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Reconstruction of the pulmonary artery by a novel biodegradable conduit
engineered with perinatal stem cell-derived vascular smooth muscle cells
enables physiological vascular growth in a large animal model of congenital
heart disease
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ARTICLE INFO ABSTRACT

Keywords: Lack of growth potential of available grafts represents a bottleneck in the correction of congenital heart defects.
Congenital heart disease Here we used a swine small intestinal submucosa (SIS) graft functionalized with mesenchymal stem cell (MSC)-
St'em Cells' ) derived vascular smooth muscle cells (VSMCs), for replacement of the pulmonary artery in piglets.

I::;:'engmeermg MSCs were expanded from human umbilical cord blood or new-born swine peripheral blood, seeded onto

decellularized SIS grafts and conditioned in a bioreactor to differentiate into VSMCs. Results indicate the
equivalence of generating grafts engineered with human or swine MSC-derived VSMCs. Next, we conducted a
randomized, controlled study in piglets (12-15kg), which had the left pulmonary artery reconstructed with
swine VSMC-engineered or acellular conduit grafts. Piglets recovered well from surgery, with no casualty and
similar growth rate in either group. After 6 months, grafted arteries had larger circumference in the cellular
group (28.3 £ 2.3 vs 183 = 2.1mm, P < 0.001), but without evidence of aneurism formation.
Immunohistochemistry showed engineered grafts were composed of homogeneous endothelium covered by
multi-layered muscular media, whereas the acellular grafts exhibited a patchy endothelial cell layer and a
thinner muscular layer.

Results: show the feasibility and efficacy of pulmonary artery reconstruction using clinically available grafts
engineered with allogeneic VSMCs in growing swine.

future, be combined with similar bio-prosthetic solutions for leaflet
replacement and RVOT reconstruction.

1. Translational perspective

Nowadays, many CHD are diagnosed prenatally thus offering the

possibility of predesigning an interventional strategy for definitive
correction. In this study, we used autologous neonatal blood-derived
cells to generate a living conduit and reconstruct the pulmonary artery
in piglets. The cellular graft surpassed the acellular control in both
primary efficacy endpoints, showing durable and incremental correc-
tive potential and thus opening new avenues for the definitive treat-
ment of pulmonary artery defects. We envision this approach could
immediately be implemented in current surgical standards and, in the

2. Introduction

Congenital heart disease (CHD) is the most common and life-en-
dangering congenital disability worldwide, with a reported number of
1.35 million (M) new cases each year, of which ~5000 in the UK alone.
Graft failure is the cause of a sizable subset of re-intervention with
remarkable impact on a patient's quality of life.

The ideal cure for patients with Tetralogy of Fallot (ToF) or
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pulmonary artery atresia, consists of surgical reconstruction of right
ventricle outflow tract (RVOT) and implantation of a prosthetic pul-
monary conduit. [1] Xenografts, made with bovine or swine valvular,
pericardial or intestinal material, represent the most common biological
prostheses. Their manufacture includes chemical treatments to remove
resident immunogenic cells and strengthen mechanical properties.
[2-4] Nonetheless, incomplete decellularization might lead to adverse
host immune reaction, while aggressive treatment could remove ex-
tracellular matrix (ECM) component crucial for in vivo recellularization
[5,6].

Despite improving mechanical resistance, fixative treatment of the
decellularized tissue during graft manufacturing resulted in poor com-
pliance and calcification after in vivo implantation. [7,8] These limita-
tions make the graft unable to grow at the same pace as an infant's
heart, resulting in anatomical and functional deterioration within a few
years. [9,10]

Tissue engineering holds promises to surpass the current limits of
decellularized grafts. [11,12] Successful preclinical studies using pros-
thetic valve leaflets and swine intestinal submucosa conduits seeded
with autologous endothelial cells (ECs)/endothelial progenitor cells
(EPCs) [13,14] have been followed by first-in-human studies that
confirmed feasibility and advantages of endothelialized grafts. [15,16]
Despite the observed improvements of this conduit endothelialisation
strategy, the physiological characteristics remained suboptimal in
comparison to native vessels, due to the lack of vascular smooth muscle
cells (VSMCs). VSMCs are crucial in vessel structure and function;
nonetheless, few studies have tested the in vivo potential of tissue-en-
gineered vascular grafts (TEVG) repopulated with VSMCs. [17,18]

