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Abstract. In the distributed ontology alignment construction problem,
two agents agree upon a meaningful subset of correspondences that map
between their respective ontologies. However, an agent may be tempted
to manipulate the negotiation in favour of a preferred alignment by mis-
representing the weight or confidence of the exchanged correspondences.
Therefore such an agreement can only be meaningful if the agents can be
incentivised to be honest when revealing information. We examine this
problem and model it as a novel mechanism design problem on an edge-
weighted bipartite graph, where each side of the graph represents each
agent’s private entities, and where each agent maintains a private set of
valuations associated with its candidate correspondences. The objective
is to find a matching (i.e. injective or one-to-one correspondences) that
maximises the agents’ social welfare. We study implementations in domi-
nant strategies, and show that they should be solved optimally if truthful
mechanisms are required. A decentralised version of the greedy alloca-
tion algorithm is then studied with a first-price payment rule, proving
tight bounds on the Price of Anarchy and Stability.
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1 Introduction

Within open, distributed environments, agents may differ in the way they model
a domain, and may assume different logical theories or ontologies [13]. This can
result in the existence of numerous models that, despite modelling a similar
domain, are themselves semantically heterogeneous, and thus not interoperable.
These ontological models can be reconciled by computing an alignment : i.e. a set
of correspondences (mappings) stating logical relationships between the entities
in the different ontologies [10]. Two agents may be able to communicate and
thus transact if their individual ontologies cover the same domains, and if a
meaningful alignment can be found.

Various static (single-shot) and dynamic approaches [15, 19] have explored
how agents can propose, and exchange candidate correspondences with the goal
of aligning their respective ontologies. In many cases, agents acquire knowledge
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of different candidate correspondences from a variety of sources, or through
negotiation with other agents. These candidate correspondences may have an
associated weight, which may reflect the utility, significance, or simply the con-
fidence that an agent has in the correspondence. Furthermore, in adversarial
scenarios, the agents may not wish to disclose their private weights, and may lie
when stating their preferences.

As the composition of different subsets of correspondences can result in dif-
ferent alignments, the challenge in negotiating a mutually acceptable alignment
is that of selecting and proposing correspondences that result in a preferred
alignment that satisfies the aims of both agents. Furthermore, some correspon-
dences may map a single entity in one ontology to different entities in other
ontologies (which can compromise the integrity of the resulting logical model),
and therefore the outcome should ideally be injective (i.e. a matching).

In this paper, we take a mechanism design based approach to investigate
and analyse theoretically the problem from a centralised perspective (Dominant
Strategies), where the problem is characterised as a social welfare maximising
matching setting with an additive valuation function. To model this from a mech-
anism design perspective, we use the term “payment” to refer to the agent’s
view of the correspondence’s weight. We show that for a deterministic mecha-
nism with payment, the only truthful mechanism is maximal-in-range (defined
within Section 4), and any truthful mechanism which is not optimal can do no
better than an approximation ratio of 2. Given our results on truthful centralised
mechanisms, either the problem should be solved optimally (though costly) or
strong lower bounds should be found for the approximation ratios of truthful
mechanisms. We have also explored an implementation in Nash Equilibria [25]
to efficiently approximate mechanisms for matching using the greedy allocation
mechanism.

In Section 2, the challenges of selecting correspondences for injective align-
ments are discussed from a centralised and decentralised standpoint. In Section
3, the Ontology Alignment Selection problem is formalised, and examined from a
decentralised (two agent) perspective. The problem is then analysed as a Mecha-
nism Design game with payment in Section 4. A Greedy Algorithm is studied as
a means of finding an approximate Nash Equilibria solution, and its properties
are formally proved (Section 5). This is followed by a discussion and related work
in Section 6, before concluding in Section 7.

2 Background

To date, the ontology alignment community has proposed many diverse ap-
proaches that align ontologies in order to find sets of correspondences between
the ontology pairs.3 However, most approaches rely on the ontologies being fully
shared with some alignment algorithm [10, 27] which attempts to find correspon-
dences between entities. Alignment approaches usually initiate the process of

3 For a comprehensive overview of the different approaches, we refer the reader to the
Ontology Alignment Evaluation Initiative - http://oaei.ontologymatching.org
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identifying correspondences (mappings) by computing a similarity matrix (lex-
ical, structural or a combination of these) between all the entities in the two
ontologies that are being aligned [10, 22]. This produces a number of different
mappings involving the same entities from which an injective (one-to-one) align-
ment needs to be extracted (i.e. correspondences for which to each entity from
the source ontology corresponds only one entity in the target ontology).

e1 v = 1

e2 v = 1+!

e3 v = 1

writer

contributor

editor

author

Fig. 1. Centralised example with
two solutions: {e1, e3} and {e2}.

