
SDN-based SYN Proxy - A solution
to enhance performance of attack
mitigation under TCP SYN flood

Dang Van Tuyen1, Truong Thu Huong1, Nguyen Huu Thanh1,
Pham Ngoc Nam1, Nguyen Ngoc Thanh1 and Alan Marshall2

1School of Electronics & Telecommunications, Hanoi University of Science and Technology,
Hanoi, Vietnam

2Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool,
United Kingdom

Email: tuyen.dangvan-set@hust.edu.vn,

huong.truongthu@hust.edu.vn,thanh.nguyenhuu@hust.edu.vn, nam.phamngoc@hust.edu.vn,

20124984@student.hust.edu.vn, alan.marshall@liverpool.ac.uk

Recently, TCP SYN flood has been the most common and serious type of
Distributed Denial of Service (DDoS) attack that causes outages of server resource
of Internet Service Providers. In another aspect, Software Defined Networking
(SDN) has emerged as a new networking paradigm to increase network agility
and programmability. SDN is also a promising architecture to deal with the
network security issue where we can flexibly change security rules and control
incoming flows. In this article, we design an Openflow/SDN network remedy
to combat specifically TCP SYN flood. We show security threats for the SDN
architecture and exploit SDN capabilities and features to design a SDN-based
SYN Proxy (SSP) paradigm to mitigate such TCP SYN threats. Our SSP is
proved to be a network-based solution to protect application servers in terms
of decreasing number of Half-Open Connections at an application server and
increasing probability of successful establishment for a TCP flow connection under
TCP SYN Flood attack. Using SSP to support application servers is shown
to outperform the case where the servers adopt only the protection scheme of
Microsoft Windows server reference model without utilizing SSP. SSP also shows
that it can reduce the time a flow entry occupies the switch resource by 94%
in comparison with the Avant-Guard solution. In addition, SSP improves the
successful connection rate and average connection retrieval time in comparison

with the standard Openflow solution.

Keywords: OpenFlow; SDN; DDoS attack; TCP SYN flood; SYN Proxy

1. INTRODUCTION

Denial of Service (DoS) and Distributed Denial of
Service (DDoS)[1, 2] attacks continue to be complex
and unpredictable, making them more challenging for
companies to mitigate. According to Verisign [3], the
highest intensity flood attack observed in Q3 2016 was
a TCP SYN flood that peaked at approximately 60
Gbps and 150 Mbps. This flood attack is one of the
highest packets per second attacks ever observed by
Verisign. TCP SYN flood [4] is a type of DoS attack
that relies on abusing the TCP three-way handshake
[5] of a TCP connection establishment process in
order to consume resources on the targeted server and
render it unresponsive. Typically, a client sends a
SYN packet to an open port on a server asking for
a TCP connection. The server then acknowledges

the connection by sending a SYN-ACK packet back
to the client, storing the connection information in a
Transmission Control Block (TCB) and maintaining a
state called Half-Open Connection (HOC). The client
then responds to the server with an ACK packet to
establish the connection. This process is commonly
known as a “three-way handshake”. During a SYN
flood attack, the server is bombarded with huge
amount of SYN requests often using spoofed source IP
addresses. The server, being unaware of the attack,
creates a lot of HOCs and the machine’s resources
are quickly exhausted due to occupation by useless
TCBs before these HOCs can time out. The resource
exhaustion not only prevents the target machine from
serving legitimate connections from a benign Client, but
also has the following negative effects: (1) occupying the

The Computer Journal, Vol. ??, No. ??, ????



2 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

server resource, (2) making flow-state-based security
schemes ineffective since managing useless flows (i.e.
flows of having no second packet until timeout), (3)
searching in TCB table will take longer. Moreover, the
victim will not be able to identify which SYN packets
belong to legitimate or malicious connections. Based
on the aforementioned facts, TCP SYN Flood is one
of the most difficult attack types to be prevented and
defensed. Various defense schemes have been proposed
to mitigate its impact on systems [6, 7].

In the aspect of new networking paradigm, Software-
Defined Networking (SDN) [8] is a new computer
networking approach that decouples the control plane,
which modifies the behavior of network devices from
the data plane (underlying system), which forwards
traffic to the selected destinations. This allows network
administrators to manage network services through
abstraction of higher-level functionality more flexibly
than the traditional network architecture. Within
this context, Openflow [9] is considered one of the
first SDN standard that defines a communication
protocol to directly access to the forwarding layers of
network devices such as switches or routers in a SDN
architecture. Openflow is a potential candidate for
future large-scale network deployment. In fact, SDN
was born to bring the flexible networking capability for
the system in order to improve the system performance.
It then becomes a promising paradigm for the domain
of network security as well. However, besides its
advantages of a flexible networking paradigm and
flexible capacity of network security control, from
the network security perspective, Openflow protocol
still exposes some weakness, for example flow entries
remaining in any Openflow Switch (OFS) based on the
time out mechanism cause wasted resource and this
property makes OFS a new target for DDoS attacks.
To apply the SDN mechanisms, applications of network
management and security install more and more flow
entries into OFSs. Therefore, when a SDN system is
under attack such as TCP SYN Flood, the number of
flow entries may increase beyond the capacity and the
OFS itself can become a victim [10].

Although there have been several SDN-based schemes
proposed to prevent TCP SYN flood such as Avant-
Guard [11], LineSwitch [12], these solutions basically
add on a packet-processing module at OFS. That fact
makes the OFS lose its originally-designed nature in
which the switch works just as the data plane of
forwarding data without packet processing.

In this article, we design a SDN-based SYN Proxy
framework (SSP) to mitigate TCP SYN flood attack
in a SDN-based network. SSP is simply based on the
Openflow mechanisms including: capability of matching
to TCP Flags fields and pipeline processing. Therefore,
different from Avant-Guard or LineSwitch, SSP can
be applied to all Openflow-supported switches without
requirement of any modification since SSP requires to
build no additional hardware module in the currently-

standard OFS. In fact, SSP combines the OFS and
controller to work as a stateless SYN Proxy. SSP
monitors the TCP 3-way handshake process only, not
the whole course of TCP connections. With SSP,
the lifetime of flow entries are remarkably decreased.
Moreover, SSP introduces a method to adaptively
adjust the time outs of flow entries according to the
number of HOCs at the server. In this way flow entries
are removed much quicker during TCP SYN Floods.

Our performance measurement shows that during the
normal traffic period, applying SSP can dramatically
reduce the lifetime during which a flow entry occupies
an OFS’s resource by up to 94% in comparison with
Avant-Guard [11]. This not only increases the packet-
processing performance of the OFS but also makes the
switch more endurable during TCP SYN floods. SSP
is shown to be an appropriate approach to replace the
current solutions that are used in application servers,
such as Microsoft Windows server [13]. One single
SSP deployment can protect all application servers
within the SDN-based network, we do not need to
install the protection scheme at every single server.
SSP is proved to decrease the number of HOCs at
an application server by 86% in comparison with the
case the application servers deploying only the common
protection approach of Microsoft Windows Servers,
without utilizing SSP in the network, provided the
attack rate of 500 SYN packets per second.