Despite noticeable progress, including the use of bioreactors to
allow the full maturation of TEVG, [19,20] tissue engineering tech-
nology still poses major challenges in neonates and infants. The ideal
cell population for complex defects should be readily available at birth
or require minimal expansion. Mesenchymal stromal cells (MSCs) from
the umbilical cord blood (UCB) or neonatal peripheral blood (PB) may
have those requisites. [21-25] In addition, the majority of TEVGs tested
so far were 10-16 mm in inner diameter, [26-28] i.e. they were over-
sized for a new-born, considering that, at birth, the pulmonary artery
measures ~5-6 mm or even less in pre-term neonates. [29]

Here, we report the results of a randomized, controlled study in
piglets, which had the left pulmonary artery reconstructed with small-
size conduits engineered with allogeneic VSMCs. At the final 6-month
follow-up, the engineered conduits surpassed the acellular conduits on
all the considered endpoints, showing proper blood flow velocity,
growth potential, and physiological remodelling.

3. Methods
3.1. Ethical permissions

Twenty human UCB samples were collected at St. Michael Hospital
(Bristol, UK), under informed consent from the mother, in accordance
with the licence approved by the Southwest Research Ethics Committee
(11/HO107/4). The investigation conformed to the principals outlined
in the Declaration of Helsinki.

PB was collected within 24h after birth from Landrace female
piglets (N = 18, average weight 1.5kg) humanely sacrificed using
schedule one, following the guidelines of the UK Home Office. Three to
four-week-old female Landrace pigs (N = 11, 10-15 kg in body weight)
were employed in the in vivo graft implantation studies under the UK
Home Office ethical approval PPL 30/3019. Animals were treated in
accordance with the “Guide for the Care and Use of Laboratory
Animals” published by the National Institutes of Health in 1996 and
conforming to the “Animals (Scientific Procedures) Act” published in
1986.
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Table 1
Antibodies used in Immunocytochemistry.
Antibody Company Dilution  Catalog #
Anti-Actin, a-Smooth Muscle (a-SMA) SIGMA 1:100 A5228
Calponin (CNN1) Dako 1:100 M3556
Smooth Muscle Myosin Heavy Chain (SM-  R&D Systems  1:100 IR066
MHC)

3.2. Isolation and expansion of MSCs

Blood samples were processed within 5h from collection.
Mononuclear cells (MNCs) were isolated from total human UCB or
swine PB using a gradient centrifugation method, previously described
by Ingram et al.. [30] Briefly, blood samples were diluted in a double
volume of PBS, without calcium and magnesium chloride (Sigma) and
loaded on Ficoll-Istopaque columns (GE healthcare). After density
gradient centrifugation at 400g for 30 min at room temperature, MNCs
were removed from the interphase, washed twice in PBS and then
treated with 1X Red Blood Cell Lysis Buffer (RBC lysis buffer, Biole-
gend, diluted with sterile deionized water) for 10 min. Cells were then
seeded on culture dishes at a density of 1 x 10%/cm? in mesenchymal
culture medium, composed by 40% (v/v) LG-DMEM and 40% (v/v)
MCDB 201 (both from Sigma), supplemented with 15% FBS (Hyclone),
1% (v/v) penicillin-streptomycin, 1% (v/v) insulin-transferrin-selenium
(ITS, Invitrogen), 0.1 mM L-ascorbic acid-2-phosphate, 50nM dex-
amethasone, 1% (v/v) linoleic acid-BSA (all from Sigma), 10 ng/ml
human Platelet Derived Growth Factor-BB (PDGF-BB, R&D Systems)
and 10ng/ml human Epidermal Growth Factor (EGF, R&D Systems).
The resulting cell culture was kept at 37 °C in a humidified 5% CO,
incubator. After three days, non-adherent cells were removed by
changing the culture medium. The medium was changed twice a week
until colonies were visible. Adherent cells were left to grow up to 80%
confluence before passaging.