Typically, most alignment approaches
model the alignment as a bipartite graph,
and thus select an injective alignment align-
ment by finding a matching or independent
edge set in the graph, such that the set of
edges (i.e. correspondences) have no com-
mon vertices (i.e no entity in one ontology is
mapped to more than one entity in the other
ontology, and vice versa). This assumes that
each edge (or correspondence) is weighted
such that the weight represents the quality
or desirability of the correspondence. The two most common methods used to
select a matching are: 1) to find a global optimal solution (which is equivalent to
the Assignment Problem) using algorithms such as the Hungarian method [18];
or to find a sub-optimal, but stable solution using algorithms such as Gale &
Shapley’s Stable Marriage algorithm [14]. Solutions to the assignment problem
identify correspondences that maximise the sum of the weights (i.e. they as-
sume some objective function that maximises social welfare), as opposed to the
similarity of each pair of entities. This is illustrated in Figure 1, where two cor-
respondences are selected by maximising the weights; in this case the weights
associated to the two correspondences {e1, e3} are 1 + 1 = 2. As ontologies can
vary greatly in size, with several in the Bio-Medical domain possessing tens of
thousands of entities [16], techniques such as the Hungarian method can become
computationally costly (O(n3) for its most efficient implementation). Thus, sub-
optimal approximate algorithms such as a greedy matching algorithm [22] or a
variant from the family of Stable Marriage algorithms [14] are used that select
a sub-optimal set of correspondences in those cases when a stable solution is
sufficient. This can result in a different alignment that emphasises the weights of
individual correspondences; given the example in Figure 1, a greedy algorithm
would generate an alignment with a single correspondence, e2, as its weight is
greater than either e1 or e3, resulting in a sub-optimal total weight of 1 + ε.

A similar problem arises in decentralised settings, where agents negotiate
over a set of (partially observable) correspondences to agree upon a mutually
acceptable alignment [3, 6, 9, 15, 19, 26], often based on the aims or goals of the
agents that may own or utilise them. As no single alignment approach can pro-
vide a panacea for all ontology pairs, agents are left with the problem of either:
1) selecting a suitable alignment approach from the plethora that exist; or 2)
assembling alignments from a subset of relevant, candidate correspondences;
for example using an ensemble approach. This latter case occurs if agents have
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access to correspondences from shared repositories [19] or garnered from pre-
vious transactions with other agents. Furthermore, alignments with different
constituent correspondences may be semantically equivalent with respect to one
of the agent’s ontologies and aims (due to the logical theory underlying each
agent’s ontology) but may have a different meaning to another.4 As the agent
may have preferences over the choice of correspondences used (e.g. due to pri-
vacy concerns [12, 23]), agents can have a preference order over the resulting
alignments within the same equivalence class. Hence, for self-interested agents,
this task becomes one of selecting a mutually acceptable subset of preferred
ontological correspondences.

The resulting alignment will typically be dependent on the value that each
agent associates to each correspondence. Whilst this is uncontroversial in cen-
tralised systems, approaches that are decentralised (i.e. where agents may differ
in the value they ascribe to a correspondence) are subject to strategic manip-
ulation; i.e. agents may lie about the true value of a correspondence to ensure
that the final alignment includes their preferred correspondences. The value that
each agent assigns to each correspondence (i.e. its private valuation) relates to
how useful this edge is in resolving a query or achieving a task, and in turn,
the potential payoff the agent can obtain from performing a task. Note that
this is not the same as the confidence the agent has in the edge (based, for ex-
ample from some form of linguistic similarity metric over the concept labels).
For example, an agent may know of two correspondences in the publishing do-
main {writer, editor} and {writer, author}. Both are viable correspondences,
depending on the task (e.g. for a conference proceedings and monograph re-
spectively), but an agent may assign different valuations to each correspondence
based on some preference; for example the agent can increase its payoff by resolv-
ing queries or performing tasks (by providing a service to its peers) pertaining to
monographs. Conversely, it may have a low valuation for other correspondences
for which it has little preference (e.g. {writer, publisher}). However, within a
service landscape where several agents (providing services) may compete to per-
form a task for a requesting agent, they may not wish to disclose the true value
of this payoff. This can potentially lead to agents strategically manipulating the
combined value of sets of correspondences, in order to maximise their individ-
ual payoffs; potentially resulting in semantically compromised correspondences
being selected, which may then prevent the query or task from successfully com-
pleting. Thus, in an ideal setting, the agents should be incentivised to adopt
strategies that result in alignments that benefit both agents; i.e. find solutions
that lie within a Nash Equilibrium [25].

3 The Decentralised Alignment Construction Problem

We consider the Alignment Construction Problem given the following setting in
which there are two agents i ∈ {L,R} (the left agent and right agent), where each

4 A classic example of terminological difference exists with the term “football”, which
has a different meaning depending on whether the reader is from the US or the UK.
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Ontology for Agent L

Publication

Proofreader

Writer

Contributor

Ontology for Agent R
Monograph

 Editor 
Author

Periodical

Publisher

Manuscript

Fig. 2. Ontology fragments OL (left) and OR (right). The solid line denotes the isa
class hierarchy relation, whereas the dashed line indicates property relations between
classes (note that property names are not given).

agent i possesses a private ontology Oi that includes the named concepts (i.e.
entities)5 NC

i ∈ Oi to be aligned. The alignment is modelled as an edge-weighted
bipartite graph G = (U ∪V,E), where the vertices of U and V correspond to the
entities in the agents’ individual ontologies U = NC