The rest of the article is structured as follows: Section
2 describes related work. Section 3 introduces some
background in the research field. Section 4 analyzes
characteristics of the common TCP traffic. In Section
5, we describe our SSP design and implementation in
detail. The SSP testing environment is described in
Section 6 and the performance is analyzed in Section 7.
And finally, the conclusion is presented in Section 8.

2. RELATED WORK

Denial of Service attacks are grouped into the 3
following categories [6, 7]: Direct, Spoofed-based and
Distributed attack; the source IP address spoofing and
distributed attack are the most difficult to be detected
and prevented. Different from other attacks, TCP SYN
flood is mainly based on spoofing source IP address and
only needs a low traffic rate but can overwhelm a server
in a short time. Due to its simplicity, effectiveness
and ease of attack, TCP SYN flood has been currently
receiving a great concern from many research groups
around the world.

In the traditional networking, the solutions proposed
for TCP SYN flood can be found in two manners:
host-based and network-based solutions. Host-based
solutions focus on hardening the end-host TCP
implementation at the server side, including limiting
the number of HOCs such as rate limiting [14, 15],
increasing TCP backlog [7] or altering the algorithms
and data structures used for connection lookup and

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 3

establishment such as SYN cache [16], SYN Cookie
[17], Reducing the SYN-RECEIVED timer [13]. The
common characteristics of these solutions are that they
do not differentiate legitimate and malicious traffic,
but are gadgets to improve tolerance capacity of the
server during attack. Some solutions actually consume
computing resource of servers such as SYN cookie
[17], increasing TCP backlog [7]. The network-based
solutions address security with 2 main techniques:
Filtering in the Firewall and SYN proxy. Most
commercial firewall solutions such as [18, 19] filters TCP
SYN flood attacks, preventing SYN packets coming
from suspected sources to head to a server. The SYN
proxy solution [20] is implemented in an intermediate
device to monitor the 3-way handshake process of TCP
connections between a client and a server. The major
drawbacks of this solution are that it needs a robust
system capacity and it splits the TCP connections
during the 3-way handshake monitoring process.

To date, the ways to deploy the SDN architecture
to detect and mitigate DDoS attack can be found
in various proposals such as [21, 22, 23, 24, 25, 26].
The common idea of those approaches is to run a
security application in the SDN controller, that installs
flow entries in the SDN switch to retrieve traffic-
related parameters of flows. These flow entries then
periodically send traffic information to the controller
for analysis and attack detection. Upon detecting
attack traffic, the controller installs flow entries at
the switch to stop suspicious flows. The problem
arising when SDN is applied to mitigate DDoS attack
is: malicious flows usually arrive alongside legitimate
flows. So to detect and mitigate attack effectively,
there is a need to control each individual flow; and
the controller has to install a flow entry corresponding
to each incoming flow in the switch. This operation
dramatically increases the number of flow entries
installed in the switch. On another side, when a flow has
terminated, the corresponding flow entry is not deleted
right afterwards but remains in the switch until the
flow entry timeout. This causes wasted OFS resources;
and attackers may make use of this vulnerability to
consume the SDN switches’ resources. Among the
SDN-based security approaches, specifically coping with
TCP SYN flood, the authors in Avant-Guard [11],
LineSwitch [12] propose the schemes that make OFS
act like a SYN Proxy. In these solutions, a SDN
switch controls TCP flows from the Internet and allow
only flows connecting directly to servers after the 3-
way handshaking procedure has completed. However,
Avant-Guard has its own weakness: it exploits SYN
cookies in combination with a “stateful SYN proxy” in
the switch that requires high processing capacity from
the SDN switch. During TCP SYN floods, the switch
resource will become exhausted quickly due to:

(1) SYN cookie uses a complex algorithm for hashing,
encoding and packet processing.

(2) Due to the split of TCP connections between
the client and server, for each TCP connection,
the OFS has to maintain a memory block
to store and handle sequence number and
acknowledgment number of packets exchanged
between two parties. Furthermore, each flow
entry created corresponding to a TCP flow will
dramatically increase the number of flow entries
in the switch, thereby affecting the searching
time during the matching process; or it may
overwhelm the memory when TCP SYN floods
occur. LineSwitch provides an improved solution
for Avant-Guard in which it monitors only the
first SYN packet of each source IP address, thus
preventing port scan attacks or repeated use of
forge IP addresses. However, during attack,
hackers usually make use of random source IP
addresses, so that the probability of duplicate IP
addresses is actually very low. LineSwitch has
not provided a solution to solve the problem of
maintaining states in the OFS.

In this article, we propose SSP that combines the
OFS and SDN controller to work as a stateless SYN
Proxy. In SSP, the OFS does not need to maintain the
states of TCP flows after the TCP 3-way handshake
process has successfully completed. This means the
flow entries created inside the switch to serve the 3-way
handshake process will be deleted immediately after
the process has successfully completed. The advantage
of SSP is that we can deploy SSP in any Openflow-
supported switch without further modification or hard-
ware add-on. This method helps to reduce the average
lifetime of flow entries that occupy the switch resource
by 94% in comparison with the other SDN-based SYN
Proxy solutions Avant-Guard [11], LineSwitch [12]. Our
proposed scheme can be considered a method to solve
the aforementioned common weak point of SDN-based
security scheme: the saturation of the OFS resource.

Moreover, as described in the Introduction, the main
goal of TCP SYN flood is to make a target machine to
open many HOCs until all of the machine’s resource are
consumed. Traditionally, a popular mitigation method
is to monitor for such situations and close useless HOCs
right at each application server. A typical scheme like
that can be found in a well-known Windows Server.
According to a report in 2015, as commercial products,
operating systems Windows Server of Microsoft use the
function TCP SYN attack protection [13] based on the
combination of Rate Limiting techniques [14, 15] and
Reducing the SYN-RECEIVED timer. When the num-
ber of HOCs and HOCs with retransmitted SYN ACKs
exceeds a predefined threshold (TcpMaxHalfOpen
and TcpMaxHalfOpenRetried), the SYN protection
mode is activated and the OS will reduce the num-
ber of times to retransmit SYN-ACK, which normally
is equal to TcpMaxConnectResponseRetransmis-
sions, before discarding the HOCs, and not answer any

The Computer Journal, Vol. ??, No. ??, ????



4 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

incoming SYN packets. The weak point of this solution
is that during the SYN protection mode, all SYN pack-
ets going to a server will be discarded no matter if the
sources are malicious or legitimate.

In this article, SSP is exploited as a centralized
scheme and forefront component to protect all servers
within its network. Provided with a SYN packet rate
of 500 SYN packets per second, SSP can reduce 86%
of the HOCs at a victim server in comparison with
the performance of a network that deploys only the
traditional approach at a victim server like Windows
server.

3. BACKGROUND

3.1. SYN Proxy

SYN Proxy is a network-based solution for detecting
and mitigating TCP SYN Flood. It is an intermediate
device on the network that verifies the 3-way handshake
process of TCP connections. If this process is successful,
the connections between the client and server for data
exchange will remain. Conversely, if the process is not
verified, the proxy prevents establishing connections to
the server or removes HOCs created on the server to free
up the server’s resource for other benign connections.
Based on the packet processing mechanisms of the
3-way handshake process, there are 2 types of SYN
proxy: SYN-ACK spoofing and ACK spoofing. Figure
1 describes the operation of these 2 types.