3.3. Differentiation of MSCs into VSMCs

MSCs were cultured for 4-12 days in a medium containing 60% (v/
v) LG-DMEM (Sigma) and 40% (v/v) MCDB 201 (sigma), supplemented
with 1% FBS (Hyclone), 1% (v/v) penicillin-streptomycin , ; 1% (v/v)
insulin-transferrin-selenium (ITS, Invitrogen), 0.1 mM L-ascorbic acid-
2-phosphate (Sigma-Aldrich), 50 nM dexamethasone (Sigma), 1% (v/v)
linoleic acid-BSA (Sigma) and 5 ng/ml Transforming Growth Factor-f31
(TGF-pB1, R&D). At the end of the induction, the expression of VSMC-
specific proteins, including Smooth Muscle Myosin, Heavy Chain 11
(SM-MHC), Alpha Smooth Muscle Actin (aSMA), and Calponin 1
(CNN1), was evaluated by immunocytochemistry (Table 1).

3.4. Graft cellularization and maturation in a bioreactor

Decellularized porcine small intestinal submucosa (CorMatrix”
Cardiovascular, Inc, USA) was seeded with MSCs at a density of
5 x 10°/cm? and maintained under static conditions for 5 days. The
engineered-graft was then stitched to the rotating arm of an InBreath
bioreactor (Harvard Apparatus, USA) as to fashion a conduit-shape with
the cells facing the outer side of the graft. The rotation was set at
1.5 rpm for the first 24 h, and then at 2.5 rpm for 9 days.

3.5. In vivo studies

A total of 11 piglets entered a randomization protocol for im-
plantation of conduit-shaped grafts in the left pulmonary artery (N = 6
unseeded CorMatrix; N = 5 allogeneic VSMC-seeded-CorMatrix). The
cellularized grafts were engineered with swine allogeneic cells collected
from 5 different donors. Surgical procedures were performed with
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Fig. 1. Maturation of human VSMC-engineered grafts in a dynamic bioreactor. (A) Photograph of the bioreactor and the produced cylindrical scaffold. (B) H&E
staining of acellular (i) and cellularized (ii) grafts after conditioning in the bioreactor (Bar = 50 pm). (C) Fluorescence microscopy images of viable cells (Calcein AM
staining, green, n = 3) and dead cells (EthD staining, red). Nuclei are stained blue by DAPI. (bar = 50 um). (D) Representative fluorescence microscopy images of
VSMC markers. (bar = 50 um). (E) Ultimate tensile strength (i) and Young's Modulus (ii) of acellular and cellularized grafts. Cells from three donors (n = 3) run in

triplicates were tested in this study.

swine under general anesthesia (Ketamine/Midazolam/
Dexmedetomidine, Isoflurane) and neuromuscular blockade
(Pancuronium Bromide). Details of the operations are reported in the
Supplementary Video. Briefly, a left posterolateral thoracotomy was
performed; the proximal and distal part of the left pulmonary artery
(LPA) (just before the upper and middle lobe branches of the LPA) was
clamped and a 3-4 mm of the LPA was resected to accommodate the
conduit-shaped graft (~10 mm long and ~6 mm diameter). Animals
were allowed to recover under intense postoperative monitoring for the
initial 24h. Analgesic (Paracetamol, Morphine) and antibiotics
(Cefuroxime) were administered during this period according to the
needs.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.biomaterials.2019.119284.

Imaging studies were performed using a two-dimensional Doppler
Echocardiography system (VividQ, GE Healthcare) prior the graft

implantation and at 3 and 6 months thereafter to assess the graft pa-
tency and pulmonary blood flow velocity (primary endpoints). After 6
months of follow-up, swine were euthanized by an overdose of IV
pentobarbitone according to the surgical facility standard protocols.
The main pulmonary artery and its left (where the graft was implanted)
and right branches (serving as an internal control) were dissected from
the heart and then fixed in 4% PFA or fresh-frozen in liquid nitrogen.