L and V = NC
R respectively,

and the edges e ∈ E correspond to the candidate correspondences. A matching
M is a subset of E such that e∩ e′ = ∅ for all e, e′ ∈M with e 6= e′; i.e. no two
edges have a common vertex. Each agent i ∈ {L,R} has a non-negative valuation
function for different matchings M , denoted vi(M), where vi : M(G) → R+,
which is additive; i.e. v(S) + v(T ) = v(S ∪ T ) such that S ∩ T = ∅ for all
S, T ⊆M , and M(G) is the set of all matchings in a graph G. Each agent i also
has a valuation function vi : E → R+ to represent the value vi(e) it privately
ascribes to the edge e. The combined value for an edge e is therefore given as
v(e) = vL(e)+vR(e). Note that vi(M) =

∑
e∈M vi(e) for every agent i ∈ {L,R},

and v(M) =
∑
i∈{L,R} vi(M) is the combined value for the matching M .

The goal is to establish an alignment which is equivalent to a matching
M that maximises

∑
e∈M v(e); i.e find a set of edges whose sum of weight is

maximal. This problem, known as the Assignment Problem, is typically solved
optimally using Kuhn’s Hungarian Algorithm[18]. In a distributed negotiation
setting, the valuation function vi can be regarded as the agents’ true valuation,
or type that it attributes to each matching. Furthermore, we use v to represent
the combined type profile for both agents, such that v = {vL, vR}, where vi is
the type profile for agent i, and similarly, b denotes the combined bid profile for
both agents (see Section 3.1 below for details on bids), such that b = {bL, bR},
where bi is the bid profile for agent i. We will also introduce the following useful
notation: bei = bi(e) and vei = vi(e) for any i ∈ {L,R} and e ∈ E.

Consider the Bookseller scenario illustrated in Figure 2 for agents L and R,
where each agent possesses a simple ontology fragment within the publishing
domain. Agent L models the class entity Publication in OL with three property
relations (unnamed in this example) to three other entities: Proofreader, Writer
and Contributor. The other agent models the same domain but with entities from

5 We follow the standard practice of restricting ourselves to correspondences between
named concepts within the respective ontologies [10], and omit the discussion of the
property relations between entities within each ontology.



6 N. Zhi et al.

Correspondence e vL(e) vR(e) v(e)

〈Proofreader,Publisher〉 e1 3 3 6
〈Proofreader,Editor〉 e2 5 6 11
〈Writer,Editor〉 e3 4 4 8
〈Writer,Author〉 e4 5 5 10

〈Contributor,Author〉 e5 3 6 9

Publisher

Editor

AuthorContributor

Writer

Proofreader
e1

e2
e3

e4

e5

3

4

3

5

5

3

4 6

6 5

Fig. 3. The individual weights for different correspondences (left) that map entities
from OL to those in OR. The combined edges v(e) appear in the final column. The result-
ing graph (right) has two possible matchings: an optimal matching Mopt = {e1, e3, e5}
where v(Mopt) = 23, and a stable matching Mstable = {e2, e4}, where v(Mstable) = 21.

OR. The class Manuscript has two subclasses in particular: Monographs (i.e. a
specialist work by a single or small number of authors) and Periodicals which are
edited volumes containing numerous articles (written by different authors). Both
subclasses have properties to the concepts Author and Editor (inherited from
Manuscript), whereas Periodical also has a property to the concept Publisher.
The table in Figure 3 (left) lists candidate correspondences between entities in
L’s ontology, and those in the ontologies of agents R, complete with each agents
private valuation function for each correspondence e, and a label ei.

3.1 Alignment Construction with Payment

To model this problem from a mechanism design perspective (or a game, where
two agents cooperate with each other to find a resulting alignment), we con-
sider the notion of agents declaring a value for each correspondence. As this
value could differ from their private value (because each agent may be behaving
strategically to manipulate the outcome), we refer to the declarations as bids.
For this reason, we consider a mechanism with payments. We define a direct
revelation mechanism M(A,P), which is composed of an allocation rule A to
determine the outcome of the mechanism (i.e. this determines which of the cor-
respondences are selected for the resulting alignment), and a payment scheme
P which assigns a vector of payments to each declared valuation profile. The
mechanism proceeds by eliciting a bid profile bi from each agent i, and then
applies the allocation and payment rules to the combined bid profiles to obtain
an outcome and payment for each agent. As an agent may not want to reveal its
type (i.e. its true value), we assume that b does not need to be equal to v.

The utility ui(b) for agent i given a bid profile b = (bL, bR) and mecha-
nism M is based on the allocation rule A and the payment scheme P over the
outcome of A(v) (i.e. a matching or allocated set M), and can be written as
ui(A(b)) = vi(A(b))−Pi(b). For an implementation in Nash Equilibria (see Sec-
tion 5), we assume a first-price payment rule, such that an agent is charged
its declared bid bi(M) for any allocated set M . Our objective function max-
imises the social welfare SW given both agents’ bids (generating either optimal
or approximately optimal solutions); i.e. SW (A(b), v) =

∑
e∈A(b) v(e). A (de-

terministic) mechanism M is called truthful in dominant strategies or incentive
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compatible if, for any agent i ∈ {L,R}, we have ui(A(vi, b−i)) ≥ ui(A(bi, b−i))
for any bid profile bi of agent i and any bid profiles b−i of the other agents.6