Upon receiving a TCP SYN request from a client,
SYN-ACK Spoofing Proxy does not forward the SYN
packet to the server but create a spoofed SYN-ACK
packet to respond to the client with a random ISN
(Initial Sequence Number) value. If within a predefined
time out period, the proxy does not receive an ACK
packet from the client to validate the 3-way handshake
process or the proxy receives an invalid ACK packet (i.e.
Acknowledgment number is different from ISN +1), the
TCP connection is considered abnormal and discarded.
If a valid ACK packet is returned, the proxy creates a
spoofed SYN and a spoofed ACK packet to forge the
client in order to establish a TCP connection to the
server. When the connection is successful, the proxy
plays the role of an intermediate device to process and
forward packets of the 2 TCP connections between the
client and the server. The advantage of the SYN-ACK
Spoofing proxy is that IP spoofed TCP connections
are prevented by the proxy from attacking directly
to the server. However, this solution has a downside
in the fact that the proxy must spoof many packets
and maintain the connection states of the two TCP
connections between the proxy and the client and server
for translating the pairs of Acknowledgement/Sequence
Number (SEQ). This leads to a risk that the proxy itself
becomes a victim of a TCP SYN flood attack.

ACK Spoofing Proxy handles the TCP connection
in a different way, it passes the SYN request directly
from the client to the server and waits for the ACK

response packet from the client after sending the SYN-
ACK response of the server.

If during a predefined timeout period, the proxy does
not receive a valid ACK packet to complete the three-
way handshake process, the proxy generates a spoofed
ACK packet sent to the server to complete the three-
way handshake process. Soon after, a spoofed RST
packet is also created and sent to the server to close
the TCP connection. The advantage of this approach
is that there is no need to maintain a state on the proxy
during the exchange of data between the client and the
server. The downside of this solution is that attack
traffic still reaches the server directly. If the proxy
does not remove malicious flows on time, malicious TCP
connections will occupy the backlog and prevent other
benign connections to the server.

3.2. Pipeline machanism of packet processing
in SDN Openflow

Openflow is one of the first standard schemes that
has been broadly researched for the SDN architecture.
Openflow defines the communication protocol between
the data plane and control plane. The protocol also
introduces a standard for processing incoming packets
at the data plane such as OFS. Packets which go
through OFS are categorized into flows based on header
fields of packets; and are identified, processed by flow
entries that are installed in the flow tables of OFS. Each
packet going through the switch is matched to a flow
entry and ruled by the instruction defined in that flow
entry. If the packet can not be matched to any available
flow entry, OFS creates a packet-in event to demand the
controller to install a new flow entry which is applied
to process the following packet. Flow entries can be
proactively installed by the controller (e.g. proactive
flow entry) or installed on demand of a packet-in event
(e.g. reactive flow entry).

In general, an OFS can work under a pipeline
mechanism [27] in which the OFS contains multiple flow
tables indexed from 0 to N. Each flow table comprises
multiple flow entries. The pipeline processing starts at
the first flow table where incoming packets are matching
to every flow entry in order of priorities. If a flow entry
is matched, the incoming packet will be processed in
accordant with the instructions of the flow entry. The
packet may be forwarded to a specific port, sent to the
controller or continued to be matched to flow entries
of other subsequent flow tables. Also, each flow table
has a Table-miss flow entry (which is the fourth flow
entry in the flow table, called FE4) to process packets
which are unmatched to any flow entries in the flow
tables. The instructions of the table-miss flow entry
can send packets to the controller, to drop packets
or to direct packets to continue being matched in a
subsequent table.

Packet processing, based on pipelining with multiple
flow tables, allow packet processing rules to be based

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 5

FIGURE 1. The operation of the 2 types of SYN Proxy

FIGURE 2. Flow chart of the ruling of packet processing
at OFS in the case of using 1 flow table

on the header fields of packets, the priorities of
flow entries, and also on other conditions which are
created by arranging the flow entries in the flow
tables. If the packet processing at OFS is considered
as the implementation process of a sequential computer
program, arrangement of flow entries in a single flow

table will allow the switch to process incoming packets
as a SELECT CASE instruction according to the cases
that are arranged in the priority order (Figure 2).
Therein each case is a corresponding criterion described
by matched fields in each flow entry. Arrangement
of multiple flow tables allows the ruling of packet
processing more flexible as a nesting SELECT CASE
or IF instruction (Figure 3). This makes the packet
processing faster and more flexible. Besides, the
pipeline mechanism also allows accumulating multiple
instructions from matched flow entries in flow tables in
which the process passes through.

4. TRAFFIC ANALYSIS

As stated above, in SSP, we design the switch-controller
to follow the TCP 3-way handshake process at the
switch so as to remove attack HOCs at the victim
server as fast as we can. In order to control the 3-
way handshake process, to detect TCP SYN flood, we
need to know the typical timeout period of a common
flow coming from the Internet. We analyze the traffic
of 100 servers being selected randomly and 3,947,883
flows from the CAIDA 2013 dataset [28] the most
popular Internet log file to investigate characteristics
of incoming non TCP-SYN-attack flows. We measure
the waiting time from the point the Openflow Proxy
receives a TCP SYN packet to the point it receives
the first ACK packet to finish the 3-way handshaking
procedure. The statistics of that waiting time are

The Computer Journal, Vol. ??, No. ??, ????



6 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

FIGURE 3. A flow chart example of the ruling of packet
processing at OFS in the case of using multiple flow tables

illustrated in Figure 4.

FIGURE 4. CDF of flows having different waiting time
for the first ACK packet in TCP flows

As Figure 4 shows, 99% of legitimate TCP flows has
the 3-way handshake processing period smaller than
2 seconds. It means nearly 99% of the present flows
have ACK packets that return within 2 seconds. It
gives us the value of an appropriate time we should
set for timer of HOCs created at application servers.
In fact, when an attack TCP SYN connection arrives,
after answering a SYN-ACK packet, the destination
server waits for the ACK packet that actually never
comes. Under that circumstance, the server will wait
until timeout to delete the HOC. The current solution
for Windows Server calculates this time out period by
waiting 3 transmissions of SYN-ACK packets that takes

21 seconds (the first transmission after 3 seconds, the
second one after 6 seconds, and the third time after
12 seconds). This time out actually should not be a
fixed parameter but an adjusted value in order to delete
HOCs faster, thereby freeing up the server resource
especially during attack.

5. SDN-BASED SYN PROXY ARCHITEC-
TURE AND OPERATION

In this work, we build a so-called SSP (SDN-based
SYN Proxy) framework which is intended for edge
OFS of a network controlled and demanded by the
remote SDN controller to protect application servers
from TCP SYN flood attacks (Figure 5). This work
is inherited from our previous proposal [25] in which
we proposed a general SDN architecture and a control
algorithm to protect application servers within an en-
terprise network. In [25], we more focused in designing
and developing a system that has capacity of analyzing
incoming traffic statistically to find out attack patterns
for multiple types of attacks. However, the statistical
analysis phase may require a long enough period of
data collection in order to acquire accurate analysis.
Therefore, in this work, we propose another framework
to make the SDN controller and OFS to co-work as
ACK Spoofing SYN Proxy which can specifically de-
tect TCP SYN attacks in a shorter time. This new
framework is called SDN based SYN Proxy SSP.