3.6. Post-mortem analyses

Tissue samples were washed in PBS, fixed in 4% PFA, moved into
cassettes (Histosette I, Simport) processed in a Shandon Excelsior
(Thermo), and embedded in paraffin using a Shandon Histocentre 3
(Thermo). The resulting blocks were sectioned at 5 um for histology and
immunohistochemistry (IHC) assessments. For studies performed on
cryosections, tissues were washed in PBS, frozen and sectioned at 8 um
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Fig. 2. Swine VSMC-engineered grafts maturation in a dynamic bioreactor. (A) Photograph of the cylindrical scaffold from the bioreactor. (B) H&E staining of
cellularized grafts after conditioning in the bioreactor (bar = 50 pm). (C) Representative fluorescence microscopy images of viable cells (i, Calcein AM staining,
green, n = 3) and dead cells (ii, EthD staining, red). Nuclei are stained blue by DAPI (iii). Merged staining (iv). (bar = 50 pm). (D) Representative fluorescence
microscopy images of VSMC markers CNN1 (i), a-SMA (ii) and SMHC (iii). Controls for the secondary antibodies (iv). (bar = 50 um). (E) Ultimate tensile strength (i)
and Young's Modulus (ii) of acellular and cellularized grafts. Cells from three donors (n = 3) run in triplicates were tested in this study.

in a cryostat (Leica). Hematoxylin and eosin (H&E), Russel-Movat
pentachrome and Van Gieson's (EVG) stainings were performed using a
Varistain apparatus (Thermo). For immunocytochemistry, paraffin-
embedded sections were deparaffinized by clearene washing and re-
hydrated through an alcohol gradient. A heated antigen retrieval was
used for antigen unmasking with 0.01 M citrate buffer, pH 6.0 heated to
boiling. Sections were blocked with goat serum and stained with non-
conjugated primary antibodies (Table 1) and conjugated- isolectin (Life
Technologies) overnight. Cy2 and Cy3 labeled secondary antibodies
(Dako) were employed to detect primary antibodies. Slides were
mounted with DAPI Hardset mounting medium (Vectashield). Images
were taken with a Leica SP5 confocal microscope using a 20x or 40x oil
immersion objective.

For electron microscopy analyses, PFA-fixed samples were washed
in 0.1 M phosphate buffer and then fixed in 25% osmium tetroxide in
phosphate buffer. After washing in phosphate buffer, samples were
dehydrated through an alcohol gradient ending with three changes of
absolute alcohol. Samples were dried in a critical point dryer (Leica EM
CPD300). They were finally coated at 100 mA for 30 s using EMITECH
K575X sputter coater and observed using a Quanta 400 FEI scanning
electron microscope.

For smooth Muscle Actin quantification, the graft regions composed
of smooth muscle cells were identified immunohistochemically by
quantification of Smooth Muscle Actin expression in 10 random fields
per section under a 20X magnification lens. ImageJ software was used
to quantify the percentage of positive cells in the remodelling acellular
and cellular grafts. The ImageJ function threshold was applied in the

channel of interest to convert each image to a binary version, and pixels
representing smooth muscle regions were quantified, pooled together
and converted into mm [2]. The smooth muscle area was then divided
by the total area of the newly formed tissue. Moreover, the Smooth
Muscle Actin-stained samples were employed to measure the thickness
of the smooth muscle cells layer that developed in the acellular and
cellular graft tissue after 6 months in vivo.

3.7. Statistics

Average values are plotted with ‘n’ value shown in figure legends.
Animal demographics and echocardiographic data are expressed as
mean *+ SD. Statistical significance for differences between experi-
mental groups was determined using Student's t-test when comparing
two groups and ANOVA with post-hoc when comparing more than two
groups. Asterisk symbols are used in figures to represent the statistical
difference between groups. Any reference to a difference between
groups implies statistical significance, at least, at the level of P < 0.05.