3.2 Nash Equilibria

Different types of Nash Equilibria may exist, depending on the strategy adopted
by the agents. The bid profile b forms a Pure Nash equilibrium if, for both agents,
there exists no other bid profile b′i achieving a higher utility, i.e., ∀b′i, ui(bi, b−i) ≥
ui(b

′
i, b−i). As no agent can obtain a higher utility by deviating from b; they can

do no better than to select alignments that result in a Nash Equilibrium [25].
We also permit a randomised strategy function which can result in a Mixed

Nash equilibrium. Given the probability distribution ω1, · · · , ωn over the decla-
rations, and any function f over the space of declaration profiles, we can state
Eb∼ω[f(b)] for the expected value of f over declarations chosen according to the
product distribution ω = ω1× · · · ×ωn. Thus, ω is a Mixed Nash Equilibrium if,
for any agent and distribution ω′i, we have: Eb∼ω[ui(b)] ≥ Eb∼(ω′i,ω−i)[ui(b)].

3.3 The Prices of Stability and Anarchy

As our aim is to maximise the social welfare, we state that the allocation algo-
rithm A is a c-approximation algorithm if we have SW (A(v), v) ≥ 1

cSWopt(v),
where we denote SW (A(v), v) to represent the social welfare of the matching re-
sulting from the allocation algorithm A, and SWopt(v) for maxM∈M(G) SW (M, v)
to represent the value of an optimal matching (and hence an optimal alignment)
that maximises social welfare given the declaration vector v.

The trade-off between approximate (i.e. non-optimal) solutions and the op-
timal solution when identifying a matching is quantified as the Price of Anarchy
[2]; i.e the ratio of the maximal possible social welfare and the social welfare
emerging from an approximate solution. It is important to characterise this ra-
tio as it provides a bound on how close an approximate algorithm can be to
the optimal solution. The Price of Anarchy of the mechanism M(A,P) in mixed
(and pure, respectively) strategies can thus be defined as:

PoAmixed = sup
v,ω

SWopt(v)

Eb∼ω[SW (A(b), v)]

PoApure = sup
v,b

SWopt(v)

SW (A(b), v)

where the supremum is over all valuations v and all mixed Nash Equilibria
ω (likewise, all pure Nash Equilibria b) for v. Here, A(ω) denotes a random
matching with respect to ω.

6 The notion of a bid profile across a set of agents that omits the bid of agent i,
represented as b−i originates from the definition of the Vickrey Clarke Groves (VCG)
mechanism [25], used extensively in mechanism design.
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The Price of Stability is the ratio of the best stable matching with respect
to the optimal matching. A bipartite graph may generate a number of sub-
optimal but stable solutions; for example the classic Stable Marriage algorithm
[14] typically generated matchings where the initial solution was optimal for one
agent and yet pessimal for the other. The Price of Stability is important from
a Mechanism Design perspective, as a mechanism (such as that discussion in
Section 5) may compute the best stable solution and suggest it to the agents,
who would implement this solution since it is stable. Thus, the price of stability
captures this notion of optimisation subject to the stability constraint [2]. The
price of stability for pure strategy games defined by mechanism M(A,P) is the
ratio between the best objective function value of one of its equilibria and that
of the optimum:

PoSpure = inf
v,b

SWopt(v)

SW (A(b), v)

where the infimum is over all type valuations v, and all pure Nash equilibria b.

4 Analysis of Alignment Selection with Payment

In this setting, we model the scenario as if both agents have to pay money to
establish a matching (or ontological alignment), where the total cost is based
on the bids declared for each correspondence. An agent may be incentivised to
falsely lower the value of a correspondence, although this could result in it being
rejected. Conversely, it may artificially inflate the value of the correspondence in
the hope of it being selected; this however could result in a weaker, or inaccurate
alignment. The aim here is to devise a mechanism that incentivises agents to be
truthful when proposing correspondences, and to understand its properties.

The first observation is that this problem can be solved optimally using the
Vickrey Clarke Groves (VCG) mechanism with Clarke payment [25]; which has
the property that bidders can do no better than to bid their true valuations.
In this analysis, we show that it is not possible to have a faster, non-optimal,
approximate and truthful mechanism for our problem. This can be proved using
the following lemma from classic mechanism design theory [25]:

Lemma 1. An allocation rule of mechanism A satisfies weak monotonicity if
for all i and all v−i, A(vi, v−i) = a 6= b = A(v′i, v−i) implies that vi(a)− vi(b) ≥
v′i(a) − v′i(b). If a mechanism M(A,P) is incentive compatible, then A satisfies
weak monotonicity [25].

Fig. 4. Disjoint Edges

The aim of Theorem 1 (below) is to determine if there
is a mechanism that is not equivalent to VCG, yet
is truthful, and to examine the quality of its solu-
tion. This theorem states that if any mechanism is not
VCG, then: 1) it is not truthful; or 2) it is truthful but
cannot achieve a solution whose approximation factor
is smaller than 2.



Truthful Mechanisms for Correspondence Selection 9

Theorem 1. For the alignment problem with payment, any mechanism which
does not adopt an optimal solution when agents declare their true valuations is
either non-truthful, or if truthful, the non-optimal solution has an approximation
ratio of at least 2.

