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Summary

Adding datatypes to ontology-mediated queries (OMQs) often makes query answering
hard, even for lightweight languages. As a consequence, the use of datatypes in ontologies,
e.g. in OWL 2 QL, has been severely restricted. We propose a new, non-uniform, way of
analyzing the data-complexity of OMQ answering with datatypes. Instead of restricting
the ontology language we aim at a classification of the patterns of datatype atoms in
OMQs into those that can occur in non-tractable OMQs and those that only occur in
tractable OMQs. To this end we establish a close link between OMQ answering with
datatypes and constraint satisfaction problems (CSPs) over the datatypes. Given that
query answering in this setting is undecidable in general already for very simple datatypes,
we introduce, borrowing from the database literature, a property of OMQs called the
Bounded Match Depth Property (BMDP). We apply the link to CSPs– using results and
techniques in universal algebra and model theory–to prove PTIME/co-NP dichotomies
for OMQs with the BDMP over Horn-ALCHI extended with (1) all finite datatypes, (2)
rational numbers with linear order and (3) certain families of datatypes over the integers
with the successor relation.
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1 Introduction

In recent years, querying data using ontologies has become one of the main applications
of description logics (DLs). The general idea is that an ontology is used to enrich
incomplete and heterogenous data with a semantics and with background knowledge
and thereby serves as an interface for querying data that also allows the derivation of
additional facts. In this area called ontology-based data management (OBDM) one of
the main research problems is to identify ontology languages and queries for which query
answering scales to large amounts of data [33, 13]. Since the size of the data is typically
very large compared to the size of the ontology and the size of the query, the central
measure for such scalability is provided by data complexity; that is, the complexity of
the computational problem is measured where both the ontology and the query are fixed,
and only the data varies.

As in most Computer Science applications, in standard ontology languages such as the
Ontology Web Language 2 (OWL 2),1 ontologies can refer to data values such as integers,
rationals and strings. These classes of values are called datatypes,2 and were introduced
in DLs in 1991 (see [9]) and then investigated intensively [74]. The well-kown relevance
of datatypes for applications is the main motivation of the present contribution.
In DL, ontologies take the form of a TBox, data is stored in an ABox, and the most

important class of queries are (unions of) conjunctive queries, or simply (U)CQs. A
basic observation regarding this setup is that even for DLs from the DL-Lite family that
have been designed for tractable OBDM the addition of datatypes to the TBoxes or the
UCQs easily leads to non-tractable query answering problems [5, 94]. As a consequence
of this, the use of datatypes in TBoxes and query languages for OBDM has been severely
restricted. For example, the OWL2 QL standard admits datatypes with unary predicates
only. Nevertheless, in applications, there is clearly a need for expressive datatypes both
in TBoxes and in queries. And, in particular, datatypes with predicates of higher arity.
The aim of this thesis is to revisit OBDM with expressive datatypes from a new,

non-uniform perspective. Instead of the standard approach that aims at the definition
of DLs L and query languages Q such that for any TBox T in L and any query q
in Q, answering q under T is tractable in data complexity, we aim at describing the
complexity of query answering with datatypes at a more fine-grained level— by taking
into account the way in which datatype atoms can occur in TBoxes and in queries.
To this end, we establish a close link between the complexity of query answering and
of constraint satisfaction problems (CSPs) over the datatype. This link enables us to
transfer complexity results from the CSP world to the world of OBDM and leads, in some

1https://www.w3.org/TR/owl2-syntax/
2https://www.w3.org/TR/owl2-syntax/#Datatype_Maps
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1 Introduction

cases, to complete classifications of the complexity of query answering into PTIME and
coNP-complete classes.
In more detail, we consider TBoxes in Horn DLs extended with concept inclusions

that contain attribute restrictions qualified by unary datatype atoms on their right hand
side and UCQs that contain datatype atoms of arbitrary arity. If T is such a TBox over
datatype D and q such a UCQ over D, then Q = (T , q) is called an ontology-mediated
query (OMQ) over D. We aim at understanding the complexity of query answering for
this very broad class of OMQs. A first observation is that query answering becomes
undecidable for many important datatypes D including (Q, <), (Z, <) and (Z,≤). To
restore decidability and enable a polynomial reduction to the complement of CSPs over
D we utilise the bounded match depth property (BMDP), borrowed from the database
literature, a property of OMQs that ensures that answers to OMQs can be determined
based on a bounded subset of the standard chase of a knowledge base in a Horn DL.
Many practical OMQs have the BMDP. For example, all OMQs with either TBoxes
whose chase always terminates (which is often the case in practice) or with rooted UCQs
whose variables are all connected via non-datatype variables to an answer variable (which
covers a broad class of UCQs). If the datatype D is homogeneous (as is the case for (Q, <)
and (Q,≤)), then the latter condition can be relaxed even further to certain Boolean
UCQs. As the CSP of many important datatypes is in NP, it follows that query answering
for OMQs with the BMDP over such datatypes is in coNP, a significant improvement
compared to the undecidable OMQs without the BMDP. To sharpen the link between
OMQ answering and CSP further, we also provide a converse polynomial reduction of
CSPs over a datatype D to the complement of answering OMQs with BMDP over D.
This converse reduction can thus be used to transfer NP-hardness results from the CSP
world to co-NP-hardness results for OMQ answering. More importantly, however, we
now have a framework for transfering complexity classification results from CSP to OMQ
answering.
We illustrate the power of this framework for all finite datatypes, datatypes (Q,≤),

and a family of datatypes with a first order definition in (Z, succ), where succ is the
complement of the successor relation succ = {(a, b) | a+ 1 = b}.

Note first that even without qualified attribute restrictions OMQs over datatype (Q,≤)
can express many interesting queries.

Example 1.0.1. Let T = {∃p v ∃U,∃p− v ∃U} be a TBox, where p is a role name and
U an attribute. Then the Boolean CQ

q ← p(x, y) ∧ U(x, u) ∧ U(y, v) ∧ u ≤ v

is entailed by a KB (T ,A) over (Q,≤) such that A is an ABox containing no assertions us-
ing U iffA contains a p-cycle. Thus, answering the OMQ (T , q) is NLOGSPACE-complete.
We also construct OMQs over (Q,≤) that are PTIME-complete and, respectively, co-NP-
complete.

Our main result is a PTIME/coNP-dichotomy for OMQs over (Q,≤) with the BMDP.
To formulate the dichotomy we associate with every OMQ Q = (T , q) a datatype pattern
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dtype(Q) = (θT , θq) such that θT contains the datatype atoms in T and θq contains the
datatype atoms in q. In Example 1.0.1, θT = ∅ and θq = {u ≤ v}. Then, based on the
framework introduced above and a recent PTIME/NP-dichotomy result for temporal
CSPs [19] we show that for any datatype pattern θ exactly one of the following two
conditions holds (unless PTIME=co-NP):

• Evaluating OMQs Q with BMDP and dtype(Q) = θ is always in PTime.

• There exists an OMQ Q with BMDP and dtype(Q) = θ whose evaluation problem
is coNP-hard.

In addition, our dichotomy comes with a purely syntactic description of the datatype
patterns that lead to OMQs that are in PTIME. For example, the datatype pattern in
Example 1.0.1 will always lead to an OMQ in PTime.

∗ ∗ ∗

We now sum up the main contributions of this thesis, and then present the chapter
organisation.
In this thesis, we obtain the following results:

• A framework for transfering complexity and dichotomy results from CSPs to OMQ
answering, and vice-versa;

• A small correction of the dichotomy of temporal CSPs in [19];

• Undecidability results for OMQ answering over numerical datatypes with inequality
and linear order;

• A decidability condition entirely based on the BMDP, a notion borrowed from the
database literature;

• Based on results in the CSP literature, a series of instantiations of the transfer
framework above, namely for all finite datatypes, dense linear orders, and integers
with distance relations (i.e., certain datatypes using the successor relation).

In Chapter 2 we introduce the framework for this thesis. Namely, we define datatypes
and then introduce the expressive language ALCHI and the Horn DL languages used
throughout this work: the DL-Lite family and our main language Horn-ALCHIqattrib(D),
where D is a datatype. Next we define the relevant query languages and their semantics.
In particular, we introduce CQs and UCQs. We then discuss universal models and a
generalization we call universal pre-models. Recall that M is a universal model of a
knowledge base consisting of a TBox T and ABox A if the following holds for every UCQ
q: T ,A entails q (i.e., q is satisfied in all models of T ,A) iff M |= q. Thus universal
models reduce a deduction problem to an evaluation problem in a model. An ontology
language L has the universal model property iff every satisfiable knowledge base in the
language L has a universal model. Standard Horn DLs have the universal model property.
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1 Introduction

This fact is fundamental for analyzing the complexity of query answering in Horn DLs
and for designing practical algorithms. In the presence of expressive datatypes, Horn
DLs do not have the universal model property. We thus rely on a surrogate notion of
models called pre-models. These are interpretations where the extensions of concepts
and roles are fixed, but the value of attributes are left open using placeholders. We
then introduce the notion of a completion function, one which assigns data values to
such placeholders. Finally, we show that for query answering it suffices to consider
particular pre-interpretations called universal pre-models (of satisfiable KBs) that exhibit
the desired “universality” property.
Next in Chapter 3 we introduce CSPs as a means for proving complexity results in

query answering; our transfer results will come in Chapter 5. Due to the presence of
ABox elements in the query answering problem, with such results in mind we embark
in the study of CSPs with constants. In the case of finite CSPs, we are able to establish
equivalence with CSPs without constants by applying well-known and also very recent
results– in particular, the proof of the Feder-Vardi conjecture. (This will allow us to
prove a dichotomy (assuming PTIME 6= NP) for query answering over all finite datatypes
in Chapter 6.) We then embark on a thorough exploration of temporal CSPs, i.e., CSPs
of templates with a first order definition in (Q, <).

In Chapter 4, we look in detail at the PTIME/NP dichotomy for temporal CSPs proved
by Bodirsky and Kára and correct a minor error in the proof of the main result. This
will allow us, using the results of Chapter 5, to show a PTIME/co-NP dichotomy for
query answering over the datatype (Q,≤).
Chapter 5 also explores decidability. We begin by showing, as mentioned above, that

the general problem of query answering for DL-LiteattribR (D) is already undecidable for
typical datatypes. In more detail, we do a reduction from unrestricted tiling of the discrete
plane into query answering over D ∈ {(Z, 6=), (Q, 6=)} with TBoxes in the language above.
Then we reduce the later problem into query answering over (Z, <) and (Q, <). Finally,
we show that query answering over (Z,≤) is also undecidable. That motivates another
topic of this chapter, the bounded match depth property (BMDP), already mentioned
above. This notion comes from the database literature([30]. OMQs with that property
are decidable since in order to check whether a query is entailed by a KB one only needs
to consider a bounded subset of the chase: the subinterpretation induced by the elements
reachable from ABox individuals in a fixed finite number of steps. This holds for any
OMQ with a DL-Lite TBox such that the chase always terminates, for any OMQ whose
UCQ is rooted, and for any safe OMQ (a weaker notion than rootedness that applies
to many Boolean queries) over homogeneous datatypes. We present a complete proof
for the latter case. Finally, we prove– and that is the main contribution of this chapter–
the transfer theorem from query answering (for OMQs with the BMDP) into CSPs with
constants and vice-versa; both reductions are polynomial time.

We then instantiate this transfer framework for a series of datatypes in Chapter 6, as
stated ealier: all finite datatypes, dense linear orders and a large family of datatypes with
a first order definition in (Z, succ). A complication with such instantiations of datatypes
with infinite domain is that, in order to use results in CSPs, one has to first find a bridge
from, and to CSPs with constants. This cannot be done in general as one has to present
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a method for eliminating the constants from the inputs to CSPs that depends on the
structure of the datatype. In the case of dense linear order we not only obtain the desired
dichotomy for query answering, but we also classify tractable and (possibly) intractable
cases based on the shape of the part of the query containing datatype atoms, as outlined
above.
We close the thesis with a detailed overview of related work in Chapter 7.
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2 Framework

2.1 Introduction
In this section we present the general framework for query answering over lightweight
Description Logics with datatypes.

2.2 Datatypes
A relational signature Σ is a set {R1, R2, . . .} where each Ri is a relation symbol along
with a function arity, where arity(Ri) = ki with ki > 0. Also a relational structure over a
(relational) signature Σ, also referred to as a Σ-structure, is a tuple Γ = (D,R1, R2, . . . )
where D is a non-empty set, termed the domain of Γ, and each Ri ⊆ Dki with Ri taken
from Σ. Given one such structure Γ, the tuples in each Ri are fixed by its interpretation.
Usually we use the same name to refer to a relation symbol and to the relation itself;
when necessary, we use RΓ to refer to the relation R as interpreted by a structure Γ. We
also use dom(Γ) to refer to the domain of Γ.
Throughout this work a datatype is a relational structure.

Example 2.2.1. Typical datatypes are numerical datatypes such as (A,<,≤, >,≥,=),
where A ∈ {N,Z,Q,R} and <,≤, >,≥= are defined as usual; other common examples
are strings with some ordering (e.g. lexicographical), the Boolean type, time instants
and dates.

The complement of a datatype D, denoted by D, is obtained by replacing each ki-
ary relation Ri in D by its complement Ri := Dki \ Ri. In connection with relational
structures we will use ω to denote the smallest infinite cardinal.
The following notion from first order logic will also be needed in connection with

datatypes. A primitive positive (PP) formula ϕ over a datatype D is a logical formula of
the form

∃x1, . . . , xm.ψ1 ∧ . . . ∧ ψ`,

where each ψi, 1 ≤ i ≤ `, is of the form R(xi1 , . . . , xik) or xi1 = xi2 , with R a relation
from D with arity k. When ϕ does not contain free variables it is called a PP sentence.
When constants are allowed, we refer to the formulae obtained as PP formulae with
constants, written PPc.

2.3 The Description Logic ALCHI, extensions and fragments
Here we define the Description Logics (DLs) [8] used in this work.

13



2 Framework

For all languages, we assume countably infinite and mutually disjoint setsNC , NR, NU , NA,
of concept names, role names, attribute names and individual names, respectively. We
next define the syntax and the semantics of the languages we consider.

Syntax The DL ALCHI is the well-studied [8] extension of ALC (first introduced
in [96]) with inverse roles (“I”, in the usual naming convention) and role inclusions (“H”),
as defined next.

A role r is defined by the grammar

r := p | p−,

where p ranges over all role names and p− is called the inverse role of p. An ALCI-concept
C is defined by the following grammar:

C,D,E := A | > | ⊥ | ¬C | D u E | C tD | ∃r.C | ∀r.C

where A ranges over all concept names. Then an ALCHI-TBox is a finite set of concept
inclusions of the form C v D, where C,D are ALCI-concepts, and role inclusions of the
form r1 v r2, where r1, r2 are roles.

We define, and consider throughout this work, two extensions ofALCHI with attributes
over a fixed datatype D. The first of them is ALCHIattrib(D), where concepts C can
also take the form of an attribute restriction ∃U . Moreover, a ALCHIattrib(D)-TBox, in
addition to concept and role inclusions, also supports attribute inclusions of the form
U1 v U2. The second of them is ALCHIqattrib(D), where, in addition to attribute
restrictions and attribute inclusions, qualified attribute restriction are also allowed. These
attribute restrictions are constructors of the form ∃U.ϕ,∀U.ϕ, where U is an attribute
and ϕ is a PP formula over D with constants and a single free variable x.
Finally, a D-ABox, or simply ABox if the context is clear, consists of assertions of

the form A(a), p(a, b), and U(a, u), where A is a concept name, p is a role name, U
is an attribute name, a, b are individual names, and u ∈ dom(D). A L(D)-Knowledge
Base (L(D)-KB) is a pair (T ,A) consisting of a L(D)-TBox T and a D-ABox A, for
L ∈ {ALCHIattrib,ALCHIqattrib}. When necessary we use Σ(T ), for T a TBox, to refer
to the symbols used in T .

Example 2.3.1. Let D = (Q,≤). The KB (T1,A) defined as

T1 = {Orc vWarrior, Warrior v ∃hitpoints.(30 ≤ x ≤ 100),
Warrior v ∀hitpoints.(50 ≤ x ≤ 100),
∃profession.Wizard v ∀hitpoints.(10 ≤ x ≤ 50)},
A = {profession(a, c),Wizard(c), hitpoints(a, 40), Orc(b)}

is a ALCHI(Q,≤)-KB.

14



2.3 The Description Logic ALCHI, extensions and fragments

Name Syntax Semantics
atomic concept A AI

top concept > ∆Iind
bottom concept ⊥ ∅

negation ¬C ∆Iind \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI

existential restriction ∃r.C {a ∈ ∆Iind | ∃b with (a, b) ∈ rI & b ∈ CI}
universal restriction ∀r.C {a ∈ ∆Iind | (a, b) ∈ rI implies b ∈ CI}
attribute restriction ∃U {a ∈ ∆Iind | ∃v((a, v) ∈ UI)}

∃-qualified attribute restriction ∃U.ϕ {a ∈ ∆Iind | ∃v ((a, v) ∈ UI & D |= ϕ(v))}
∀-qualified attribute restriction ∀U.ϕ {a ∈ ∆Iind | ∀v ((a, v) ∈ UI ⇒ D |= ϕ(v))}

concept inclusion C1 v C2 CI1 ⊆ CI2
role inclusion r1 v r2 rI1 ⊆ rI2

attribute inclusion U1 v U2 UI1 ⊆ UI2

Table 2.1: Syntax and semantics of ALCHIqattrib(D) and fragments

Semantics An interpretation I = (∆I , ·I) over a datatype D consists of a non-empty
domain ∆I = ∆Iind ∪ dom(D) and an interpretation function ·I that assigns to each
concept name A a set AI ⊆ ∆Iind, to each role name p a relation pI ⊆ ∆Iind×∆Iind, and to
each attribute name U a relation UI ⊆ ∆Iind × dom(D). The elements in ∆Iind are called
individuals, whereas the elements in dom(D) are called data values. We use dom(A) to
refer to the set of individuals occurring in an ABox A. We assume that ∆Iind and dom(D)
are disjoint. Throughout this work, we make the standard name assumption: if I is an
interpretation, then we set aI := a for all individual names a. We also set uI := u for
each u ∈ dom(D), and RI := R for each relation R of D. The interpretation I induces
the interpretations CI and rI for each concept C and role r as defined in Table 2.3.
Attribute restrictions and qualified attribute restrictions are interpreted as follows:

(∃U)I = {a ∈ ∆Iind | ∃v ((a, v) ∈ UI)}
(∃U.ϕ)I = {a ∈ ∆Iind | ∃v ((a, v) ∈ UI & D |= ϕ(v))},
(∀U.ϕ)I = {a ∈ ∆Iind | ∀v ((a, v) ∈ UI ⇒ D |= ϕ(v))}.

Table 2.3 presents the complete syntax and semantics of languages studied throughout
this work.
The interpretation I is called a model of a D-ABox A if a ∈ AI , (a, b) ∈ pI , and

(a, u) ∈ UI for all assertions A(a), p(a, b), and U(a, u) in A. It is called model of a L(D)
TBox T if XI ⊆ Y I for every inclusion X v Y ∈ T .

An interpretation is a model of a D-KB (T ,A) if it is a model of both A and T . A
D-KB (T ,A) is satisfiable if it has a model; in this case we say that A is satisfiable
relative to, or w.r.t., T . We say KBs K,K′ are equisatisfiable if K is satisfiable if, and
only if, K′ is satisfiable.
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2 Framework

We define a basic notion of homomorphisms for DLs without attributes. It will be
extended later for more expressive languages. Given an ALCHI-TBox T , a homomor-
phism from an interpretation I to an interpretation J is a mapping h : ∆Iind → ∆Jind such
that all invididual names are mapped to themselves and such that h(a) ∈ AJ if a ∈ AI
for all concept names A ∈ Σ(T ), and (h(a), h(a′)) ∈ rJ if (a, a′) ∈ rI for all role names
r ∈ Σ(T ).

2.4 Queries
Conjunctive queries (CQs) q over D take the form q(x̄) ← ϕ, where x̄ is the tuple of
answer variables of q, and ϕ is a conjunction of atomic formulae of the form A(y), p(y, z),
U(y, u), or R(u1, . . . , uk), where A, p, U , and R range over concept names, role names,
attribute names, and relation names in D, respectively; each y, z and each u, u1, . . . , uk is
a variable. The variables u, u1, . . . , uk are called data variables. We use the term non-data
variable (non-data answer variable) to refer to a variable (answer variable) that is not a
data variable. As usual, all variables of x̄ must occur in some atom of ϕ. A match of q
in an interpretation I is a mapping µ from the variables of ϕ to ∆I such that for each
atom X(t1, . . . , tk) of ϕ we have (µ(t1), . . . , µ(tk)) ∈ XI .

Definition 2.4.1. Let I be an interpretation, q a query and c̄ a tuple of individual
names and data values. Then c̄ is an answer to q in I if there is a match µ of q in I
such that µ(x̄) = c̄. This is denoted by I |= q(c̄).

A union of conjunctive queries (UCQ) q over D takes the form q1(x̄), . . . , qn(x̄), where
each qi(x̄) is a CQ over D. The qi are called disjuncts of q. A tuple c̄ of individual names
and data values is an answer to q in an interpretation I, denoted by I |= q(c̄), if c̄ is an
answer to some disjunct of q in I.

Definition 2.4.2. Given an L(D)-KB (T ,A), an UCQ q over D, and a tuple c̄ of
individual names and data values, we write T ,A |= q(c̄) if c̄ is an answer to q in every
model of (T ,A).

An ontology-mediated query (OMQ) over D takes the form Q = (T , q), where T is a
L(D)-TBox and q is a UCQ over D. Given a D-ABox A and a tuple c̄, we write A |= Q(c̄)
if T ,A |= q(c̄).

Example 2.4.3. Let T1,A be as in Example 2.3.1, and let

T2 = {Orc vWarrior, Warrior v ∃hitpoints.(50 ≤ x ≤ 100),
Warrior v ∀hitpoints.(50 ≤ x ≤ 100),
∃profession.Wizard v ∀hitpoints.(10 ≤ x ≤ 40)}.

Also let q be a UCQ defined as

q(x)← Orc(x), profession(y, z),Wizard(z), hitpoints(x, u), hitpoints(y, w), w ≤ u.

. Then it can be checked that Q1 = (T1, q) and Q2 = (T2, q) are OMQs with A |= Q2
and A 6|= Q1.
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2.5 Horn Description Logics

Rather then the full languages above, we focus on their so-called Horn versions. The
name stems from the fact that these logics can be embedded into the Horn fragment of
first-order logic; see [61, 39]. Such DLs were introduced in [62], although there the name
“Horn DL” refered to the more expressive Horn-SHIQ only; see [68] for a thorough study
of Horn DLs. Here we define Horn-L using the often used notion of positive and negative
polarity of occurences of L-concepts, where L ∈ {ALCHI,ALCHIattrib,ALCHIqattrib}.
We define polarity in an inductive way:

1. A concept C occurs positively in C;

2. If C occurs positively in C ′, then C occurs positively in C ′ uD,C ′ tD,∃r.C ′, ∀r.C ′
and it occurs negatively in ¬C ′;

3. If C occurs negatively in C ′, then C occurs negatively in C ′uD,C ′tD,∃r.C ′, ∀r.C ′
and it occurs positively in ¬C ′.

We say that a concept C occurs positively in an inclusion D v C ′, and negatively in
an inclusion C ′ v D, if it occurs positively in C ′. Also, we say that a concept C occurs
negatively in an inclusion D v C ′, and positively in an inclusion C ′ v D, if it occurs
negatively in C ′. Finally, we say that a concept C occurs positively (negatively) in a
TBox T if C occurs positively (negatively) in some inclusion in T .1

Now we are ready to define:

Definition 2.5.1. Let T be an L-TBox. Then T is called Horn if in T the concepts
∃U.ϕ and ∀U.ϕ occur only positively, no concept of the form C tD occurs positively,
and no concept of the form ¬C or ∀r.C occurs negatively.

We define now two Horn languages which are fragments of Horn-ALCHIqattrib, namely
DL-LiteattribR and DL-LiteqattribR . They are well known members of the DL-Lite family [33,
2], in particular extensions of DL-LiteR. A concept B := A | ∃r.> | ∀r.> | ∃U , for A a
concept name, r a role name and U an attribute name, is here called a basic concept. A
DL-LiteattribR (D) TBox is a finite set of role inclusions, attribute inclusions, and concept
inclusions. The concept inclusions are restricted to ones of the form B1 v B2 and
B1 v ¬B2 where B1, B2 are basic concepts. In TBoxes of the extension DL-LiteqattribR (D)
of DL-LiteattribR (D), in addition, qualified attribute restrictions are allowed on the right
hand side of inclusions.

It is more transparent to deal with TBoxes that have a reduced number of axiom types
and nestings of concepts. With that purpose in mind, we define:

1One should be aware that it is possible for a concept to occur both positively and negatively in an
axiom or in a TBox.
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Definition 2.5.2. Let T be a TBox all whose inclusions are of the form

A v ⊥, A v B, A1 uA2 v B, > v A,
A v ∃r.B, A v ∀r.B, ∃r.A v B,
∃U v A, A v ∃U, A v ∃U.ϕ, A v ∀U.ϕ,
r1 v r2, U1 v U2,

where A,A1, A2, B are concept names, r, r1, r2 are role names and U,U1, U2 are attribute
names. Then we say that T is in normal form.

From now on we assume

L ∈ {ALCHI,ALCHIattrib,ALCHIqattrib,DL-LiteattribR ,DL-LiteqattribR }.

We present a polynomial-time algorithm for transforming any Horn-L-TBox into a
Horn-L TBox T ′ that is in normal form. This transformation will preserve a desirable
property of the original KB; namely, the resulting KB will be equivalent to the input
modulo the new symbols introduced. This will be done via the notion of a (model-theoretic)
conservative extension.

We use a strategy similar to the one used in [65]. Given a Horn-L TBox T , let Sub(T )
denote the set of all concepts and subconcepts occuring in all inclusions in T . Now for
each C ∈ Σ(T ) (note that C can also be a subconcept in T ) we introduce a fresh concept
name AC . Let τ be an operation on Sub(T ) given by:

τ(A) = A,

τ(>) = >,
τ(⊥) = ⊥,

τ(¬C) = ¬AC ,
τ(C uD) = AC uAD,
τ(C tD) = AC tAD,

τ(∃U) = ∃U,
τ(∃U.ϕ) = ∃U.ϕ,
τ(∀U.ϕ) = ∀U.ϕ,
τ(∃r.C) = ∃r.AC ,
τ(∀r.C) = ∀r.AC ,

where A is a concept name, C,D are concepts, r a role name, U an attribute and ϕ a
PP formula with one free variable. We define a new TBox T ′, starting with the role and
attribute inclusions of T . As a first step we add the following new inclusions:

Rule 1: AC v τ(C) for every concept C that occurs positively in T ;

Rule 2: τ(C) v AC for every concept C that occurs negatively in T ;
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Rule 3: AC v AD for every concept inclusion C v D in T .
It can be checked that as a result we obtain only inclusions of the form A v A′, A v
τ(C+), τ(C−) v A, where:
• C+ occurs positively in T , that is, it is of the form

A′, >, ⊥, ¬C, C uD, ∃r.C, ∀r.C, ∃U, ∃U.ϕ, or ∀U.ϕ;

• C− occurs negatively in T , that is, it is of the form

>, ⊥, A, C uD, A tD, or ∃r.C.

As a result we get only inclusions in normal form, except for ones of the form A v >, A v
¬A′ and A v A1 u A2. So as a second step we modify the inclusions above as follows.
The inclusions of the form A v > are deleted. As regards the ones of the form A v ¬A′,
they are replaced by the equivalent AuA′ v ⊥; we then introduce a new concept name B
together with the inclusions A uA′ v B and B v ⊥, which are in normal form. Finally,
for the ones of the form A v A1 uA2, we delete them and introduce equivalent inclusions
of the form A v A1, A v A2, which are in normal form. The whole transformation can
be seen to take only polynomially many steps in the size of the input T .

We now introduce the notion of model-theoretic conservative extension. As mentioned
above, it will be used to prove, in a straightforward way, the property of KBs (preserved
by TBoxes in normal form) which is crucial for query answering.
Definition 2.5.3. Let T , T ′ be TBoxes. Then T ′ is a model-theoretic conservative
extension of T if the following holds:

1. T ′ |= T ;

2. for every model I of T there exists a model I ′ of T ′ that coincides with I regarding
the interpretation of symbols in Σ(T ).

Example 2.5.4. Suppose, say, ∃r.A1 v A2 u A3 ∈ T . We show that T ′ |= ∃r.A1 v
A2 uA3. By the third rule of the first stage of the transformation, A∃r.A1 v AA2uA3 ∈ T ′.
The following inclusions are also in T ′:

τ(∃r.A1) = ∃r.AA1 v A∃r.A1 (rule 2),
AA2uA3 v τ(A2 uA3) = AA2 uAA3 (rule 1),

τ(A1) = A1 v AA1 (rule 2),
AA2 v τ(A2) = A2 (rule 1),
AA3 v τ(A3) = A3 (rule 1),

AA2uA3 v AA2 (second stage of transformation),
AA2uA3 v AA3 (second stage of transformation).

Let I be a model of T ′. Now assume (a, b) ∈ rI with b ∈ (A1)I for individuals a, b ∈ ∆I .
Since A1 v AA1 ∈ T ′, we have b ∈ (AA1)I . Also ∃r.AA1 v A∃r.A1 ∈ T ′ implies
a ∈ (A∃r.A1)I . Thus a ∈ (AA2uA3)I . By the four last axioms in the list above, we obtain
a ∈ (A2)I and a ∈ (A3)I as required.
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We now prove:

Lemma 2.5.5. Let T be a Horn-L TBox and T ′ the result of translating T into normal
form. Then T ′ is a model-theoretic conservative extension of T .

Proof. To show (1) of Definition 2.5.3, it suffices to note that any model of T ′ is also
model of T : T and T ′ share the same role and attribute inclusions and the original
concept inclusions are all entailed by T ′ due to the way the transformation is defined.
This is done by structural induction on the axioms of T .