4. Results

4.1. Maturation of the cellularized TEVG in a dynamic bioreactor
Having confirmed the ability of MSCs to differentiate into VSMCs in

vitro (Data in Brief article), we next attempted to achieve the same

result with human or swine MSCs seeded in a conduit graft and main-
tained in a bioreactor to prime the cells to the dynamic conditions they
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Fig. 3. Outcome of the preclinical trial. (A&B) The cell engineered graft was shaped into a 6 mm diameter conduit with 10 mm length (A) and implanted into swine
left pulmonary artery (B). (C) Anatomy of the main pulmonary artery and its major branches. Arrow indicates the position of TEVG implantation. (D) Representative
image of the explanted TEVG with main pulmonary artery (pa) and left pulmonary artery (lpa) cut-open to show the luminal side. The graft is marked by the blue
anastomosis sutures (rpa, right pulmonary artery). Representative ultrasound images of the pulmonary arteries of acellular and cellularized grafts. Arrows indicate
level of graft insertion (a, aorta; pa, pulmonary artery; rpa, right pulmonary artery; lpa, left pulmonary aretry). (G&H) Representative images of Colour Doppler blood
velocities in acellular and cellularized groups. (I) Circumference of the cellularised and acellular grafts at implantation and six months post-surgery. ANOVA with
post-hoc testing were used. ***p < 0.001. (J) Blood flow velocities through the acellular and cellularized LPA at 3 and 6 months of follow-up. ANOVA with post-hoc

testing were used. **p < 0.01. ***p < 0.001.

Table 2
Pulmonary arteries size and blood velocity in animals at 3 and 6 months.
Acellular 3 Cellularized 3 P value Acellular 6 Cellularized 6 P value
months months months months
LPA graft diameter (mm) 5.02 = 0.4 7.5 = 0.6 0.0003 6.03 = 0.7 9.1 = 0.6 0.0001
LPA graft velocity (m/sec) 1.07 = 0.1 0.9 = 0.02 0.06 1.2 £ 0.1 0.8 = 0.06 0.0006
RPA diameter (mm) 10.6 = 0.6 11.7 = 0.7 0.09 12.6 + 2.2 12.3 = 0.7 0.8
Main PA diameter (mm) 139 £ 15 154 + 1.2 0.2 16.0 = 1.6 16.6 + 1.6 0.5

Values are Means + SD.

would be exposed to in vivo. Such an integrated approach allows a more
rapid maturation of the TEVG and reduces the risk of contamination
associated with repeated cell passaging. The protocol was carried out in
two steps. First, we seeded human or swine MSCs onto a flat Cormatrix
sheet and maintained the cellularized graft in a mesenchymal culture
medium under static conditions for 5 days. At the end of this period, we
shaped the graft into a cylindrical conduit with the cells facing the outer
side of the graft and then stitched it to the rotating arm of a dynamic
bioreactor containing the inductive media. After 10 days, the conduit
was removed from the incubator, photographed (Fig. 1A), and pro-
cessed for analysis of cell viability and immunohistochemistry. Acel-
lular grafts were run in parallel throughout all the staged process de-
scribed above. The control graft was confirmed to be acellular
(Fig. 1Bi), while the human UCB-MSC-engineered graft contained a
multi-layer of cells within its internal structure as assessed by H&E
staining (Fig. 1Bii). Imaging of the grafts using markers for live/dead
cells demonstrated the viability of the engineered construct (Fig. 1C).
Immunohistochemistry studies verified the engrafted cells expressed a-
SMA and Calponin but were low abundant in SM-MHC (Fig. 1D). The
ultimate tensile strength and Young's Modulus of elasticity were rela-
tively similar in the acellular and cellularized grafts (Fig. 1E). Similar
results were obtained in grafts engineered with swine PB-MSCs
(Fig. 2A-E). The ultimate tensile strength and Young's Modulus of
elasticity (0.46 + 0.17 and 1.39 = 0.77 MPa respectively; n = 5) of
the native left pulmonary artery (LPA) were over 29 times lower than
those of acellular and cellularized grafts.