Proof. Let M(A,P) be a mechanism, and recall that A(v) denotes the outcome
generated by M, when the input is a bid v (which may not be the true valuation).

Consider a bipartite graph of arbitrary size, where for two positive integers
`, k, let the bipartite graph G = (U ∪ V,E) have ` nodes on the left side of
bipartite graph (|U | = `) and k nodes on the right side (|V | = k). We assume
the existence of two special edges e1, e2 ∈ E that are disjoint (i.e e1 ∩ e2 = ∅),
such that their true valuations are vL(e1) = vL(e2) = 0 and vR(e1) = vR(e2) = ω
(as illustrated in Figure 4). As the valuations of all other edges in G are zero
for both agents (and thus do not appear in the Figure), the optimal solution
should contain both edges e1 and e2. As we only consider the problem from the
perspective of the right agent in the discussion below, we omit the agent index
when referring to valuations for simplicity.

Consider some mechanism M(A,P) that generates a non-optimal solution
which contains at most one of these edges. If neither e1 and e2 appear within
the solution, the approximation ratio will be unbounded. Therefore, we assume
that solution includes one of these two edges; w.l.o.g., assume that M will accept
e1 ∈ A(v) when the right agent declares its true valuation v. If the right agent
deviates from its valuation v to some other valuation v′, the mechanism has two
options:

Case-1. The mechanism changes the current outcome to include both edges,
such that original solution, A(v) ⊇ {e1}, is replaced with the solution,
A(v′) ⊇ {e1, e2}. If we make the alternative valuation v′(e1) = v′(e2) =
0, this implies that v′(A(v′)) ≤ v′(A(v)). We also know that v(A(v)) <
v(A(v′)). By adding the left and right hand sides of these two inequalities,
we obtain:

v′(A(v′)) + v(A(v)) < v′(A(v)) + v(A(v′))

v(A(v))− v(A(v′)) < v′(A(v))− v′(A(v′))

As this violates the weak monotonicity condition in Lemma 1, it follows that
M is not a truthful mechanism.

Case-2. The outcome is not changed, i.e., A(v′) = A(v) when the agent de-
viates its valuation to v′. The approximation ratio (i.e the ratio of the ap-

proximate optimal solution to the optimal one) is at least v(e1)+v(e2)
v(e1)

. Since

we consider the worst case, the ratio is at least 2 (i.e. the optimal solution
is guaranteed to be within a factor of 2 of the returned solution).

If the outcome changes from e1 ∈ A(v) to e2 ∈ A(v′) and e1 6∈ A(v′), then this
case is symmetric to Case 2, and thus will also lead to a ratio of at least 2. Fur-
thermore, if the right agent has only one non-zero value edge, and the valuation
on the remaining edges is 0, then the approximation ratio is unbounded, and all
such cases also lead to the lower bound on the approximation ratio. ut
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The motivation for the next theorem (Theorem 2) is that if a mechanism is not
VCG but is truthful, then it must be maximal-in-range [8], defined below:

Definition 1. A mechanism is called maximal in range (MIR) if there exists
a fixed subset R of all allocations (the range of the mechanism), such that for
every possible input v, the mechanism outputs the allocation that maximizes the
social welfare in R with respect to v. [8]

If a mechanism selects an edge such that the resulting solution (or alloca-
tion) is not one that is maximal with respect to the bids, then an agent will be
incentivised to declare a lower (untruthful) valuation for an edge that they want
in the solution, as this dishonest strategy will result in a higher utility than one
that relies on being honest for the same solution.

Theorem 2. For the alignment problem with payment, any deterministic mech-
anism which does not adopt an optimal solution when agents declare their true
valuation is either non-truthful, or is a maximal-in-range mechanism.

Proof. Consider a bipartite graph G = (U ∪V,E) which contains ` nodes on the
left side (|U | = `), and a single node on the right (|V | = 1), and where there
are ` edges, such that each node on the left is connected to the single node on
the right. Thus, any solution will contain only a single edge. Furthermore, we
assume that the optimal solution is {e1}. If a deterministic mechanism A does
not adopt the optimal solution; then the solution generated by A will be a single
edge in {e2, · · · e`}, where the optimal solution is e2 (i.e. v(e1) > v(e2)). If the
agents deviate from bidding their true value, the mechanism has three options:

Case-1. The solution adopted by mechanism A does not change as a result of
the changed bid. Thus, if A is truthful then it is equivalent to a maximal-
in-range mechanism, whose range is R = {e2}.

Case-2. The solution adopted by mechanism A changes to {e1} (the optional
solution for E) for some bid v′: A(v′) = {e1}. Therefore, given Lemma 1,
the mechanism A cannot be truthful.
To show this, suppose w.l.o.g. that the mechanism adopts e2 for the bid v:
A(v) = {e2}, and that one agent deviates from its valuation v to v′ such
that v′(e1) < v′(e2). Given that we have v(e1) > v(e2); by adding the left
and right hand sides of these two inequalities, we have:

v(e2)− v(e1) < v′(e2)− v′(e1)

As we have A(v) = {e2} and A(v′) = {e1}, this contradicts the monotonicity
condition from lemma 1, which states that: v(e2)− v(e1) ≥ v′(e2)− v′(e1).