Let C v D be an inclusion in T . Then AC v AD ∈ T ′ by the third transformation
rule. Take a modelM of T ′. We show thatM |= C v D by a structural induction over
C v D. Assume there is an individual a ∈ ∆M with a ∈ CM.
Base case for the first induction: C := A (that is, C is a concept name which we

rename to A). Then A occurs positively in A and negatively in A v D. By the second
rule, τ(A) = A v AA ∈ T ′, so M |= A v AA. Then a ∈ AMA . By the third rule,
AA v AD ∈ T ′, so that a ∈ AMD . Base case for the second induction: let D := A′.
Since A′ occurs positively in A′, and positively in A v A′, by the first rule we have
A′A v τ(A′) = A′. Therefore a ∈ (A′)M = DM and we are through with the base case
for both inductions.

For the IH, assume we have shown that a ∈ DM for subconcepts C ′, C1, C2, D
′, D1, D2

of C and D, respectively. We have to consider the cases where (*) C is ∃r.C ′, C1 u C2
or C1 t C2 (first induction); and (**) D is ¬D, ∃r.D′, ∀r.D′, ∃U, ∀U, ∃U.ϕ, ∀U.ϕ or
D1 uD2 (second induction). We do one case for each.
As for (*), suppose C is ∃r.C ′. Then there exists a b ∈ ∆M with (a, b) ∈ rM

and b ∈ (C ′)M. Since C occurs negatively in C v D, by rule 2 we have τ(∃r.C ′) =
∃r.AC′ v A∃r.C′ ∈ T ′. Since C ′ occurs negatively in ∃r.C ′ v D, by rule 2 we have that
τ(C ′) v AC′ ∈ T ′. By the IH of the first induction, b ∈ AMC′ . Thus a ∈ AM∃r.C′ . Since
A∃r.C′ v AD ∈ T ′ by rule 3, we have a ∈ AMD . The remaining cases are similar.
As for (**), assume a ∈ AMD . Suppose D is ¬D′. Since ¬D′ occurs positively in

C v ¬D′, we have by rule 1 A¬D′ v τ(¬D′) = ¬AD′ . Since D′ occurs negatively in
C v ¬D′, by rule 2 we have τ(D′) v AD′ . By the IH, a /∈ (D′)M. The remaining cases
are similar.
To show (2) of Definition 2.5.3, we need to prove that for every model I of T there

exists a model I ′ of T ′ that coincides with I regarding the interpretation of symbols in
Σ(T ). In order to find a suitable interpretation I ′, we require that I ′ interprets all old
concepts of Σ(T ) exactly as in I. As for the new concepts AC in Σ(T ′)\Σ(T ) introduced
by the transformation, it suffices to set AI′C := CI . By the construction hinted it is clear
that (2) of Definition 2.5.3 is satisfied.

Thus T ′ is a model-theoretic conservative extension of T , as required.

The result now follows:

Corollary 2.5.6. Let T be a Horn-L TBox and T ′ the result of transforming T into
normal form. Then for all ABoxes A consistent w.r.t. T :
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1. for all inclusions C v D that only use symbols from Σ(T ), we have (T ,A) |= C v D
iff (T ′,A) |= C v D;

2. for all UCQs q that only use symbols from Σ(T ), we have (T ,A) |= q iff (T ′,A) |= q.

Given that the transformation gives us a KB that is equivalent modulo the fresh
concept names, from now on we can safely assume L-TBoxes are given in normal form.

2.6 Universal models of Horn-ALCHIqattrib(D)-KBs
In this section we present techniques for tackling the problem of query answering over
Horn-ALCHIqattrib(D) Knowledge Bases and then prove useful results that rely on those
techniques. They basically consist in extending the notion of universal models of KBs
(defined next). These models can be generated by using a (possibly) infinite procedure.
Most of the results in this section are extensions of known results for less expressive
languages–namely, lightweight DLs without attributes.

Hom-initial models and the existence of universal models We introduce two notions
that are central to the current inquiry.

Definition 2.6.1. Given a description logic L and a consistent L-KB (T ,A), suppose
that there exists a modelM of (T ,A) such that there is a homomorphism fromM to
every modelM′ of (T ,A). ThenM′ is called a hom-initial model of (T ,A).

Remark 2.6.2. In the database literature, hom-initial models are known as universal
models [44, 48]. Here we use more recent DL terminology (e.g. [78, 77]), reserving the
latter term for query answering (see below).

The guaranteed existence of hom-initial models for an arbitrary consistent KB formu-
lated in a language L depends on the properties of L itself. For example, it is known
that, given a Datalog program P, that is, a set of function-free Horn clauses [38], and a
database D, i.e., a set of ground facts, there always exists a unique and finite “minimal”
model of (P, D) [38]; see [91], section 4.1, for the general case of logic programs. It
can then be shown that any DL KB that can be translated into a pair consisting of a
Datalog program and a database has a hom-initial model which is, in addition, finite.
Unfortunatelly, as we will see next, even for slightly more expressive languages finite
hom-initial models do not exist in general.
For query answering purposes, we also adopt the following notion:

Definition 2.6.3. Let (T ,A) be an L-KB, for L a Description Logic. Suppose there
exists a modelM of (T ,A) such that for all UCQs q, (T ,A) |= q if, and only if,M |= q.
ThenM is called an universal model of (T ,A).

We now show:

Proposition 2.6.4. A hom-initial model of an L-KB (T ,A) is also an universal model
of (T ,A).
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Proof. Let M be a hom-initial model of (T ,A) and q(x̄) be a UCQ. We show that
Definition 2.6.3 applies. So suppose (T ,A) |= q(x̄). Now, since in particularM |= (T ,A),
we haveM |= q(x̄). For the converse, assumeM |= q(x̄). Let ā be a tuple of individual
names and data values from A and µ be a match of q inM such that µ(x̄) = ā. Given
thatM is hom-initial, there exists a homomorphism h fromM into any model of (T ,A).
LetM′ be one such model. We now compose µ and h into a homomorphism h′ to obtain
that h′(x̄) = ā so thatM′ |= q(ā). Therefore (T ,A) |= q(x̄), and we have verified that
M is a universal model of (T ,A). This concludes the proof.

The obvious practical consequence of the existence of universal modelsM of L-KBs
(T ,A), for a given language L, is that in answering queries over (T ,A) one only has to
consider one representative model, namelyM.

The canonical model construction for Horn-ALCHI via the chase We will now look
at the well known canonical model construction for Horn-ALCHI KBs, which gives
us (possibly) infinite hom-initial models. This construction will be later considerably
extended to define suitable (“pre”-)models for Horn-ALCHIqattrib(D) for a datatype D.

The construction uses the notion of a chase, originated in database theory as a tool for
reasoning about data dependencies and checking query containment (see [1], chapters
8 and 10). Usually “chase” denotes both the procedure and its output. The procedure
is defined nondeterministically and can be nonterminating. A modern definition of the
chase for tractable DLs can be seen in [31].
Let (T ,A) be a KB where T is a Horn-ALCHI TBox. Recall that we assume T

to be in normal form. To present the chase procedure it is convenient to regard an
interpretation simply as a set of assertions. As every ABox can be converted into an
interpretation we will often not distinguish between the two. For example, we write
∃r(a) ∈ A for an ABox A if a ∈ (∃r)I for the interpretation I corresponding to A (which
is the case if there exists b with r(a, b) ∈ A). To simplify presentation, we assume that
for any ABox A, p(a, b) ∈ A iff p−(b, a) ∈ A.
So let A be the an ABox. Fresh individuals, i.e., individuals not occuring in A, are

called nulls. We assume a countably infinite number of nulls are given from a disjoint set.
A rule is said to be applicable if its precondition is satisfied. Rules are applied exaustively
as follows. We define the chase step as the application of one of the rules (when one of
them is applicable) defined in Figure 2.1 below, to A.

Definition 2.6.5. The chase procedure S for a Horn-L-KB (T ,A) in normal form is the
sequence S0, S1, . . . where S0 = A and each Si+1 is a set obtained by applying a chase
step to Si.

A chase procedure S = S0, S1, . . . is said to be fair if for all rules ρ which are applicable
to some assertion α in Si, i ∈ N, there exists a chase step at Sj , with j ≥ i, such that
ρ is applied to α. We always assume that the chase procedure is fair. Notice that in
Figure 2.1 A stands for a concept name and C for an arbitrary ALCI-concept.
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1. If A v ⊥ ∈ T and A(a) ∈ S, then terminate and output unsatisfiable;

2. If C v A ∈ T and C(a) ∈ S and A(a) 6∈ S, then add A(a) to S.

3. If C v ∃r.A ∈ T and C(a) ∈ S and there is no r(a, c) ∈ S with A(c) ∈ S,
then add r(a, c) and A(c) to S, for c a fresh null;

4. If C v ∀r.A ∈ T and C(a) ∈ S and r(a, b) ∈ S but A(b) /∈ S, then add A(b)
to S;

5. If r1 v r2 ∈ T and r1(a, u) ∈ S and r2(a, u) 6∈ S, then add r2(a, b) to S;

Figure 2.1: Chase rules for Horn-ALCHI-KBs

Example 2.6.6. Let (T ,A) be a KB where

T ={Orc vWarrior, Warrior v ∃weapon,
∃weapon v ∃lefthand.Shield},

A ={Orc(a)}.

Then the following sequence is a chase procedure for (T ,A):

S ={Orc(a)},
{Orc(a),Warrior(a)},
{Orc(a),Warrior(a),weapon(a, c)},
{Orc(a),Warrior(a),weapon(a, c), lefthand(a, d),Shield(d)}.

We then define, for an L-KB (T ,A), the chase output of (T ,A) (or simply the chase
of (T ,A)), as chase(T ,A) :=

⋃
i∈N Si.

For the cases where we do not obtain the output unsatisfiable, we use the assertions
contained in chase(T ,A) to define the modelMS = (∆MS , ·MS ), called the canonical
model of (T ,A), as follows:

• ∆MS
ind := {a | a is an individual or null occurring in chase(T ,A)};

• AMS := {a | A(a) ∈ chase(T ,A)};

• rMS := {(a, b) | r(a, b) ∈ chase(T ,A)}.

We obtain the following result:

Proposition 2.6.7. Let (T ,A) be a Horn-ALCHI-KB. Then

• (T ,A) is unsatisfiable iff the chase procedure of (T ,A) outputs unsatisfiable;

• if (T ,A) is satisfiable, thenMS is hom-initial for (T ,A).

Proof. See [49].
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We will prove a stronger result later, which subsumes the above.
In [25] a finite generating structure for Horn-ALCHI-KBs (T ,A) where T is consistent

w.r.t. A, is defined which can be constructed in time |A|×2p(|T |), for p a polynomial. The
interpretation defined by unravelling this structure is then shown to homomorphically
map to every model of (T ,A) as in Proposition 2.6.7, (b).

Dealing with datatypes Differently from attribute-free Horn-ALCHI, the more expres-
sive languages studied here often do not have universal models. Intuitively, the reason
for this is what follows. When generating a model for “abstract” axioms of the form
C v ∃r one is often forced to introduce anonymous individuals (technically, nulls). It
so happens that two anonymous individuals in such a model, in and of themselves, do
not have any distinctive properties. Not so with concrete domains, which come with a
fixed, built-in semantics. Under the open world semantics, different interpretations of
anonymous attribute values yield different data values, and so the relationship that holds
between them as per the built-in semantics is entirely open. This is particularly important
in the case of query answering– hence for investigating the existence of universal models–,
as the following example illustrates.

Example 2.6.8. Let D = (N,≤) and (T ,A) be a Horn-ALCHIqattrib(D)-KB where

T = {Orc vWarrior, Hobgoblin vWarrior,
Warrior v ∃defence.(10 ≤ x ≤ 50),
Warrior v ∃attack.(10 ≤ x ≤ 50)}.
A = {Orc(a), Hobgoblin(b)}.

Also consider the CQs

q1(x, y)←Warrior(x),Warrior(y), attack(x, u1), defence(y, u2), u1 ≤ u2,

q2(x, y)←Warrior(x),Warrior(y), attack(x, u1), defence(y, u2), u2 ≤ u1.

To show that q1(a, b) is not entailed by (T ,A) we construct an interpretation I satisfying
both T and A where e.g. defenceI = {(a, 10), (b, 10)} and attackI = {(a, 50), (b, 50)}.
We do the same for obtaining T ,A 6|= q2(a, b): we let I ′ be any model of (T ,A) with
e.g. defenceI = {(a, 50), (b, 50)} and attackI = {(a, 10), (b, 10)}. Yet, one will fail in
constructing an universal model J (see Definition 2.6.3) of T and A with J 6|= q1 and
J 6|= q2, for clearly no such model exists.

The simple counterexample above shows that Horn-L(D) does not have the uni-
versal model property. To remedy this, as a first step we introduce the notion of
pre-interpretations (and pre-models), that is, interpretations that fix the extension of
concepts and roles but leave open those of attributes, except for imposing labels with
constraints on their possible values according to attribute restrictions occurring in the
TBox. Those anonymous individuals will be referred to as data nulls. Moreover, the
definition of universal pre-models of such KBs and completions thereof, i.e., assignments
of data values that satisfy all the constraints labelling the nulls, will enable us, as a
second step, to define a suitable extension of the notion of query entailment.
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Pre-interpretations, pre-models and completions We now define pre-interpretations.

Definition 2.6.9. A pre-interpretation I over a datatype D is a triple (∆I , ·I , ZI) where

• ∆I = ∆Iind ∪∆Idata is the domain of I, where ∆Iind is a non-empty set of individuals,
∆Idata = dom(D) ∪∆Inull is a set of data elements, and ∆Inull is a set of data nulls;

• ·I is a function assigning to each concept name A a set AI ⊆ ∆Iind, to each role
name p a relation pI ⊆ ∆Iind × ∆Iind, and to each attribute name U a relation
UI ⊆ ∆Iind ×∆Idata;

• ZI maps each u ∈ ∆Idata to a set ZI(u) of PP formulae ϕ(x) with constants over D
such that
(i) D |= ∃x(

∧
ϕ∈ZI(u) ϕ(x)) for every u ∈ ∆Inull; and

(ii) if d ∈ dom(D), then (x = d) ∈ ZI(d).

We extend the definition of the extension CI of a concept C from interpretations to
pre-interpretations by defining the extension of the concepts C not involving attributes
in the straightforward way and by setting for any pre-interpretation I for D:

• (∃U)I = {a ∈ ∆Iind | there exists v ∈ ∆Idata with (a, v) ∈ UI};

• (∃U.ϕ)I = {a ∈ ∆Iind | there exists v ∈ ∆Idata with (a, v) ∈ UI and ϕ ∈ ZI(v)};

• (∀U.ϕ)I = {a ∈ ∆Iind | for all v ∈ ∆Idata with (a, v) ∈ UI we have ϕ ∈ ZI(v)};

For any inclusion X v Y we set I |= X v Y if XI ⊆ Y I . In this case we say that
I satisfies X v Y . I is a pre-model of a TBox if it satisfies all its inclusions. I is a
pre-model of an ABox A if a ∈ AI for all A(a) ∈ A, (a, b) ∈ pI for all p(a, b) ∈ A, and
(a, d) ∈ UI for all U(a, d) ∈ A. I is a pre-model of a KB (T ,A) if it is a pre-model of T
and A.

A completion of a pre-interpretation replaces data nulls by suitable values from dom(D).

Definition 2.6.10. Let J be a pre-interpretation over D. Then

1. a completion function f for J is a mapping f : ∆Jnull → D such that D |= ϕ(f(u))
for all u ∈ ∆Jnull and ϕ(x) ∈ ZJ (u).

2. The completion of J given by f , written f(J ), is the interpretation I defined by
setting:

• ∆Iind = ∆Jind;
• AI = AJ for all AJ ⊆ ∆Jind;
• rI = rJ for all rJ ⊆ ∆Jind ×∆Jind;
• UI =

(
UJ ∩ (∆Jind × dom(D))

)
∪ {(b, f(v)) | (b, v) ∈ UJ , v ∈ ∆Jnull} for all

UJ ⊆ ∆Jind ×∆Jdata.
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Example 2.6.11. A pre-interpretation I for the (N,≤)-KB (T ,A) in example 2.6.8 is
given by setting ∆I = {a, b, u1, u2, v1, v2}; OrcI = {a}, HobgoblinI = {b}; WarriorI =
{a, b}; attackI = {(a, u1), (b, v1)} and defenceI = {(a, u2), (b, v2)}. Notice that the data
null u1 is constrained, due to the inclusions in T , to take some value within the range
defined by ZI(u1) = {(10 ≤ x ≤ 50)}. The same goes for the remaining data nulls. Let f0
be a completion function defined as f0(u1) = f0(v1) = 50 and f0(u2) = f0(v2) = 10. Then
f0 gives attack interpreted in f0(I) as {(a, 50), (b, 50)} and defence as {(a, 10), (b, 10)}.

Given a pre-model of a D-KB (T ,A), any completion function for (T ,A) will give us
a model of (T ,A).

Lemma 2.6.12. If J is a pre-model of a KB (T ,A) and f is a completion function for
J , then f(J ) is a model of (T ,A).

Proof. Let J be a pre-model of (T ,A). We define a completion function f for J . By
the definition of a pre-model, all assertions in A, and all axioms in T , are satisfied by
J . W.r.t. all assertions, as well as all axioms not involving attributes, nothing needs to
be done. Axioms of the forms (1) C v ∃U.ϕ and (2) C v ∀U.ϕ are the only ones one
needs to take care of. As for (1), for each a ∈ CJ we have a ∈ (∃U.ϕ)J , so we do as
follows. Recall that a ∈ (∃U.ϕ)J implies there exists u ∈ ∆Jdata with (a, u) ∈ UJ where
ϕ ∈ ZJ (u). If u = d for some d ∈ dom(D), by definition of J (being a pre-interpretation)
we have ZJ (d) = {x = d}; we thus set f(d) = d. Otherwise u is a data null. In this case
we pick any d with D |= ϕ(d) thus setting f(u) = d. Either way we obtain that there
exists v ∈ dom(D) with (a, v) ∈ UI and D |= ϕ(v). Thus I |= C v ∃U.ϕ. As for (2), we
obtain that a ∈ (∀U.ϕ)J implies for all u ∈ ∆Jdata with (a, u) ∈ UJ we have ϕ ∈ ZJ (u).
If UJ = ∅ we are done. Otherwise we have UJ = {(a, u1), . . . , (a, un)} where for each
ui, 1 ≤ i ≤ n, we have ϕ ∈ Z(ui). Whenever ui = d we set f(ui) = d, otherwise we
fix some value d with D |= ϕ(d) and set f(ui) = d. Either way we obtain that for all
v ∈ dom(D) with (a, v) ∈ UI , D |= ϕ(v) follows. Thus I |= C v ∀U.ϕ. This altogether
yields I |= (T ,A).

The existence of completion functions is also an important, if straightforward, fact
which will be used later.

Lemma 2.6.13. If I is a model of a Horn-L(D)-KB (T ,A), then there exists a pre-model
J of (T ,A) and a completion function f for J such that f(J ) = I.

Proof. Let I be a model of a Horn-L(D)-KB (T ,A). We define a completion function f
for a particular pre-model J such that f(J ) = I. To obtain J , replace all data values
in ∆Idata not occuring in A by data nulls u from a (countably infinite) disjoint set and
construct the sets ZJ (u).2 It is easy to see that J is a pre-model of (T ,A). Now define
a function f : ∆Jnull → dom(D) given by f(u) = d where d is the value in ∆Idata which u
replaces. Therefore given u ∈ ∆Jnull we have D |= ϕ(f(u)) for all ϕ ∈ ZJ (u). Moreover,
given the identity between data values from ∆Idata \ dom(A) assigned via attributes to
individuals and the image of f , we have f(J ) = I.

2One way of constructing such sets is using the extension of the chase procedure presented later on in
this section.
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We now define hom-initial and universal pre-models.

Definition 2.6.14. A pre-model I of a KB (T ,A) is hom-initial for (T ,A) if for all
models I ′ of (T ,A), there is a homomorphism from I to I ′.

Definition 2.6.15. Let I be a pre-model of a KB (T ,A) such that for any UCQ q and
tuple c̄, (T ,A) |= q(c̄) if, and only if, f(I) |= q(c̄) for all completion functions f . Then I
is called a universal pre-model of (T ,A).

We now show that any pre-model of a KB that is “initial” regarding homomorphisms
is a universal pre-model of the KB.
Previously we defined homomorphisms from interpretations to interpretations for

languages without existential and universal attribute restrictions. Here we define homo-
morphisms between a pre-interpretation for D and an interpretation for D. Let I be a
pre-interpretation and J be an interpretation for D. A homomorphism from I to J is a
mapping h : ∆I → ∆J such that all invididual names and all d ∈ dom(D) are mapped
to themselves and

(a) h[∆Iind] ⊆ ∆Jind such that h(a) ∈ AJ if a ∈ AI , and (h(a), h(a′)) ∈ rJ if (a, a′) ∈ rI ;

(b) h[∆Idata] ⊆ dom(D) such that if (a, v) ∈ UI , then (h(a), h(v)) ∈ UJ and D |=
ϕ(h(v)) for all ϕ ∈ ZI(v).

Observe that if I is actually an interpretation (rather than a pre-interpretation only)
then we obtain a homomorphism in the standard sense and it follows that for any UCQ
q and tuple c̄ of individual names and data values in I we have J |= q(c̄) whenever
I |= q(c̄).
We then adapt the notion of hom-initial (defined previously for the canonical model

construction) simply by using the newly defined homomorphisms from pre-interpretations
to interpretations.
We show that such hom-initial models are universal pre-models.

Theorem 2.6.16. Let I be a pre-model of a KB (T ,A) which is hom-initial. Then I is
a universal pre-model of (T ,A).

Proof. Let I be a hom-initial pre-model of a Horn-L(D)-KB (T ,A). We show that I
satisfies Definition 2.6.15, that is, for any UCQ q and tuple c̄, (T ,A) |= q(c̄) if, and only
if, f(I) |= q(c̄) for all completion functions f .

So let q(x̄) be a UCQ and c̄ be a tuple of individuals and data values from A.
First, assume for all models I of (T ,A) we have I |= q(c̄). Let f be a completion

function for I. By Lemma 2.6.12, f(I) is a model of (T ,A). Thus f(I) |= q(c̄) as desired.
Conversely, assume f(I) |= q(c̄) for all completion functions f and let J be a model of

(T ,A). We have to show that J |= q(c̄). By assumption there is a homomorphism h0
from I to J .
As shown in Figure 2.2, construct a completion function f0 for I using h0 by setting

f0 := h0 �∆Idata
. f0 is a completion function since D |= ϕ(h0(u)) for all ϕ ∈ ZI(u), by

definition of homomorphisms.
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I

f0(I) |= q(c̄)

J |= q(c̄)

h0 �∆I
data

h0

h0 �∆I
ind

Figure 2.2: Theorem 2.6.16: construction of completion function f0

Now the mapping h : f0(I)→ J defined by setting h(a) = h0(a) for all a ∈ ∆Iind and
h(d) = d for all d ∈ dom(D) is a homomorphism from f0(I) to J . But then J |= q(c̄)
since f0(I) |= q(c̄).

Computing the chase of Horn-ALCHIqattrib(D)-KBs Previously we constructed a
chase procedure for Horn-ALCHI KBs. Recall the general ideas and definitions on the
chase presented there. We now extend the chase procedure to one that constructs for
every satisfiable Horn-ALCHIqattrib(D)-KB a hom-initial pre-model of the KB.

Here we regard a pre-interpretation as a set of assertions that can contain, in addition
to ABox assertions, assertions of the form U(a, u) with u a data null and sets Z(u) of
PPc formulae for u a data value or data null. We refer to the resulting set of assertions
as a pre-ABox.
Assume a Horn-L(D)-KB (T ,A) is given and let S be the pre-ABox obtained from
A by adding Z(d) = {x = d} for every data value d in A. We now use as rules for the
chase step the union of the sets of rules defined in Figures 2.1 and 2.3. Again define
chase(T ,A) =

⋃
i∈N Si. Notice that each Si contains, together with assertions, a set Zi(u)

for each data value or data null u.

Example 2.6.17. (Example of a finite chase.) Let T := {A1 v ∃r.A2, A2 v ∃U1, U1 v U2}
and A := {A1(a)}. Then

S ={A1(a)},
{A1(a), r(a, c), A2(c)},
{A1(a), r(a, c), A2(c), U1(c, u)},
{A1(a), r(a, c), A2(c), U1(c, u), U2(c, u)}.

In this case S is finite and, in addition, unique.
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6. If C v ∃U ∈ T and C(a) ∈ S and there is no data value or data null v with
U(c, v) ∈ S then add U(a, u) to S and set Z(u) = ∅, where u is a fresh data
null.

7. If C v ∃U.ϕ ∈ T and C(a) ∈ S and there is no data value or data null
v with U(c, v) ∈ S and ϕ ∈ Z(v), then add U(a, u) to S and set Z(u) =
{ϕ(u)}, where u is a fresh data null. Terminate and output unsatisfiable if
D 6|= ∃xϕ(x).

8. If C v ∀U.ϕ ∈ T and C(a) ∈ S and U(c, u) ∈ S for u a data value or data
null such ϕ /∈ Z(u), then add ϕ to Z(u). Terminate and output unsatisfiable
if D 6|= ∃x

∧
ϕ∈Z(u) ϕ(x).

9. If U1 v U2 ∈ T and U1(a, u) ∈ S and U2(a, u) 6∈ S, then add U2(a, u) to S.

Figure 2.3: Additional chase rules for Horn-ALCHIqattrib(D)

Example 2.6.18. (Example of an infinite chase.) Let T := {A v ∃r.A} andA := {A(a)}.
We use nulls from a set {c0, c1, . . .}. Then

S ={A(a)},
{A(a), r(a, c0), A(c0)},
{A(a), r(a, c0), A(c0), r(c0, c1), A(c1)},
{A(a), r(a, c0), A(c0), r(c0, c1), A(c1), r(c1, c2), A(c2)},
. . .

Therefore

chase(T ,A) = {A(a), r(a, c0)} ∪ {A(ci) | i ∈ N} ∪ {r(ci, ci+1) | i ∈ N}.

Now we are ready to define:

Definition 2.6.19. The canonical pre-model of a satisfiable Horn-ALCHIqattrib(D)-KB
(T ,A), denoted can(T ,A), is the pre-interpretation obtained from

⋃
i∈N Si where for each

data element u ∈ ∆can(T ,A)
data we set Zcan(T ,A)(u) :=

⋃
i∈N Zi(u).

The canonical pre-model then has the desired property:

Lemma 2.6.20. Let (T ,A) be a satisfiable KB. Then can(T ,A) is a pre-model of (T ,A).

Proof. Given that all assertions in A occur in chase(T ,A) by the definition of the pre-
ABox S, we immediately get can(T ,A) |= A. Now we show that can(T ,A) |= T . Given
any axiom δ in T , a simple argument shows that can(T ,A) |= δ depending on the axiom’s
form. We prove that the claim holds for two representative cases:
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• Let δ = C v ∃U.ϕ. Then if C(a) occurs in Sj for some j ∈ N, rule C v U.ϕ
is applied at some step i ≥ j yielding U(a, u) ∈ Si+1 and ϕ ∈ Zi+1(u). Thus
a ∈ Ccan(T ,A) implies there exists u ∈ ∆can(T ,A)

data with (a, u) ∈ U can(T ,A) and
ϕ ∈ Zcan(T ,A)(u). Therefore by definition can(T ,A) |= C v ∃U.ϕ.

• Let δ = C v ∀U.ϕ. If C(a), U(a, v) ∈ Sj with ϕ /∈ Zj(v), we have that rule
C v ∀U.ϕ is applied at some step i ≥ j to the effect that ϕ ∈ Zi+1(v). Thus
inductively a ∈ Ccan(T ,A) implies for all v ∈ ∆can(T ,A)

data with (a, v) ∈ U can(T ,A) we
have ϕ ∈ Zcan(T ,A)(v). Therefore by definition we obtain that can(T ,A) |= C v
∀U.ϕ.

The arguments are similar for the remaining forms of axioms.

The notions and techniques used in the lemma that follows are similar to the ones
used in the data exchange framework [49]; in particular see Lemma 3.4 in [49].

Lemma 2.6.21. Let (T ,A) be a Horn-ALCHIqattrib(D)-KB in normal form. Then

1. (T ,A) is unsatisfiable if, and only if, the chase procedure outputs unsatisfiable;

2. If (T ,A) is satisfiable, then can(T ,A) is hom-initial for (T ,A).

Proof. Let (T ,A) be a Horn-ALCHIqattrib-KB. We show the following:

A. if the chase of (T ,A) does not output unsatisfiable, then (T ,A) has a model.

B. if (T ,A) is satisfiable, then the chase of (T ,A) does not output unsatisfiable and
can(T ,A) is hom-initial for (T ,A).

Ad A., assume the chase of (T ,A) does not output unsatisfiable. Inspecting the rules
of the chase (Figures 2.1 and 2.3), it is checked that the following holds:

I Rule 1 is not ever triggered;

II Whenever Rule 6 is triggered, the latter condition is not satisfied;

III Whenever Rule 7 is triggered, the latter condition is not satisfied.

To obtain that (T ,A) is satisfiable we only need to show that there exists an interpretation
I with I |= (T ,A). A simple inductive argument shows this. We start with an
interpretation I0 with I0 |= A and at each step i+ 1 we extend (or repair) the previous
interpretation Ii by taking an axiom of T into account. By the forms of axioms that
can occur in T , this procedure will only be blocked at some step j if either (i) there is
an individual a with a ∈ AIj for some concept name A, and A v ⊥ ∈ T ; or (ii) there is
an individual a with a ∈ CIj , for a concept C and C v ∃U.ϕ ∈ T , for U an attribute
name, but D 6|= ∃xϕ(x); or (iii) there is an individual a with a ∈ CIj , (a, v) ∈ UIj

for v a data value, C a concept and U an attribute name, and C v ∀U.ψ ∈ T , but
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D 6|= ∃x
∧
ϕ∈Φ ϕ(x), where Φ contains ψ together with all other PPc formulae (in universal

U -attribute restrictions) in T that constrain v.3 However, this is guaranteed not to
happen, for either case would contradict (I), (II) or (III) above.
Now consider the interpretation obtained in the limit of the procedure, I :=

⋃
i∈N Ii.

It can be checked that I is a model of (T ,A) as desired.
Ad B., take a model M of (T ,A) and let can(T ,A) be the canonical pre-model of

(T ,A), that is, the pre-interpretation (∆can(T ,A), ·can(T ,A), Zcan(T ,A)). By Lemma 2.6.20,
can(T ,A) is a pre-model of (T ,A).