In this SSP framework, the SYN Proxy Module
(SPM) is a developed software that configures OFS,
arranges multiple flow tables, and installs flow entries
with predefined instructions at OFS to capture packets
during the 3-way handshake process. In parallel, the
capture process at OFS works with the SPM module in
the controller to monitor this 3-way handshake process.
Note: to make this SSP framework to work, we need
commercial Openflow switches with Openflow version
from 1.5 and later since availability of TCP-Flag-field
matching capability and multiple table facility. In the
architecture described in Figure.5, we can see that:

FIGURE 5. SSP system architecture

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 7

- OFS is used at the edge network that connects
directly to protected application servers.

- Traffic coming from the Internet to the servers
passes through a gateway port defined in OFS.

- Packet processing policies at OFS are issued by the
controller via the secured Openflow protocol.

- The 3-way handshake process of TCP connections
from the Internet is monitored and validated by the
SPM.

The whole framework configures the OFS and SPM
modules to work as ACK Spoofing SYN Proxy, enabling
the system to quickly detect a harmful TCP SYN
request, thereby freeing resource of the switch (i.e.
deleting flow entries at the switch flow tables) and
resource of application servers (i.e. closing HOCs) as
fast as possible. The general principle of the packet
processing in SSP is described in Figure 6.

FIGURE 6. General principle of SSP

SSP exploits the pipeline processing of Openflow
in which instructions allow packets to be sent to
subsequent tables for further processing. SSP installs
flow entries with appropriate matching fields, and
particular priorities to capture packets exchanging
between the client and server during the 3-way
handshake process (Step 1 to 7 in Figure 6). The
SPM module running on the controller validates TCP
connections by checking the pair of sequence number
and acknowledgment number and issues policies of
packet processing for the TCP connections (Step 7 and
8):

- If the connection is legitimate, the TCP connection
is migrated and the following packets of the
connection are directly exchanged between the
client and server without intervention by the SYN
proxy.

- If the connection is regarded malicious, the switch
sends a spoof ACK and RST to close the HOC on
the server.

In the following subsections, we will elaborate the
structure and mechanism of packet processing at the
OFS and SPM running at the SDN controller.

5.1. Capturing 3-way handshake packets by
arrangement of flow entry tables at OFS

The packet processing in the 3-way handshake process
of a TCP connection at OFS is described in Figure 7.

FIGURE 7. Flow chart of packet processing in the 3-way
handshake process at OFS

In order to implement the aforementioned process,
and to make use of the pipeline processing, in SSP,
we arrange flow entries and their priorities in the flow
tables as described in Table 1.

* Flow Table 0:
Contains proactive flow entries to capture SYN, SYN-

ACK packets of the 3-way handshake process:

- Flow entries FE1x are used to capture SYN packets
from an Internet client. If the system is under
the threshold of normal operation, SYN packets
are forwarded to the corresponding server. When
beyond the system capacity, SYN packets are
dropped. The policy to decide Forward or Drop
incoming SYN packets depends on the system
status and described in detail in Subsection 5.4.

The Computer Journal, Vol. ??, No. ??, ????



8 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

TABLE 1. Structure and arrangement of flow entries in
SSP flow tables

Flow Table 0

FE11 Match fields = {Inport = 1; Type = TCP;
Flags = SYN; dstIP = IPd1}; Timeouts = 0;
Instructions = {Forward to port 2/Drop}

FE12 Match fields = {Inport = 1; Type = TCP;
Flags = SYN; dstIP = IPd2}; Timeouts = 0;
Instructions = {Forward to port 3/Drop}

FE13 Match fields = {Inport = 1; Type = TCP;
Flags = SYN; dstIP = IPd3}; Timeouts = 0;
Instructions = {Forward to port 4/Drop}

FE2 Match fields = {Inport = 2,3,4; Type = TCP;
Flags = SYN-ACK}; Timeouts = 0; Instructions
= {Send to the Controller}

FE3 Match fields = {Inport = 1; Type = TCP, Flags
= ACK}; Timeouts = 0; Instructions = {Go to
Table 1}

FE4 Match fields = {Table-miss}; Timeouts = 0;
Instructions = {Go to Table 2}

Flow Table 1

FE51 Match fields = {srcIP = IPs1; srcPort = Ps1;
dstIP = IPd1; dstPort = Pd1}; Timeouts = t1;
Instructions = {Send to the Controller}

FE52 Match fields = {srcIP = IPs2; srcPort = Ps2;
dstIP = IPd2, dstPort = Pd2}; Timeouts = t2;
Instructions = {Send to the Controller}

FE53 Match fields = {srcIP = IPs3; srcPort= Ps3;
dstIP = IPd3, dstPort = Pd3}; Timeouts = t3;
Instructions = {Send to the Controller}

... ...

FE6 Match fields ={Table-miss}; Timeouts = 0;
Instructions = {Go to Table 2}

Flow Table 2

FE7 Match fields = {Inport = 2,3,4; Type = TCP};
Timeouts = 0; Instructions = {Forward to port
1}

FE81 Match fields = {Inport = 1; Type = TCP;
dstIP = IPd1}; Timeouts = 0; Instructions =
{Forward to port 2}

FE82 Match fields = {Inport = 1; Type = TCP;
dstIP = IPd2}; Timeouts = 0; Instructions =
{Forward to port 3}

FE83 Match fields = {Inport = 1; Type = TCP;
dstIP = IPd4}; Timeouts = 0; Instructions =
{Forward to port 4}

- Flow entry FE2 is used to capture SYN-ACK
packets responding from servers to Internet clients.
If a SYN-ACK packet is received from a server, it
will be forwarded to the controller so as to inform
the controller to follow up the 3-way handshaking
process initiated by the server before sending to the
client.

- Flow entry FE3 is used to direct ACK packets
coming from the Internet to Flow Table 1. Other
incoming packets that differ from the 3-way
handshake packets will be forwarded to Flow Table
2 via the flow entry FE4 the “table-miss” flow
entry.

* Flow Table 1:
FE5x are reactive flow entries that are installed by

the controller for each TCP connection. FE5x are to
capture the first ACK packet sent from a client to
complete the 3-way handshake process. If the ACK
packet is return from the client, its corresponding flow
entry FE5x forwards it to the SPM module to validate
the TCP connection. Concurrently, the flow entry
(FE5x) is deleted to free the switch resource.