Case-3. The solution adopted by mechanism A changes to a single edge from
{e3, · · · , el}. In such a case, by Lemma 1, the same argument for Case-2 also
applies for this case where the mechanism is not truthful as it violates the
monotonicity condition. ut

By combining the two theorems 1 and 2, we have the following theorem:
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Fig. 5. Edge weights for the lower bound Price of Anarchy example

Theorem 3. For the alignment problem with payment, the only truthful mech-
anisms are those that are maximal-in-range with an approximation ratio of at
least 2.

5 Nash equilibria implementation

Having analysed the Alignment Construction problem from a mechanism
design perspective, we now explore the properties of a decentralised algorithm
whereby two agents propose bids on candidate correspondences (not necessarily
honestly) in order the determine a final alignment. In this section we explore
a computationally efficient, yet sub-optimal setting using a first price greedy
matching algorithm. This is a decentralised variant of the NaiveDescending al-
gorithm given by Meilicke & Stuckenschmidt [22], and is presented in Algorithm
1. In this setting, the agents provide their declarations to the mechanism, which
computes an outcome. The agents then measure their utility by subtracting their
true valuation of this outcome by the payment. The payment scheme used mod-
els the notion that each agent would pay its own bid, i.e., pi = bi(A(b)). The next
two theorems provide a characterisation of the Price of Anarchy for a first-price
greedy matching game. The proofs provide simple instances of the mechanism
(from a game perspective) to give some intuition of pure Nash Equilibria.

Algorithm 1 Greedy algorithm

Require: Bipartite graph G = (V ∪ U,E), bL, bR are bids of the left & right agent.
Ensure: A matching M

Let M = ∅
if E 6= ∅ then

Find the edge e ∈ E that maximises beL + beR
Let M := M ∪ {e}
Remove from E edge e and edges incident to edge e

end if
M is the outcome
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Theorem 4. The price of anarchy (PoA) of the first price greedy matching game
is at least 4.

Proof. Consider a bipartite graph (Figure 5a), where the valuation for e2 and e6
are the same for both agents (ve2L = ve6L = ve2R = ve6R = 1); the valuation assigned
to e4 by the left agent is ve4L = 1 + ε (where ε is a small positive number),
whilst the right agent assigns this the value 0, and the remaining edges (i.e.
e1, e3, e5, e7) have the valuation of 0 for both agents. Furthermore, assume a bid
strategy profile (Figure 5b) for the left agent: be4L = 1 + ε, be3L = be7L = 1; for the
right agent it is: be1R = be5R = 1; and bids on the remaining edges being 0. Denote
this strategy profile for both agents as b.

The greedy algorithm’s solution given this profile b is {e4} (the sum of bids
for e4 is 1 + ε, whereas the sum for each of the other edges is either 0 or 1). The
utility for the left agent given this solution is 0 (it would pay 1 + ε because of its
successful bid, but it’s valuation is 1 + ε), whereas the utility for the right agent
is 0, as it’s bid and valuation for this edge are both 0.

The left agent could not unilaterally increase its utility; only one other so-
lution {e2, e6} has a positive utility, but to obtain this, new bids are necessary.
If it chose two new bids (i.e. b̃e2L and b̃e6L ) on these edges such that b̃e2L > be1R ,
which would result in the combined bids on e2 being greater than that on e1
(i.e. v(e2) > v(e1)) and b̃e6L > be5R (such that v(e6) > v(e5)), this solution would
change to {e2, e6} resulting in a negative utility for the left agent (Figure 5c).
This is because its combined bid would be 2 + 4ε, whereas its payoff would be
2. The left agent will also not decrease its bid on e4, as the solution would be
changed to another matching that is not {e2, e6}.

The right agent’s behaviour is the same as the left, as this scenario is sym-
metric. It only has a positive valuation on e2 and e6. By changing its bids for
either edge, a new bid (e.g. b̃e2R > 1 + 2ε) would be required, thus again reducing
the utility. Therefore in this case we have a Nash equilibrium, as neither agent
can do better than adopt the current strategy.

The optimal solution is {e2, e6}, due to the joint valuation of 1 + 1 = 2 for
e2, and the same for e6, resulting in a total valuation of 4 for that solution. As
stated above, the greedy algorithm instead finds the solution {e4}, resulting in a
total valuation of 1 + ε. Therefore, the Price of Anarchy is 4

1+ε , or at least 4. ut

Theorem 4 provides a lower bound on the price of anarchy for our mechanism.
For the upper bound (Theorem 5), we first need the following two lemmas:

Lemma 2. Suppose that the current bid profile (bL, bR) produces outcome M
using a greedy mechanism. The necessary condition for (bL, bR) to be a Nash
equilibrium is that bML ≤ vML and bMR ≤ vMR .

Proof. Assume that for outcome M , some agent’s bid satisfies bMi > vMi (i.e.
the bid is greater than the valuation). The utility would then be ui(bL, bR) =
vMi − bMi < 0; i.e. it would be negative. Therefore, agent i would change its bid
to a new one which increases its utility to a value that is at least 0. ut
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Lemma 3. Suppose that the current bid profile (bL, bR) produces an outcome
M using a greedy mechanism, and bML ≤ vML , bMR ≤ vMR . There exists a bid

for one agent, for example the left agent, b̃L, that satisfies the condition b̃M
′

L <

2(vMR + vML ) + ε. This would result in b̃L changing the outcome to M ′.