4.2. In vivo studies

Swine cell-engineered and acellular grafts, shaped as 6-mm inner
diameter conduits (Fig. 3A) were implanted in the left pulmonary artery
of piglets (Fig. 3B-D), according to a randomized, controlled study
design. Following surgery, swine grew at a normal rate, and there was
no significant difference in body weight gain between animals im-
planted with cellularized or acellular grafts (124 + 8.7kg and
138 + 2.6kg respectively) at 6 months post-surgery. Echocardio-
graphy showed grafts were patent in both groups (Fig. 3F&G). How-
ever, the cellularized conduits showed a lower blood flow velocity as
compared with the acellular conduits (Fig. 3H, 1&J). The group differ-
ence in this primary hemodynamic endpoint was incremental from 3 to
6 months post-implantation (0.17 + 0.04 and 0.40 *+ 0.05m/sec,
P < 0.01 and P < 0.0001, respectively) (Fig. 3K & Table 2). In line
with this, at the 6 months assessment, the cellularized grafts had a
larger circumference (28.32 = 2.31 mm) as compared to acellular
graft controls (18.37 = 2.10mm, P < 0.001) (Fig. 3K). Moreover, the
circumference of the tissue-engineered pulmonary artery was 50%

larger than the graft before implantation (P < 0.05), whereas no di-
mensional change was observed regarding the acellular graft (P=N.S.)
(Fig. 3G). Calculation of the left/right pulmonary artery inner diameter
ratio, which uses the untouched side as an internal control for phy-
siologic remodelling, showed higher values in animals implanted with
cellularized conduits (0.74 + 0.07) as compared with acellular conduit
controls (0.48 + 0.04, P < 0.0001). Altogether, these results indicate
that cellularization confers growing capacity to the TEVG thereby sig-
nificantly reducing the mismatch with the contralateral artery. In both
groups, we observed no ventricular hypertrophy or tricuspid regur-
gitation (data not shown).

Electron microscopy of the luminal graft side showed a well-orga-
nized endothelial layer in the cellularized grafts that was similar to the
endothelium of the neighbouring pulmonary artery (Fig. 4A). In con-
trast, the luminal side of the acellular graft looked patchy suggesting an
incomplete endothelialization (Fig. 4A). The IHC studies of explanted
grafts using endothelial and smooth muscle markers confirmed the
cellular grafts had a clear endothelial cell layer similar to the neigh-
bouring pulmonary artery, and a significantly thicker layer of VSMCs as
compared to the acellular graft (Fig. 4B-E). The cellularized grafts also
showed a significantly higher percentage of SMA-stained cells than
acellular grafts (Fig. 4C). Additionally, the seeded grafts exhibited
isolectin-positive microvessels surrounded by VSMCs in the outer layer,
resembling the formation of adventitial vasa vasorum (Fig. 4B). Fur-
thermore, the histological analysis demonstrated that the CorMatrix
was no longer visible after 6 months, suggesting complete absorption
and integration of both the acellular and cellularized graft into the host
surrounding tissue (Fig. 5 A-C). Besides, the EVG and Russel-Movat
pentachrome staining showed extracellular matrix proteins (collagen,
elastin, GAGs and proteoglycans) released by the newly formed tissue in
both the acellular and cellularized grafts (Fig. 5 B-C). In support of the
previous quantification results of Fig. 4C, the cellularized grafts pre-
sented a greater nuclei infiltration in comparison to the acellular con-
structs (Fig. 5). In addition, elastin staining looked higher in cellular-
ized grafts (Fig. 5 B).

No difference in the inflammatory cell infiltration was observed in
the acellular and cellularized grafts (Fig. 6A and B). Inflammation was
especially observed around the sutures mainly with the presence of
lymphocytes, granulocytes and macrophages (Fig. 6A and B). This in-
flammatory response was milder away from the suture and throughout
the grafts with few infiltrating cells, mainly lymphocytes (Fig. 6A and
B). Immunostaining of the remodelling marker, MMP1, showed low
expression levels in the acellular and cellularized grafts (Fig. 6C).
Evaluation of markers for osteogenic (Alizarin Red), adipogenic (Oil
Red O) and chondrogenic (Alcian Blue) demonstrated similar expres-
sion in explanted acellular grafts, cellularized grafts, and the LPA
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Fig. 4. Electron scanning microscopy and immunohistochemistry of graft explants. (A) Electron microscopy images showing the internal surface of the explanted
acellular graft compared with the cellularized graft and the pulmonary artery adjacent to the graft (Scale bar = 100 um). (B) Fluorescence microscopy images
showing endothelial cells (isolectin, green) lining the internal lumen and surrounding layer of VSMCs (aSMA, red). Arrows indicate vessels (Scale bar = 90 pm). (C)
SMA expression quantification and smooth muscle cells (SMC) layer thickness in acellular and cellularised grafts. Student's t-test was used. *p < 0.05. (D)
Representative images of the immunofluorescent staining of CNN1 in explanted acellular and cellularized grafts (Scale bar = 50 um). (E) Representative images of
the immunofluorescent staining of SMHC in explanted acellular and cellularized grafts (Scale bar = 50 pm). The adjacent left pulmonary artery was used as a control

sample.

suggesting that the implanted cells did not differentiate into these three
lineages (Data in Brief article).