In each flow entry FE5, a timeout t is set in
accordance with the waiting time of the first ACK
packet which is calculated from the point the switch
forwards the server’s SYN-ACK packet to the Internet
client until the point it receives the ACK packet (t is
calculated by the controller and will be described in
Section 5.3). If the switch does not receive an ACK
packet after period t, it understands that the connection
is likely to be abnormal. Then the flow entry is timed
out and this Timeout event is informed to the SDN
controller to discard the corresponding HOC at the
server. Via the “table-miss” flow entry FE6, the other
ACK packets not belonging to the monitoring of HOCs
are forwarded to Flow Table 2 and directly routed to
the destination server.

* Flow Table 2:
This flow table takes responsibility of directing

packets of TCP connections which have accomplished
the 3-way handshake process. It also may contain
flow entries for other applications such as routing, load
balancing, etc.

- Flow entry FE7 captures TCP packets other than
SYN-ACK generated from internal servers and
forward them to Internet clients via the gateway
port.

- Incoming TCP packets of a validated 3-way
handshake flow will be “table-missed” with Flow
Table 0 and Flow Table 1 and matched to a FE8
flow entry then forwarded to the corresponding
server through a specific port.

For processing packets other than TCP such as
ICMP, UDP packets, we also can add flow entries in
Flow Table 2. In the case that TCP flows need to be
processed by other applications, other subsequent flow
tables (such as Flow Table 3, etc) may be added and
the Instructions in FE8s can be changed to “Go to Flow
Table 3”.

5.2. SYN Proxy Module (SPM) implementa-
tion at the SDN controller

The SYN Proxy module (SPM) is an application
running in the controller to process packets that
involves the establishment of TCP connections such as:
SYN, SYN-ACK, ACK packets. In order to capture
these packets, the SPM, via the controller, requires the
OFS to install, modify or delete related flow entries
(illustrated in Figure 8). Depending on the particular

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 9

TABLE 2. Structure of Flow Monitor Table (FMT)

FlowID srcIP srcPort dstIP dstPort Seq.Number

1 sIP1 sP1 dIP1 dP1 Seq1
2 sIP2 sP2 dIP2 dP2 Seq2
3 sIP3 sP3 dIP3 dP3 Seq3
... ... ... ... ... ...

characteristics of each server and its current states,
SPM calculates a timeout t for each flow entry FE5.
For managing HOCs at servers, SPM maintains a
Flow Monitoring Table (FMT) that contains details
of each connection information including source and
destination IP addresses, source and destination ports,
initial sequence number of the ACK-SYN packets. Each
HOC corresponds to a row in FMT. When a HOC is
validated, migrated or discarded due to illegitimacy,
the corresponding row is erased out of FMT. Table 2
describes the structure of FMT.

Upon receiving a SYN-ACK packet from an internal
server that answers a SYN request, SPM extracts
attribute information of the flow including Initial
Sequence Number Seqi and inserts a new row into FMT.
SPM also installs a correspondent flow entry FE5i to
the switch and forward the packet to the client. On
receiving an ACK packet from the client that confirms
a TCP connection, SPM looks for the entry of the
connection in the FMT and validates the connection
based on comparing the Acknowledgement number
extracted from the packet and the Initial Sequence
Number stored in connection entry. If the connection
is valid, the entry is removed from FMT and SPM
command the OFS delete flow entry FE5i in OFS. The
whole process of SPM is illustrated in Figure 8.

5.3. Flow-entry timeout calculation

In general, during TCP SYN flood, since there is
no ACK packet from clients to complete the 3-way
handshake process, flow entries of this type of traffic will
be expired only after a timeout (which is typically fixed
21 seconds as described in Section 4). With the SSP
solution, timeout is adjusted according to the number
of HOCs to a server at a given time. As described before
in 4.1, the timeout of flow entries FE5s strictly relates
to TIMEWAIT of HOCs in the server. Playing a SYN
proxy role, if timeout t of flow entry FE5 is exceeded
while OFS has not got the first ACK packet of the flow,
the flow entry FE5 will be discarded since the flow is
considered malicious. Subsequently, this event will be
reported to SPM in order to delete the corresponding
HOCs in the server by a forge ACK packet and a FIN
packet. SPM adjusts value t for each flow entry FE5
based on statistical characteristics of a service and the
current state of a server. In SSP, timeout is calculated
according to the following formula:

FIGURE 8. SPM flow diagram

t =

{
T1, n ≤ N

T2 + (T1 − T2)e−k n−N
N , n > N

(1)

where:
n : number of current HOCs processed by a server.
N : average number of HOCs that a server processes

during a normal traffic context. In fact, N has different
values for each type of service in each particular server.

T1 : the maximum time a server can wait for the first
ACK packet after sending a SYN-ACK packet.

T2 : the minimum time a server can wait during
attack.

k: adjustment coefficient.

FIGURE 9. The dynamic timeout adjustment of flow
entries

The Computer Journal, Vol. ??, No. ??, ????



10 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

The adjustment of timeout t is described in Figure
9. If the number of HOCs to a server is smaller than
threshold N , value t is selected to be equal to T1 - the
value TIMEWAIT normally used by the server. If the
number of HOCs exceeds N , SPM decreases value t
proportionally to the excess of n compared to N . With
SSP, when TCP SYN flood occurs, the number of HOCs
becomes very high, timeout t decreases approximately
to T2, resulting in a decrease in the lifetime of those flow
entries. By reducing the default idle time out parameter
of flow entries, unnecessary flow entries will be quickly
erased from the flow table, thus decreasing occupation
of the OFS resource. During a TCP SYN Flood, when
the attack continues making the system install new flow
entries, quick deletion of those flow entries will mitigate
the attack impact on OFS.

5.4. Establishment of thresholds for changing
policies to process SYN requests at OFS

As we know, the processing capacity of the switch
depends on its hardware configuration. For each SYN
request, the OFS consumes an amount of resource
(CPU, memory) to process. At each point of time,
depending on its capacity, the OFS can process a
different number of SYN requests. In general, the
switch’s hardware capacity is calculated and designed in
order to ensure covering a specific number of legitimate
TCP connections depending on its applications. When
the server is overloaded due to a flash crowd or DDoS
attack, the number of SYN requests increases beyond
the capacity of the server and the switch. To protect
the switch and server from being overrun, SSP operates
in 2 states corresponding to 2 policies of processing
incoming SYN request: Activated and Deactivated.
The transition between these two states is based on the
2 thresholds: M1 and M2 in which M1 >M2:

- M1: Upper bound threshold of concurrently-
processed SYN requests at the OFS. When the
number of processing SYN requests reaches over
this upper-bound threshold, SSP transits to state
Deactivated and incoming SYN packets from
clients will be discarded.

- M2: Lower bound threshold of concurrently-
processed SYN requests. This is the threshold in
which SSP is in state Deactivated. If the system
is in the Deactivated state and the number of
concurrently-processed SYN requests goes lower
than this threshold, SSP transits into the Activated
state again, and incoming SYN packets from clients
will be continuously processed by SSP.

In fact, the values of M1 and M2 are defined based
on real capacity of the switch and real traffic volume
during attack-free situations of the system. The process
of monitoring and changing states is carried out by
SPM. SPM retains a counter to count the number
of concurrently-processed SYN requests and compares

FIGURE 10. State transition of SSP

its value to M1 and M2. When SSP transits from
Deactivated to Activated, it modifies the instructions of
flow entries FE1x in Flow Table 0 to the corresponding
behavior. With this threshold mechanism, the system
will not be collapsed during TCP SYN Flood or HTTP
Flood.