Proof. Let {e1, · · · , ek} be the set of edges in a matching M , indexed in decreas-
ing order with respect to beL + beR. Denote e′ as an edge in a different outcome

M ′. We assign each new bid b̃e
′

L by the following procedure: ∀j ∈ {1, . . . , k} (in
this order), if the left side vertex of edge ej has an adjacent edge e′ in M ′, then
let the sum of the new bid (left) and the corresponding original bid (right) for
M ′ take a slightly higher value than the corresponding edge bids for ej in the

outcome M ; i.e. b̃e
′

L + be
′

R > b
ej
R + b

ej
L . Do the same for the right side vertex

adjacent edge, i.e., for right side vertex adjacent edge e′ ∈M ′ of ej , let b̃e
′

L + be
′

R

take a slightly higher value than b
ej
R + b

ej
L .

At any step of this procedure, if we need to reassign the bid be
′

L for some
edge e′, then the bid of the larger value is retained (in fact, the declaration
will remain unchanged as this procedure is conducted in decreasing order with
respect to beL+ beR). This distribution of bids is valid, as it can be done such that

b̃M
′

L > 2(bMR + bML ), which always results in a change of outcome to M ′. It can

also be easily argued that b̃M
′

L < 2(vMR + vML ) + ε. ut

Theorem 5. The price of anarchy (PoA) of a first price greedy matching game
is at most 4.

Proof. Let M be any matching whose total valuation is strictly smaller than
a quarter of the optimum, i.e., vML + vMR < 1

4Opt. At least one of the follow-
ing statements will hold on some other outcome M ′ given a different profile of
valuations (either for the left or right agents respectively): ∃M ′vM ′L ≥ 1

2Opt or

∃M ′vM ′R ≥ 1
2Opt. If M ′ is the optimal solution, then this will result in a contra-

diction. As they are symmetric, we assume the first statement is true. Assume
b = (bL, bR) is a fixed bid profile. If the outcome under b is M , then the agents
will either have positive utilities; i.e. bML ≤ vML and bMR ≤ vMR , or negative ones.

We want to show that the left agent would be incentivised to bid for the
outcome M ′. Let b̃M

′

L be the bid that can achieve this change (i.e. from M

to M ′). Lemma 3 states that there exists some bid b̃L that will achieve this
change to outcome M ′. Thus, we want to show that the utility of M ′ for the
left agent is greater than for M ; i.e. vM

′

L − b̃M ′L > vML − bML . By Lemma 3, since

b̃M
′

L < 2(vMR + bML ) + ε, we have:

vM
′

L − b̃M
′

L ≥ vM
′

L − 2(vMR + bML )− ε

Since vM
′

L ≥ 1
2Opt and vML + vMR < 1

4Opt, we can show that:

vM
′

L − 2(vMR + bML )− ε ≥ vM
′

L − (vMR + vML )− vMR − bML
vM
′

L − (vMR + vML )− vMR − bML > vML − bML
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As ε can be arbitrarily small, it can be removed. The last inequality shows
that the left agent can change its bid from bL to b̃L and get M ′ with a higher
utility. This completes the argument as it shows that b cannot result in a Nash
equilibrium. ut

Theorem 6. The price of anarchy (PoA) of the first price greedy matching game
is precisely 4.

e1

e2

e4
e5

e3

0

1

1+3!
0

1 0

0

0

1+!

1+!

Fig. 6. Edge valuations for
the PoS lower bound

This theorem is the logical consequence of the theo-
rems 4 and 5 that provide an upper and lower bound
for the Price of Anarchy, so requires no further proof.

To conclude our analysis of the first-price greedy
matching game, we investigate a lower bound for the
Price of Stability through Theorem 7 (below).

Theorem 7. The price of stability (PoS) of a first
price greedy matching game is at least 2.

Proof. Consider a bipartite graph (Figure 6), where
the valuation assignment for both agents are: ve1L =
ve5L = 1, ve2R = ve4R = 1 + ε, ve3L = 1 + 3ε. The valuations on the remaining edges
are 0 for both agents. The mechanism has three options:

Case-1. Suppose the outcome of the mechanism is {e1, e5}. The current bid
cannot result in a Nash equilibrium, as the right agent would improve its
utility by changing the current outcome to {e2, e4}, when b̃e2R > be1L , b̃e4R > be5L .

Case-2. Suppose the current outcome is {e2, e4}. It also does not admit any
Nash equilibrium. If max{be2R , b

e4
R } < ve3L , then the left agent could improve

its utility by changing to e3, when b̃e3R > max{be2R , b
e4
R }. If max{be2R , b

e4
R } >

ve3L , then let be2R be a smaller bid, such that the left agent would then bid

b̃e1L > be2R changing the outcome to {e1, e4}. This case is symmetric.
Case-3. Suppose the current outcome is {e1, e4} (or {e2, e5}). The right agent

would bid b̃e2R > be1L to improve its utility, and change the outcome to {e2, e4}.