5. Discussion

This study demonstrates for the first time the growth capacity of a
TEVG functionalized with MSC-derived VSMCs after implantation into
the left pulmonary artery of piglets. We used a porcine model because
its cardiovascular system has a similar anatomical structure and phy-
siological characters to humans. Another fundamental feature that
makes swine popular in regenerative medicine is their rapid growing
speed. Considering a Landrace piglet grows into an adult size pig in 6
months, we decided this would be an adequate follow-up duration to
compare cellularized and acellular Cormatrix conduits in an efficacy
study.

Cormatrix consists of decellularized porcine small intestinal sub-
mucosa that has been processed to eliminate all cells while retaining the
structural extracellular matrix proteins. Clinical use of Cormatrix has
been introduced since 2006 for pericardial closure and cardiac tissue
repair with encouraging early results. [31] However, recent evidence
suggest a high rate of intimal hyperplasia formation and stenosis with
Cormatrix implantation in the low-pressure small-diameter vasculature.
[32] Our in vitro study indicates that Cormatrix has supportive prop-
erties and biocompatibility with both human and swine MSCs. In vivo,
the acellular conduit failed to match the contralateral pulmonary ar-
tery, but we could not see neointima formation. We also found that the
endothelialization was incomplete, with only patchy and non-organized
luminal distribution. The cellularized graft outperformed the acellular
graft on all predefined efficacy endpoints. In particular, the cellular
grafts grew in keeping with the animal growth, showing a lower mis-
match with the contralateral untouched pulmonary artery as compared
with the acellular graft, and proper endothelialization.

VSMCs are mature somatic cells with limited in vitro proliferation
ability. They are not only the major cell component of a blood vessel
but also play key roles in maintaining blood vessel function, mor-
phology and restoration. Most of the progress in functional VSMC
production is achieved by using bone marrow-derived MSCs or plur-
ipotent stem cells. However, these competitive solutions are less at-
tractive than expanding MSCs from the PB as we did in the present
study. Indeed, bone marrow harvesting requires an invasive procedure,
while immaturity of pluripotent-derived cells may carry the risk of
cancerous transformation. Autologous/allogeneic MSCs from new-
borns and infants have qualitative and quantitative properties that
make them optimal candidates for regenerative medicine, especially if
the recipient is also a young individual. We demonstrated that these
juvenile characteristics confer PB MSCs with a rapid growth rate en-
abling rapid expansion and graft cellularization given the urgent cor-
rection of severe cardiac defects.

Our unique approach for perinatal MSC maturation into VSMCs
during the graft incubation in a bioreactor offers scope for the prompt
functionalization with specialized cells and also allows the control of
undesired MSC differentiation into calcific or adipogenic elements that
could trigger an in vivo adverse remodelling. Flow cytometry analysis
identified the expression of mesenchymal markers in the source MSC
population while confirming the absence of endothelial and hemato-
poietic markers, which reassures on the purity of the cell product.