With the aforementioned structure and general
operation principle, the packet processing of the SSP
framework in the Activated state is described in the
following sequence diagram (Figure ??).

6. TESTING ENVIRONMENT

In order to verify the performance of our solution, we
built a testbed to emulate a real system as described in
Figure ??. Testbed components include:

• The controller is based on Floodlight controller
[29] which is installed in an Ubuntu-14.04-version
computer with the following configuration: CPU
Intel TM Core i3-2330M @ 2.2GHz, 500GB HDD,
4GB RAM.

• OFS is built based on a NetFPGA card running
with OpenVswitch version 2.7.90. The configura-
tion of NetFPGA card: Xilinx VirtexTM-II pro 50;
4x1 Gbps Ethernet ports with soft MAC; 4.5 Mb
SRAM and 64 Mb DDR2; FPGA Spartan II used
to be the Logic Control module for PCI interfaces.

• Legitimate Internet traffic is sent out from
BONESI [30] tool while the attack traffic emulated
by TCPReplay [31] with series of attack pattern
created by BONESI [30] and Wireshark [32].

• FTP server acts as an application server.

7. SYSTEM PERFORMANCE ANALYSIS

To evaluate the performance of SSP, we will compare
SSP with the very related work of the same type
which deals with a SDN-based solution for monitoring
the 3-way handshaking process to detect TCP SYN
Flood: Avant-Guard. Other SDN-based solutions
based on statistically analysis of incoming traffic such as
[21, 22, 23, 24, 25, 26] are not taken into account since
the nature difference of the approaches. As mentioned
in the Introduction section, those papers propose a
general way of detecting attacks by learning normal
and attack patterns from given data logs. In one side,
those schemes possibly can work for different types of

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 11

FIGURE 11. SSP framework operation

DDoS attack but they always require more time for
the statistical learning phase. For this specific TCP
SYN Flood, we propose another way to handle the
TCP attack detection faster by monitoring the 3-way
handshake process. This method requires less space to
store data for the analytical process.

In this section, we will investigate the performance of
SSP from multiple perspectives such as: lifetime of flow
entries in OFS; how the SDN controller (as a component
in our SDN-based SYN proxy) must endure during
TCP SYN attack; possibility of successful connections
establishment for a benign user to the server during
TCP SYN attack; and the capability of SSP in reducing
HOCs in a victim server in comparison with the case the
server not being protected by SSP.

7.1. Lifetime of flow entries in OFS

The main impact of SSP is to quickly reduce lifetime
of unnecessary flow entries that occupy the flow table
in OFS. In another word, flow entries are quicker
removed to free up the OFS resource as soon as
possible. In order to evaluate this performance of
SSP, within the scope of SDN-based approaches against
TCP SYN Flood, we compare SSP with Avant-Guard.
Theoretically, in the Avant-Guard solution, after the
3-way handshaking process has been censored by the
Classification stage, the established TCP session is
forwarded to the controller. If the controller allows a
connection to the server, a corresponding flow entry is
installed onto OFS. Therefore, the average lifetime of a
flow entry in OFS is calculated by:

The Computer Journal, Vol. ??, No. ??, ????



12 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

TABLE 3. Analysis results of legitimate traffic in the
CAIDA 2013 dataset

Number of servers for analysis 100 servers

Traffic duration 45 minutes

Number of flows 3,947,883 flows

Average number of new flows per
second per server

14.62 fps

Average of flow lifetime Tlife 18.26 seconds

Average of three-handshake time
Thandshake

0.93 seconds

TFE life AG = Tlife + TidleT imeOut − Thandshake (2)

where:
Tlife is the existing time of a flow and calculated by

the time between the first and the last packet of the
flow passed by the switch.

TidleT imeOut is the time out of the flow.
Thandshake is the time the 3-way handshake process

consumes.
With the SSP solution, since the lifetime of a flow

entry in OFS takes exactly a duration of one successful
3-way handshaking process, the average lifetime of a
flow entry in OFS can be calculated by:

TFE life SSP = Thandshake (3)

To quantify the ratio of reducing flow entries of our
SSP scheme and the Avant-Guard, we analyze traffic
data trace extracted from legitimate traffic of 100 web
servers during 45 minutes of the well-known CAIDA
data set 2013 [28]. The analysis results of traffic
parameters are presented in Table 3.

With the traffic analysis results presented in Table 3,
for each benign TCP connection, the average lifetime
of flow entries retained in OFS in case of Avant-Guard
is TFE life AG = 18.26 − 0.93 = 17.33 seconds, while
in case of SSP is TFE life SSP = Thandshake = 0.93
seconds. Hence, the average lifetime of flow entries

FIGURE 12. SSP testbed

in OFS reduces by 17.33−0.93
17.33 = 94%, resulting in a

decrease in the total number of flow entries at the switch
at any point in time. This helps the OFS improve speed
of packet processing as well as the capacity to endure
under SYN flood attack.

7.2. Impact on the controller when the system
is under attack

In the SSP framework, the SDN controller, with the
associated SPM, has to take additional work to handle
states of the 3-way handshake process of TCP flows.
Therefore, we need to evaluate the extra workload the
controller has to cope with, especially during TCP SYN
attacks. To evaluate the impact of TCP SYN Floods on
the controller, we measure resource consumption at the
controller in 2 cases: (1) using the policy of dropping
SYN requests to protect the system with setting up
thresholds M1 and M2, and (2) not using the policy.
M1 and M2 are set 7500 and 7000 in accordance with
the configuration and capabilities of the testbed system.
And the results are shown in Figure ?? and Figure ??.

FIGURE 13. CPU consumption of the controller under
different attack rates

FIGURE 14. Memory consumption of the controller under
different attack rates

The results show that in both scenarios during normal
traffic, the CPU of the controller is consumed by
approximately 20%. There is no difference between
the 2 schemes under the low attack rate such as 100
SYN pps and 200 SYN pps. When under a higher

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 13

rate of TCP SYN attack, the rate of CPU consumption
increases steadily and accounts for 68% in the scheme
of not using the thresholds to enable the Drop policy.
In the other scheme, CPU consumption increases slower
and remain relatively stable at nearly 50% at the rate
attack of 800-1000 SYN pps.

The memory consumption is approximately 2GB,
almost the same for the 2 schemes during the attack free
period and under TCP SYN flood attack with different
rates. In conclusion, changing the policies of processing
SYN requests with the selected thresholds M1 and M2

help to improve the capability and configuration of
the system, SSP does not affect the operation of the
controller event under TCP SYN flood attacks.

7.3. Possibility of successful connection estab-
lishment for a legitimate TCP flow

We also consider the performance of SSP from another
perspective, the possibility of successful connection
establishment for a legitimate TCP Flow during TCP
SYN Flood since the flood can hinder a normal user
from connecting to an application server. To evaluate
the possibility of successful connection establishment
of benign users to a server during attack, we generate
legitimate traffic with speed of 50 TCP connections per
second along with TCP SYN flood speeds from 100 SYN
pps to 1000 SYN pps. The experiment is implemented
with 2 scenarios: Using SSP and using the standard
Openflow only.