We construct a homomorphism from can(T ,A) toM using an intermediary pre-model.
By Lemma 2.6.13 there exists a pre-modelM′ of (T ,A) and a completion function f
such that f(M′) =M. Fix one such completion function f . We define a function

h : ∆can(T ,A) → ∆M′

by induction on the stepwise construction of chase(T ,A) :=
⋃
i∈N Si, used to define

can(T ,A). Whilst presenting the inductive definition we also show that as a consequence
a partial homomorphism from a pre-interpretation to an interpretation (which satisfies
item (a) and partially item (b) of the definition) is constructed. We will then compose f
with h to obtain a full homomorphism from can(T ,A) toM.

For the induction basis, let i = 0. We set h(a) = a for all individuals a, and h(v) = v
for all v ∈ dom(D), that occur in A. It is easy to see that since S0 = A, if there is
an individual a ∈ ∆can(T ,A) with a ∈ Acan(T ,A), then A(a) ∈ S0 and so given that by
assumptionM′ |= A, we have h(a) ∈ AM′ ; also if there are individuals a, b ∈ ∆can(T ,A)

with (a, b) ∈ rcan(T ,A) for a role name r, then r(a, b) ∈ S0; thus M′ |= A yields
(h(a), h(b)) ∈ rM′ . Moreover, if there is an individual a and a data value v ∈ dom(D) in
with (a, v) ∈ U can(T ,A) for an attribute name U , then U(a, v) ∈ S0, which together with
the assumption thatM′ |= A yields (h(a), h(v)) ∈ UM.
For the IH, we assume that h has been defined for i = k ≥ 0 and consider all the

possible rule applications at step k of the chase. So let Sk+1 be obtained from Sk by
applying

• Rule 2. Therefore C v A is applied to C(a) ∈ Sk at step k and A(a) /∈ Sk.
Therefore A(a) ∈ Sk+1, and so a ∈ Acan(T ,A). By the IH, we have h(a) ∈ CM.
SinceM′ |= T , h(a) ∈ AM′ .

• Rule 3. Therefore C v ∃p.A is applied to C(a) ∈ Sk at step k and there is no
individual c with p(a, c), A(c) ∈ Sk. Therefore p(a, c), A(c) ∈ Sk+1 where c is a
fresh individual, and so (a, c) ∈ pcan(T ,A) with c ∈ Acan(T ,A). By the IH, we have
h(a) ∈ CM′ . SinceM′ |= T , there is at least one individual b with (h(a), b) ∈ pM′

and b ∈ AM′ . We set h(c) = b. Therefore (h(a), h(c)) ∈ pM′ with h(c) ∈ AM′

• Rule 4 Therefore C v ∀p.A is applied to C(a) ∈ Sk at step k, p(a, b) ∈ Sk but
A(b) /∈ Sk for some individual b. Then A(b) ∈ Sk+1. Thus (a, b) ∈ rcan(T ,A) with

3That is, we cannot replace v with any other value so as to satisfy all the relevant constraints on
U -attributes.
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b ∈ Acan(T ,A). By the IH, h(a) ∈ CM′ . SinceM′ |= T , for all c with (h(a), c) ∈ rM′

we have c ∈ AM′ . We pick a c′ not already in the image of h and set h(b) = c′.
Therefore (h(a), h(b)) ∈ rM′ and h(b) ∈ AM′ .

• Rule 5. Therefore p v p′ is applied to p(a, b) ∈ Sk at step k and p′(a, b) /∈ Sk. Thus
p′(a, b) ∈ Sk+1, and so (a, b) ∈ p′ can(T ,A). By the IH, we have (h(a), h(b)) ∈ pM′ .
ThenM′ |= T yields (h(a), h(b)) ∈ (p′)M′ .

• Rule 6. Therefore C v ∃U is applied to C(a) ∈ Sk at step k and there is no data
value or data null v with U(a, v) ∈ Sk. Therefore U(a, u) ∈ Sk+1 where u is a
data null. Thus (a, u) ∈ U can(T ,A) where ϕ ∈ Zcan(T ,A)(u). By the IH, we get
h(a) ∈ CM. SinceM′ |= T , there is a data null u′ with (h(a), u′) ∈ UM′ . We set
h(u) = u′. Therefore (h(a), h(u)) ∈ UM′ .

• Rule 7. Same as rule 6. See † below.

• Rule 8. Do nothing.

• Rule 9. Similar to rule 5 above.

Now set g := f ◦ h : can(T ,A)→M and that note that

† Zcan(T ,A)(u) = ZM
′(h(u)) for all u ∈ ∆can(T ,A)

null .

It can be checked that g satisfies both items of the definition of homomorphisms from
pre-interpretations to interpretations. Therefore g is a homomorphism from can(T ,A)
toM and, sinceM is arbitrary, by Definition 2.6.14, can(T ,A) is hom-initial.
Finally, it is also clear that, assuming the chase does output unsatisfiable, we obtain

that either Rule 1, or the latter part of Rules 6 or 7 is applied. As a consequence it is
clear that (T ,A) is unsatisfiable.

The Lemma now follows from (A) and (B).

Corollary 2.6.22. For every satisfable Horn-L(D)-KB (T ,A), the pre-interpretation
can(T ,A) is a universal pre-model of (T ,A).

Proof. Directly from Lemma 2.6.21 and Theorem 2.6.16.
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3 Constraint Satisfaction Problems

3.1 Introduction

In this chapter we present a class of combinatorial problems known as constraint satis-
faction problems (CSPs in short). In the following section we provide basic notions and
introduce, in detail, techniques used later for proving relevant results.

Then we present a PTIME/NP dichotomy result on CSPs proved in [19] for structures
refered to in the literature as temporal constraint languages— technically, the structures
all whose relations have a first-order definition in (Q, <)—, which will be later used for
classifying the complexity of query answering over the datatype (Q,≤).

3.2 Definitions and results on CSPs

CSPs have been around for some time under different guises. In this framework, pioneered
by Montanari in the 1970s [84], it is possible to model a great variety of real-life problems.
They are of both practical and theoretical interest.

Informally, in a CSP we are given a set of constraints with variables over fixed domains
and the question is whether there is an assignment of domain elements to the respective
variables such that all constraints are satisfied. Natural variations have been proposed
and investigated, e.g. the question as to how many assignments satisfy the constraints, or
finding an assignment satisfying the greatest number of constraints (exactly or otherwise),
but here we restrict ourselves to the above task.
There are several ways of formally defining the decision problem just sketched. We

present the formulation that better suits the approach presently undertaken; namely,
casting CSPs as the problem of evaluating a certain class of first-order formulae; see
e.g. [17]. Next we present basic results on the complexity of CSPs. We close this section
with a discussion of relevant dichotomy results and the algebraic approach to proving
them.

3.2.1 The computational problem

Recall the definitions introduced in Section 2.2. Let us say we have as inputs PP sentences
ϕ over a structure Γ and the problem is whether ϕ is satisfied in Γ. Many constraint
satisfaction problems can be formalised in this way [17, 18, 21, 15] by choosing an
appropriate structure. In this context, the constraints are syntactic objects (the conjuncts
of ϕ). We give a formal definition.
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Let Γ be a Σ-structure. Recall that PP formulae ϕ over Γ are first-order formulae of
the form

∃x1, . . . , xp.ψ1 ∧ . . . ∧ ψ`,

where each ψi, 1 ≤ i ≤ `, is of the form R(x1, . . . , xk) or x = y, with R a relation symbol
from Σ where arity(R) = k. From here on, for a fixed relational structure Γ over a
signature Σ, here termed a constraint language or a template,1 we use the following
definition:

CSP(Γ)
Input: a PP sentence ϕ over Γ
Question: Γ |= ϕ ?

A satisfying assignment for an instance ϕ ∈ CSP(Γ) is called a solution for ϕ.
Another usual way of defining CSPs is in terms of homomorphisms. Let Γ,Γ′ be

Σ-structures. Then a homomorphism from Γ to Γ′ is a function f from dom(Γ) to
dom(Γ′) such that for each n-ary relation symbol R in Σ and each n-tuple t̄ ∈ RΓ, we
have that (f(a1), . . . , f(an)) ∈ RΓ′ . If f is injective (surjective, bijective) we say that f
is an injective (surjective, bijective) homomorphism. A bijective homomorphism from
a structure Γ to itself is called an automorphism of Γ. If structures Γ,Γ′ are such that
there is homomorphism from Γ to Γ′ and a homomorphism from Γ′ to Γ, then we say
that Γ is homomorphically equivalent to Γ′. An endomorphism Γ is a homomorphism
from Γ to itself. Given an injective homomorphism h from Γ to Γ′ that preserves the
complement of each relation, we say that h is an embedding. Finally, a structure Γ is
called a core if all its endomorphisms are also embeddings.
For finite structures, the following results are useful:

Proposition 3.2.1. ([58]) Let Γ be a finite structure. Then Γ is homomorphically
equivalent to a unique (up to isomorphism) core Γ′.

Proposition 3.2.2. ([58]) Let Γ,∆ be finite structures and Γ′,∆′ be the cores of Γ and
∆, respectively. Then there is a homomorphism from Γ to ∆ if, and only if, there is a
homomorphism from Γ′ to ∆′.

We illustrate this with a very simple example.

Example 3.2.3. Let Γ = ({1, 2, 4, 5}, succ), where succ := {(x, y) ∈ (dom(Γ))2 | x+ 1 = y}.
Also let Γ′ = ({1, 2}, succ). Then Γ and Γ′ are homomorphically equivalent. To check
this, let h : dom(Γ) → dom(Γ′) such that h(1) = h(4) = 1, h(2) = h(5) = 2; and let
g : dom(Γ′)→ dom(Γ) such that g(1) = 4, g(2) = 5. Also, Γ′ is a core and it is unique,
up to isomorphism; that is, Γ′ is isomorphic to any other core of Γ.

Now consider the following fundamental algebraic problem. Fix a Σ-structure Γ. Then
CSP(Γ) is the problem to decide, given a Σ-structure Γ′, whether there is a homomorphism
h : Γ′ → Γ. This is a traditional way of defining CSPs, see [50]. The following example
illustrates this.

1We will use the terms interchangeably throughout this work.
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Example 3.2.4. Analogously to the definition of homomorphism given above, a digraph
homomorphism of a directed graph G = (VG, EG) to a directed graph H = (VH , EH) is a
function h from VG to VH where for each edge (v, w) ∈ EG we have (h(v), h(w)) ∈ EH .
Now fix a directed graph H. Then the digraph homomorphism problem is, given a
directed graph G, whether a digraph homomorphism h : G → H can be found. It can
be cast as a homomorphism problem as above and is refered to in the combinatorial
literature as H-COLOURING [59]. This decision problem generalises k-COLOURING,
which is the problem to decide, given an undirected graph G, whether we can assign one
out of k possible colours to each vertex in such a way that no two adjacent vertices share
the same colour. To see this, let Kn denote the complete loopless undirected graph on n
vertices. If there is a homomorphism from a graph G to Kn, then G is n-colourable. The
converse also holds. Equivalently, G is a “yes”-instance of CSP(Kn). In other words, a
graph G is n-colourable iff there is a homomorphism from G to Kn.

We can recast the problem from Example 3.2.4 again as a CSP for a relational structure
and a PP sentence instead. Let H = (VH , EH) be a digraph and G = (VG, EG) be
an input to H-COLOURING. To encode the problem we simply translate H into a
relational structure ΓH = (VH , EH) and G into a PP sentence ϕG over ΓH , which we
encode using the form ∃x̄

∧
(i,j)∈EG

EH(xi, xj). Then G is an instance of H-Colouring
iff ΓH |= ϕG. For instance, let H = (VH , EH) be a digraph with VH = {1, 2, 3, 4} and
EH = {(1, 3), (1, 4), (2, 3)} and G = (VG, EG) be a digraph with VG = {1, 2, 3} and EG =
{(1, 2), (1, 3)}. Construct the PP sentence ϕG = ∃x1, x2, x3(EH(x1, x2) ∧ EH(x1, x3)).
Then clearly ΓH |= ϕG, for e.g. the assignment α given by α(x1) = 1, α(x2) = 3, α(x3) =
4 makes ϕG true in ΓH .

Here is another typical problem that can be defined in this way.

Example 3.2.5. Let Γlin = (D,R1
lin , R

2
lin , . . . ) where D is any field (for instance, simply

R or the field of p-adic numbers for p a prime number) and each Rilin is a ki-ary relation
defined as follows:

Rilin := {(xi1, . . . , xiki
) ∈ Dki | ai1xi1 + . . .+ aikx

i
ki

= ri},

where all ai1, . . . , aiki
, ri ∈ D. An instance of CSP(Γlin) is a system of linear equations

p1, . . . , pm. A solution, when it exists, is a satisfying assignment to the variables; that
is, a mapping from all tuples of ki variables in all pi to Dki , for 1 ≤ i ≤ m, such that
ti ∈ Rilin holds for each resulting ki-tuple ti ⊆ Dki .

We finish this section by defining reductions between CSPs, a notion that will be used
next.

Definition 3.2.6. Given templates Γ,Γ′ we say that CSP(Γ) polynomially reduces
to CSP(Γ′), in symbols CSP(Γ) ≤p CSP(Γ′), if there is a polynomial-time algorithm
that transforms any instance ψ of CSP(Γ) into an instance ψ′ of CSP(Γ′) such that
ψ ∈ CSP(Γ) if, and only if, ψ′ ∈ CSP(Γ′). We say that CSP(Γ) is polynomially equivalent
to CSP(Γ′), in symbols CSP(Γ) ≡p CSP(Γ), if it is the case that CSP(Γ) ≤p CSP(Γ′) and
CSP(Γ′) ≤p CSP(Γ).
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3.2.2 CSPs with constants
In our study of data complexity of OMQ answering, the goal is to translate such problems
into the framework of CSPs. The main difficulty in that scenario is that such translations
produce input instances to the CSP that can contain constants. In typical CSPs, on the
other hand, such parameters are not allowed. We define this problem next.
Recall from Section 2.2 that PP formulae with constants over a Σ-structure Γ are

denoted PPc formulae, or PPc sentences, when they do not contain free variables. Now,
for PPc sentences as inputs we formulate the problem:

CSPc(Γ)
Input: a PPc sentence ϕ over Γ
Question: Γ |= ϕ ?

Related problems in algebra and graph theory have been called retraction problems [58].
The retraction problem for a finite domain structure H is, given a substructure G of H,
whether there is a homomorphism from G to H that is the identity on H. Such problems
are polynomially equivalent to CSP(H′) where H′ is H added with unary relations for all
elements of dom(H) [51]. We explore useful equivalences next.

Remark 3.2.7. Whereas it is clear that all instances of CSP(Γ) are instances of CSPc(Γ),
in symbols CSP(Γ) ⊆ CSPc(Γ), for all templates Γ, individual inputs to CSPc(Γ) can be
harder than their constant-less counterparts in CSP(Γ). The intuition is that constants
in the input (which can be seen as playing the role of partial candidate solutions) can
rule out certain solutions at an early stage of computation. E.g., let Γ = (N, R) where
R := {(a, b) ∈ N2 | a = b ∨

√
a = b}, and let ψ = ∃xy.R(x, y). It is easy to check that

ψ ∈ CSP(Γ) by simply picking any n ∈ N and setting x, y =: n. Now let ψ′ = R(c, d)
where c, d ∈ N with c 6= d. Then checking ψ′ ∈ CSPc(Γ) requires either computing the
square root of c or squaring d.

When dealing with templates with finite domain, one can show polynomial equivalence
between CSPc and CSP. To show this, we use two similar (and polynomially equivalent)
formulations, one with unary predicates, and another one with partial mappings, in place
of constants. The reason for introducing them is to use known results. We say that a
Σ-template Γ admits precolouring if for all elements a of dom(Γ), Σ contains a unary
predicate symbol Pa and PΓ

a = {a}. Clearly, if a template Γ admits precolouring we can
obtain a new template Γ′ by simply dropping the unary predicates; for cores, the same
problems can then be simulated by using constants instead of the unary predicates. The
following is known [70]:

Proposition 3.2.8. Let Γ be a core. Then there exists a template Γ′ that admits
precolouring such that CSP(Γ′) ≡p CSP(Γ).

We formulate a polynomial-time equivalent version of CSPs for templates that admit
precolouring, now in terms of partial mappings. Let Γ be a template, ϕ a PP sentence
and h be a partial mapping from the variables in ϕ to elements of dom(Γ). We write
ϕ[h] to mean ϕ with assignment h of values to variables of ϕ. We define:
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pre-CSP(Γ)
Input: a PP sentence ϕ over Γ and a partial mapping h : Var(ϕ) →

dom(Γ)
Question: Is there an extension h′ of h such that Γ |= ϕ[h′] ?

The following results then connect pre-CSP, CSPc and CSP for finite cores. They will
be used later for proving a dichotomy for OMQ answering over finite datatypes.

Theorem 3.2.9. ([70]) Let Γ be a core with |dom(Γ)| < ω. Then pre-CSP(Γ) ≡p CSP(Γ).

Proposition 3.2.10. For any template Γ we have pre-CSP(Γ) ≡p CSPc(Γ).

Proof. Let Γ be a template and ϕ be an instance of pre-CSP(Γ), and h be the partial
mapping of the input. The result ϕc of applying h to get the values for the variables in
ϕ and replacing the variables by the corresponding values is clearly an input to CSPc(Γ).
It is then easy to see that ϕ ∈ CSP(Γ) iff ϕc ∈ CSPc(Γ). The other direction is shown by
a similar argument.

Using Theorem 3.2.9 and Proposition 3.2.10, we obtain:

Corollary 3.2.11. CSPc(Γ) ≡p CSP(Γ), for Γ a finite core.

For finite structures Γ, the following result allows one to focus on the core of Γ.

Proposition 3.2.12. If Γ is such that | dom(Γ)| < ω and Γ′ is the core of Γ, then
CSP(Γ) = CSP(Γ′).

These problems prompt the investigation of structures Γ for which the associated CSP
is tractable.

3.2.3 Complexity and dichotomies
How hard are CSPs? Let us consider a tractable case, Example 3.2.5 above: such
mappings– when they exist– can be found in polynomial time by using the known method
called Gaussian elimination.2 So CSP(Γlin) turns out to be tractable. Actually, a basic
fact on the complexity of CSPs is that if we require Γ to be finite (that is, |dom(Γ)| < ω),
then CSP(Γ) is in NP but, unsurprisingly, not guaranteed to be polynomially solvable,
modulo the assumption PTIME 6= NP. On the other hand, in the context of infinite
templates it is not hard to come up with undecidable CSPs, as the following example
shows.

Example 3.2.13. In contrast to equations in Example 3.2.5, a Diophantine equation is
any equation that admits only integer solutions. Hilbert’s 10th problem is the problem to
decide, given an arbitrary Diophantine equation, whether it has a solution. In other words,
it asks for an universal algorithm for solving such equations. The problem was proved

2In fact, Gaussian elimination generalises to an algebraic method on which some of the known algorithms
for solving finite CSPs are based [51].
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undecidable by Yuri Matiyasevitch [81]. Now let R := {(x, y, z) ∈ Z3 | x+ y + z = 1}
and S := {(x, y, z) ∈ Z3 | xy = z}. Then it can be shown that any Diophantine equation
can be represented using only the relations R,S over the integers, so that Hilbert’s 10th
problem is equivalent to CSP(Z, R, S) [14].

In fact, it has been shown that every decision problem has a polynomial-time equivalent
CSP over an infinite template [14].3
Again assuming PTIME 6= NP, given a CSP over a template Γ, we say that it has

a dichotomy if CSP(Γ) is either polynomially solvable or NP-complete. In fact, there
are important classes for which such a dichotomy has been established; for example
Boolean CSPs, that is, CSPs with domain {0, 1} [42, 95] and CSPs for templates with
three domain elements [28], as well as undirected graphs [59] (see the example below).

Example 3.2.14. Using a known result, a dichotomy can be obtained for CSP(Γ) if
Γ ranges over the class of complete loopless graph on n vertices, for n > 0. So let
Γ = Kn = (V,E), where V = {1, . . . , n} and E := {(x, y) ∈ D2 | x 6= y}. Notice that any
vertex colouring of Kn must use at least n colours; recall Example 3.2.4. Now it suffices
to note that, by a very old result, n-colouring is in PTIME if n ≤ 2, and is NP-complete
if n ≥ 3 [64, 54]. Another example is CSP(H) from Example 3.2.4. Using a different
result it can be shown that if H is either bipartite or has a loop, CSP(H) is polynomially
solvable; otherwise it is NP-complete [59].

That a general dichotomy for finite templates holds was conjectured by Feder and
Vardi in 1993.

Theorem 3.2.15. ([50], Conjecture 6) CSP(Γ), for all templates Γ with | dom(Γ)| < ω,
is either in PTIME or NP-complete.

The conjecture was confirmed recently [29, 100].
By Theorem 3.2.15, assuming PTIME 6= NP, CSPs over finite templates consists of

a large class of NP problems which are not NP-intermediate by Ladner’s well-known
theorem (see [69]). On the other hand, given that CSPs encode a very large class of
natural computational problems, it is not surprising that such classifications are hard to
obtain, as we will see next.

3.2.4 The algebraic approach to classifying CSPs
A PTIME/NP dichotomy does not exist for the class of infinite templates [14]. On the
other hand, as we will see, dichotomies have been established for certain important
templates used in applications in Artificial Intelligence.

When possible, given a template Γ, it has been shown useful to look into its algebraic
structure, namely, associating an algebra to Γ in which to formulate sufficient and/or
necessary conditions for tractability.
We refer the interested reader to [89] for a more detailed and didactic exploration of

the general approach and [43], section 11.4, for a textbook treatment of the matter. Here
3Meaning there are poly-time Turing reductions between the two problems.
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we briefly define some needed notions. Let A be a set. A function clone is a set F of
operations of finite arity on A that is preserved by composition and that contains all
projections. Formally, F has to satisfy the following conditions:

1. If an operation f ∈ F is n-ary and g1, . . . , gn ∈ F are m-ary, then the m-ary
operation f(g1, . . . , gn) defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

is an element of F ;

2. For all 1 ≤ k ≤ n < ω, F contains the k-th n-ary projection πnk : An → A,
characterised uniquely by πnk (x1, . . . , xn) = xk.

A k-ary polymorphism of a structure Γ is simply a homomorphism from Γk to Γ itself,
where k ≥ 1. A polymorphism clone of a structure Γ is the set of all polymorphisms of Γ.
Now to every template Γ one can associate a function clone Pol(Γ) on dom(Γ). Recall
that CSPs can be formulated as the homomorphism problem. Now it turns out that for
some finite templates Γ, CSP(Γ) is determined by Pol(Γ). We call this property the
polymorphism clone property. For example, the complexity of CSP over the two element
template ΓBool is completely determined by the polymorphism clone F of ΓBool : if ΓBool
is preserved by one out of six operations in F , then CSP(ΓBool) is in PTIME; otherwise
it is NP-complete [27]. We now exemplify a more complicated problem which cannot be
formulated as a CSP over a finite template but is still amenable to algebraic methods; it
will be used later:

Example 3.2.16. (Allen’s Interval Algebra) Consider the basic binary relations on
intervals x = [x−, x+] with x− < x+ (the starting point is less then the end point), for
x−, x+ ∈ R. One can form 13 such relations, which are disjoint; they represent all the
ways two intervals x and y can be “qualitatively” related. For instance, x during y
is given by the relation defined by the constraints x− > y−, x− < y+, x+ > y− and
x+ < y+; see Table 3.1 for all basic relations. If we include the empty relation, taking
the possible unions of basic relations gives us 213 = 8192 “complex” relations. Allen’s
Algebra A consists of the set containing those relations together with the operations
·−1,∩ and ◦, that is, inverse, intersection and composition, respectively. They are defined
as follows:

• ∀x, y : xr−1x ⇐⇒ yrx,

• ∀x, y : x(r ∩ r′)y ⇐⇒ xry ∧ xr′y,

• ∀x, y : x(r ◦ r′)y ⇐⇒ ∃z : (xrz ∧ zr′y).

Informally, A-SAT is the problem to decide, given a set of variables over intervals in
dom(A) with specified relations between them, whether there exists an assignment of real
intervals to the variables that satisfies all such relations. This problem is NP-complete [99].
One way of obtaining tractable problems is to suitably specify subalgebras of A. The
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basic relation in symbols constraints
x before y x ≺ y {x+ < y−, x− < y+,
y after x y � x x+ < y−, x+ < y+}
x meets y xmy {x− < y−, x− < y+,
y met-by x ym−x x+ = y−, x+ < y+}
x overlaps y xoy {x− < y−, x− < y+,

y overlapped-by x yo−x x+ > y−, x+ < y+}
x during y xdy {x− > y−, x− < y+,
y includes x yd−x x+ > y−, x+ < y+}
x starts y xsy {x− = y−, x− < y+,

y started-by x ys−x x+ > y−, x+ < y+}
x finishes y xf y {x− > y−, x− < y+,

y finished-by x yf−x x+ > y−, x+ = y+}
x equals y x ≡ y {x− = y−, x− < y+,

x+ > y−, x+ = y+}

Table 3.1: Allen’s Interval Algebra: the 13 basic relations

dichotomy proved in [67] is in terms of subalgebras: 18 of them exhaust the tractable
cases, while any subalgebra not entirely contained in one of them has an NP-complete
problem. The largest tractable fragment of A is called ORD-Horn, and will be explored
later. We will also see that A-SAT and fragments can be formulated as CSPs.

Three different conditions on countably infinite templates, among others, have been
proposed which are associated to amenability to tractability characterisations by means of
polymorphism clones: homogeneity, ω-categoricity and a certain combinatorial property
called the Ramsey property. We define the first two. Homogeneity is here used directly,
and ω-categoricity is used in the dichotomy of temporal templates (see the next section).
The Ramsey property is only mentioned as it is one of the key elements in dealing with
CSPc(Γ) as long as Γ is homogenous (see [23]).

Definition 3.2.17. Let Γ be a relational structure. Then Γ is said to be homogeneous
if, for each pair of finite substructures Γ1,Γ2 of Γ, every isomorphism Γ1 ∼= Γ2 can be
extended to an automorphism of Γ.

Example 3.2.18. The Erdős-Rényi graph [47] and the structure (Q, <) are examples of
homogeneous structures.4

Given a structure Γ, by Th(Γ) we denote the first-order theory of Γ.

Definition 3.2.19. Let κ be a cardinal and Γ be a relational structure. Then we say
that Γ is κ-categorical if all models of cardinality κ of Th(Γ) are isomorphic to Γ.

4See also Example 5.3.8 for a description of classes of homogenous datatypes.
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Linking the two properties we have the known fact that, given a relational structure Γ,
Γ is homogenous only if Γ is ω-categorical, where ω is the countable infinite cardinal.

The starting point for the algebraic method for ω-categorical structures is a property
that carries over from finite to a certain class of infinite templates. We say that a k-ary
relation R has a primitive positive definition in a template Γ if there is a PP formula ϕ
on k free variables that defines R. Now due to a result in universal algebra proved in [55]
and [24], polymorphism clones characterise primitive positive definability. For infinite
structures we have the following result:

Theorem 3.2.20. ([22]) Let Γ be an ω-categorical template. Then the relations preserved
by Pol(Γ) are exactly those having a primitive positive definition in Γ.

In other words, PP-definability of Γ, for Γ an ω-categorical template, is characterised
by its polymorphism clone. Using Theorem 3.2.20 it can be shown that any chosen
“intractable” relation R, that is, a relation encoding an NP-complete problem, captures
NP-hardness of an ω-categorical template Γ. That is, it is shown that CSP(Γ) is intractable
whenever there is a PP-definition of some relation with an NP-complete problem in Γ.
For example, an argument on these lines was used:

• in Jeavon’s algebraic proof of Schaeffer’s classification of satisfiability problems,
see [40];

• in the classification of the ω-categorical template (Q, <) presented in the next
section.

Even though ω-categorical structures are amenable to the algebraic method, neither
membership in NP, nor a general dichotomy have been proved for this class. Still, a
certain subset of countable homogenous structures called finitely constrained are shown
to be in NP and conjectured to have a dichotomy [22]. The structures in Example 3.2.18
have known dichotomies; in the next section we present in detail the second one.

3.3 Temporal CSPs

In the literature, CSPs where variables denote points in time and each constraint denotes
a temporal relationship (e.g. an interval) are usually called temporal CSPs (see [93] for a
survey). We illustrate such CSPs with a classical problem in temporal reasoning.

Example 3.3.1. In certain scheduling scenarios, we are given elements j1, . . . , jn, which
denote jobs, each to be performed at some point in time, and a list of constraints of
the form ({ji1 , . . . , jim}, ji) where {ji1 , . . . , jim} ⊂ {j1, . . . , jn} and ji /∈ {ji1 , . . . , jim};
meaning job ji is to be done only after one of the jobs ji1 , . . . , jim has been completed.
Such constraints are called AND/OR precedence constraints [82]. In particular, constraints
of the form ({i}, j) are called AND-constraints. The ones not of this form are called
OR-constraints. The question is, then, whether there is an ordering of j1, . . . , jn such
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that no constraint is violated. This feasibility problem, as we will see, can be modelled
by temporal CSPs. For instance, let n = 5 and the set of constraints be

C = {({j2, j3}, j1), ({j3, j1}, j5), ({j1}, j4), ({j5}, j4)}.

Then an example solution is the sequence j2j3j1j5j4.

We now present the framework and notation used in the present section, which we
adapt from [19].

Recall that a k-ary relation R has a first order definition in a structure D if there is a
first-order formula ϕ(x1, . . . , xk) over D such that

R := {(a1, . . . , ak) ∈ (dom(D))k | (Q, <) |= ϕ(a1, . . . , ak)}.

We then define:

Definition 3.3.2. A temporal constraint language is a relational structure Γ := (Q, R1, R2, . . . )
where each Ri has a first-order definition in (Q, <).

By default it is assumed that the formulae defining such relations do not contain
elements of Q as constants. We also say, whenever the property of first-order definability
over (Q, <) holds of a given relation R, that R is a temporal relation.