Results of our in vivo study have important clinical implications for

the treatment of complex congenital cardiac disease such as pulmonary
atresia with hypoplastic native pulmonary arteries and major aorto-
pulmonary collaterals. Surgical rehabilitation of the pulmonary arteries
is the only option in this clinical scenario using different type of pros-
thetic materials. This has been associated with a high incidence of
conduit-related complications, particularly with smaller conduits, such
as neointimal proliferation, thrombosis, calcification, chronic in-
flammation and lack of growth. For this reason, although surgical in-
terventions have been employed successfully for a number of years, the
long-term prognosis has remained poor with an increased incidence of
complications, repeated open-heart surgical procedures and sudden
death. [33] Our study is the first to demonstrate the efficacy of a de-
cellularized scaffold repopulated with perinatally-harvested cells to
reconstruct a small pulmonary artery (6 mm in diameter) and its ca-
pacity to grow and remodel in an in vivo large animal model. Similar
promising results were recently reported by Syedain et al. who de-
monstrated somatic growth and normal physiological function for
nearly 1 year of a TEVG implanted in a growing lamb model. [28] The
main limitation of their model was that they did not test the small
pulmonary arteries but the main pulmonary artery (16 mm in dia-
meter), the former and not the latter representing the “Achilles heel” of
congenital conditions, such as pulmonary atresia with hypoplastic
pulmonary arteries. Indeed, large diameter vessel substitutes made of
synthetic or biological tissue have been successfully employed by sur-
geons, whereas, such synthetic prostheses generally fail as a substitutes
of medium to small diameter (< 6 mm) vessels. [34] Furthermore,
Syedain et al. had to use subdermal heparin for the duration of their
study in order to reduce the risk of clotting while no such therapy was
required in our small TEVG. [28]

Tunica media is the thickest layer of large blood vessel wall (like
pulmonary artery), mainly composed of VSMCs and elastic fibres,
which regulates the blood flow and pressure as well as provides most
mechanical strength. Regeneration of tunica media is the key part of
large diameter blood vessel tissue engineering. Therefore, the primary
successful endpoint of this study was to construct a live functional tu-
nica media in vitro, which persisted after transplantation of the TEVG in
vivo. This could be the combined result of the initial in vitro cellular-
ization followed by proliferation of donor and recipient VSMCs after
implantation. In contrast, the recruitment of endogenous myogenic
cells was the only operative mechanism allowing the formation of a thin
muscular layer within the unseeded graft wall.

We also observed intriguing phenomena with regard to luminal
endothelialization and formation of muscularized capillaries in the
external layer of the cellularized graft. These effects are likely due to
paracrine stimulation of endothelial cell recruitment from both the
intima layer and the adventitial vasa vasorum of the grafted pulmonary
artery. A conversion of VSMCs into endothelial cells through me-
senchymal endothelial transition cannot be excluded, but this possibi-
lity warrants further investigation.

Immune response is a major challenge for a successful integration of
a TEVG. We observed some inflammatory cells mainly located near the
sutured area, which suggests the TEVG did not trigger a major immune
response by the host. Remarkably, the graft maintained structural in-
tegrity at 6 months post-surgery, which is in line with the observed low
expression of the remodelling marker.
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Fig. 5. Histology of graft explants. Representative histological images of H&E (A), EVG (B) and Russel-Movat pentachrome (C) stainings in explanted acellular and
cellularized grafts (Scale bar = 500 pm).
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DAPI. (C) Representative images of immunostaining of remodelling marker MMP1 in explanted acellular and cellularized grafts (Scale bar = 50 um).
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6. Conclusions and study limitations

The molecular mechanism underlying the observed advantage of
using cellularized-engineered grafts remains to be investigated.
Although the duration of the study covered the complete maturation of
piglets into adult animals, we cannot predict the grafts would remain
functional over the entire life, which is the ultimate clinical outcome. In
addition, one major limitation of our study is that the implanted graft
was placed under normal PA pressure. While that will be the case for
some patients, more severe conditions characterized by high vascular
resistances and pulmonary hypertension may affect the cellularized
graft durability. Further research is needed to confirm the viability of
our approach under such complex situations. Another limitation of our
study is that we could not assess the tensile properties of the graft after
6 months from the implantation because such an assessment would
have precluded the histological analysis. However, the integrity of the
explanted grafts reassured us the graft was strong enough to withstand
physiological blood pressure levels. Furthermore, the pulmonary artery
is just one of the anatomical components to be corrected in complex
CHD. Translation of our approach to the leaflets and RVOT would re-
quire additional implementations, in particular, the use of other spe-
cialized cells. We envision that TEVG-based reconstruction of the pul-
monary artery should be tested alone in a first-in-human clinical trial to
maximize the benefit and minimize the risk of the new procedure and
implemented later with similar bioprosthetic solutions.
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