- In the Openflow scenario, a flow is defined
by 5-tuple parameters including: source and
destination IP addresses, protocol number, source
and destination ports.

- In the SSP scenario, the 2 thresholds M1 and M2

are selected 7500 and 7000 respectively to suit
configuration and capacity of the soft switch OFS.

In the experiment, traffic is generated in 100 seconds
in which legitimate traffic is generated later than attack
traffic 20 seconds. All traffic at the benign client is
captured, processed and analyzed to result in successful
connection rate and average connection retrieval time
versus attack rates. The results are demonstrated in
Figure ?? and Figure ??.

As shown in Figure ??, when using only the standard
Openflow, the successful connection rate decreases
quickly from 87% to 5% when the system is under attack
rates from 200 SYN pps to 600 SYN pps respectively.
When the attack rates go up to 700 SYN pps or more,
the system is paralyzed and no longer be able to respond
to legitimate TCP flows.

With SSP (Figure ??), the successful connection rate
begins to decrease to 95% at 300 SYN pps and further
down to 58% at 1000 SYN pps. The experimental
results show SSP remarkably improves the system’s
attack tolerance over the pure Openflow standard. As
illustrated in Figure ??, in the pure Openflow scheme,

FIGURE 15. Successful connection rate vs. attack rate
when using SSP and using standard Openflow

FIGURE 16. Average connection retrieval time vs. Attack
rate

the average connection retrieval time also increases from
4.5ms at the attack rate of 100 SYN pps to 126ms at
600 SYN pps. While in the SSP scheme, this average
time remains stable under 10ms.

7.4. Number of HOCs at the server

The capacity of restoring from attack traffic at each
server depends on its hardware capability and particular
characteristics of each service running on that server.
SSP can be considered a network-based approach to
protect application servers from TCP SYN Flood
without being equipped with a security function like
SYN Cookie or SYN Cache. It helps application
servers to close malicious Half-Open Connections as
soon as possible. In our test, in order to evaluate the
performance of the SSP framework, we compare the
number of HOCs retained at a victim server during
attack time when using SSP and not using SSP where
servers are presumed to adopt the protection scheme of
Windows server [13].

To implement this evaluation, we use the tool
BONESI to generate and WireShark to edit the TCP-
SYN attack traffic with attack speeds ranging from 100
SYN packets per second (pps) to 1000 SYN pps. Each
set of attack traffic is directly transmitted from a client
PC, via OFS, to the FTP server during the period

The Computer Journal, Vol. ??, No. ??, ????



14 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

of 100 seconds. The number of HOCs are calculated
by the SYN-RECEIVED command (which is the state
statistics command) at the FTP server.

The parameters chosen for our SSP experiment
include: k = 1.5; T1 = 15s; T2 = 2s; N = 500; M1 =
7500 and M2 = 7000. Values for these parameters are
chosen stemming from the facts:

- In general, time out of flow entries in OFS is
currently set up 15s, therefore we set the threshold
T1 = 15s (T1- the maximum time a server can wait
for the first ACK packet after sending a SYN-ACK
packet).

- According to the CDF results shown in Figure
4, 99% of legitimate TCP flows has the 3-
way handshaking processing time smaller than 2
seconds, we therefore set T2 = 2s (T2- the minimum
time a server can wait during attack).

- k is the adjustment coefficient. The more k
increases, the faster T adjusted for each flow entry
FE5 decreases. To investigate the performance of
this solution, we experiment with k = 1.5.

- Average number of HOCs that a server processes
during a normal traffic context N = 500.

- M1 and M2 are set in accordance with the
configuration and capabilities of the testbed
system.

The results of HOCs at the server corresponding
to the 3 attack speeds are presented in Figure ??
(a)(b)(c) in which SSP outperforms the no SSP solution
proportionally as the attack speed increases. For
example, SSP can reduce the number of HOCs by 68%
in case of 100 pkt/s rate, and by 86% in case of 500
pkt/s.

8. CONCLUSION

In this article, we have designed SSP - a coordination
of the SDN Openflow switch and SDN controller to
work as a stateless SYN proxy against the TCP SYN
Flood merely based on the inherent packet processing
mechanism of SDN Openflow.

The advantage of the SSP solution is that it can be
exploited in any commerical Openflow switch product
with version from 1.5 and later without requiring any
futher hardware or protocol extension. We have studied
the performance of SSP from multiple perspectives. In
SSP, the switch (OFS) is proven to be made robust by
reducing the lifetime of flow entries that occupy the
switchs resource by 94% in comparison with Avant-
Guard. SSP also considers the manner to protect
the SDN controller from being a new victim in such
a SDN architecture. The controller is proven to be
endurable during situations in which CPU consumption
of the controller increases but remains stable at a
rate of 800-1000 SYN pps. In addition, as a network
based solution, SSP can fee up application servers’
resource by removing useless Half-Open Connections at

FIGURE 17. Number of HOCs at the server in 3 attack
cases

all application servers up to 86% in case of 500 pps. SSP
also provides higher possibility of successful connection
establishment during TCP SYN Flood in comparison
with the original Openflow solution.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science
and Technology, Vietnam under the framework of the
National Key project [code DTDLCN.38/15].

REFERENCES

[1] Peng, T., Leckie, C., and Ramamohanarao, K.
(2007) Survey of Network-based Defense Mechanisms
Countering the DoS and DDoS Problems. ACM
Computing Surveys, 39.

[2] Mirkovic, J. and Reiher, P. (2004) A Taxonomy of

The Computer Journal, Vol. ??, No. ??, ????



SSP - A solution to enhance performance of attack mitigation under TCP SYN flood 15

DDoS Attack and DDoS Defense Mechanisms. ACM
SIGCOMM Computer Communication Review, 34, 39–
53.

[3] Verisign. Verisign Distributed Denial of Service trends
report, Volumn 3, Issue 3, 3rd Quarter, 2016. Re-
trieved from https://www.verisign.com/assets/report-
ddos-trends-Q32016.pdf, Last accessed on 15/10/2017.

[4] A. B. Mohamed and A. Kandil (2009) Strengthening
and securing the TCP/IP stack against SYN attacks.
Proceedings of the ITI 2009 31st International Confer-
ence on Information Technology Interfaces, Piscataway,
USA, June, 2009, pp. 627–632. University Computing
Centre, University of Zagreb J.Marohnica 5, Croatia.

[5] The Internet Society. Transmission Con-
trol Protocol. RFC 793. Retrieved from
https://tools.ietf.org/html/rfc793, Last accessed
on 15/10/2017.

[6] The Internet Society. TCP SYN flooding attacks
and common mitigations. RFC 4987. Retrieved from
https://tools.ietf.org/html/rfc4987, Last accessed on
15/10/2017.

[7] Wesley M. Eddy (2006) Defenses against TCP SYN
flooding attacks. The Internet Protocol Journal, 9, 2–
16.

[8] Open Network Foundation. Software De-
fined Networking Definition. Retrieved from
https://opennetworking.org/sdn-resources/sdn-
definition, Last accessed on 15/10/2017.