Example 3.3.3. The structure Γ := (Q, RBetw , RDisj , RCyc, RSep), where

RBetw := {(a, b, c) ∈ Q3 | a < b < c ∨ c < b < a},
RDisj := {(a, b, c) ∈ Q3 | a < b ∨ b < c},
RCyc := {(a, b, c) ∈ Q3 | a < b < c ∨ c < a < b ∨ b < c < a},
RSep := {(a, b, c, d) ∈ Q4 | (a < c < b < d) ∨ (a < d < b < c) ∨ (b < c < a < d)

∨ (b < d < a < c) ∨ (c < a < d < b) ∨ (c < b < d < a)
∨ (d < a < c < b) ∨ (d < b < c < a)}

is a temporal constraint language. The relations in Γ will be used later. In contrast, the
structure Γ′ := (Q, R+) where

R+ := {(a, b, c) ∈ Q3 | a+ b = c},

is not a temporal constraint language. There are many ways to show this. One of them
is as follows. Assume ϕ(x, y, z) is a first-order definition of R+ in (Q, <); we show that
this leads to a contradiction. Consider any tuple (a, b, c) ∈ R+; notice that a = c − b
holds by definition of R+. Also (Q, <) |= ϕ(a, b, c). It is well known (see [39]) that, for
any relational structure D = (D,R) and all formulae ϕ on free variables x1, . . . , xn, if
β : D → D is an automorphism of D, then

(?) D |= ϕ[x1 7→ a1, . . . , xn 7→ an] iff D |= ϕ[x1 7→ β(a1), . . . , xn 7→ β(an)],
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where aj ∈ D, 1 ≤ j ≤ n. Let α : Q → Q be an operation given by α(x) = x + ε for ε
a fixed non-zero rational number. It is readily checked that α is an automorphism of
(Q, <). Using (?), we obtain

(Q, <) |= ϕ[x 7→ a, y 7→ b, z 7→ c] iff (Q, <) |= ϕ[x 7→ α(a), y 7→ α(b), z 7→ α(c)].

Then there is a tuple (a′, b′, c′) with

α(a) = a′ = a+ ε,

α(b) = b′ = b+ ε,

α(c) = c′ = c+ ε,

for 0 6= ε ∈ Q, such that (Q, <) |= ϕ(a′, b′, c′). Thus (a′, b′, c′) ∈ R+. By the definition of
R+, we have a′ + b′ = c′ = a+ ε+ b+ ε = c+ ε. Thus a = c− b− ε. Contradiction.

The following example illustrates the basic framework for temporal constraint languages.

Example 3.3.4. Recall the problem and the problem instance described in Example 3.3.1.
All precedence constraints are here relations defined on (Q, <); conjunctions of atoms
x < y are then used for modelling AND-constraints and formulae x1 < x0 ∨ . . .∨xm < x0
for modelling OR-constraints. So we define the corresponding temporal CSP by setting
Γ := (Q, R∨, R∧), where

R∨ := {(a, b, c) ∈ Q3 | b < a ∨ c < a}, R∧ := {(a, b) ∈ Q2 | b < a}

encode the types of constraints used in that particular problem. To conclude the encoding
of the constraints considered, define the instance to CSP(Γ) to be

ϕC := ∃x1, x2, x3, x4, x5
(
R∨(x1, x2, x3) ∧R∨(x5, x3, x1) ∧R∧(x4, x1) ∧R∧(x4, x5)

)
.

Since we can find a solution in Q, e.g., x2 7→ 1, x3 7→ 2, x1 7→ 3, x5 7→ 4, x4 7→ 5 (the
sequence j2j3j1j5j4 in the original problem), we have ϕC ∈ CSP(Γ).

The algebraic structure of temporal templates

We now present some results on the structure underlying temporal CSPs and definitions
used later for presenting complexity results.
The structure (Q, <) is ω-categorical [37, 60]. Now recall that the set of all auto-

morphisms of a structure Γ forms a permutation group, which we denote Aut(Q, <).
A relation R ⊆ Qk is preserved by Aut(Q, <) if, for all α ∈ Aut(Q, <), for all tuples
(a1, . . . , ak) ∈ R we have (α(a1), . . . , α(ak)) ∈ R.

The structure (Q, <) has nice properties, as a consequence of its ω-categoricity.

Theorem 3.3.5. ([60]) Let R ⊆ Qk for 1 ≤ k ∈ N. Then R has a first-order definition
in (Q, <) if, and only if, R is preserved by Aut(Q, <).

Corollary 3.3.6. A relation R ⊆ Qk, 1 ≤ k ∈ N, is temporal if, and only if, R is
preserved by Aut(Q, <).
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Proof. We have by Theorem 3.3.5 that R is preserved by Aut(Q, <) iff R has a first-order
definition over (Q, <) iff R is temporal (by definition of temporal relation).

The result above is used (even if implicitly) in many proofs involving temporal relations.
The approach of [19] was described in the previous section. It consists in, given a

temporal constraint language Γ, fully describing the complexity of CSP(Γ) in terms of
polymorphism clones. In order to understand the results we need the following definitions.

Throughout this work, given a tuple t = (a1, . . . , an) we will use t[i] to denote the i-th
entry of t.

Definition 3.3.7. Let s, t ≥ 0 and f : Qs → Q.

• Given tuples ā1, . . . , ās ∈ Qt, we let f(ā1, . . . , ās) denote the tuple (b1, . . . , bt) ∈ Qt

with bi = f(ā1[i], . . . , ās[i]).

• A set R ⊆ Qt is preserved by f if for all ā1, . . . , ās ∈ R we have f(ā1, . . . , ās) ∈ R.

• A temporal constraint language Γ = (Q, R1, R2, . . . ) is preserved by f if each
relation Ri in Γ is preserved by f .

Recall the definition of a polymorphism from Section 3.2.4. This property is defined in
terms of homomorphisms; i.e., informally, mappings that preserve relations. Let Γ be a
relational structure. To illustrate polymorphisms, we inspect polymorphisms from Γ2

to Γ; i.e., let s = 2. In order to obtain from t-tuples ā1, ā2 the t-tuple b̄ = f(ā1, ā2) we
apply f componentwise:

f f f

ā1 = (a1[1], a1[2], . . . , a1[t])

ā2 = (a2[1], a2[2], . . . , a2[t])

b̄ = (f(a1[1], a2[1]), f(a1[2], a2[2]), . . . , f(a1[t], a2[t]))

We now define operations which are polymorphisms of (Q, <). Notice that they are
not unique, i.e., they consist of arbitrary operations given by a number of conditions.
They are relevant for the classification result in [19].

Definition 3.3.8 ([19]).

• l l : Q2 → Q, where l l(a, b) < l l(a′, b′) iff
– a ≤ 0 and a < a′, or
– a ≤ 0 and a = a′ and b < b′, or
– a, a′ > 0 and b < b′, or
– a > 0 and b = b′ and a < a′.
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• pp : Q2 → Q, where pp(a, b) ≤ pp(a′, b′) iff
– a ≤ 0 and a ≤ a′, or
– 0 < a, 0 < a′, and b ≤ b′.

• min : Q2 → Q, where min(a, b) is the minimum of a and b.

• mi : Q2 → Q, where

mi(a, b) :=


α(a), if a < b

β(a), if a = b

γ(b), if a > b,

where α, β, γ are unary operations that preserve < such that β(x) < γ(x) < α(x) <
β(x+ ε) for all x ∈ Q and all ε ∈ Q, ε > 0.

• mx : Q2 → Q, where

mx(a, b) :=
{
α(min(a, b)), if a 6= b

β(a), if a = b,

where α and β are unary operations that preserve< such that α(x) < β(x) < α(x+ε)
for all x ∈ Q and all ε ∈ Q, ε > 0.

• The dual of an operation f : Qk → Q is the operation f̄ : Qk → Q defined by
f̄(a1, . . . , ak) := −f(−a1, . . . ,−ak).

• A constant operation is an operation f : Qk → Q, for some integer k ≥ 0, for which
there is a b ∈ Q with f(a1, . . . , ak) = b for all a1, . . . , ak ∈ Q.

Example 3.3.9. The relation

Rmin := {(a, b, c) ∈ Q3 | a > b ∨ a > c}

is preserved under l l. Assume t1 = (a, a′, a′′), t2 = (b, b′, b′′) ∈ Rmin. We show that
t3 := l l((a, a′, a′′), (b, b′, b′′)) ∈ Rmin. It can be checked that we can assume a > a′ w.l.o.g.,
by symmetry of arguments. If (1) b′ ≤ b we are done, for in this case t3[1] > t3[2].
Otherwise (2) b′ > b, and given that t2 ∈ Rmin, we have b > b′′. If (2.1) a′′ ≤ a we are
done, for then t3[3] ≤ t3[1] and so t3[3] < t3[1] since l l is injective. Finally we have to
check the case where (2.2) a′′ > a. Now, if (2.2.1) a′ > 0, by assumption we also have
a, a′′ > 0. Given that b′′ < b, we have t3[1] > t3[3]. Otherwise (2.2.2) we have a′ ≤ 0. In
that case it is easy to check that t3[1] > t3[2] given that we have a′ ≤ 0 ∧ a > a′. In all
cases above we obtain t3 ∈ Rmin. On the other hand, a similar argument shows that the
relation

Rmax := {(a, b, c) ∈ Q3 | a < b ∨ a < c}

is preserved under dual-l l.

45



3 Constraint Satisfaction Problems

The relations above can be used for modelling AND/OR precedent constraints (see
Example 3.3.1). On the other hand, the relation RDisj defined in Example 3.3.3 is not
preserved under any of the functions min,mi,mx, l l or their duals. To check this we
provide counterexamples:

• Tuples (0, 1, 0), (1, 0, 0) ∈ RDisj, but min((0, 1, 0), (1, 0, 0)) /∈ RDisj;

• Tuples (0, 1, 1), (2, 0, 1) ∈ RDisj, but mi((0, 1, 1), (2, 0, 1)) /∈ RDisj;

• Tuples (1, 2, 2), (2, 1, 1) ∈ RDisj, but mx((1, 2, 2), (2, 1, 1)) /∈ RDisj;

• Tuples (2, 0, 1), (1, 2, 2) ∈ RDisj, but l l((2, 0, 1), (1, 2, 2)) /∈ RDisj.

Similar counterexamples can be provided for the duals of these functions.

The following result is well-known:

Theorem 3.3.10. Let Γ = (Q, R1, R2, . . . ) where each Ri is temporal. Then (1) CSP(Γ)
is in NP. (2) If Γ contains all temporal relations, then CSP(Γ) is NP-hard.

Proof. For (1) membership in NP, see Proposition 6 in [19]. For (2), assume Γ contains
all temporal relations. Therefore Γ contains RBetw and RCyc, see Example 3.3.3. Then
the fact that NP-complete problems Betweenness [88] and Cyclic Ordering [53]
can be formulated as CSPs using such relations shows that CSP(Γ) is NP-hard; see [19]
for reductions.

Now we are ready to present the temporal CSP dichotomy:

Theorem 3.3.11. (Theorem 50 in [19]) A temporal constraint language Γ has a tractable
CSP if Γ is preserved by at least one of the following operations: l l,min,mi,mx, their
duals, or a constant operation; otherwise, CSP(Γ) is NP-complete.

In the next chapter we address an issue with the proof of this theorem, correcting an
error in the technical lemmata used.

3.4 Excursion on maximal tractable temporal languages
To close this chapter, we briefly investigate an important link between temporal CSPs
and a classical result in temporal logic for AI.

Example 3.2.16 above introduces Allen’s Interval Algebra. There are exactly 18 maximal
tractable subalgebras, and any problem formulated in a fragment not contained in one
of these subsets is NP-complete [67]. Earlier a famous fragment was presented which
consists of the first example of a tractable Allen subalgebra, the so-called ORD-Horn
algebra, denoted H.

We introduce the essential notions. Since the basic relations of Allen’s full Algebra A
are disjoint, the intersection of any two relations r1, r2 ∈ A, written r1r2, consists of the
set of basic relations in both r1 and r2. The composition r1r2 is thus (as can be shown)
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fully determined by the compositions of all basic relations in r1 and r2; table II in [67]
can be used as a shortcut for the compositions of all pairs of basic relations.
Satisfiability for a fixed Allen interval subalgebra X is formally defined as follows.

A-SAT(X)
Input: A set of variables V and a set of constraints I of the form xry

where x, y ∈ V and r ∈ X
Question: Is there a function f from V to the set of all intervals such that

f(x)rf(y) holds for all xry ∈ I?

A given function f that satisfies all constraints in an instance I is called a solution for
I (or a model of I, as in in [67]).

Example 3.4.1. ([67]) The instance I = {x(mo)y, y(df−1)z, x(m−1s)z} is satisfiable.
The function given by f(x) = [0, 2], f(y) = [1, 3] and f(z) = [0, 4] is a solution for I.

If there is an algorithm running in polynomial time that solves all instances of A-
SAT(X), we say that such problem is tractable and, equivalently, that the subalgebra X
is tractable. We now look at how results on the complexity of A-SAT(X) relate to the
temporal CSP dichotomy.
Recall Table 3.1. We use ∅ for the empty relation. Now for conciseness, by r̄+− in

a condition, for r̄ an intersection of relations, we mean that both the whole condition
with r̄, and the whole condition with r̄−, should hold. So a condition written (rs)+− ⊆ ∅
means that both rs ⊆ ∅ and (rs)− ⊆ ∅ are required. It should be noted, though, that for
any algebra X ⊆ A, given a + and a − condition, either they are both simultaneously
satisfied or both not satisfied. In Allen’s framework, the subalgebra H can be defined as
the set of all relations r such that the following conditions hold:

1. r ∩ (os)+− 6= ∅ & r ∩ (o−1f)+− 6= ∅ =⇒ (d)+− ⊆ r;

2. r ∩ (ds)+− 6= ∅ & r ∩ (d−1f−)+− 6= ∅ =⇒ (o)+− ⊆ r;

3. r ∩ (pm)+− 6= ∅ & r 6⊆ (pm)+− =⇒ (o)+− ⊆ r.

Now, it turns out that H is the largest tractable fragment of A [85]; the result was
obtained using an extensive computer-generated analysis. In fact Nebel and Bürckert
had, previously to [67], defined a language which they call the ORD-Horn subclass. It is
defined as follows. By an interval formula over an Allen algebra X we mean a formula of
the form xr̄y where r̄ = r1r2 . . . rn and ri ∈ X. An ORD-clause is a disjunction of atoms
of the form x = y, x ≤ y or x 6= y. If an interval formula ϕ is written as a conjunction
of ORD-clauses then we say that ϕ is in ORD form. If every clause in ϕ contains at
most one literal not of the form x 6= y, we say that ϕ is in ORD-Horn form. Then the
ORD-Horn subclass is the subset of Allen’s Interval Algebra all whose relations can be
defined by interval formulae in ORD-Horn form. Now this subclass is equivalent to H.
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Remark 3.4.2. That H (see the conditions above) is equivalent to the ORD-Horn
subclass is is not by any means obvious. An alternative equivalent formulation is the
algebra of “pre-convex” relations defined by Ligozat (see Proposition 2 in [71]).

Similarly, by a conjunction of formulae of the form

(x1 = y1 ∧ . . . ∧ xn−1 = yn−1)→ xn ◦ yn,

where ◦ ∈ {=, 6=,≤, <}, we denote an ORD-Horn formula. So H (equivalently, the
ORD-Horn subclass) translates into a language ΓH = (Q, R1, . . . , Rn) where each Ri is
definable by an ORD-Horn formula. Since satisfiability of propositional Horn clauses can
be decided in polynomial time, by a simple reduction any temporal constraint language
containing only ORD-Horn-definable relations is tractable (via Theorem 3.4 in [85]).
To show that maximal tractable interval subalgebras (when translated into the CSP

framework) do not exhaust the tractable temporal cases one can use the following argu-
ment. Recall the operation l l, which by Theorem 3.3.11 ensures tractability of temporal
constraint languages. It can be shown that all ORD-Horn languages are preserved under
l l (Proposition 3.4 in [20]); thus, unsurprisingly, CSP(ΓH) is tractable, for any “ORD-
Horn language” ΓH. On the other hand, since Rmin := {(a, b, c) ∈ Q3 | a > b ∨ a > c} is
l l-closed [20] but not ORD-Horn-definable, that means there is a tractable temporal con-
straint language that strictly contains the ORD-Horn subclass (see the above-mentioned
result by Nebel and Bürckert [85]). As can be seen, this is due to the more general
way– in comparison to interval relations– in which relations are allowed to be defined
in temporal constraint languages: namely, by means of first-order formulae over (Q, <)
or (R, <). In addition, there is a temporal constraint language that strictly contains all
AND-OR precedence constraints [82] (see Example 3.3.1); it suffices to note that they
can be modelled using only “tractable relations” such as R∨ = Rmin and R∧ defined in
Example 3.3.4.
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4 Revisiting a result in temporal CSPs

4.1 Introduction
In this chapter we address an issue with the proof of Theorem 3.3.11 in [19], the main
result in temporal CSPs that will be used in Chapter 6.

This theorem is proved through a series of technical lemmata. The full proof is beyond
the scope of this thesis. Here, we focus on one of the technical lemmata, whose proof
in [19] turns out to contain an error, and which we correct here. It makes use of the
notion of “dominance by the i-th argument”, which does not work as intended.
Our strategy is simply correcting the definition and then presenting reformulations

and proofs when needed. Our main dichotomy result for OMQs over (Q,≤) in Chapter 6
will then safely use the result.

We start by introducing required notions, and then we address the troubled definition
by proposing a weaker one, fixing the lemmata affected by it. Finally, we show that one
of the lemmata using the definition is not affected by it. We conclude this chapter with a
remark on the proof of Theorem 3.3.11.

4.2 Required notions
We need some additional definitions and results for the discussion in this chapter.

Define Q− := {a ∈ Q | a < 0}, Q−0 := {a ∈ Q | a ≤ 0}, Q+ := {a ∈ Q | a ≥ 0}. We say
that an operation f : Dk → D is interpolated by a set of k-ary operations F if for every
A ⊆ D, with A finite, there is some g ∈ F such that f(a) = g(a) for all a ∈ Ak.

Definition 4.2.1. (Section 2.5 in [19])

• Let F be a set of k-ary operations on a set D. Then F locally generates an operation
g on D if g is in the smallest function clone that is closed under interpolation and
contains all operations in F .

• Let F be a set of k-ary operations on Q. Then F generates an operation g on
Q if F together with all automorphisms α ∈ Aut(Q, <) locally generates g. In
particular, if F contains exactly one operation f , we say that f generates g.

Finally we state a lemma and define notions that are used for proving Theorem 4.5.2
and Lemma 4.5.3 below.

Lemma 4.2.2. (Lemma 12 in [19]) An operation f generates an operation g if, and
only if, every temporal relation preserved by f is also preserved by g.
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A set of the form G = S1 × . . . × Sd, for sets Si, is called a grid. A subgrid [k]d of
such a grid G is a subset of S1 × . . .× Sd of the form S′1 × . . .× S′d where each S′i is a
k-element subset of Si. We say that a k-ary operation f behaves like a k-ary operation g
on a subgrid H of Qk if for all tuples t, t′ ∈ H we have f(t) ≤ f(t′) iff g(t) ≤ g(t′).

Definition 4.2.3. (Definition 15 in [19]) Let f, g be binary operations on Q. Then [f |g]
denotes some binary operation on Q such that for all x, x′, y, y′ ∈ Q, the following holds:

• if x ≤ 0 and x′ > 0, then [f |g](x, y) < [f |g](x′, y′);

• [f |g] behaves like f on Q−0 ×Q;

• [f |g] behaves like g on Q+ ×Q.

4.3 The notion and use of ’dominance by the i-th argument’
A certain notion of dominance is used in a crucial way in key lemmata used in the proof
of the dychotomy theorem. We will go into such lemmata shortly. Before we do that, we
introduce this notion and show why it is problematic. In Section 6.1, the authors first
define a set of operations and then introduce the definition of ‘dominance by the i-th
argument’ as follows:

Definition 4.3.1. (Section 6.1. [19]) Let i ∈ {1, . . . , k}. A k-ary operation f : Qk → Q is
dominated by the i-th argument if for all a1, . . . , ak, b1, . . . , bk ∈ Q, we have f(a1, . . . , ak) ≤
f(b1, . . . , bk) if, and only if, ai ≤ bi.

Now lex : Q2 → Q is an operation such that lex(a, b) < lex(a′, b′) if either a < a′, or
a = a′ and b < b′. The operations mentioned above are the following:

• lexy,x for the operation (x, y) 7→ lex(y, x),

• lexy,−x for the operation (x, y) 7→ lex(y,−x),

• lexx,−y for the operation (x, y) 7→ lex(x,−y),

• lexx,y for the operation (x, y) 7→ lex(x, y),

• px for the operation (x, y) 7→ x,

• py for the operation (x, y) 7→ y.

The authors give lex (i.e. lexx,y) as an example of an operation dominated by the
first argument. This is not true, as the following argument shows. Assume, for the
sake of obtaining a contradiction, that lex is dominated by the first argument as per
Definition 4.3.1. Now consider any two pairs (a, b), (a′, b′) of rational numbers such that
a = b = a′ and b > b′. The definition of lex immediately yields lex(a, b) > lex(a′, b′).
Since a ≤ a′ holds, by assumption that lex is dominated by its first argument, we have
lex(a, b) ≤ lex(a′, b′). Contradiction.
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Basically the same argument shows that assuming lexy,x is dominated by the second
argument will lead to the same error. On the other hand, the notion works as intended
for the operations px, py, which are dominated by the first and the second argument,
respectively. Actually (here for 1 ≤ i ≤ 2) we have that f : Q2 → Q is dominated by the
i-th argument if, and only if, f behaves like px if i = 1 (py if i = 2).
A close inspection of the proofs of certain lemmata in [19] reveal that the notion of

dominance, that is, Definition 4.3.1, is used in a crucial way. Each of these lemmata are
used to prove the main result, Theorem 3.3.11 above.

In order to fix those lemmata (which we will indicate in the next subsection) and their
proofs we introduce the following notion:

Definition 4.3.2. Let i ∈ {1, . . . , k}. A k-ary operation f : Qk → Q is weakly dominated
by the i-th argument if the following holds for all rational numbers a1, . . . , ak, b1, . . . , bk:

1. If f(a1, . . . , ak) ≤ f(b1, . . . , bk), then ai ≤ bi.

2. If ai < bi, then f(a1, . . . , ak) < f(b1, . . . , bk).

The new notion captures the desired distinction:

Proposition 4.3.3. Let F1 := {lexx,y, px, lexx,−y} and F2 := {lexy,x, py, lexy,−x}. Also
let i ∈ {1, 2}. Then for all f ∈ Fi, f is weakly dominated by the i-th argument.

Proof. We need to show that Definition 4.3.2 applies.
We show the first part (1). By contraposition, assume it is not the case that a ≤ a′,

i.e., a > a′. First, let f ∈ F1. For lexxy, by definition of this function we obtain that
lexxy(a′, b′) < lexx,y(a, b), since lex(a′, b′) < lex(a, b) For lexx−y, by definition of this
function we get lexx−y(a′,−b′) < lexx−y(a,−b), since lex(a′, b′) < lex(a, b). Similarly for
px. By exchanging a and b, a′ and b′ (that is, assuming b > b′) we verify the case where
f ∈ F2.
Now for (2) of Definition 4.3.1. assume a < a′ and consider first f ∈ F1. For

lexxy by definition we get lexxy(a, b) < lexxy(a′, b′). For lexx−y by definition we have
lex(a,−b) < lexx−y(a′,−b′). Now consider f ∈ F2 and assume accordingly that b < b′.
This yields lexyx(a, b) < lexyx(a′, b′) (by definition of lexyx), since lex(b, a) < lex(b′, a′);
and lexy−x(−a, b) < lexy−x(−a′, b′) (by definition of lexy−x), since lex(b, a) < lex(b′, a′),
as desired. Similarly for py.

Since both parts of the Definition have been verified, it follows that all functions in F1
are weakly dominated by the first argument and all functions in F2 are weakly dominated
by the second argument.

4.4 The affected lemmata
We now fix the lemmata that are affected by the troubled definition. Note that Theo-
rem 3.3.11 uses the lemma below in the proof presented by [19]:
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Lemma 4.4.1. (Lemma 49 in [19]) Let f be a binary operation that preserves < but not
RBetw. Then f generates l l, dual-l l, pp, or dual-pp.

This lemma makes essential use of lemmata 4.4.2 and 4.4.3 below, both of which
depend on a working definition of “dominance by the i-th argument”. We now proceed
to check and fix them when needed—by providing detailed proofs that employ, basically,
the same strategy as the authors’.
We slightly rewrite the corresponding lemma in [19], replacing the notion introduced

in Definition 4.3.1 by the one introduced in Definition 4.3.2, and provide a detailed proof
thereof:

Lemma 4.4.2. (Reformulation of Lemma 43 in [19]) Let

f, g ∈ {lexx,y, lexx,−y, lexy,x, lexy,−x, px, py},

and let f ′ (g′) be lexx,y if f (g) is weakly dominated by the first argument, and lexy,x
otherwise. Then {lex, [f |g]} generates [f ′|g′].

Proof. By Lemma 4.2.2 it suffices to show that [f ′|g′] preserves every relation that is
preserved by {lex, [f |g]}. So let R be a k-ary relation preserved by {lex, [f |g]}, and let
t1, t2 ∈ R. We show that t3 := [f ′|g′](t1, t2) ∈ R.

Using the same strategy as in [19], we pick α ∈ Aut(Q, <) such that for all t[i] and all
t′[j] with t[i] ≤ 0, α maps lex(t[i], t′[j]) to a negative value; otherwise α maps lex(t[i], t′[j])
to a positive value. Let s := [f |g](α(lex(t1, t2)), lex(t2, t1)). We show that there is an
automorphism β ∈ Aut(Q) such that β(s) = t3, which shows t3 ∈ R. By symmetry it is
enough to show for j1, j2 ∈ [k] with t1[j1] ≤ t1[j2] that (?) s[j1] ≤ s[j2] iff t3[j1] ≤ t3[j2].
We distinguish three cases:

• t1[j1] ≤ 0, t1[j2] > 0. By construction, α(lex(t1[j1], t2[j1])) ≤ 0 given that t1[j1] ≤ 0
and α(lex(t1[j2], t2[j2])) > 0 since t1[j2] > 0. Thus by Definition 4.2.3

s[j1] = [f |g](α(lex(t1[j1], t2[j1]))) < [f |g](α(lex(t1[j2], t2[j2]))) = s[j2].

Also by assumption and again directly by Definition 4.2.3 we get

t3[j1] = [f ′|g′](t1[j1], t2[j1]) < [f ′|g′](t1[j2], t2[j2]) = t3[j2].

Thus (?) holds.

• t1[j2] ≤ 0. We first show that f ′(x, y) behaves like f(lex(x, y), lex(y, x)), i.e., for all
x, x′, y, y′ ∈ Q:

† f ′(x, y) ≤ f ′(x′, y′) iff f(lex(x, y), lex(y, x)) ≤ f(lex(x′, y′), lex(y′, x′)).

So assume f ′(x, y) ≤ f ′(x′, y′). If f ′ = lexx,y, by Definition 4.3.2 x ≤ x′, so
f(lex(x, y), lex(y, x)) ≤ f(lex(x′, y′), lex(y′, x′)). If f ′ = lexy,x, by Definition 4.3.2
y ≤ y′, so f(lex(x, y), lex(y, x)) ≤ f(lex(x′, y′), lex(y′, x′)). For the other direction,
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assume f(lex(x, y), lex(y, x)) ≤ f(lex(x′, y′), lex(y′, x′)). If f = lexx,y, by Defini-
tion 4.3.2 lex(x, y) ≤ lex(x′, y′) so x ≤ x′, thus f ′(x, y) ≤ f ′(x′, y′) by assumption.
If f = lexy,x, by Definition 4.3.2 lex(y, x) ≤ lex(y′, x′) so y ≤ y′, which yields
f ′(x, y) ≤ f ′(x′, y′) by assumption. Similarly for the remaining functions. So (†)
holds. Now

t3[j1] ≤ t3[j2]⇔ [f ′|g′](t1[j1], t2[j1]) ≤ [f ′|g′](t1[j2], t2[j2])
⇔ f ′(t1[j1], t2[j1]) ≤ f ′(t1[j2], t2[j2])
(since t1[j1] ≤ t1[j2] ≤ 0, [f ′|g′] behaves like f ′ on Q−0 ×Q)
⇔ f(lex(t1[j1], t2[j1]), lex(t2[j1], t1[j1]))
≤ f(lex(t1[j2], t2[j2]), lex(t2[j2], t1[j2])) (using †)

⇔ f(α(lex(t1[j1], t2[j1]), lex(t2[j1], t1[j1])))
≤ f(α(lex(t1[j2], t2[j2]), lex(t2[j2], t1[j2])))

⇔ s[j1] ≤ s[j2],

which shows (?).

• t1[j1] > 0. Analogous to the case above.

We now fix the proof of the following lemma, using Definition 4.3.2:

Lemma 4.4.3. (Lemma 44 in [19]) For f, g ∈ {py, lexy,x}, the operation [f |g] generates
[lexx,y|g].

Proof. Again we use the same strategy as in [19]. To obtain that [f |g] generates [lexx,y|g],
by Lemma 4.2.2 it suffices to show that [lexx,y|g] preserves every relation that is preserved
by [f |g]. So let R be a k-ary relation preserved by [f |g], and let t1, t2 ∈ R. We show that
t3 := [lexx,y|g](t1, t2) ∈ R.
Now let ` be the number of values of t1 in Q−0 , and a1, a2, . . . , a`, a`+1, . . . , am be an

enumeration of all its k values in ascending order. We pick αi ∈ Aut(Q, <) such that
each αi, 1 ≤ i ≤ `, maps all but the i-th smallest values of t1 to positive non-zero values,
as in the table below.

a1 a2 a3 . . . a` a`+1 . . . am
t1 ≤ 0 ≤ 0 ≤ 0 . . . ≤ 0 > 0 . . . > 0

α1(t1) ≤ 0 > 0 > 0 . . . > 0 > 0 . . . > 0
α2(t1) ≤ 0 ≤ 0 > 0 . . . > 0 > 0 . . . > 0
α3(t1) ≤ 0 ≤ 0 ≤ 0 . . . > 0 > 0 . . . > 0

...
...

...
... . . . ...

