2
β )− c2

 b+ 2
β −c

−c a


+ θT,4

1

(a+ 2
α)(b+ 2

β )− c2

 b+ 2
β −c

−c a+ 2
α

 (C.7)
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Since α > 0 and β > 0 and the determinant of the covariance matrix ab− c2 > 0, so

(a+
2

α
)b− c2 > ab− c2 > 0, a(b+

2

β
)−c2 > ab− c2 > 0, (a+

2

α
)(b+

2

β
)−c2 > ab− c2 > 0

Comparing the coefficient of term −c in the matrix for both side of the equation, the

coefficient in the left-hand side is larger than the coefficient in the right-hand side, so

we have c = 0, and the equation (C.7) is equivalent to

(θT,2 + θT,3 + θT,4)
1

ab

 b 0

0 a

 = θT,2
1

(a+ 2
α)b

 b 0

0 a+ 2
α


+ θT,3

1

a(b+ 2
β )

 b+ 2
β 0

0 a


+ θT,4

1

(a+ 2
α)(b+ 2

β )

 b+ 2
β 0

0 a+ 2
α

 (C.8)

which is equivalent to640

(θT,2 + θT,3 + θT,4)

 1
a 0

0 1
b

 = θT,2

 1
a+ 2

α

0

0 1
b

+ θT,3

 1
a 0

0 1
b+ 2

β


+ θT,4

 1
a+ 2

α

0

0 1
b+ 2

β

 (C.9)

Since α > 0 and β > 0, the above equation cannot hold unless a and b approaches

to +∞ as t grows, so the matrix Σt grows to zero matrix as t grows. Therefore the

variances of both the first and second defences approaches to zero.
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