[9] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J., Shenker, S.,
and Turner, J. (2008) Openflow: Enabling innovation
in campus networks. ACM SIGCOMM Computer
Communication Review, 38, 69–74.

[10] Benton, K., Camp, L. J., and Small, C. (2013)
Openflow vulnerability assessment. Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking - HotSDN ’13, Hong
Kong, China, August 12 - 16, 2013, pp. 151–152. ACM
New York, NY, USA.

[11] Shin, S., Yegneswaran, V., Porras, P., and Gu, G.
(2013) AVANT-GUARD: Scalable and Vigilant Switch
Flow Management in Software-defined Networks.
Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’13,
Berlin, Germany, November 04 - 08, 2013, pp. 413–424.
ACM New York, NY, USA.

[12] Ambrosin, M., Conti, M., De Gaspari, F., and Pooven-
dran, R. (2015) Lineswitch: Efficiently managing
switch flow in software-defined networking while effec-
tively tackling dos attacks. Proceedings of the 10th
ACM Symposium on Information, Computer and Com-
munications Security - ASIA CCS ’15, Singapore, Re-
public of Singapore, April 14 - 17, 2015, pp. 639–644.
ACM New York, NY, USA.

[13] Kumar, S. , Member, S. and Reddy Gade, R. (2015)
Evaluation of Microsoft Windows Servers 2008 &
2003 against Cyber Attacks. Journal of Information
Security, 6, 155–160. doi: 10.4236/jis.2015.62016.

[14] Twycross, J., Williamson, and Matthew, M. (2003) Im-
plementing and testing a virus throttle. Proceedings of
the 12th Conference on USENIX Security Symposium,
SSYM’03 - Volume 12, Washington, DC, USA, August

04 - 08, 2003, pp. 20–20. USENIX Association, Berke-
ley, CA, USA.

[15] Williamson and Matthew, M. (2002) Throttling viruses:
Restricting propagation to defeat malicious mobile
code. In proceeding of the IEEE 18th Annual Computer
Security Applications Conference, Las Vegas, NV,
USA, December 9-13, 2002, pp. 9–13. IEEE Computer
Society Washington, DC, USA.

[16] Lemon, J. (2002) Resisting SYN Flood DoS Attacks
with a SYN Cache. Proceedings of the BSD Conference
2002 on BSD Conference - BSDC’02, San Francisco,
CA, USA, February 11-14, 2002, pp. 10–10. USENIX
Association, Berkeley, CA, USA.

[17] Bernstein, D. (1996). SYN cookies. Retrieved
from http://cr.yp.to/syncookies.html, Last accessed on
15/10/2017.

[18] Juniper Network (2015). Junos OS - Attack De-
tection and Prevention Feature Guide for Se-
curity Devices, White paper. Retrieved from
http://www.juniper.net/techpubs/en US/junos/infor
mation-products/pathway-pages/security/security-
attack-denial-of-service.pdf, Last accessed on
15/10/2017.

[19] Deal, R. (2004) Cisco Router Firewall Security. Cisco
Press. ISBN:978-1-58705-175-3.

[20] Schuba, C., Krsul, I., Kuhn, M., Spafford, E.,
Sundaram, A., and D. Zamboni (1997) Analysis of
a Denial of Service attack on TCP. Proceedings of
the 1997 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 4-7, 1997, pp. 208–223. IEEE
Computer Society, Washington, DC, USA.

[21] Braga, R., Mota, E., and Passito, A. (2010)
Lightweight DDoS Flooding Attack Detection Using
NOX/OpenFlow. Proceedings of the 2010 IEEE 35th
Conference on Local Computer Networks - LCN ’10,
Denver, Colorado, USA, October 11-14, 2010, pp. 408–
415. IEEE Computer Society, Washington, DC, USA.

[22] Haopei, W., Lei, X., and Guofei, G. (2014) OF-
GUARD: A DoS attack prevention extension
in Software-Defined Networks. White paper In
USENIX Open Network Summit. Retrieved from
https://www.usenix.org/sites/default/files/ons2014-
poster-wang.pdf, Last accessed on 15/10/2017.

[23] Mehdi, S. A., Khalid, J., and Khayam, S. A.
(2011) Revisiting traffic anomaly detection using
Software Defined Networking. Proceedings of the
14th International Conference on Recent Advances in
Intrusion Detection - RAID’11, Menlo Park, CA, USA,
September 20 - 21, 2011, pp. 161–180. Springer-Verlag,
Berlin, Heidelberg.

[24] Li, J., Berg, S., Zhang, M., Reiher, P., and Wei, T.
(2014) Drawbridge: Software-defined DDoS-resistant
traffic engineering. Proceedings of the 2014 ACM
Conference on SIGCOMM - SIGCOMM ’14, Chicago,
Illinois, USA, August 17-22, 2014, pp. 591–592. ACM
New York, NY, USA.

[25] Trung, P. V., Huong, T. T., Tuyen, D. V.,
Duc, D. M., Thanh, N. H., and Marshall, A.
(2015) A multi-criteria-based DDoS-attack prevention
solution using softwaredefined networking. Proceedings
of the IEEE 2015 International Conference on
Advanced Technologies for Communications, ATC

The Computer Journal, Vol. ??, No. ??, ????



16 Tuyen. DV, Huong. TT, Thanh. NH, Nam. PN, Thanh. NN and Alan. M

2015, HoChiMinh City, Vietnam, October 14-16, 2015,
pp. 308–313. IEEE Computer Society, Washington, DC,
USA.

[26] Trung, P. V., Toan, T. V., Tuyen, D. V., Huong, T. T.,
and Thanh, N. H. (2016) OpenFlowSIA: An Optimized
Protection Scheme for Software-Defined Networks
From Flooding Attacks. 2016 IEEE Sixth International
Conference on Communications and Electronics, ICCE
2016, Halong Bay, Vietnam, July 27 - 29, 2016, pp. 13–
18. IEEE Computer Society, Washington, DC, USA.

[27] Open Network Foundation (2015). Openflow
switch specification, version 1.5.1. Retrieved from
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow
/openflow-switch-v1.5.1.pdf, Last accessed on
15/10/2017.

[28] CAIDA (2013). The CAIDA UCSD Anonymized
Internet Traces 2013-20131121-130000 (2013). Re-
trieved from http://www.caida.org/data/passive-2013-
dataset.xml, Last accessed on 16/07/2015.

[29] Project Floodlight - Open Source Software for
Building Software-Defined Networks. Retrieved from
http://www.projectfloodlight.org, Last accessed on
15/10/2017.

[30] BONESI - A network stress testing application. Re-
trieved from https://github.com/Markus-Go/bonesi,
Last accessed on 15/10/2017.

[31] TCPReplay - Pcap editing and replay tool for
*NIX. Retrieved from http://tcpreplay.synfin.net, Last
accessed on 15/10/2017.

[32] Wireshark - Used network protocol analyzer. Retrieved
from https://www.wireshark.org, Last accessed on
15/10/2017.

The Computer Journal, Vol. ??, No. ??, ????