... . . . ...
α`(t1) ≤ 0 ≤ 0 ≤ 0 . . . ≤ 0 > 0 . . . > 0

Define the sequence of tuples s1, s2, . . . , s` where s1 = t2 and si := [f |g](αi(t1), si−1)
for i ≥ 2. Because R is preserved by Aut(Q, <) and by [f |g], we have that si ∈ R for all
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i ∈ [`]. We claim that there is an automorphism α′ ∈ Aut(Q, <) such that α′(s`) = t3, so
that t3 ∈ R. By symmetry it is enough to show for j1, j2 ∈ [k] with t1[j1] ≤ t1[j2] that
(?) s`[j1] ≤ s`[j2] iff t3[j1] ≤ t3[j2]. There are three cases to consider:

1. t1[j1] = t1[j2] ≤ 0. Therefore αi(t1[j1]) = αi(t1[j2]) for all i ∈ [`]. Now since
t1[j1] = t1[j2] it is readily checked that t2[j1] = t2[j2] iff s`[j1] = s`[j2]. On the
other hand, since f is weakly dominated by the second argument, Definition 4.3.2
gives

t2[j1] < t2[j2]⇔ [f |g](αi(t1[j1]), si−1[j1]) < [f |g](αi(t1[j2]), si−1[j2]) for all i
⇔ s`[j1] < s`[j2].

Altogether (that is, for t2[j1] = t2[j2] and t2[j1] < t2[j2]) we obtain equivalently
s`[j1] ≤ s`[j2]. Also (using the fact that t1[j1] = t1[j2])

t3[j1] ≤ t3[j2]⇔ [lexx,y|g](t1[j1], t2[j1]) ≤ [lexx,y|g](t1[j2], t2[j2])
⇔ lexx,y(t1[j1], t2[j1]) ≤ lexx,y(t1[j2], t2[j2])
⇔ t2[j1] ≤ t2[j2]
⇔ s1[j1] ≤ s1[j2] because s1 = t2

⇔ s`[j1] ≤ s`[j2];

hence (?) holds.

2. t1[j1] < t1[j2], t1[j1] ≤ 0. By the construction of the automorphisms (see the
table above) we can pick αi ∈ Aut(Q, <), 1 ≤ i ≤ `, such that αi(t1[j1]) ≤
0 and αi(t1[j2]) > 0. By Definition 4.2.3, we obtain f(αi(t1[j1]), si−1[j1]) <
f(αi(t1[j2]), si−1[j2]), so si[j1] < si[j2]. Given that [f |g] preserves <, a simple induc-
tion on n ≥ i shows that s`[j1] < s`[j2]. On the other hand from the assumption that
t1[j1] < t1[j2], t1[j1] ≤ 0 we obtain t3[j1] = h(t1[j1], t2[j1]) < h(t1[j2], t2[j2]) = t3[j2]
with h ∈ {lexx,y, [lexx,y|g]}, using the definition of h. Altogether we obtain (?).

3. t1[j1] > 0. Then by construction αi(t1[j1]) > 0 for all i ∈ [`]. Let h ∈ {[f |g], [lexx,y|g]}.
Notice that by Definition 4.2.3, h behaves like g on Q+ ×Q. Thus

t3[j1] ≤ t3[j2]⇔ h(t1[j1], t2[j1]) ≤ h(t1[j2]), t2[j2])
⇔ h(α2(t1[j1]), s1[j1]) ≤ h(α2(t1[j2]), s1[j2]) because s1 = t2

⇔ h(α3(t1[j1]), s2[j1]) ≤ h(α3(t1[j2]), s2[j2]) again by definition of s2
...
⇔ h(α`(t1[j1]), s`−1[j1]) ≤ h(α`(t1[j2]), s`−1[j2])
⇔ s`[j1] ≤ s`[j2],

which establishes (?) as desired.
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4.5 A safe use of dominance. Conclusion
Only Lemma 4.4.1 (Lemma 49 in [19]) remains to be checked. As it turns out, it uses
dominance in a safe way, as we point out briefly in this section. The following results are
used in our remark:

Theorem 4.5.1. (Theorem 20 in [19]) Let Γ be a temporal constraint language. Then it
satisfies at least one of the following properties:

a. There is a PP-definition of RBetw , RCyc or RSep in Γ.

b. Pol(Γ) contains a constant operation.

c. Aut(Γ) contains all permutations of (Q, <).

d. There is a PP-definition of < in Γ. Moreover, Γ contains a binary operation that
does not preserve RBetw.

Theorem 4.5.2. (Product Ramsey Theorem; slightly rephrased from [19]) For all positive
integers d, r,m and k ≥ m, there is a positive integer L = R(d, r,m, k) such that for
every mapping f : S → [r] of the [m]d subgrids of [L]d, there exists a [k]d subgrid G of
[L]d such that f is constant on G.

Lemma 4.5.3. (Lemma 47 in [19]) Let f be a binary operation that preserves <, and
let S1, T1 ⊆ Q be sets of cardinality at least R(k). Then there exist sets S2 ⊂ S1, T2 ⊂ T1
of cardinality k such that f behaves on S2 × T2 like one out of the following operations:

• px or py;

• lexx,y or lexy,x;

• lexx,−y or lexy,−x.

Lemma 4.5.4. (Lemma 48 in [19]) Let f be a binary operation that does not preserve
RBetw and preserves <. Then there are t1, t2 ∈ RBetw such that (t1, t2) has three distinct
entries and f(t1, t2) /∈ RBetw.

The authors’ strategy for proving Lemma 4.4.1 is to start with the fact (from
Lemma 4.5.4) that there are tuples t1, t2 ∈ RBetw such that t = f(t1, t2) /∈ RBetw
and f is injective and assuming w.l.o.g. that t1[1] < t1[2] < t1[3] and t2[1] > t2[2] > t2[3].
Then grids can be defined from intervals between certain positions in t1 and t2 so that,
by the Product Ramsey Theorem (Theorem 4.5.2) via Lemma 4.5.3, f behaves on those
grids like one of the versions of lex and projections. It can be shown then that f generates
the functions lex, l l, pp or their duals, depending on whether it is weakly dominated by
the first or by the second argument, by lemmata 4.4.2 and 4.4.3. It can be checked that
nothing need to be changed in the proof presented in [19].
Lemma 4.4.1 guarantees that operations that do not preserve RBetw but preserve <

generate “tractable operations”. Using Theorem 3.2.20, it is shown that RBetw captures
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NP-hardness via PP-definability of temporal relations in ΓBetw := (Q, RBetw). Finally,
Theorem 4.5.1 is invoked in Theorem 3.3.11 for classifying the complexity of Γ depending
on its polymorphism clone. Its third case, namely, that < has a PP-definition in Γ and
Γ contains a binary operation that does not preserve RBetw , follows from Lemma 4.4.1.
Theorem 3.3.11 thus follows from the corrected lemmata.
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5.1 Introduction

In this chapter, we introduce the machinery for attacking the complexity of the query
answering problem for a very broad class of OMQs. First we show negative results: that
query answering becomes undecidable for many important datatypes, including (Q, <),
(Z, <) and (Z,≤). In order to ensure decidability we require that OMQs satisfy the
bounded match depth property (BMDP), which ensures that answers can be determined
based on a bounded subset of the chase of a Horn-L(D) KB. We then introduce the
main result of this chapter, which is a general framework for transfering complexity
classification results from CSPs to OMQ answering.

5.2 Undecidability results

We show that answering Boolean OMQs over simple and relevant datatypes D, due to
the (possibly) very complicated structure of universal pre-models is undecidable already
for a subset of Horn-L(D), i.e., DL-LiteattribR (D).

The strategy is first proving that the problem for (1) D ∈ {(Z, 6=), (Q, 6=)} is undecid-
able, and then reduce it to query evaluation over (2) D′ ∈ {(Z, <), (Z,≤), (Q, <)}. It is
an open problem whether OMQ answering over (Q,≤) is decidable or not. These items
will be discussed in different sections.

5.2.1 Numerical datatypes with inequality

Our proof of undecidability for OMQ answering over D ∈ {(Z, 6=), (Q, 6=)} is based on a
reduction from the problem of unrestricted tiling of the discrete plane. We present all
the details of the construction as it provides insight into the very intrincate structure of
completions of canonical pre-models. Intuitively the problem is as follows. A tile type
is a unit square divided into four triangles by means of two diagnonals. Each triangle
is coloured using exactly one colour out of a set of m colours. Tiles cannot be rotated
or deflected. We say that two tile types are horizontally (vertically) compatible if they
can be put one beside (above) the other with matching colours. Tiling the plane means
correctly placing tiles on the discrete plane, that is, generating a suitable mapping from
the infinite N × N grid to tile types. More concretely, a solution is a mapping where
each two adjacent tiles are both horizontally and vertically compatible. The problem
asks whether there exists a tiling of N× N given a set of n m-coloured tile types. This
problem is undecidable [11]. We introduce the formal definition with which we will work.
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Unrestricted N× N tiling
Input: A set of tile types T := {T1, . . . , Tn} with colours up(Ti),

down(Ti), right(Ti), left(Ti), for 1 ≤ i ≤ n.
Question: Does there exist a function f : N × N → T such that

right(f(i, j)) = left(f(i+1, j)) and up(f(i, j)) = down(f(i, j+1)),
for all i, j ≥ 0?

The reduction is done so that given a tiling problem T, we can construct a Boolean
OMQ QT = (T , qT), over datatype D ∈ {(Z, 6=), (Q, 6=)}, where T is a TBox in a proper
subset of Horn-ALCHIattrib and qT is a UCQ, and a D-ABox A such that (T ,A) |= qT
iff T does not tile N× N.

Obtaining binary tree-shaped pre-models Let D ∈ {(Z, 6=), (Q, 6=)}, v, h be role names,
X be a concept name and U, U ik, for 1 ≤ i ≤ 2 and 1 ≤ k ≤ n, be attribute names.
Define T = {C v ∃h,C v ∃v, C v Uki }, where C ∈ {X,∃v−, ∃h−}. Also let A = {X(a)}.
Now consider the canonical pre-model of (T ,A). The result is an infinite binary tree
with “horizontal” edges h and “vertical” edges v, having a as its root. Each node c in
the tree contains assertions U(c, u) and U ik(c, uik) for u, uik data nulls.

Defining a quotient structure for each completion f of can(T ,A) We introduce a
few definitions from abstract algebra. Let R be an equivalence relation on a set A. For all
a ∈ A let ‖a‖R be the equivalence class of a. Then the quotient of A modulo R, written
A/R, is the set {‖a‖R | a ∈ A}. Now let B = (A,R1, R2, . . . ) be a relational structure,
with Ri a ki-ary relation, and R an equivalence relation on B. Also let RA/R be the
relation induced on A/R by R, that is

RA/R := {(‖a1‖R, . . . , ‖ak‖R) ∈ (A/R)k | (b1, . . . , bk) ∈ R with bi ∈ ‖ai‖R}.

Then B/R = (A/R, RA/R) is called the quotient structure of B under R.
Let f be a completion function for can(T ,A). We now set

∼f := {(c, d) | c, d ∈ dom(f(can(T ,A))) with {(c, u), (d, u)} ⊆ Uf(can(T ,A))}.

It can be checked that (x ∼ y) defines a natural equivalence relation on any completion
f(can(T ,A)). Then f(can(T ,A))/ ∼f is the quotient structure of f(can(T ,A)) under
∼f . We write 6∼f for the complementary relation. Equivalence classes ||d||f in a quotient
structure f(can(T ,A))/ ∼f are here called nodes.
The same symbols (without the subscript) are used as syntactic abbreviations in

queries:

• (x ∼ y) = U(x, zx,y) ∧ U(y, zx,y);

• (x 6∼ y) = U(x, zx) ∧ U(y, zy) ∧ zx 6= zy.
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Figure 5.1: Open (left) and closed (right) cells on a grid

Construction of qT as a set of constraints simulating T We now construct the Boolean
UCQ qT in such a way as to simulate, using T and A, the original constraints of the
problem. The disjuncts of qT are the CQs defined as follows. For each CQ we show that
some property hold. Together these properties show the desired reduction.

Enforcing a grid structure First we enforce a grid structure with vertical lines v and
horizontal lines h between nodes. We write the line v(||d||f , ||d′||f ) (resp. (h(||d||f , ||d′||f ))
whenever there exists d ∈ ||d||f , d′ ∈ ||d′||f with (d, d′) ∈ vcan(T ,A) (resp. (d, d′) ∈
hcan(T ,A)). Define a cell in a quotient structure f(can(T ,A))/ ∼f as a collection of
nodes ||d||f , ||d′||f , ||d′′||f with h(||d||f , ||d′||f ) and v(||d||f , ||d′′||f ) such that there exist
nodes ||e||f , ||e′||f with v(||d′||f , ||e||f ) and h(||d′′||f , ||e′||f ). A cell is said to be closed if
||e||f = ||e′||f . Otherwise we call it an open cell. Figure 5.1 illustrates an open and a
closed cell. A quotient structure f(can(T ,A))/ ∼f is a grid if it does not contain an
open cell. Define the CQ

q0 ← (x1 ∼ x2)∧h(x1, y1)∧(y1 ∼ y′1)∧v(y′1, z1)∧v(x2, y2)∧(y2 ∼ y′2)∧h(y′2, z2)∧(z1 6∼ z2).

We claim that

(T ,A) 6|= q0 ⇐⇒ ∃f such that f(can(T ,A))/ ∼f is a grid.

The proposition is equivalent to the following statement: q0 has a match in f(can(T A))
if, and only if f(can(T ,A))/ ∼f has an open cell.
To show this, first suppose that q0 has a match in f(can(T A)). Thus there exist

d, d′, d′′ ∈ ∆can(T ,A) with (d, d′) ∈ vcan(T ,A), (d, d′′) ∈ hcan(T ,A), (d, u) ∈ Uf(can(T ,A)),
(d′, u) ∈ Uf(can(T ,A)), (d, u′) ∈ Uf(can(T ,A)), (d′′, u′) ∈ Uf(can(T ,A)). Also, there exist
e, e′ ∈ ∆can(T ,A) with (d′, e) ∈ vcan(T ,A), (d′′, e′) ∈ hcan(T ,A), (d′, u) ∈ Uf(can(T ,A)),
(e, u) ∈ Uf(can(T ,A)), (d′′, u′) ∈ Uf(can(T ,A)), (e′, u′) ∈ Uf(can(T ,A)), (e, u1) ∈ Uf(can(T ,A)),
(e′′, u2) ∈ Uf(can(T ,A)), with u1 6= u2. Consider f(can(T ,A))/ ∼f and the definitions of
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quotient structure, cell, and open cell. From the facts above, it follows directly that
f(can(T ,A))/ ∼f has an open cell (see Figure 5.1, left-hand side). Assuming, on the
contrary, for the other direction, that f(can(T ,A))/ ∼f does not have an open cell (see
Figure 5.1, right-hand side), it is clear that q0 does not have a match in f(can(T A)).

Placing one and exactly one tile type at each node Intuitively a grid f(can(T ,A))/ ∼f
represents the discrete plane where tile types can be placed. We say that the tile
type Tk is true at node ||d||f in f(can(T ,A))/ ∼f if (d, u) ∈ (U1

k )f(can(T ,A)) and
(d, u) ∈ (U2

k )f(can(T ,A)) where d ∈ ||d||f , for some data value u. In queries we use
the abbreviation Tk(x) = U1

k (x, v) ∧ U2
k (x, v). Define for each ki 6= kj the CQ

qki,kj
← (x ∼ y) ∧ Tki

(x) ∧ Tkj
(y).

Also define the single CQ

q1 ←
∧

1≤k≤n
(U1

k (x, v1,k) ∧ U2
k (x, v2,k) ∧ (v1,k 6= v2,k)).

It can be checked that

• (T ,A) 6|= qki,kj
⇐⇒ ∃f such that for all nodes ||d||f in f(can(T ,A))/ ∼f and for

all distinct tile types Tki
, Tkj

it is not the case that both Tki
and Tkj

are true at
||d||f ; and

• (T ,A) 6|= q1 ⇐⇒ ∃f such that for nodes ||d||f there exists a tile type Tk that is
true at ||d||f .

The properties above together entail that there exists a completion function f for
can(T ,A)) such that for each node ||d||f in f(can(T ,A))/ ∼f there exists one, and
exactly one, tile type Tk that is true at it. (Intuitively, one tile type is placed at each
point in the discrete plane.)

Enforcing vertical and horizontal compatibility conditions Now we need to enforce
the vertical and horizontal compatibility conditions among the tile types. So for all tile
types Tki

, Tkj
,

• if right(Tki
) 6= left(Tkj

), then introduce the CQ qh,ki,kj
← h(x, y) ∧ Tki

(x) ∧ Tkj
(y);

• if up(Tki
) 6= down(Tkj

), then introduce the CQ qv,ki,kj
← v(x, y) ∧ Tki

(x) ∧ Tkj
(y).

Let H̄ denote the set of all pairs of horizontally, and V̄ the set of all pairs of vertically,
incompatible tile types from T1, . . . , Tn. We use [H̄] and [V̄ ] to denote their respec-
tive sets of pairs of indices. It can be checked that (T ,A) 6|=

(∨
(ki,kj)∈[H̄] qh,ki,kj

)
∨(∨

(ki,kj)∈[V̄ ] qv,ki,kj

)
⇐⇒ there exists a completion function f for can(T ,A) such that

there does not exist nodes ||d||f , ||d′||f in f(can(T ,A))/ ∼f with v(||d||f , ||d′||f ) (resp.,
h(||d||f , ||d′||f )) where (Tki

, Tkj
) ∈ V̄ (resp., (Tki

, Tkj
) ∈ H̄) and both Tki

is true at
||d||f and Tkj

is true at ||d′||f .
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Now let

qT := q0 ∨ q1 ∨
( ∨
i,j∈[n]

qki,kj

)
∨
( ∨

(ki,kj)∈[H̄]

qh,ki,kj

)
∨
( ∨

(ki,kj)∈[V̄ ]

qv,ki,kj

)
.

It can be checked that (T ,A) |= qT iff T does not tile N×N. This concludes the reduction.

Example 5.2.1. Let T = {T1, T2, T3, T4} be a set of tile types with colours

up(T1) = 0, down(T1) = 1, left(T1) = 0, right(T1) = 1,
up(T2) = 0, down(T2) = 1, left(T2) = 1, right(T2) = 0,
up(T3) = 1, down(T3) = 0, left(T3) = 0, right(T3) = 1,
up(T4) = 1, down(T4) = 0, left(T4) = 1, right(T4) = 0.

Figure 5.2.1 illustrates them with 0 = white and 1 = black. It is easy to see that we can
tile N × N by forming a repeating pattern of black losanges as shown in Figure 5.2.1.
This is accomplished by the function g : N× N→ T given by

g(i, j) = T1, for i ∈ {0, 2, 4, . . .}, j ∈ {1, 3, 5, . . .},
g(i, j) = T2, for i, j ∈ {1, 3, 5, . . .},
g(i, j) = T3, for i, j ∈ {0, 2, 4, . . .},
g(i, j) = T4, for i ∈ {1, 3, 5, . . .}, j ∈ {0, 2, 4, . . .}.

Let T ,A be as mandated by our construction above. We define a Boolean UCQ qT that
encodes the tiling problem by means of negative constraints:

qT := q0 ∨ q1 ∨ q1,2 ∨ ∨q1,3 ∨ q1,4 ∨ q2,3 ∨ q2,4 ∨ q3,4

∨ qh,2,4 ∨ qh,4,2 ∨ qh,1,3 ∨ qh,3,1 ∨ qv,2,1 ∨ qv,1,2 ∨ qv,4,3 ∨ qv,3,4.

where each CQ is as defined above. Any completion will give us a grid. We know
that (T ,A) 6|= qT iff for some completion f of can(T ,A), f(can(T ,A)) 6|= qT. Such a
completion can be found by using as guidance the function g defined above.

By the reduction above we immediately obtain the result:

Theorem 5.2.2. Let D ∈ {(Z, 6=), (Q, 6=)}. Then the query evaluation problem for
OMQs with DL-LiteattribR (D) TBoxes is undecidable in combined complexity.

5.2.2 Numerical datatypes with linear order

We now address the decidability of query evaluation with linear order in the datatype.
We start with strict linear order. Again we obtain a negative result:

Theorem 5.2.3. Let D ∈ {(Z, <), (Q, <)}. Then the query evaluation problem for
OMQs with DL-LiteattribR (D) TBoxes is undecidable in combined complexity.
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type 1 type 2

type 3 type 4

Figure 5.2: Tile types for Example 5.2.1

Figure 5.3: Tiling of N× N using tile types 1-4 (infinite pattern) for Example 5.2.1
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Proof. Let D ∈ {(Z, 6=), (Q, 6=)} and D′ ∈ {(Z, <), (Q, <)}. By Theorem 5.2.2, query
evaluation is undecidable for D already when only a single datatype atom is allowed in
each CQ in the input UCQ and TBoxes do not contain qualified attribute restrictions.
Notice that x < y ∨ x > y if, and only if, x 6= y. So to obtain a reduction one only needs
to replace each CQ q in the input UCQ that contains an atom x 6= y by two CQs q1, q2
where q1 is exactly like q except that it contains contains x < y in place of x 6= y, and q2
is exactly like q except that it contains x > y in place of x 6= y. Thus undecidability of
query answering over D yields undecidability of query answering over D′. The theorem
now follows.

This result can be used to show that query answering over discrete numerical datatypes
with non-strict linear order again suffer from undecidability. This is done by simu-
lating OMQ answering over (Z, <) with DL-LiteattribR (Z, <) TBoxes, which we proved
undecidable, using OMQs over (Z,≤).

Theorem 5.2.4. The query evaluation problem for OMQs with DL-LiteattribR (Z,≤)
TBoxes is undecidable in combined complexity.

Proof. Let (T ,A) be aDL-LiteattribR (Z, <) KB and let q be an UCQ over (Z, <). We reduce
Q = (T , q) and A into an OMQ Q′ = (T ′, q′) over (Z,≤) where T ′ is a DL-LiteattribR (Z,≤)-
TBox, with a (Z,≤)-ABox A′. The reduction uses an auxiliary DL-LiteattribR (Z,≤) TBox
Tord and an auxiliary UCQ qord defined next, which allow us to simulate < and = on the
attributes in T . We will show that A |= Q if, and only if, A′ |= (T ∪ Tord, q

′).
Let

Tord = {∃r− v ∃r, ∃r v ∃r−,∃r− v ∃V },

where V is an attribute name and r is a role name, both not occurring in T , q or A. Let
qord be a Boolean UCQ consisting of the following disjuncts:

q<ord ← r(x, y) ∧ V (x, zx) ∧ V (y, zy) ∧ zy ≤ zy,
qUord ← r(x, y) ∧ V (y, z) ∧ U(s, z),

for each attribute name U occuring in T . We will define a linearly ordered sequence
. . . , I−2, I−1, I0, I1, I2, . . . of disjoint intervals over Z, which we write (Ii)i∈Z. This se-
quence will be shown to satisfy the property that each value of an attribute in T is
contained in some Ii. Also, given data values v1, v2 of an attribute in T we will set
v1 ≈ v2 if v1, v2 belong to the same interval and v1 ≺ v2 if the interval where v1 occurs
precedes the interval where v2 occurs.
To define each interval Ii we use Tord and qord as follows. Take a completion I of

can(T ∪ Tord,A ∪ r(a0, a1)) where a0, a1 are distinct individual names. Then

rI = {. . . , (a−2, a−1), (a−1, a0), (a0, a1), (a1, a2), . . .},

that is, it is an infinite path (Figure 5.4).
Also, for each i ∈ Z, there is exactly one element vi ∈ Z such that (ai, vi) ∈ V I ; see

Figure 5.5.
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. . .
a−3 a−2 a−1 a0 a1 a2

. . .
a3

r r r r r r

Figure 5.4: Infinite path in rI
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. . .

. . .
v−3 v−2 v−1 v0 v1 v2

. . .
v3

r r r r r r

V V V V V V V

Figure 5.5: Infinite path of values of Z from the pairs in V I

Now we are ready to define the intervals (Ii)i∈Z. Let, for all i ∈ Z,

Ii := {v ∈ Z | vi < v < vi+1}.

Assume I 6|= qord. Then,

1. For all i ∈ Z, we have vi < vi+1, as shown in Figure 5.6;

2. For all U , for all (a, u) ∈ UI there exists a unique i ∈ Z such that u ∈ Ii.

As for (2), notice that since rI is an infinite path and (Z,≤) is discrete, there exist
j1, j2 with j1 < j2 such that vj1 ≤ u ≤ vj2 . But the construction is such that, since we
assume I 6|= qUord, it is also the case that u 6= vi for all i ∈ Z. Thus, together with the fact
that the intervals (Ii)i∈Z are disjoint, we have u ∈ Ii for exactly one i ∈ Z. Therefore
(Ii)i∈Z is as desired (Figure 5.7).

. . .
a−3 a−2 a−1 a0 a1 a2

. . .

. . .
v−3 v−2 v−1 v0 v1 v2

. . .
v3< < < < < <

r r r r r r

V V V V V V V

Figure 5.6: Strict linear order on Z from the pairs in V I
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. . .
v−3 v−2 v−1 < u < v0 v1 v2

. . .
v3

b

U

Figure 5.7: Any value u in UI falls into a “bucket” or interval delimited by values in V I

We introduce the following abbreviations:

z ∈ (x, y) :⇐⇒ r(x, y) ∧ V (x, vx) ∧ V (y, vy) ∧
vx ≤ z ∧ z ≤ vy,

(x, y) < (x′, y′) :⇐⇒ r(x, y) ∧ r(x′, y′) ∧ V (y, vy) ∧
V (x′, vx′) ∧ vy ≤ vx′ .

In a model I as above, “z ∈ (x, y)” means that (x, y) = (ai, ai+1) for some i ∈ Z and
z ∈ Ii, and “(x, y) < (x′, y′)” means that there are i < j such that (x, y) = (ai, ai+1) and
(x′, y′) = (aj , aj+1).

We the following abbreviations to define the desired orderings ≺ and ≈:

z1 ≈ z2 :⇐⇒ z1 ∈ (x, y) ∧ z2 ∈ (x, y),
z1 ≺ z2 :⇐⇒ z1 ∈ (x1, y1) ∧ z2 ∈ (x2, y2) ∧

(x1, y1) < (x2, y2),

where “z1 ≈ z2” means that z1 and z2 belong to the same interval Ii, and “z1 ≺ z2”
means that z1 belongs to an interval that precedes the interval of z2.

To conclude, recall that T ′ := T ∪ Tord and let q′ be the UCQ given by q′′, qord where
q′′ is obtained from q by expressing < and equality on data variables in terms of ≺ and
≈. We also let A′ := A ∪ {r(a0, a1)}. It is straightforward to show that A |= (T , q) iff
A′ |= (T ′, q′).

Remark 5.2.5. Decidability of query evaluation over dense, (non-strictly) linearly
ordered datatypes is open. It is not difficult to see why the construction above fails
when we go from (Z,≤) to (Q,≤): it relies on the fact that the former is discrete and
allows us to construct “buckets” of finite cardinality delimited by values from Z that
cover the whole domain, as shown in Figure 5.7. When we move to (Q,≤) we cannot
do so. We consider a simple counterexample. Let I be the completion where vi ∈ [0, 1]
for all i and u ∈ Q \ [0, 1] for some attribute value u occuring in can(T ,A). Notice that
assuming I 6|= qord, we do obtain an infinite path in rI , . . . , a−2, a−1, a0, a1, a2, . . . , where
for each (ai, vi), vi is a rational value and for all vi, vi+1, we have vi < vi+1; and also, for
all attribute values v occuring in can(T ,A), v 6= vi for all i. The (now dense) disjoint
intervals Ii over Q are constructed in the same way. However, clearly there is no i such
that u ∈ Ii.
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5.3 Restoring decidability: the Bounded-Match Depth
Property of OMQs

We now introduce a property of OMQs based on the notion of completion defined in
Chapter 2 which allows us to restore decidability for a great portion of UCQs used in
practice.

5.3.1 Safe and rooted queries

The constructions used to prove Theorems 5.2.2, 5.2.4, and 5.2.3 rely crucially on TBoxes
whose chase does not terminate and on UCQs that are neither safe nor rooted. These
properties of UCQs are a starting point in our discussion on decidability conditions and
will be defined next.

A path from a variable x to a variable y in a CQ q over a datatype D is a sequence
x, z1, . . . , zn, y, where all of z1, . . . , zn are non-data variables and each two subsequent
variables in x, z1, . . . , zn, y occur together in an atom of q. Then we say that x and y are
connected in q if there exists a path from x to y in q.

Example 5.3.1. Let q1()← r(x, y), r(y, z), U(y, u) be a CQ over a datatype D. Then x
and z are connected in q1. Now we look at a negative example. Let

q2(x)← r(x, y), U(x, u), U(y, u), U(z, u)

be a CQ over D. Then x and z are not connected in q2 because there is no path from x
to z that avoids u, which is a data variable.

We define:

Definition 5.3.2. Let q be a CQ over a datatype D. Then

1. q is rooted if any non-data variable in q is connected to a non-data answer variable
of q.

2. q is safe if for all non-data variables x, y in q, the following holds:

• x is connected to y in q; or

• x is connected to a non-data answer variable x′ and y is connected to a
non-data answer variable y′.

Remark 5.3.3. Rooted CQs were studied in [12] in the context of query containment
and query optimisation in DL-Lite. This class of queries is of course only a subset of
queries used in practical applications; nonetheless, the restriction is quite reasonable, as
seen in the context of CQ rewritability [87] (for this topic, see Chapter 7).1 Notice that
given a CQ q over D, q is rooted only if q is safe. The converse, however, does not hold.

1“[Rooted queries form] a very general class, which arguably captures most practical OBDA queries” [87].

66



5.3 Restoring decidability: the Bounded-Match Depth Property of OMQs

Example 5.3.4. The CQ q1 in Example 5.3.1 is safe, but not rooted; q2 is not safe, and
therefore not rooted. The CQ

q3(x)← r(x, y), r(y, z)

is rooted and thus safe.

We say that a UCQ q is rooted (safe) if all its disjuncts are rooted (safe, respectively).

5.3.2 Introducing the BMDP

Recall the notions introduced in Chapter 2. Here cand(T ,A) denotes the subinterpretation
of can(T ,A) induced by the set of domain elements reachable from elements of A in the
Gaifman graph of can(T ,A) in at most d steps. We define the desired property of OMQs
using a notion from the database literature([30]; see following Remark 5.3.6):

Definition 5.3.5. Let D be a datatype and Q = (T , q) be an OMQ over D. Then Q
has the bounded match depth property (BMDP) if there exists d ≥ 0 such that for all
D-ABoxes A and all tuples c̄,

T ,A |= q(c̄) ⇐⇒ f(cand(T ,A)) |= q(c̄)

for all completion functions f .

Remark 5.3.6. This property is well known in the database literature, having been
introduced with different notation and within a similar framework, for dealing with
non-terminating chases. In [30], the authors define the Bounded Guard-Depth Property
(BGDP) (see Definition 1 in that paper) and the strictly stronger notion of the Bounded
Derivation Depth Property (BDDP, Definition 2). We adapt and use the latter in our
framework, employing the notion of the match.