To complete the proof, we provide a Nash equilibrium: be1L = be5L = 1, be2R =
be4R = 1 + ε, be3L = 1 + 2ε. We can see in such a bid profile, the outcome would
be e3, and it is easy to check that no agent can increase its utility. ut

It is usual in the literature to study the Price of Anarchy even if there might
be instances without pure Nash equilibria [21]. Thus, Theorem 5 can be read
as: if there exists pure Nash equilibria, then their social welfare is at least 25%
of the optimum. We can also show that mixed Nash equilibria always exist, by
transforming the problem into a new one in which each agent only has a finite
number of strategies, where a strategy is for bids on edges. We define a small
ε > 0 as the minimum increment that any two bids can differ by. This leads to a
finite number of strategies of any agent i as i will not bid more than

∑
e∈E vi(e).

In particular, bei ∈ {0, ε, 2ε, · · · ,
∑
e∈E vi(e)}.



Truthful Mechanisms for Correspondence Selection 15

Corollary 1. The mixed Nash equilibrium exists for all instances of the discre-
tised first price greedy matching game.

This corollary is deduced directly from Nash’s theorem [25] which proves that if
agents can use mixed strategies, then every game with a finite number of players
in which each player can choose from finitely many pure strategies has at least
one mixed Nash equilibrium.

Corollary 2. The price of anarchy of the discretised first price greedy matching
game for mixed strategy is 4.

This proof can be found by extending that for Theorem 7.

6 Related Work

Approaches for resolving semantic heterogeneity have traditionally been cen-
tralised (i.e. with full access to the ontologies), resulting in the formation of a
weighted bipartite graph representing the possible correspondences [22, 27], and
a matching (alignment) found by either maximising social welfare or utilising
a greedy search. However, these approaches were generally task agnostic, and
thus varied in the way they utilised the weights. The lack of strategy or means
to restrict what was revealed (due to knowledge encoded within an ontology
being confidential or commercially sensitive) [12, 26] has resulted in an increased
interest in decentralised, strategic approaches. Matchings have also been found
through the use of Argumentation, based on private preferences over the corre-
spondence properties (e.g., whether their construction was based on structural
or linguistic similarities) [19], and public weights. More recently, dialogical ap-
proaches have been used to selectively exchange correspondences based on pri-
vate weights for each agent [26]. Although polynomial approaches were used to
determine the matching, the selection of revelations at each step was naive, and
the resulting alignment failed represent the agents initial goals, whilst revealing
the agents’ private weights.

Several studies have explored the problem of finding matchings from a mech-
anism design perspective, and have studied deterministic and randomise approx-
imate mechanisms for bipartite matching problems where agents have one-sided
preferences [17, 1]. Furthermore, there are a number of studies of truthful ap-
proximate mechanisms for combinatorial auctions, e.g., [5, 8, 20, 24], and various
mechanisms [7, 11, 21] have studied Bayesian Nash Equilibrium settings. In [7],
the problem of selling m items to n selfish bidders with combinatorial prefer-
ences, in m independent second-price auctions was studied. The authors showed
that given submodular valuation functions, every Bayesian Nash equilibrium of
the resulting game provided a 2-approximation to the optimal social welfare.
The efficiency of Bayesian Nash equilibrium outcomes of simultaneous first- and
second-price auctions was also studied [11], where bidders had complement-free
(a.k.a. subadditive) valuations. They showed that the expected social welfare of
any Bayesian Nash Equilibrium was at least 1

2 of the optimal social welfare in the
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case of first-price auctions, and at least 1
4 in the case of second-price auctions.

Lucier and Borodin [21] studied the general setting of combinatorial actions and
proved that the Bayesian Price of Anarchy of the greedy algorithm is constant. A
study of simultaneous second-price auctions [4] showed that the price of anarchy
for pure Nash equilibrium was 2, and focused on Bayesian Nash equilibrium.

7 Conclusions

In this paper, we present, from a Mechanism Design perspective, the decen-
tralised Ontology Alignment negotiation problem, whereby correspondences are
selected for inclusion in an alignment (between two ontologies), and we provide
a theoretical analysis of its properties. By demonstrating that different align-
ments can be generated depending on the selection process (e.g. by determining
an optimal or sub-optimal solution), we characterise the problem analytically
as a Mechanism Design problem, characterised as a Social Welfare maximising
matching setting, where the valuation function is additive. We provide a com-
plete picture of the complexity of this mechanism by showing that when coupled
with a first-price payment scheme, it implements Nash equilibria which are very
close (within a factor of 4) to the optimal matching. Furthermore, the Price of
Anarchy of this mechanism is characterised completely and shown to be pre-
cisely 4 (this bound also holds for Mixed Nash equilibria), and when a pure
Nash Equilibrium exists, we show that the Price of Stability is at least 2. Thus,
decentralised agents can reach a Nash equilibrium, which produces a solution
close to optimum within a factor of 4.

This analysis demonstrates that the type of alignment generated when se-
lecting correspondences is sensitive to the algorithm used. However, by ensuring
that the mechanism used is truth incentive, this ensures that agents will al-
ways do better by adopting strategies that accurately report the weights of their
correspondences in decentralised settings.
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