We now consider three important classes of OMQs which have the BMDP: OMQs with
DL-Lite TBoxes for which the chase terminates; OMQs with rooted queries; and OMQs
with safe queries over homogeneous datatypes.

OMQs with DL-Lite TBoxes and terminating chase. Let Q = (T , q) be an OMQ
over a datatype D where T is a DL-Lite TBox such that for all ABoxes A, chase(T ,A)
terminates in finitely many steps. This is sometimes the case in practice [56]. Note
that this implies that there exists an uniform bound n such that for all ABoxes A, the
chase terminates in at most n steps. Therefore there exists a d such that for all A,
cand(T ,A) = can(T ,A). It can be readily checked that by Definition 5.3.5 Q has the
BMDP.
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Rooted OMQs. Now let Q = (T , q) be rooted and A be a D-ABox; we relax the
requirement that chase(T ,A) terminates. Yet since Q is rooted, it can be answered by
looking at a finite portion of the chase. Consider all matches of q in f(can(T ,A)) for a
completion function f , and let x̄ denote the answer variables in q. Note that, for each
match µ, one only needs to look at elements that are reachable from µ(x̄) in at most d
steps in f(can(T ,A), where d is the maximum number of atoms in a CQ in q. (Recall
that by definition only ABox individuals and datatype values can be answers to q.) We
can therefore construct cand(T ,A) and answer q on the interpretations f(cand(T ,A))
where f ranges over the completion functions for cand(T ,A). That is, Q has the BMDP.

Safe queries over homogeneous datatypes. We recall the notion of an homogeneous
structure [39], already introduced in Chapter 3. Let B = (B,RB1 , RB2 , . . . ) be a relational
structure over a signature Σ.2 Then the Σ-structure D = (D,RD1 , RD2 , . . . ) is an induced
substructure of B if D ⊆ B and RDi = RBi ∩Dn for every n-ary relation symbol Ri in Σ.

Definition 5.3.7. (Restated) A datatype B is homogeneous if for all pairs of induced
substructures B,B′ of D, an isomorphism between B and B′ can be extended to an
automorphism of D.

Example 5.3.8. Examples of homogeneous datatypes are:

The structure (Q, <), or the same structure with reverse order. Let h be a partial
isomorphism from a substructure A to a substructure B of (Q, <). Take any rational
number s not in A. Then it can be checked that we can choose (by using the right
interval) a rational number t not in B such that h can be extended into a partial
isomorphism by taking s to t. For instance, if A = ({1, 2}, <) and B = ({3, 4}, <),
and h(1) = 3, h(2) = 4, if we pick 1.5 we can extend h into a partial isomorphism
by mapping it to 3.5. By repeating this procedure, in the limit one obtains an
automorphism of Q.

Structures (Q, R) R is taken to be the ternary linear betweenness relation; when Q
is bended to form a circle, that is, where R(x, y, z) ⇐⇒ (x < y < z) ∨ (y <
z < x) ∨ (z < x < y); and when R is the separation relation. That is, where
R ∈ {RBetw, RCyc, RSep} are as defined in temporal languages in Chapter 3. The
homogeneity of such structures has been shown [36].

Certain structures (D,≤) such that for all a, b ∈ D there exists a c ∈ D such that
c < a ∧ c < b; and the set of all predecessors of an element a, written `(a), is
a chain, that is, x, y ∈ `(a) implies x ≤ y or y ≤ x. Such structures are called
pseudo-trees and sometimes simply trees and are studied in [86]. Homogeneous
cases have been classified in [45]. The typical example is (Q,≤).

ω-categorical relational structures D (see Chapter 3) satisfying the condition that Th(D)
has quantifier elimination [39]. A proof that such structures are homogeneous can
be found in [79].

2For the purpose of this definition we restore the distinction between a relation RD and the relation
symbol R from Σ, given a Σ-structure D containing R.

68



5.3 Restoring decidability: the Bounded-Match Depth Property of OMQs

A comprehensive survey on countable homogeneous structures can be found in [79].

Example 5.3.9. In contrast, the datatype D = (N,≤) is not homogeneous. To see this,
consider the substructures D′ = ({1, 3}, R13) and D′′ = ({0, 1}, R01) where Rij = {(i, j)}.
Then there is bijection α between D′ and D′′, to wit α(1) = 0 and α(3) = 1. But clearly
α cannot be extended to an automorphism of (N,≤); for then we cannot map e.g. 2 to
any natural number in order to obtain a partial isomorphism, since the interval (0, 1)
over N is empty.

Before proving that safe OMQs over homogeneous datatypes have the BMDP, we
illustrate this fact with an example. So let (T ,A) be a Horn-L(Q,≤)-KB with

T = {∃r− v ∃r, ∃r v ∃r−, ∃r− v U}

and A = {r(a, b)}. An identical KB was used in the construction in the proof of
Theorem 5.2.4. Now consider the CQs q() ← r(x, y), U(x, u1), U(y, u2), u1 ≤ u2 (safe)
and q′()← U(x, u1), U(y, u2), u1 ≤ u2 (not safe). We compare the answers to such CQs
against can(T ,A). It is easy to see that to refute q we only need to compare the attributes
of individuals in can(T ,A) that are connected through r. In contrast, checking whether
(T ,A) 6|= q′ holds requires comparing (via <) attribute values of individuals in can(T ,A)
that can be arbitrarily far apart.
Example 5.3.9, the proofs of lemmas used in Corollary 5.3.17 as well as Proposi-

tion 5.3.10 below provide a hint as to how homogenity relates to the BMDP of non-safe
queries.

Proposition 5.3.10. There is a safe OMQ Q = (T ,A) over a non-homogeneous datatype
D such that Q does not have the BMDP.

Proof. Let Q = (T , q) be an OMQ over (N,≤), which is not homogeneous, where

T ={∃r− v ∃r, ∃r v ∃U,∃r− v ∃U},
q()← r(x, y), U(x, v1), U(y, v2), v1 ≤ v2.

Also let A = {r(a0, a1)}. We show that (1) T ,A |= q and (2) for all d one can find a
completion function f such that f(cand(T ,A)) 6|= q.

To show (1) suppose q is not entailed by (T ,A). Then there is a completion function
f with f(can(T ,A)) 6|= q. Note that can(T ,A) can be represented by the set containing
exactly rcan(T ,A) = {(ai, ai+1) | i ≥ 0} and U can(T ,A) = {(ai, ui) | i ≥ 0}, where the nulls
ui, ai are indexed in the order in which they are introduced by the chase. Then a0, a1, . . .
forms an infinite sequence. Given that q is false in I, we have f(ui) = ni > ni+1 = f(ui+1)
for all ui. Since f(dj) = 0 for some j ≥ 0 we obtain that a0, a1, . . . , aj is a finite sequence.
Contradiction.
To show (2), note that cand(T ,A) can be represented by the set containing exactly

rcan(T ,A) = {(ai, ai+1) | 0 ≤ i ≤ d} and U can(T ,A) = {(ai, ui) | 0 ≤ i ≤ d}. We obtain
thus a sequence u0, u1, . . . , un where n = d. We begin by setting f(u0) = d+ 1 and then
assign values to the ui in such a way that f(u0) > f(u1) > . . . > f(un) is a (finite) strictly
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descending chain. Thus there is no match of q in f(cand(T ,A)). Since d was arbitrary,
we obtain that for all d there is a completion function f such that f(cand(T ,A)) 6|= q.

Altogether we obtain that Q does not have the BMPD (Definition 5.3.5).

We now prove the fact stated above, that is, that safe OMQs over homogeneous
datatypes have the BMDP. Notice that non-Boolean safe queries are rooted, so they have
the BMDP by Definition 5.3.2. For this reason we focus here, without loss of generality,
on Boolean safe queries.
We heavily use the following forest representation of pre-models can(T ,A) of Horn-
L(D)-KBs (T ,A).

Forest representation of canonical pre-models

Definition 5.3.11. Let (T ,A) be a Horn-L(D)-KB for a datatype D. The chase forest
of T and A, denoted by CF(T ,A), is defined inductively as follows.

We start with an empty forest and add, for each assertion α ∈ A, a new root node vα
labelled with the set B(vα) := {α}.

For the induction step, consider a node v of CF(T ,A) and let B(v) be its label. Suppose
some rule of the chase procedure can be applied to the pre-ABox B(v) which generates a
new atom β.3 Let v′ be the lowest ancestor of v such that B(v′) contains all elements
that occur both in B(v) and as arguments of β. If all arguments of β occur in B(v′),
then we add β to B(v′). Otherwise, we create a new child v′′ of v′ and let B(v′′) := {β}
be its label.

When we apply chase rules that introduce constraints for data nulls, we also add these
constraints to the pre-ABox B(v) of the corresponding node v.
For each node v of CF(T ,A), we call B(v) the bag of v and denote the depth of v by

depth(v). Given a set V of nodes of CF(T ,A), we define

B(V ) :=
⋃
v∈V

B(v).

The forest representation coincides with the canonical pre-model. It is easy to see
that the set of all assertions that occur in the bags of CF(T ,A) coincides with can(T ,A),
up to renaming of individuals and data nulls that do not occur in A. In the following,
we may therefore assume without loss of generality that the set of all assertions that
occur in the bags of CF(T ,A) coincides exactly with can(T ,A). The following lemma is
immediate from the construction of CF(T ,A).

Lemma 5.3.12. Let (T ,A) be a Horn-L(D)-KB. If v is a node of CF(T ,A), then there
are at most two elements that occur as arguments of assertions in B(v), and v has at
most 2 · |T | children.

3Here we assume that fresh constants or data nulls that are generated by chase rules of the type 3, 6, or
7 do not occur already in CF(T , A).
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Additional notions. We will also require the following concepts of an `-neighborhood
and an `-type. Informally, the `-neighborhood of a node v of CF(T ,A) contains all
assertions in bags of nodes at distance less than ` from v. The `-type of v w.r.t. a
completion function f enriches the `-neighborhood N of v with information about the
relationships between the data values assigned by f to the data nulls in N .

Definition 5.3.13. Let (T ,A) be a Horn-L(D)-KB, let v be a node of CF(T ,A), let
` ≥ 1, and let f be a completion function for can(T ,A).

• The `-neighborhood of v in CF(T ,A) is defined as N`(v) := B(N`(v)), where N`(v)
is the set of all nodes at distance less than ` from v in CF(T ,A).

• The `-type of v in CF(T ,A) with respect to f , denoted by tp`(v), is the union of
N`(v) and the set of all atoms R(u1, . . . , ur) over D with each ui a data value or a
data null in N`(v) and (f(u1), . . . , f(ur)) ∈ R.

Let q ← ϕ be a Boolean CQ. The size of q, denoted by |q|, is the number of atoms
that occur in ϕ. Given a pre-match µ of q in can(T ,A), we define µ(q) to be the image
of q under µ, i.e., the smallest sub-interpretation I of can(T ,A) such that µ is a match
of q in I.

Crucial properties of safe OMQs

Lemma 5.3.14. Let (T ,A) be a Horn-L(D)-KB, and let f be a completion function for
can(T ,A).

1. Consider a safe CQ q and a pre-match µ of q in can(T ,A). Suppose that there is
a node v of CF(T ,A) at depth at least |q| whose bag contains some atom of µ(q).
Then, µ(q) is contained in N|q|(v) ⊆ tp|q|(v).

2. If the number of relations in D is finite, then for each ` ≥ 1 the number of distinct
`-types of nodes of CF(T ,A) with respect to f is at most

t` := 2m·|T |O(`)
,

where m is the total number of concept names, role names, and attribute names
that occur in T .

Proof. Ad 1: Easy consequence of the definition of CF(T ,A) and that of safe CQs.
Ad 2: Let v be a node of CF(T ,A). By Lemma 5.3.12, the set N`(v) of all nodes at
distance less than ` from v has size at most

`−1∑
i=0

(2 · |T |+ 1)i ≤ (2 · |T |+ 1)`.

Let X := ∆N`(v). Since the bag of each node in CF(T ,A) contains at most two elements
(Lemma 5.3.12), we have

|X| ≤ 2 · (2 · |T |+ 1)` = O(|T |)`.
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Each type consists of atoms built from concept names, role names, attribute names, and
relation names in D, using the elements in X as arguments. The number of such atoms is
at most m1 · |X|2 +m2 · |X|r, where m1 is the number of concept names, role names, and
attribute names in T , m2 is the number of relations in D, and r is the maximum arity of
a relation in D. Consequently, the number of distinct `-types of nodes of CF(T ,A) with
respect to f is at most

t` = 2m1·|X|2+m2·|X|r = 2m1·|T |O(`)
.

Here we use that m2 and r are constant (because D is constant).

The main result. We are now ready to show that safe OMQs over homogeneous
datatypes enjoy the BMDP. The following lemma states this result for TBoxes without
attribute restrictions. Remark 5.3.16 outlines how to adapt the proof to the case of
TBoxes with attribute restrictions.

Lemma 5.3.15. Let Q = (T , q) be a safe Boolean OMQ over a homogeneous datatype
D with T a Horn-ALCHIattrib(D) TBox. Set d := 2s+ ts, where s is the maximum size
of a disjunct of q and ts is defined as in Lemma 5.3.14.4

For every D-ABox A that is satisfiable relative to T , the following are equivalent:

1. f(can(T ,A)) |= q for all completion functions f .

2. f(cand(T ,A)) |= q for all completion functions f .

Proof. Note that since T and q are finite and therefore refer to only finitely many
relations of D, we can assume without loss of generality that D contains only finitely
many relations.

Let A be a D-ABox that is satisfiable relative to T . Clearly, if q is true in all completions
of cand(T ,A), then q is true in all completions of can(T ,A). Thus, it remains to prove
the other direction: if q is false in some completion of cand(T ,A), then q is false in some
completion of can(T ,A).
To this end, suppose that there is a completion function f for cand(T ,A) with

f(cand(T ,A)) 6|= q. We use f to construct a completion function f̂ for can(T ,A)
with f̂(can(T ,A)) 6|= q.

We construct f̂ inductively. Let v1, v2, v3, . . . be a repetition-free enumeration of all
the nodes of CF(T ,A) at depth at least d+ 1 in a breadth-first fashion. For each i ≥ 0
define the pre-interpretation

Ii := cand(T ,A) ∪B
(
{vj | 1 ≤ j ≤ i}

)
.

For each i ≥ 0 we construct a completion function fi for Ii with the following two
properties:

4Here we assume that D contains only relations that occur in T or q. In particular, D can be assumed
to be finite.
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1. fi(Ii) 6|= q.

2. If i ≥ 1, then fi coincides with fi−1 on all elements that occur in a bag of CF(T ,A)
at depth less than s+ depth(vi)− d.

Finally, we let f̂ be the completion function of can(T ,A) that maps each data null u to
fi(u), where i is the smallest integer with fi(u) = fj(u) for all j ≥ i (this integer exists
by the second property above). We then have f̂(can(T ,A)) 6|= q. It remains to construct
the functions fi.
We let f0 := f . Then, f0 is a completion function for I0 = cand(T ,A) such that

f0(I0) 6|= q. The second property is trivially satisfied for f0.
Next assume that fi has been constructed. We wish to construct fi+1. Let W be the

set of the ts + 1 deepest ancestors of vi+1 of depth at most depth(vi+1)− s. Then, for
each node w ∈W ,

depth(w) ≤ depth(vi+1)− s, (5.1)
depth(w) ≥ depth(vi+1)− s− ts

= s+ depth(vi+1)− d. (5.2)

Note that (5.1) implies Ns(w) ⊆ Ii, and therefore fi is defined on all data nulls in Ns(w).
Moreover, (5.2) and depth(vi+1) ≥ d+ 1 imply that each node in W has depth at least
s+ 1. Consequently, by Lemma 5.3.14(1), each match of some disjunct of q in can(T ,A)
that contains an atom from the bag of a node w ∈W is contained in Ns(w).

Now, sinceW contains ts+1 many nodes, there must be two distinct nodes w1, w2 ∈W
with tps(w1) ∼= tps(w2). Say, w1 is an ancestor of w2. Let g0 be an isomorphism from
tps(w1) to tps(w2). We can extend this isomorphism to an isomorphism g that includes
the atoms that occur in the subtree rooted at w1. For each data value or data null u
in Ns(w1), let h0(fi(u)) := fi(g(u)). Then, h0 is an isomorphism between finite induced
substructures of D. Since D is homogeneous, h0 extends to an automorphism h of D.
Now, for each data null u in can(T ,A), let fi+1(u) := fi(u) if u does not occur in Ii+1
in the subtree below w2, and fi+1(u) := h(fi(g−1(u))) otherwise.
It is easy to see that fi+1 coincides with fi on all elements that occur in a bag of

CF(T ,A) at depth less than s+ depth(vi+1)− d. It remains to show that fi+1(Ii+1) 6|= q.
Suppose that fi+1(Ii+1) |= q. Then there is a match µ of some disjunct q′ of q in
fi+1(Ii+1). Since µ is not a match of q′ in fi(Ii) (by the induction hypothesis), and fi+1
coincides with fi on all atoms that occur outside the subtree of w2 (by construction), it
must be the case that µ(q′) contains an atom from the subtree of w2. This implies that
µ(q′) ⊆ Ns(w2) or µ(q′) is contained in the subtree rooted at w2. But then the mapping

µ′(x) :=
{
g−1(µ(x)), if x is not a data variable,
h−1(µ(x)), if x is a data variable

is a match of q′ in fi(Ii), a contradiction.
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Remark 5.3.16. If Q = (T , q) is a safe Boolean OMQ over a homogeneous datatype D
with T a Horn-ALCHIqattrib(D) TBox, then we augment the proof of Lemma 5.3.15 as
follows. Let C be the set of all elements of dom(D) that occur in attribute restrictions of
T . We use an extended notion of `-neighborhood: the extended `-neighborhood of a node
v in CF(T ,A) is defined as N`(v)∪C. Note that this also induces an extended notion of
`-type, which is based on the extended `-neighborhood rather than the `-neighborhood.
The extended notion of `-type captures the relationship of data values and data nulls in
the `-neighborhood of a node and the elements in C. Finally, we consider the extended
datatype D̂ = (D, c1, . . . , cn), where c1, . . . , cn is an enumeration of all the elements in C.
This restricts isomorphisms and automorphisms to be the identity on the elements on C.
Consequently, when we translate the completion function of a subtree of CF(T ,A) by
applying an automorphism of D̂, we automatically preserve all the constraints imposed
on the data nulls. Note that D̂ is homogeneous if D is homogeneous. This means that all
other details of the proof can be left unchanged.

Theorem 5.3.17. The following OMQs enjoy the BMDP: safe OMQs over homoge-
neous datatypes, rooted OMQs, and OMQs with a DL-Lite TBox T such that can(T ,A)
terminates in a finite number of steps for each ABox A.

Proof. From paragraphs “OMQs with DL-Lite TBoxes and terminating chase” and
“rooted OMQs” above, as well as Lemma 5.3.15 directly using Definition 5.3.5 (for safe
OMQs over homogenous datatypes).

5.4 A framework for transfering classification results from
CSPs to query answering

The main purpose of this work, as stated in the Introduction, is to carry forth a detailed
investigation of OMQ answering with datatypes aiming at finding tractable cases. As
is known, CSPs (studied in Chapter 3) have been subject of intense investigation and
is an on-going research area– it includes, as seen in Chapter 3, dichotomies in terms
of algebraic properties of relational structures. In this regard, our approach consists of
reframing the complexity of answering OMQs in terms of CSPs, and vice-versa.

The “back-and-forth” framework that, as we found out, achieves this, takes advantage
of the BMDP introduced in the previous section and is developed in the following way.
Informally, we

• show that every OMQ Q = (T , q) over D that enjoys the BMDP can be reduced to
a constraint satisfaction problem CSPc(Γ) where Γ is defined solely by the patterns
of formulae over D that occur in Q.

• to sharpen the link between OMQ answering and CSP further, show a converse
polynomial reduction of CSPs with constants to the complement of answering
OMQs with the BMDP.
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The first reduction is used to transfer results from CSPs to OMQ answering. This
converse reduction, in contrast, can be used to transfer NP-hardness results from the CSP
world to co-NP-hardness results for OMQ answering. Both are based on the datatype
atoms that occur in OMQs.

5.4.1 Datatype patterns
We describe such datatype atoms using the notion of the datatype pattern of an OMQ Q.
The datatype pattern of Q is defined as dtype(Q) = (θT , θq), where θT is the set of all
PP formulae that occur in qualified attribute restrictions of T , and θq contains, for each
disjunct q′ of q, the conjunction of all atoms of q′ over D. Note that θT is a set of PP
formulae with constants and a single free variable, whereas θq is a set of PP formulae
without constants. We refer to datatype patterns of OMQs over D as datatype patterns
over D.

Example 5.4.1. Let T = {A v ∃U1.1 ≤ x ∧ x ≤ 3} be a D-TBox, for D = (Q,≤), and
let q be the UCQ over D given by q1(x), q2(x), where

q1(x)←
∧3
i=1 Ui(x, ui) ∧ u1 ≤ u2 ∧ u1 ≤ u3,

q2(x)← U1(x, u′1) ∧ U2(x, u′2) ∧ u′2 ≤ u′1.

Then dtype(T , q) = (θT , θq), where θT = {1≤x∧x≤ 3} and

θq = {u1 ≤ u2 ∧ u1 ≤ u3, u
′
2 ≤ u′1}.

Now, with each datatype pattern θ = (θT , θq) over D, where θT = {ϕ1, . . . , ϕm} and
θq = {ψ1, . . . , ψn}, we associate the constraint language

Γθ = (dom(D), Rϕ1 , . . . , Rϕm , R¬ψ1 , . . . , R¬ψn),

where for each formula ϕ(x1, . . . , xk) over D, we let Rϕ = {ā ∈ dom(D)k | D |= ϕ(ā)}.

5.4.2 Transfer result
We first show the fact that satisfiability of ABoxes w.r.t. TBoxes can be reduced to a
CSPc in polynomial time.

Lemma 5.4.2. Let T be a Horn-L(D)-TBox in normal form where θT = {ϕ1, . . . , ϕn}.
Then satisfiability of D-ABoxes A w.r.t. T is polynomially reducible to

CSPc(dom(D), Rϕ1 , . . . , Rϕn).

Proof. Let (T ,A) be a Horn-L(D)-KB with T in normal form where θT = {ϕ1, . . . , ϕn}.
We show that one can reduce satisfiability of A w.r.t. T to CSPc(dom(D), Rϕ1 , . . . , Rϕn)
in polynomial time. This is done by modifying the chase procedure so as to obtain an
algorithm which outputs unsatisfiable or constructs an instance Φsat of

CSPc(dom(D), Rϕ1 , . . . , Rϕn)
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1. If A v ⊥ ∈ T and A(a) ∈ S, then terminate and output unsatisfiable;

2. If C v A ∈ T and C(a) ∈ S and A(a) 6∈ S, then add A(a) to S.

3. If C v ∃r.A ∈ T and C(a) ∈ S and there is no r(a, c) ∈ S with A(c) ∈ S,
then add r(a, c∃r) and A(c∃r) to S, with provisos (?) and (†);

4. If C v ∀r.A ∈ T and C(a) ∈ S and r(a, b) ∈ S but A(b) /∈ S, then add A(b)
to S.

5. If C v ∃U ∈ T and C(a) ∈ S and there is no data value or data null v with
U(c, v) ∈ S then add U(a, u) to S and set Z(u) = ∅, where u is a fresh data
null.

6. If C v ∃U.ϕ ∈ T and C(a) ∈ S and there is no data value or data null v with
U(c, v) ∈ S and ϕ ∈ Z(v), then add U(a, u) to S and set Z(u) = {ϕ(u)},
where u is a fresh data null.

7. If C v ∀U.ϕ ∈ T and C(a) ∈ S and U(c, u) ∈ S for u a data value or data
null such ϕ /∈ Z(u), then add ϕ to Z(u).

8. If r1 v r2 ∈ T and r1(a, u) ∈ S and r2(a, u) 6∈ S, then add r2(a, b) to S.

9. If U1 v U2 ∈ T and U1(a, u) ∈ S and U2(a, u) 6∈ S, then add U2(a, u) to S.

Figure 5.8: Modified rules (terminating procedure) for Lemma 5.4.2

that is satisfiable iff A is satisfiable w.r.t. T .
Recall the chase steps described in Figures 2.1 and 2.3. Notice that the chase does

not terminate if, and only if, a chase step via Rule 3 (for a fixed axiom) occurs an
infinite number of times. To see this, recall Example 2.6.18. Let T := {A v ∃r.A} and
A := {A(a)}. We use nulls from a set {c0, c1, . . .}. Thus

chase(T ,A) = {A(a), r(a, c0)} ∪ {A(ci) | i ∈ N} ∪ {r(ci, ci+1) | i ∈ N}.

So any combination of TBox and ABox that contains axioms and assertions of the
form above does not terminate. We now change the chase procedure, using the rules in
Figure 5.8 instead.
The proviso (?) in Figure 5.8 is that when Rule 3 is triggered, we only add a fresh

individual c∃r if no axiom containing ∃r on the right-hand side was applied earlier in
a chase step. Otherwise c∃r is reused. (†) Even though it does not affect termination,
we also provide that the assertion A(c∃r) is not introduced if S already contains it: if
C v ∃r.A, C ′ v ∃r.A ∈ T with C(a), C ′(a′) ∈ S, when Rule 3 is applied to C v ∃r.A
and C(a) we already have A(c∃r) ∈ S.
Now given the modified chase it is clear that we obtain a polynomial-time algorithm

for computing S as needed. Termination can occur either because Rule 1 is applied, so
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that the output is unsatisfiable; or because at some step no more rules apply. In the latter
case we construct an instance Φsat of CSPc(dom(D), Rϕ1 , . . . , Rϕn) as

Φsat = ∃ū
k∧
i=1

∧
ϕ∈ZI(ui)

Rϕ(ui)

where u1, . . . , uk is a repetition-free enumeration of all data nulls that occur in the chase.
It is readily checked that (T ,A) is satisfiable iff (dom(D), Rϕ1 , . . . , Rϕn) |= Φsat.

Theorem 5.4.3. Let θ be a datatype pattern over D.
If Q = (T , q) is an OMQ over D with dtype(Q) = θ and Q enjoys the BMDP, then

evaluating Q is polynomially reducible to the complement of CSPc(Γθ).
Conversely, there is a rooted OMQ Q over D with dtype(Q) = θ such that the comple-

ment of CSPc(Γθ) is polynomially reducible to evaluating Q.

Proof. Let θ = (θT , θq), where θT = {ϕ1, . . . , ϕm} and θq = {ψ1, . . . , ψn}. Assume Q
enjoys the BMDP, and that q is given as q1(x̄), . . . , qn(x̄). Let A be a D-ABox and let c̄
be a tuple of individual names and data values of the same length as x̄. By Lemma 5.4.2,
satisfiability of A relative to a given Horn-L(D)-TBox T is polynomially reducible to
CSPc(dom(D), Rϕ1 , . . . , Rϕm). Thus, we can assume that A is satisfiable relative to T .
Consider the pre-model I := cand(T ,A), where d is an integer that satisfies the BMPD
but is independent of A. A pre-match of qi in I is a match of the abstract part of qi (i.e.
qi stripped off of all atoms over D) in I. Let Xi be the set of all pre-matches µ of qi in
I with µ(x̄) = c̄, and let ū = u1, . . . , uk be a repetition-free enumeration of all the data
nulls that occur in the image of some pre-match in X1 ∪ · · · ∪Xn. Then the following is
an instance of CSPc(Γθ):

Φ := ∃ū
(

k∧
i=1

∧
ϕ∈ZI(ui)

Rϕ(ui) ∧
n∧
i=1

∧
µ∈Xi

R¬ψi
(µ(z̄i))

)
,

where u1, . . . , uk are identified with individual variables in Φ. We check that T ,A 6|= q(c̄)
iff Γθ |= Φ. For simplicity, assume q has a single disjunct and that X is not empty.
Assume that Γθ |= Φ. It is clear, by the construction of R¬ψ (which contains all values
in dom(D) that refute some atom in ψ), that for all pre-matches µ in X, there exists
an assignment α of values in dom(D) to the variables in the datatype pattern part ψ of
q that will make some atom of ψ false in D. We use α as a completion function for I.
Using the definition of the BMDP, which by assumption is a property of Q, it can be
seen that we obtain (T ,A) 6|= q(c̄). The other direction is similar.
For the converse, we encode each instance Φ of CSPc(Γθ) by an ABox AΦ as follows.

We use a distinguished individual aΦ to denote the root of AΦ. For each atom α =
R¬ψi

(x1, . . . , xk) in Φ there is an individual bα connected to aΦ via an assertion ri(aΦ, bα).
For each j ∈ {1, . . . , k}, this individual is connected to individual cxj via an assertion
sj(bα, cxj ). Finally, for each variable x that occurs in Φ we include the assertion A(cx);
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aΦ

c0
cx cy

c1

10

r1
r1

r3

s1 s2 s1
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s2
s3

U U

A

Aϕ1

Figure 5.9: ABox AΦ from the proof of Theorem 5.4.3

if Rϕi(x) occurs in Φ we additionally include Aϕi(cx). Furthermore, for each element
u ∈ dom(D) that occurs in Φ we include the assertion U(cu, u). Figure 5.9 illustrates
this construction for the case m = 1, n = 3, and Φ being

∃x, y (Rϕ1(x)∧R¬ψ1(0, x)∧R¬ψ1(x, y)∧R¬ψ3(y, 1, x)) .

Let T = {A v ∃U}∪{Aϕi v ∀U.ϕi | 1 ≤ i ≤ m} and let q be the UCQ given by q1(x), . . . , qn(x),
where qi(x) is

ri(x, y) ∧
∧

1≤j≤k
(sj(y, zj) ∧ U(zj , uj)) ∧ ψi(u1, . . . , uk)

and k is the number of free variables of ψi. Clearly, Q = (T , q) is a rooted OMQ
over D with dtype(Q) = θ. It is straightforward to verify that Γθ |= Φ if and only if
T ,AΦ 6|= q(aΦ).

Note that the TBoxes constructed in the converse direction of the proof of Theorem 5.4.3
are very simple.

Corollary 5.4.4. Let D ∈ {(Z, 6=), (Q, 6=), (Z, <), (Q, <), (Z,≤)}. Then evaluating
OMQs over D with the BMDP is in co-NP.

Proof. Immediately from Theorem 5.4.3.

In the next chapter we show how Theorem 5.4.3 can be used to understand the OMQs
with the BMDP whose query evaluation problem is not only in co-NP but in PTIME.
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6.1 Introduction
The previous section concludes with a general framework for transferring results from
the CSP world to OMQ answering and back again.

Here we instantiate it for OMQ answering over all finite datatypes, as well as numerical
datatypes typically used in applications: (Q,≤), (R,≤) and a family of datatypes with a
first order definition in (Z, succ).
We get a dichotomy result for all finite datatypes. We also obtain results for the

numerical datatypes above based on the datatype patterns θ occuring in OMQs. In the
case of (Q,≤), (R,≤) we provide a straightforward syntactical criterion which enables
one to decide, given θ, whether any OMQ with θ as datatype pattern can be answered in
polynomial time; otherwise an intractable OMQ can be constructed which contains θ.
As for the datatypes based on (Z, succ), we prove a basic dichotomy for the datatype
(Z, succ), the complement of (Z, succ), as well as a basic dichotomy for a restricted form
of datatype patterns over a large family of datatypes with a first order definition in
(Z, succ).

Some of those results are quite involved and make essential use of the notions and
theorems introduced in detail in Chapter 3.

6.2 All finite datatypes
We now formulate a general dichotomy result for query answering over Horn-L(D)-KBs
where D is finite, that is, |dom(D)| < ω.

Recall that for finite domain templates Γ, by Proposition 3.2.12 we have CSP(Γ) =
CSP(Γ′) where Γ′ is the core of Γ.
We show:

Theorem 6.2.1. For all finite templates Γ, CSPc(Γ) is either in PTIME or NP-hard.

Proof. Assume Γ is given. Then, CSPc(Γ) is polynomially equivalent to the problem
CSP(Γ′), where Γ′ is the template obtained from Γ by adding predicates Pa, a in Γ, to
the signature of Γ and Pa(a), a in Γ, to Γ. (Thus, Γ′ is a precoloured template.) By
Theorem 3.2.15, CSP(Γ′) is either in PTIME or NP-hard.

Now immediately from Theorem 5.4.3 and Theorem 6.2.1 we obtain the dichotomy for
query answering over finite datatypes:

Theorem 6.2.2. Let θ be a datatype pattern over D, where dom(D) has finite cardinality.
Then either (a) or (b) holds, where
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(a) for all OMQs Q = (T , q) with the BMDP with dtype(Q) = θ, evaluating Q is in
PTIME;

(b) there is a rooted OMQ Q = (T , q) with dtype(Q) = θ such that evaluating Q is
co-NP-complete.

6.3 Dense linear orders
Now let D = (Q,≤). We will use the classification result for (Q, <) by Bodirsky and
Kára, Theorem 3.3.11, to obtain a classification for OMQ answering over D. The results
will hold all the same for (R,≤) or any dense linear order. For that purpose we introduce
various definitions and prove some preliminary results.

To simplify the presentation, we assume w.l.o.g. that for all datatype patterns θ =
(θT , θq) over (Q,≤) the formulas in θq are acyclic, that is, they contain no subformulas
of the form x1 ≤ x2 ∧ x2 ≤ x3 ∧ · · · ∧ ≤ xn ≤ x1 for n ≥ 1. Cycles as such occurring in a
formula in θq can always be eliminated by removing all their atoms and replacing each
xi with x1.
We use min-pattern and max-pattern to refer to formulas of the form x0 ≤ x1 ∧ x0 ≤

x2 ∧ · · · ∧ x0 ≤ xk and x1 ≤ x0 ∧ x2 ≤ x0 ∧ · · · ∧ xk ≤ x0, for k ≥ 0, respectively.
We now state the main result of this section.

Theorem 6.3.1. Let θ = (θT , θq) be a datatype pattern over (Q,≤), where θq =
{ψ1, . . . , ψn}.
If each ψi is a min-pattern or each ψi is a max-pattern, then evaluating OMQs Q over

(Q,≤) with dtype(Q) = θ and the BMDP is in PTIME.
Otherwise, there is a rooted OMQ Q over (Q,≤) with dtype(Q) = θ such that evaluating

Q is co-NP-complete.

This simple and purely syntactic characterization of the tractable cases makes make
it very easy to verify whether evaluating a given OMQ over (Q,≤) with the BMDP is
either guaranteed to be tractable or possibly coNP-complete. For instance, Theorem 6.3.1
implies that the OMQ (T , q) in Example 5.4.1 and in general all OMQs over (Q,≤) that
have the same datatype pattern and enjoy the BMDP can be evaluated in PTIME. On
the other hand, if we consider the datatype pattern that has z1 ≤ z2 ∧ z2 ≤ z3 in place of
z1 ≤ z2 ∧ z1 ≤ z3, then there are rooted OMQs over (Q,≤) with that datatype pattern
for which evaluation is coNP-complete.

We now introduce definitions and show results needed to prove Theorem 6.3.1.

Polymorphisms of the weak linear order on the rational numbers From now on we
will let F be the set containing the functions l l,min,mi and mx . Recall Definition 3.3.8
and let dual-F be the set containing all the duals of the functions in F . We will later
need the following easy result regarding preservation of the weak linear order < on Q by
functions in F ∪ dual-F . Recall that given a tuple t = (a1, . . . , an) we use t[i] to denote
the i-th entry of t.
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Proposition 6.3.2.

1. < is preserved by min, mi, mx, l l and their duals.

2. < is not preserved by any constant function.

Proof. We only consider preservation under min, mi, mx , l l and constant functions. The
proofs for the duals of min, mi, mx, l l are similar.

Preservation under min: Let a1 < a2 and b1 < b2. We have to show that c1 < c2, where
ci := min(ai, bi). If c1 = a1, then c1 = a1 < a2 and c1 = a1 ≤ b1 < b2, thus c1 < c2.
Similarly, if c1 = b1, then c1 = b1 ≤ a1 < a2 and c1 = b1 < b2, thus c1 < c2. This shows
that < is preserved under min.

Preservation under mi: Let a1 < a2 and b1 < b2. We have to show that c1 < c2, where
ci := mi(ai, bi). Since < is preserved by min, we have min(a1, b1) < min(a2, b2). Hence,
c1 = mi(a1, b1) < mi(a2, b2) = c2. Altogether, this shows that < is preserved under mi.

Preservation under mx: Let a1 < a2 and b1 < b2. We have to show that c1 < c2, where
ci := mx(ai, bi). Since < is preserved by min, we have min(a1, b1) < min(a2, b2). This
implies c1 = mx(a1, b1) < mx(a2, b2) = c2. Altogether, we have shown that < is preserved
under mx.

Preservation under l l: Let a1 < a2 and b1 < b2. We have to show that l l(a1, b1) <
l l(a2, b2). If a1 ≤ 0, then a1 < a2 immediately yields l l(a1, b1) < l l(a2, b2). Now suppose
that a1 > 0. Since a1 < a2, we also have a2 > 0. But then, b1 < b2 immediately yields
l l(a1, b1) < l l(a2, b2).

Non-preservation under constant functions: For a contradiction, suppose that < is
preserved under a constant function f : Qk → {c}. Take any a1 < b1, . . . , ak < bk. Since
f preserves <, we obtain c = f(a1, . . . , ak) < f(b1, . . . , bk) = c, which is impossible.

A basic dichotomy We now combine Theorem 5.4.3 and Theorem 3.3.11 to obtain a
basic dichotomy for evaluating OMQs over (Q,≤) based on their datatype patterns. This
is an intermediate step for the proof of the main theorem.

Theorem 6.3.3. Let θ = (θT , θq) be a datatype pattern over (Q,≤), where θq =
{ψ1, . . . , ψn}.

1. If some function f ∈ F ∪ dual-F preserves each R¬ψi
, then evaluating OMQs Q

over (Q,≤) with dtype(Q) = θ and the BMDP is in PTIME.

2. Otherwise, there is a rooted OMQ Q over (Q,≤) with dtype(Q) = θ such that
evaluating Q is coNP-complete.

Proof. 1. Let Q be an OMQ over (Q,≤) with dtype(Q) = θ that enjoys the BMDP. By
Theorem 5.4.3, evaluating Q is polynomially reducible to the complement of CSPc(Γθ).
We show that CSPc(Γθ) is polynomially reducible to CSP(Γ), where

Γ = (Q, <,≤, R¬ψ1 , . . . , R¬ψn),
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and that CSP(Γ) is in PTIME. This suffices to establish the first part of the theorem.
To show that CSPc(Γθ) is polynomially reducible to CSP(Γ), consider an instance Φ

of CSPc(Γθ). Replacing in Φ each atom of the form Rϕ(x), ϕ ∈ θT , by ϕ(x) yields an
instance Φ′ of CSPc(Q,≤, R¬ψ1 , . . . , R¬ψn) with

Γθ |= Φ ⇐⇒ (Q,≤, R¬ψ1 , . . . , R¬ψn) |= Φ′.

Next, we eliminate all constants from Φ′. Let c1 < · · · < ck be the sequence of all
elements of Q that occur as constants in Φ′. We simulate these constants by making
each ci an existentially quantified variable and adding constraints ci < ci+1, for each
i ∈ {1, . . . , k − 1}, to ensure that any assignment preserves the relative order of these
constants:

Φ′′ = ∃c1 · · · ∃ck
(
Φ′ ∧ c1 < c2 ∧ · · · ∧ ck−1 < ck

)
.

We thus obtain an instance Φ′′ of CSP(Γ). We claim:

(Q,≤, R¬ψ1 , . . . , R¬ψn) |= Φ′ ⇐⇒ Γ |= Φ′′.

The direction from left to right follows from the construction of Φ′′. For the converse,
assume Γ |= Φ′′. Let g be an assignment of rational numbers to the existential variables
in Φ′′ that satisfies the quantifier-free part of Φ′′ in Γ. Pick any automorphism α
of (Q, <) such that α(g(ci)) = ci for all i ∈ {1, . . . , k}. Then α ◦ g also satisfies the
quantifier-free part of Φ′′ in Γ. Since α ◦ g interprets each ci by itself, this implies
(Q,≤, R¬ψ1 , . . . , R¬ψn) |= Φ′. The sentence Φ′′ can clearly be computed in polynomial
time on input Φ. Altogether, we have shown that CSPc(Γθ) is polynomially reducible to
CSP(Γ).

It remains to show that CSP(Γ) is in PTIME. This is trivial if each of the ψi is empty.
Otherwise, at least one of the ψi is non-empty, which implies that f is not a constant
function. Since < and ≤ are preserved under any non-constant function in F ∪ dual-F
(Proposition 6.3.2), we know Γ is preserved under f and thus CSP(Γ) is in PTIME (by
Theorem 3.3.11).

2. By the theorem’s hypothesis,

Γ = (Q, R¬ψ1 , . . . , R¬ψn)

is not preserved by any function in F∪dual-F , which implies that CSP(Γ) is NP-complete
(by Theorem 3.3.11). Since Γ is a substructure of Γθ, CSPc(Γθ) is also NP-complete. By
Theorem 5.4.3, there is a rooted OMQ Q over (Q,≤) with dtype(Q) = θ such that the
complement of CSPc(Γθ) is polynomially reducible to evaluating Q. This concludes the
proof of the second part of the theorem.

Structure of ‘tractable’ datatype patterns Theorem 6.3.3 establishes a basic P/coNP-
dichotomy for evaluating OMQs over (Q,≤) that enjoy the BMDP. The tractable cases
of this dichotomy are characterized in terms of preservation properties of the relations
R¬ψ, where ψ is a formula in the UCQ part θq of the datatype pattern. To obtain a
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purely syntactic characterization of these tractable cases, we here analyze the structure
of formulae ψ ∈ θq such that R¬ψ is preserved under one of the functions in F ∪ dual-F .
This analysis is one of the main ingredients for our proof of Theorem 6.3.1.

Here we prove two auxilliary lemmas. The first lemma is straightforward but provides
a useful tool for the proof of the second lemma, which is the core of the analysis. For a
tuple t = (t1, . . . , tn) ∈ Qn and an integer i ∈ {1, . . . , n}, we write t[i] = ti.

Lemma 6.3.4. Consider a function f : Q2 → Q and elements a1, . . . , a4, b1, . . . , b4 ∈ Q
such that

f(a1, b1) ≥ · · · ≥ f(a4, b4).

Let 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ n, and suppose that (aj , bj) = (aj′ , bj′) if ij = ij′. Then,
there are tuples t1, t2 ∈ Qn such that t1[ij ] = aj and t2[ij ] = bj for all j ∈ {1, 2, 3, 4}, and

f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]).

Proof. Define t1, t2 ∈ Qn such that for all p ∈ {1, . . . , n}, we have that

t1[p] :=


a1, if p ≤ i1
a2, if i1 < p ≤ i2
a3, if i2 < p ≤ i3
a4, if i3 < p

and

t2[p] :=


b1, if p ≤ i1
b2, if i1 < p ≤ i2
b3, if i2 < p ≤ i3
b4, if i3 < p.

Clearly, t1[ij ] = aj and t2[ij ] = bj for all j ∈ {1, 2, 3, 4}. From the construction
of t1 and t2 and the properties of a1, . . . , a4, b1, . . . , b4, it immediately follows that
f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]).

Consider a datatype pattern θ = (θT , θq) over (Q,≤). What is the structure of formulae
ψ ∈ θq for which R¬ψ is preserved by a function in F ∪ dual-F? Since ψ is acyclic by
assumption, the negation of ψ that defines R¬ψ is equivalent to a disjunction Ψ of atomic
formulae x < y, with x and y variables, such that the directed graph with the variables
of Ψ as its vertices, and edges (y, x) for each atomic formula x < y of Ψ is acyclic. We
call such formulae Ψ acyclic disjunctive formulae.

Lemma 6.3.5. Let R ⊆ Qn be defined by an acyclic disjunctive formula Ψ over (Q, <).
Let f ∈ {min,mi,mx}.

1. If R is preserved under f , then for every two disjuncts xi < xj and xi′ < xj′ of Ψ
we have j = j′.
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2. If R is preserved under dual-f , then for every two disjuncts xi < xj and xi′ < xj′

of Ψ we have i = i′.

Proof. We will only consider the case that R is preserved under f . The dual of f can be
dealt with similarly.
Let R be preserved under f , and let xi < xj and xi′ < xj′ be disjuncts of Ψ. For the

sake of contradiction, assume j 6= j′. Without loss of generality, we assume that j < j′.
We are going to construct tuples t1, t2 ∈ R such that t3 = f(t1, t2) /∈ R.

Since Ψ is acyclic, we can assume that the variables x1, . . . , xn are topologically sorted,
i.e., if xp < xq is an atom of Ψ, then p < q. In particular, i < j and i′ < j′. By the
topological ordering, any tuple t ∈ Qn with t[i] < t[j] or t[i′] < t[j′] belongs to R, whereas
no tuple t ∈ Qn with t[1] ≥ · · · ≥ t[n] can belong to R. We will use these properties to
obtain the desired tuples t1 and t2.
We distinguish the following three cases:

Case 1 (i′ ≤ i): In this case, we have i′ ≤ i < j < j′. Let ai, ai′ , aj , aj′ ∈ Q and
bi, bi′ , bj , bj′ ∈ Q be defined by ai = ai′ = bi = bi′ = 2, bj = 1, aj′ = 0, and aj = bj′ = 3;
see Figure 6.1 for an illustration. We then have ai < aj and bi′ < bj′ . It is also

2
ai

2
ai′

3
aj

0
aj′

2
bi

2
bi′

1
bj

3
bj′

Figure 6.1: Choice of ai, ai′ , aj , aj′ ∈ Q and bi, bi′ , bj , bj′ ∈ Q in Case 1.

straightforward to verify that f(ai, bi) = f(ai′ , bi′) > f(aj , bj) > f(aj′ , bj′). Indeed,
min(ai, bi) = min(ai′ , bi′) = 2, min(aj , bj) = 1, and min(aj′ , bj′) = 0, so the claim is true
for f = min. For mi and mx, the claim is true, since min(x, y) > min(x′, y′) implies
mi(x, y) > mi(x′, y′) and mx(x, y) > mx(x′, y′). Now, Lemma 6.3.4 implies that there
are tuples t1, t2 ∈ Qn such that t1[i] < t1[j], t2[i′] < t2[j′], and f(t1[1], t2[1]) ≥ · · · ≥
f(t1[n], t2[n]). Hence, t1, t2 ∈ R and t3 = f(t1, t2) /∈ R.

Case 2 (i < i′ < j): In this case, we have i < i′ < j < j′. Let ai, ai′ , aj , aj′ ∈ Q
and bi, bi′ , bj , bj′ ∈ Q be defined by bi = 3, ai′ = 2, bj = 1, aj′ = 0, ai = bi′ = 4, and
aj = bj′ = 5; see Figure 6.2 for an illustration. We then have ai < aj and bi′ < bj′ . It

4
ai

2
ai′

5
aj

0
aj′

3
bi

4
bi′

1
bj

5
bj′

Figure 6.2: Choice of ai, ai′ , aj , aj′ ∈ Q and bi, bi′ , bj , bj′ ∈ Q in Case 2.
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is straightforward to verify that f(ai, bi) > f(ai′ , bi′) > f(aj , bj) > f(aj′ , bj′). Indeed,
min(ai, bi) = 3, min(ai′ , bi′) = 2, min(aj , bj) = 1, and min(aj′ , bj′) = 0, so the claim is
true for f = min. For mi and mx , the claim is true, since min(x, y) > min(x′, y′) implies
mi(x, y) > mi(x′, y′) and mx(x, y) > mx(x′, y′). Now, Lemma 6.3.4 implies that there
are tuples t1, t2 ∈ Qn such that t1[i] < t1[j], t2[i′] < t2[j′], and f(t1[1], t2[1]) ≥ · · · ≥
f(t1[n], t2[n]). Hence, t1, t2 ∈ R and t3 = f(t1, t2) /∈ R.
Case 3 (j ≤ i′): In this case, we have i < j ≤ i′ < j′. Let ai, aj , ai′ , aj′ ∈ Q and
bi, bj , bi′ , bj′ ∈ Q be defined by ai = 2, bj = bi′ = 1, aj′ = 0, and bi = aj = ai′ = bj′ = 3;
see Figure 6.3 for an illustration. We then have ai < aj and bi′ < bj′ . It is also

2
ai

3
aj

3
ai′

0
aj′

3
bi

1
bj

1
bi′

3
bj′

Figure 6.3: Choice of ai, aj , ai′ , aj′ ∈ Q and bi, bj , bi′ , bj′ ∈ Q in Case 3.

straightforward to verify that f(ai, bi) > f(aj , bj) = f(ai′ , bi′) > f(aj′ , bj′). Indeed,
min(ai, bi) = 2, min(aj , bj) = min(ai′ , bi′) = 1, and min(aj′ , bj′) = 0, so the claim is true
for f = min. For mi and mx, the claim is true, since min(x, y) > min(x′, y′) implies
mi(x, y) > mi(x′, y′) and mx(x, y) > mx(x′, y′). Now, Lemma 6.3.4 implies that there
are tuples t1, t2 ∈ Qn such that t1[i] < t1[j], t2[i′] < t2[j′], and f(t1[1], t2[1]) ≥ · · · ≥
f(t1[n], t2[n]). Hence, t1, t2 ∈ R and t3 = f(t1, t2) /∈ R.
Altogether, this concludes the proof.

The following lemma is the combinatorial core of our analysis.

Lemma 6.3.6. Let R ⊆ Qn be defined by an acyclic disjunctive formula Ψ over (Q, <).
If R is preserved by a function in F ∪dual-F , then Ψ has the form

∨k
i=1 xi < x0 if f ∈ F ,

and
∨k
i=1 x0 < xi if f ∈ dual-F .

Proof. Let Ψ =
∨

1≤i≤k ysi < yti . Without loss of generality, we assume that si 6= ti for
all i ∈ {1, . . . , k}, and that any two pairs (sp, tp), (sq, tq) with p 6= q are distinct. If k ≤ 1,
then Ψ already has the required form. It remains to consider the case that k ≥ 2. Note
that in this case f cannot be a constant function. Furthermore, if f is l l or dual-l l, then
the lemma follows from [20]. In what follows, we therefore assume that k ≥ 2 and that f
is one of min, mi, mx, and their duals.

We distinguish the following two cases:
Case 1: f is min, mi, or mx. In this case, Lemma 6.3.5 implies that for each j ∈ {2, . . . , k}
we have t1 = tj . In particular, Ψ has the form

∨k
i=1 xi < x0.

Case 2: f is the dual of min, mi, or mx. In this case, Lemma 6.3.5 implies that for each
j ∈ {2, . . . , k} we have s1 = sj . This implies that Ψ has the form

∨k
i=1 x0 < xi.

Altogether, this concludes the proof of the lemma.
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The main dichotomy We are now ready to show Theorem 6.3.1.
Let θ = (θT , θq) be a datatype pattern over (Q,≤), where θq = {ψ1, . . . , ψn}. By

Theorem 6.3.3, it suffices to show that the following are equivalent:

1. Each ψ ∈ θq is a min-pattern, or each ψ ∈ θq is a max-pattern.

2. There is a function f ∈ F ∪ dual-F such that each R¬ψ, ψ ∈ θq, is preserved under
f .

If each ψ ∈ θq is a min-pattern, then for each ψ ∈ θq the relation R¬ψ is defined by a
formula of the form

∨n
i=1 x0 > xi. Similarly, if each ψ ∈ θq is a max-pattern, then for

each ψ ∈ θq the relation R¬ψ is defined by a formula of the form
∨n
i=1 xi > x0. It is

known [20, Proposition 3.5] that relations defined by such formulas are preserved under
a function in F ∪ dual-F .
Conversely, let f be a function in F ∪ dual-F such that each R¬ψ with ψ ∈ θq is

preserved under f . Let ψ ∈ θq. Then, R¬ψ is defined by an acyclic disjunctive formula Ψ.
By Lemma 6.3.6, Ψ has the form

∨n
i=1 xi < x0, if f ∈ F , and

∨n
i=1 x0 < xi, if f ∈ dual-F .

This implies that each ψ ∈ θq is a min-pattern, or each ψ ∈ θq is a max-pattern.

Refinement of the complexity analysis We now refine the analysis of the datatype
patterns that lead to OMQs with an evaluation problem in PTIME further by presenting
a dichotomy between those that can be used in PTIME-hard OMQs and those that
always lead to OMQs in NLogSpace. It turns out that the NLogSpace upper bound
holds for all OMQs Q whose datatype pattern contains atomic formulas only.

Theorem 6.3.7. Evaluating OMQs Q over (Q,≤) with the BMDP and dtype(Q) =
(θT , θq) such that each formula in θq is of the form x0 ≤ x1 is in NLogSpace.

Proof. (Sketch) Straightforward application of Part 1 of Theorem 5.4.3, which allows us
to reduce evaluating OMQs Q over (Q,≤) with the BMDP where dtype(Q) = (θT , θq),
such that each formula in θq is of the form x0 ≤ x1, to the complement of CSPc(Q, <,≤).
It is not difficult to see that this reduction can be carried out in logarithmic space. The
fact that CSPc(Q, <,≤) is in NLogSpace can be verified by noticing that it can be
solved by doing a simple reachability test.

The following result entails that the NLogSpace upper bound cannot be generalised
to further tractable datatype patterns.

Theorem 6.3.8. There is a rooted OMQ Q over (Q,≤) with dtype(Q) = (∅, {x ≤ y∧x ≤
z}) such that evaluating Q is PTIME-complete.

Proof. By Part 2 of Theorem 5.4.3 it suffices to show that CSPc(Q, R¬ψ) is PTIME-hard,
where ψ = {x ≤ y ∧ x ≤ z}. To this end we show that the alternating reachability
problem [98, 63] is polynomially reducible to CSPc(Q, R¬ψ). An alternating graph is
a directed graph G = (V,E) where V is the disjoint union of the set V∃ of existential
vertices and the set V∀ of universal vertices. An alternating path from vertex x to vertex
y in G exists, in short, apathG(x, y) holds, if
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1. x = y, or

2. x ∈ V∃ and there is a z ∈ V with (x, z) ∈ E and apathG(z, y) holds, or

3. x ∈ V∀ and for all z ∈ V with (x, z) ∈ E, apathG(z, y) holds.

Alternating reachability is the problem to decide, given an alternating graph G and
designated vertices s, t, whether apathG(s, t) holds. Alternating reachability is still
PTIME-hard if we assume that G is acyclic, that all vertices have out-degree either 0 or
2, that no universal vertex has outdegree 0, that s is existential and has no incoming
edge, and that t is universal and has no outgoing edge. Assume G and vertices s, t with
these properties are given. We regard the set V of vertices of G as variables, take the
constants 0, 1 ∈ Q and construct a PP sentence ϕG,s,t with constants over (Q, R¬ψ) as
the conjunction of the following formulae:

• all R¬ψ(v, w,w′) such that v ∈ V∃ and w,w′ are both successors of v;

• all R¬ψ(v, w,w) such that v ∈ V∀ and w is a successor of v,

• all R¬ψ(v, 0, 0) such that v 6= t has outdegree 0, and

• R¬ψ(0, s, s).

Recall that R¬ψ = {(a, b, c) ∈ Q3 | a < b ∨ a < c}. Then one can easily show that
apathG(s, t) holds iff (Q, R¬ψ) |= ϕG,s,t, as required.

6.4 Integers with distance relations
Let succ := {(a, b) ∈ Z2 | b = a+ 1}. Also for each k ≥ 1 we define the relation Distk =
{(a, b) ∈ Z2 | |a− b| = k}. Such relations are here called distance relations. In this section
we study the complexity of OMQ answering over certain families of datatypes whose
domain is Z and all relations are first-order definable over (Z, succ). First (1) we focus
on the general case where all datatype patterns are allowed, and the datatype is fixed
to be (Z, succ), the complement of (Z, succ). Then (2) we study the case of single atom
datatype patterns (a single datatype atom in each CQ) over a large family of datatypes
called “distance datatypes”, whose relations satisfy a certain finiteness constraint. In
this section, we assume all integers are encoded in unary.

Main classification result in CSPs All templates Γ with finite signature and a first
order definition over (Z, succ) exhibit a complexity dichotomy. That is, CSP(Γ) is either
in PTIME or NP-complete [21]. The following formulation of the dichotomy will be used
throughout this section.

Theorem 6.4.1. [From Theorem 2 in [21]] Let Γ be a template with finite signature,
and a first-order definition over (Z, succ). Then CSP(Γ) = CSP(Γ′) where Γ′ is one of
the following:
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1. a finite template. In this case, CSP(Γ) is in PTIME or NP-complete.

2. a template with a first-order definition in (Z,=), in which case CSP(Γ) is known to
be in PTIME or NP-complete.

3. a template with a first-order definition in (Z, succ) in which the relation Distk is
PP-definable for all k > 0, in which case CSP(Γ) is NP-complete.

4. a template with a first-order definition in (Z, succ) containing succ. In this case,
CSP(Γ) is either in PTIME or NP-complete.

This theorem will be used for proving a basic dichotomy for OMQ answering over
(A) the complementary datatype (Z, succ) and (B) a large family of datatypes we will
define later, called distance datatypes. The case distinction 1-4 will be instrumental
in showing such results. Before going into that we present the instantiation and the
finiteness property of templates used in the second part of this section.

Transfer theorem We instantiate our main transfer theorem for datatypes with a
first-order definition over (Z, succ).

Theorem 6.4.2. Let D be a datatype with a first order definition in (Z, succ) and θ be
a datatype pattern over D.

If Q = (T , q) is an OMQ over D with dtype(Q) = θ and Q has the BMPD, then
evaluating Q is polynomially reducible to the complement of CSPc(Γθ).

Conversely, there is a rooted OMQ Q over D with dtype(Q) = θ such that the comple-
ment of CSPc(Γθ) is polynomially reducible to evaluating Q.

Locally finite templates We introduce a local finiteness property of templates over
(Z, succ) which has a link to results on the associated CSP. The distance degree of a
relation R is defined as follows. If there exists a greatest integer d such that there exist
x, y ∈ Z occuring together in a tuple in R with |x − y| = d, we say that the distance
degree of R is d; in this case we say that R is bounded. Otherwise, R is called unbounded.
A template is termed locally finite if all its relations are bounded.

6.4.1 The datatype (Z, succ)

We start by classifying the complexity of OMQ answering over D = (Z, succ). In qualified
attribute restrictions, that is, axioms of the form C v ∃U.ϕ and C v ∀U.ϕ, ϕ is here
required to be a PP formula over D̄ with one free variable x.

Remark 6.4.3. Given this particular datatype, any such PP formula is of the form
∃z̄(succ(x1, x2)∧ . . .∧ succ(xn−1, xn)) where x = xi for some i ∈ [n] and x /∈ z̄. It is easy
to see that x can be constrained to have at most one integer value. As a consequence we
can restrict ourselves to equivalent formulas of the form (x = d) with d ∈ Z.
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Theorem 6.4.4. Let θ be a datatype pattern over D = (Z, succ). Then the problem of
evaluating OMQs Q = (T , q) with the BMDP over D, with dtype(Q) = θ, is either in
PTIME or possibly co-NP-hard.

Proof. Let Q = (T , q) be an OMQ with the BMDP over the datatype D = (Z, succ)
with dtype(Q) = θ = (θT , θq), where θT = {ϕ1, . . . , ϕm} and θq = {ψ1, . . . , ψn}. By
Theorem 6.4.2, we get a polynomial time reduction from evaluating Q to the complement
of CSPc(Γθ) where

Γθ = (Z, Rϕ1 , . . . , Rϕm , R¬ψ1 , . . . , R¬ψn).

Fix an input Ψ to CSPc(Γθ). Now observe that as per Remark 6.4.3 each Rϕi is interpreted
as a singleton {d} with d ∈ Z. We call it R=d. Thus all atoms R=d(x) in Ψ can be dealt
with in the following way: if x does not occur anywhere else, then clearly R=d(x) is
trivially satisfiable in Γθ; otherwise R=d(x) can be deleted provided that x is replaced
with d everywhere in the input to the CSP (recall that CSPc(Γθ) allows inputs containing
constants). For that reason, w.l.o.g. and for the sake of simplicity, we assume T
does not contain qualified attribute restrictions. Thus we can assume Γθ is of form
(Z, R¬ψ1 , . . . , R¬ψn).

First we show that we can obtain a polynomial time reduction to CSP(Γθ) when succ is
PP-definable in Γθ. Then we do a case analysis directly by first eliminating a degenerate
case and then using the complexity classification of the associated CSPs (Theorem 6.4.1).

Claim: If succ is PP-definable in Γθ, then CSPc(Γθ) ≤p CSP(Γθ).
Proof: Let Φc be an instance of CSPc(Γθ), that is, a PPc formula over Γθ. (Recall that
constants are assumed to be encoded in unary.) Assume that the relation succ can be
defined by a PP formula over Γθ. We construct a PP formula Φ from Φc in such a way
that

(?) Γθ |= Φc ⇐⇒ Γθ |= Φ.

To construct Φ we first replace all constants in Φc by existentially quantified variables;
then, using the relation succ, we enforce among variables in Φ the same (uni-directional)
distance separating the constants in Φc they replace.

Let c̄ = c1, . . . , ck denote all constants in Φc, in ascending order. We “fill the gap” in the
successor-line of the c̄ by introducing the missing constants, obtaining a gapless sequence
d̄. For example: if c̄ = 3, 6, 7 we complete the sequence by letting d̄ be 3, 4, 5, 6, 7. We
introduce all needed variables by letting x̄d be a sequence of fresh variables corresponding
to d̄, whose indexes equal the value of the constants they replace. So replace the constants
c in Φc by the corresponding variables xd. We take care of variables y already present
in Φc as follows. When an atom of the form succ(d) = y (succ(y) = d) occurs in Φc

we accomodate y in the corresponding d + 1-th (d − 1-th) position in the sequence d̄,
accordingly, replacing y with xd+1 (xd−1) everywhere. Similarly with atoms of the form
(y = d) where d is an integer. The resulting Φ is a PP sentence over Γθ.

We now show that (?) holds. We assume w.l.o.g. that the Gaifman graph of Φc is
connected. The “only if” direction is straightforward: take a satisfying assignment to
Φc and extend it by using the indices of the variables in Φ (i.e. assign a to variable
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xa). The extended assignment will clearly satisfy Φ. For the converse direction, suppose
Γθ |= Φ. Take a satisfying assignment α0 of integers to the variables x̄d in Φ. By
a straighforward result in [16], we know that for any tuples ā, b̄ ∈ Zk, there is an
automorphism α of (Z, succ) with α(ai) = bi for all i ∈ [k] if, and only if, ai−aj = bi− bj
for all 1 ≤ i, j ≤ k. Thus using α0 we can use the “one-direction distance preserving”
automorphisms of (Z, succ), which are guaranteed to exist, to find a satisfying assignment
to Φc. Constructively, we define an injective function δ from the image of α0 to Z such that
δ(x) = x+ κ, where κ is a constant integer. Indeed, to determine κ, take the minimum a
of the set {x | x is a constant occurring in Φc} ∪ {x | x is in the image of α0}; and take
the first variable xj using the sequence d̄. Then

κ =
{
|j − a| if j ≤ a
−|j − a| otherwise.

Then the restriction of δ ◦ α0 to the corresponding variables x̄ in Φ gives us a satisfying
assignment for Φc so that Γθ |= Φc as desired. The claim now follows. �
We are now ready to do a case distinction using Theorem 6.4.1.

First we eliminate the one degenerate case which corresponds to item (2) of the theorem.

Claim: Assume CSP(Γθ) is not equivalent to a CSP of a finite template. Then CSP(Γθ)
is not equal to CSP(Γ) where Γ has a first order definition over (Z,=).
Proof: By Theorem 4 in [21] there exists a template Γ′ with a first order definition in
(Z,=) such that CSP(Γθ) equals CSP(Γ′) if, and only if, all binary relations which are
PP-definable over Γθ are either the equality relation or an unbounded distance relation.
It then suffices to prove that there exists a binary relation with a PP-definition in Γθ
which is neither the equality relation nor an unbounded distance relation. So set

Rψ = {ā, b̄ ∈ Z|2m| |
m∧
i=1

succ(ai, bi)}.

Then
R=
¬ψ = {ā, b̄ ∈ R¬ψ | ā = b̄} = ∅

has a PP-definition in Γθ. Now R=
¬ψ is neither the equality relation, nor an unbounded

distance relation. The claim now follows.
�

Now for the cases:

1. Γθ has a finite core. Since CSP(Γθ) has a dichotomy by the Feder-Vardi conjecture,
in this case we use Theorem 6.2.1 to get a dichotomy for CSPc(Γθ).

2. Γθ contains succ, or succ can be defined by a PP formula using only the relations
R¬ψ1 , . . . , R¬ψn . We showed above that CSPc(Γθ) ≤p CSP(Γθ). By Theorem 6.4.1,
(4), CSP(Γθ) is in PTIME or NP-hard.
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3. Γθ does not contain succ or succ is not PP-definable over Γθ, and also CSP(Γθ)
is not equivalent to any CSP with a finite template. Then by Theorem 6.4.1, (2)
and (3), CSP(Γθ) equals CSP(Γ) where Γ either has a first order definition over
(Z,=) or the relation Distk is PP-definable in Γ for all k ∈ Z. The former cannot
be the case, as shown above. Therefore the relation Distk is PP-definable in Γ
for all k ∈ Z and so by Theorem 6.4.1, (3), CSP(Γθ) is NP-hard. Now note that
CSP(Γθ) ⊆ CSPc(Γθ), that is, any instance of CSP(Γθ) is an instance of CSPc(Γθ).
Therefore CSPc(Γθ) is NP-hard.

When CSPc(Γθ) is in PTIME we are done. When CSPc(Γθ) is NP-hard we use
Theorem 6.4.2 to obtain that there is a rooted OMQ Q′ over D with dtype(Q′) = θ such
that the complement of CSPc(Γθ) is polynomially reducible to evaluating Q′. Altogether
evaluating Q′ is co-NP-hard. Therefore evaluating Q is either in PTIME or possibly
co-NP-hard. The theorem now follows.

Complexity bounds We prove two complexity results for (Z, succ)-KBs based on the
datatype pattern used. In more detail, we show that the problem of answering OMQs Q
with dtype(Q) = {succ(x, y)} has polynomial time complexity. Then we prove that already
given a datatype pattern θ = {succ(x, y) ∧ succ(z, w)} we can construct a co-NP-hard
OMQ Q with dtype(Q) = θ.

Theorem 6.4.5. Let (T ,A) be a (Z, succ)-KB and Q = (T , q) a rooted OMQ where
dtype(Q) contains a single atom succ(x, y). Then evaluating Q is in PTIME.

Proof. Let Q = (T , q) with dtype(Q) = {succ(x, y)}. For simplicity and w.l.o.g. assume
T does not contain qualified attribute restrictions; on that, see the first paragraph of
the proof of Theorem 6.4.4. Thus Γθ = (Z, succ). Now using the first claim proved in
Theorem 6.4.4, since Γθ contains succ, we have CSPc(Γθ) ≤p CSP(Γθ). We show that
CSP(Z, succ) is solvable in polynomial time. Let

ϕ = ∃x̄(succ(x1, x2) ∧ . . . ∧ succ(xn−1, xn))

be an input to CSP(Z, succ). We assume that ϕ is acyclic (as defined in the previous
section for (Q,≤)) and has no conjunct of the form succ(x, x), since otherwise ϕ is trivially
unsatisfiable in (Z, succ). For simplicity, assume the Gaifman graph of ϕ is connected.
We attempt to define, in a stepwise manner, a satisfying (w.r.t. (Z, succ)) assignment α
of integers to the variables of ϕ, written Var(ϕ), using the following algorithm:
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select x ∈ Var(ϕ);
α(x) = 0;
while ∃z, y ∈ Var(ϕ) with z /∈ dom(α) and y ∈ dom(α) do

select z, y;
if succ(y, z) ∈ ϕ then

α(z) = α(y) + 1;
end
if succ(z, y) ∈ ϕ then

α(z) = α(y)− 1;
end

end
if α is a function with (Z, succ) |=α ϕ then

return Yes;
end
return No;
It is easy to check that ϕ ∈ CSP(Z, succ) if, and only if, the algorithm outputs “Yes”. It

is readily checked that it has polynomial time complexity w.r.t. the number of conjuncts
in ϕ.

We now prove that if dtype(q) = {succ(x, y) ∧ succ(z, w)}, then we can construct a
co-NP-hard OMQ Q = (T , q).

Theorem 6.4.6. Let θ = {succ(x, y) ∧ succ(z, w)}. Then there is a rooted OMQ Q =
(T , q) with dtype(q) = θ such that evaluating Q is co-NP-hard.

Proof. We will define Rdist k = {(a, b) ∈ Z2 | |a− b| = k} for all k ∈ Z using solely
the relation R = {(x, y, z, w) ∈ Z4 | succ(x) = y ∨ succ(z) = w}. It will then immediately
follow from Theorem 6.4.2 and Theorem 6.4.1, (3), that there is a rooted OMQ Q = (T , q)
with dtype(q) = {succ(x, y) ∧ succ(z, w)} such that evaluating Q is co-NP-hard. For all
k > 0, Rdistk

= {(x0, xk) ∈ Z2 | ϕ(x0, xk)}, where ϕ(x0, xk) can be written as

(?) ∃x1 . . . xk−1(succ(x0, x1) ∧ . . . ∧ succ(xk−1, xk)) ∨ (succ(xk, xk−1) ∧ . . . ∧ succ(x1, x0)).

Indeed, by the distributive law, (?) is equivalent to

∃x1 . . . xk−1
∧

0≤i<k,0≤j<k
(succ(xi, xi+1) ∨ succ(xj+1, xj))

and, thus, Rdistk can be expressed as a PP formula over R.

6.4.2 Distance datatypes
We now study the complexity of OMQ answering over all datatypes of the form D :=
(Z, R1, . . . , Rn) where eachRi is first order definable over (Z, succ) andRi (the complement
of Ri) is locally finite. We call such structures distance datatypes. We disallow qualified
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attribute restrictions in the language, that is, here we set L := ALCHIattrib. Also, for
the results of this section we restrict ourselves to atomic datatype patterns, that is, ones
of the form {S1(z̄1), . . . , Sm(z̄m)} where Si is a |z̄i|-ary relation from D.

Example 6.4.7. Let D = (Z, succ, Rdist1) where Rdist1 is the complement of Rdist1 =
{(a, b) ∈ Z2 | succ(a, b) ∨ succ(b, a)}. It can be checked that both succ and Rdist1 are
locally finite. On the other hand, succ and Rdist1 themselves are not locally finite. To
see this, fix an integer k. Then for all k′ ∈ Z satisfying k′ 6= k + 1, the tuple (k, k′) is in
succ. Thus the relation succ is unbounded. The argument can be adapted for Rdist1.

Example 6.4.8. An infinite class of useful distance datatypes is defined by using as a
basis the relations Rdistk

for arbitrary k > 0. First, to define Rdistk
we use the construction

in Theorem 6.4.6. We then define Rdist≤k
as the relation containing all tuples (a, b) such

that the distance between a and b is (zero or) at most k. That is,

Rdist≤k
:= {(a, b) ∈ Z2 | a = b ∨ (

k∨
i=1

Rdisti(a, b))}.

It is straightforward to check that such relations are all locally finite. We write Rdist>k

for Rdist≤k
. Then for all m ≥ 0, the datatype D := (Z, R1, . . . , Rm) where each Ri,

1 ≤ i ≤ m, is Rdist>k
, for some k ∈ Z, is a distance datatype.

The reason for disallowing conjunctions of datatype atoms is that simple “conjunctive”
datatype patterns over (Z, succ) (studied in the previous section) already give rise to
templates which are not locally finite.

Example 6.4.9. Let θ := {succ(x, y) ∧ succ(x, z)}. We obtain the template Γθ =
(Z, R¬ψ) with R¬ψ = {(a, b, c) ∈ Z3 | succ(a, b) ∨ succ(a, c)}. It is easy to see that tuples
(1, 2, k) for all k ∈ Z are in R¬ψ. Thus R¬ψ is unbounded, which yields Γθ is not locally
finite.

Basic dichotomy for distance datatypes We use the result below from the CSP lit-
erature, which refines the general result from [21] for the special case of locally finite
templates.

Theorem 6.4.10. ([16]) Let Γ = (Z, R1, R2, . . . ) be a locally finite template without a
finite core which is first-order definable over (Z, succ). Then,

1. If succ is not PP-definable in Γ, then CSP(Γ) is NP-hard.

2. Otherwise CSP(Γ) is either in PTIME or NP-hard.

Remark 6.4.11. Trivially, all templates Γθ = (Z, R¬ψ1 , . . . , R¬ψn) obtained for the
instantiation (Theorem 6.4.2) are locally finite, given the assumption that D is a distance
datatype.

Given an atomic datatype pattern θ over a distance datatype we obtain a dichotomy
for answering OMQs Q with dtype(Q) = θ.
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Theorem 6.4.12. Let θ be an atomic datatype pattern over a distance datatype D. Then
the problem of evaluating an OMQ Q with the BMDP over D with dtype(Q) = θ is either
in PTIME, or there is a rooted OMQ Q′ with dtype(Q′) = θ such that evaluating Q′ is
co-NP-hard.

Proof. Let Q = (T , q) be an OMQ with the BMDP over a distance datatype D =
(Z, R1, . . . , Rn) with dtype(Q) = θ. By Theorem 6.4.2, we get a polynomial time reduction
to the complement of CSPc(Γθ) where Γθ = (Z, S1, . . . , Sm) with each Sj being the
complement of some Ri. If Γθ has a finite core, we are done; so we assume Γθ is an
infinite template.

First assume Γθ contains succ, or succ can be defined by a PP formula using only the
relations S1, . . . , Sm. Using a slight modification of the constant-elimination method
used in Theorem 6.4.4 we obtain that CSPc(Γθ) ≤p CSP(Γθ). By Theorem 6.4.10, (1),
CSP(Γθ) is in PTIME or NP-hard. Therefore evaluating Q is either in PTIME or possibly
co-NP-hard. Otherwise Γθ does not contain succ; again by Theorem 6.4.10, (2), CSP(Γθ)
is NP-hard. Now note that CSP(Γθ) ⊆ CSPc(Γθ), that is, any instance of CSP(Γθ) is an
instance of CSPc(Γθ). Therefore CSPc(Γθ) is NP-hard. Then by Theorem 6.4.2 there is
a rooted OMQ Q′ over D with dtype(Q′) = θ such that the complement of CSPc(Γθ) is
polynomially reducible to evaluating Q′. Altogether evaluating Q′ is co-NP-hard.

Tractability characterisation For locally finite templates Γ which do not have a finite
core the complexity of CSP(Γ) is characterised by certain “min” and “max” polymor-
phisms defined next. For templates which are not necessarily locally finite, still such
polymorphisms constitute a suficient condition for tractability.

Definition 6.4.13. Let d ∈ N∗.
The d-modular max operation is the operation maxd : Z2 → Z defined by

maxd(x, y) =
{

max(x, y), if x = (y mod d)
x, otherwise.

The d-modular min operation is the operation mind : Z2 → Z defined by

mind(x, y) =
{

min(x, y), if x = (y mod d)
x, otherwise.

Let Γ be a template. Then Γ has a modular (or the d-modular) polymorphism if Γ is
preserved by the d-modular max or the d-modular min operation for some d ∈ N∗.

Theorem 6.4.14. ([16, 21]) Let Γ be a template with finite signature, without a finite
core, and a first order definition in (Z, succ). If Γ is locally finite, then Γ has a d-modular
polymorphism and CSP(Γ) is in PTIME, or CSP(Γ) is NP-hard. Otherwise Γ has a
d-modular polymorphism only if CSP(Γ) is in PTIME.
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Remark 6.4.15. An easy “use case” of such polymorphisms is showing that CSP(Z, succ)
is solvable in PTIME. (We gave a direct proof of this in Theorem 6.4.5.) One only
needs to check that succ is preserved by modular min1 = min, by Theorem 6.4.14. Take
any two tuples t1 = (a, b), t2 = (c, d) ∈ succ. Given that b = a + 1 and d = c + 1, we
have that (a, a+ 1), (c, c+ 1) ∈ succ. Clearly, succ(min(a, c)) = min(a+ 1, c+ 1). The
claim now follows from Theorem 6.4.14, in fine. The relationship between non-local
finiteness of templates and intractability of the associated CSP is, to our knowledge, not
well-understood. Nevertheless, it can be verified that one of the simplest non-locally
finite templates, (Z, succ), does not have a d-modular polymorphism, so that poly-time
complexity of CSP(Z, succ) is not guaranteed. The property needed for showing this
is that for all d there exist tuples t1, t2 ∈ succ such that mind(t1, t2) /∈ succ and there
exist tuples t′1, t′2 ∈ succ such that maxd(t1, t2) /∈ succ. It can indeed be verified that
for all d, the tuples (−d − 1, 0), (0,−d), with the condition that both are in succ,
are counterexamples to preservation of (Z, succ) under mind; also, for all d, the tuples
(d − 1, 0), (0, d) do the job of ruling out maxd. Moreover, if (Z, succ) is shown not to
satisfy the property under Theorem 2, n. 3 in [21], then CSP(Z, succ) will be shown to
be NP-hard.

From Theorem 6.4.14 we also obtain a dichotomy in terms of polymorphisms.

Corollary 6.4.16. Let θ = (θT , θq) be a datatype pattern over a distance datatype, where
θq = {ψ1, . . . , ψn}. Then (1) if each R¬ψi

has a d-modular polymorphism, then evaluating
OMQs Q with dtype(Q) = θ and the BMDP is in PTIME; (2) otherwise, there is a rooted
OMQ Q with dtype(Q) = θ such that evaluating Q is co-NP-complete.
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7 Related work

7.1 Introduction

We review the literature on datatypes and query answering over lightweight DLs with
datatypes. Our aim is identifying both research directions and results which are related
to ours, focusing mainly on tractability results.

In Section 7.2 we revisit the early introduction of expressive languages with datatypes,
formulating decidability and the first complexity results in the literature. In Section 7.3
we introduce and discuss DLs with multiple datatypes. We reformulate old results and
languages when possible by using our own notation and approaches.

The complexity of query answering over languages with datatypes depends, obviously,
on the various parameters of the problem. We classified complexity of query answering in
a non-uniform way: from a problem that is co-NP-hard in general we obtained complexity
dichotomies first by fixing a datatype or a family of datatypes. For instance, if the
datatype is finite, then we obtain a basic dichotomy. Second, in some cases, by looking
at the structure of the datatype patterns, we presented a more fine-grained analysis of
the tractable cases. The tractable cases we identified in this way are not amenable to
typical query rewriting techniques. In contrast, in Section 7.4 we review results on query
answering over lightweight DLs with datatypes which are uniform; that is, they hold in
general for the very lightweight languages considered and can be extended with unary
datatypes without loss of the rewritability property (assuming that such datatypes satisfy
some sort of convexity property). Similarly, we will also look into results that hold for
all queries over n-ary datatypes and allow for rewritability, but at the cost of severely
restricting the classes of datatypes allowed.
We will use Table 7.1 below as a reference for the various DLs discussed throughout

this chapter.

7.2 The origins: concrete domains

The capability of referring to concrete objects such as numbers and strings is a desirable
feature of formalisms given existing applications, from encoding ER diagrams to engi-
neering [83]. Very early formalisms for Knowledge Representation already dealt with
attributes in an ad hoc way e.g. [46] and the CLASSIC system [26]. In the latter system,
for example, besides concepts representing “real world individuals of a domain”, the
representation language also allowed the description of “individuals in the implementation
language” (at the time, Common Lisp), such as strings and integers. Nevertheless, DLs
with datatypes would only be introduced in 1991 in [9]. They were then investigated
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Name Syntax Semantics
atomic concept A AI

top concept > ∆Iind
bottom concept ⊥ ∅
concept negation ¬C ∆Iind \ CI
role negation ¬r ∆Iind ×∆Iind \ rI

attribute negation ¬U ∆Iind × dom(D) \ UI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI

attribute range ran(U) {v ∈ dom(D) | (a, v) ∈ UI)}
existential restriction ∃r.C {a ∈ ∆Iind | ∃b with (a, b) ∈ rI & b ∈ CI}
universal restriction ∀r.C {a ∈ ∆Iind | ∀b (a, b) ∈ rI =⇒ b ∈ CI}
attribute restriction ∃U {a ∈ ∆Iind | ∃v((a, v) ∈ UI)}

attribute range restriction ∀U.Di (ran(U))I ⊆ dom(Di)
∃-qual. att. restriction ∃U.ϕ {a ∈ ∆Iind | ∃v ((a, v) ∈ UI & D |= ϕ(v))}
∀-qual. att. restriction ∀U.ϕ {a ∈ ∆Iind |

∀v ((a, v) ∈ UI =⇒ D |= ϕ(v))}
n-ary attr. restriction ∃U1 . . . Un.R {a ∈ ∆Iind | ∃(v1, . . . , vn) ∈ RD

with (a, vi) ∈ (Ui)I}
n-ary attr. range restriction ∀U1 . . . Un.R {a ∈ ∆Iind | ∀v1, . . . , vn ∈ dom(D)

with (a, vi) ∈ (Ui)I we have (v1, . . . , vn) ∈ RD}
number restriction ≤ q.r {a ∈ ∆Iind | |{(a, b) ∈ rI}| ≤ q}
number restriction ≥ q.r {a ∈ ∆Iind | |{(a, b) ∈ rI}| ≥ q}
concept inclusion C1 v C2 CI1 ⊆ CI2
role inclusion r1 v r2 rI1 ⊆ rI2

attribute inclusion U1 v U2 UI1 ⊆ UI2
role functionality (funct r) ∀a, b1, b2 ∈ ∆Iind,

(a, b1) ∈ rI ∧ (a, b2) ∈ rI =⇒ b1 = b2
attribute functionality (funct U) ∀a, v1, v2 ∈ ∆I ,

(a, v1) ∈ UI ∧ (a, v2) ∈ UI =⇒ v1 = v2
disjointness constraint disj(X1, X2) XI1 ∩XI2 = ∅

Table 7.1: Syntax and semantics of DLs
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intensively [74]. Datatypes were called concrete domains (with concrete predicates). The
ones explored in early work were typically quite expressive, as was the basic language
extended with them, ALC, a superset of which was introduced in Chapter 2.
The original extension ALC(D) with D a datatype [9] augments ALC with concepts

of the form ∃u1 . . . un.R where each ui is a composition of functional attributes. In this
way, the semantics is given in terms of a composition of partial functions f i1 . . . f ini

gi,
where the f i are defined from the domain of individuals to the domain of individuals
and gi from the domain of individuals to dom(D); each ui is called a path. See [74],
Definitions 2 and 3 for the formal definitions and discussion. Such concepts allow one to
use relations R from D for representing constraints on data values. The authors of [9]
introduced a sufficient condition for decidability of checking satisfiability of concepts
(equivalently subsumption between concepts [8]) under ALC(D) with empty TBox. Call
a datatype D = (dom(D), R1, R2, . . . ) admissible if (1) D is closed under negation, that
is, if R ∈ {R1, R2, . . .}, then there exists P ∈ {R1, R2, . . .} such that P = R̄; (2) there
exists a unary R ∈ {R1, R2, . . .} denoting dom(D); and (3) CSP(D) is decidable. Clearly
(1) is desirable given that any concept in ALC can be negated. Examples of admissible
datatypes can be easily found. Consider e.g. the real numbers with all predicates that
can be defined by using first order formulas over the reals. Such datatype is admissible
from Tarski’s famous result, namely the decidability of real arithmetic [97]. Another
example is the datatype having the rational numbers as the domain, the unary predicates
>Q, ⊥Q (extension: all rational numbers and the empty set, resp.), the binary predicates
≤, <,=, >,≥ and one unary predicate per comparison per rational number, as well as
ternary predicates for addition and its complement. On the other hand, we provided an
example of a simple datatype with integers that is not admissible in Example 3.2.13; given
that the CSP is undecidable, extending the datatype with predicates in order to satisfy
items (1) and (2) of the definition is not enough. Modulo admissible datatypes, the authors
designed a tableau algorithm that computes concept satisfiability and subsumption (again,
for the case where the TBox is empty). The decidability result can be formulated as
follows:

Theorem 7.2.1. ([9]) Concept satisfiability and subsumptions under ALC(D) with empty
TBox, where D is admissible, is decidable.

Notice that the tableaux generated by the algorithm introduced in [9] can be expo-
nentially large in the size of the input assertion,1 in the worst case. Motivated by this,
further work [72, 75] analysed the complexity of the problem by refining the algorithm
so that the tableaux generated are tree-shaped, with polynomial-sized paths.

Theorem 7.2.2. ([75]) Concept satisfiability and subsumption under ALC(D) with empty
TBox is PSPACE-complete, provided that D is admissible and CSP(D) is in PSPACE.

Notice that PSPACE-hardness comes from ALC(D) alone. Thus even for admissible
datatypes for which the CSP is in PTIME, concept satisfiability and subsumption without
TBoxes is PSPACE-complete. An example is the admissible datatype on the rational

1For checking concept satisfiability of C, the input assertion for the tableau algorithm is simply {C(a)}.
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numbers defined above. Polynomiality of the CSP for this datatype can be shown by a
reduction from linear programming (a slight modification of the reduction from mixed
integer programming in [75]).

Recall thatALC with general TBoxes is already ExpTime-complete [8]. As forALC(D),
adding general TBoxes makes concept satisfiability and subsumption undecidable (see
Theorem 8 in [75]). One way of regaining decidability is to allow only for less expressive
attribute constructors. This is done by disallowing paths, i.e., allowing only n-ary
attribute assertions of the form ∃U1 . . . Un.R where each U is an attribute (see Table 7.1).
The language can then be augmented with number restrictions and role inclusions without
loss of decidability. Conventionally this language has been denoted SHN (D), for which
a tableau was designed to compute concept satisfiability and subsumption. [57]

Theorem 7.2.3. ([57]) Concept satisfiability and subsumption under path-free SHN (D)
with general TBoxes, where D is admissible, is decidable.

Another way of regaining decidability is by restricting the datatype itself. For full
ALC(D) where D = (Q, <,≤,=, 6=,≥, >), for instance, concept satisfiability and sub-
sumption with general TBoxes was shown to be ExpTime-complete. [73].

7.3 Multiple datatypes

In our work all results are formulated with a single datatype, for simplicity sake. Many
among the efforts for adding datatypes to DLs, nonetheless, opt for formulating results
with an arbitrary number of datatypes [3, 4, 5, 6, 94]. We now provide a cursory
formulation of that feature for the language studied in this work followed by an exposition
of the literature.
Here we use D to denote a set of datatypes {D1, . . . ,Dn}. Assume that the domains

of the datatypes are mutually disjoint. Let Q = (T , q) be an OMQ where T is a Horn-
ALCHIattrib(D)-TBox and q is a CQ with the BMDP whose datatype pattern contains
relations from any datatype Di, and each attribute U is defined over a single datatype
Di. Now let θi be the part of dtype(Q) that only refers to Di, and qi the component of q
containing θi. Using a slight reformulation of Theorem 5.4.3, we reduce answering qi to
solving the complement of the CSPc for the constraint language Γθi

. Notice that, given
the mutual disjointness of domains of datatypes in D, there is no interaction between
the different datatype patterns in components of q. Then it can be checked that the data
complexity of answering Q is bounded by the complexity of the complement of CSPc(Γθi

)
for some i; namely the hardest CSP obtained. The argument can be easily adapted for
UCQs.

Multiple datatypes can be combined (dropping the assumption of mutual disjointness
of domains) into what has been called a datatype hierarchy in the literature [4, 94], by
including both the “top datatype” with all values in the collection, and the “empty
datatype”.
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Example 7.3.1. Using the OWL 2 Datatype Map2 we can construct the multiple (unary)
datatype D = {⊥D,>D,xsd : integer, xsd : string, rdfs : Literal}. Notice that per
the specification, rdfs : Literal contains all values of all datatypes, so it has the same
domain as >D.

In the literature, the primary concern has been identifying closure properties of
combined multiple datatypes, having decidability or, more recently, tractability in mind.
I.e., a certain property of all datatypes in the collection which is preserved when assembling
them together in some way. For instance, let D be a set of datatypes. Call the disjoint
union of all datatypes in D the single datatype consisting of (1) the disjoint union
of the dom(Di) together with a set W of countably infinitely many untyped values;
(2) all relations in each of the datatypes, plus the unary predicates >D and ⊥D with
the obvious extensions, a unary predicate =w for each w ∈ W , as well as the binary
predicate =. Take for instance the property of admissibility presented in the previous
section. The decidability results will then hold for such combinations; the same for
products of all datatypes in D, as defined in a similar way in [6]. A stronger closure
property of combinations of multiple datatypes, which requires (among other conditions)
polynomiality of each CSP(Di), can also be shown to hold; see Lemma 2.5 and Lemma
2.6 in [6].

Theorem 7.3.2. (from results in [6]) Let D = {D1, . . . ,Dn} be a multiple datatype where
each Di is admissible. Then the disjoint union, and the product, of all such datatypes is
also admissible.

For multiple datatypes all of which are unary (most of the studies focus on this case),
tractability properties were investigated in a series of papers [5, 94, 3, 4]. They will be
used in the next section. We will refer to Table 7.2 (where we use the notation D for
dom(D) to avoid clutter). It can be checked that (inf-compl) =⇒ (inf) =⇒ (inf-s),
and (inf-compl) =⇒ (inf-compl-s) =⇒ (inf-s).

7.4 Query answering over lightweight Description Logics

Ontology languages for which typical reasoning tasks, including query answering, are
tractable in general have attracted special interest over the latest years. Such DLs have
been called lightweight languages for that reason. Here we focus on two families of DLs
that go under that guise, to wit, EL and DL-Lite. In the following we make the unique
names assumption.

The DL-Lite family The DL-Lite family is especially significant as it forms the basis
of OWL 2 QL,3 one of the OWL 2 profiles,4 that is, fragments of the OWL 2 language5

2https://www.w3.org/TR/owl2-syntax/#Datatype_Maps
3https://www.w3.org/TR/owl2-profiles/#OWL_2_QL_2
4https://www.w3.org/TR/owl2-profiles/
5https://www.w3.org/TR/owl2-syntax/

101



7 Related work

Name Condition
(inf) |

⋂m
k=1Dik | = 0 or |

⋂m
k=1Dik | ≥ ω for all finite sets of domains Di1 , . . . , Dik in D

(inf-s) |
⋂m
k=1Dik | ≤ 1 or |

⋂m
k=1Dik | ≥ ω for all finite sets of domains Di1 , . . . , Dik in D

(inf-compl) |
⋂m
k=1Dik \

⋃m
k=1Djk)| = 0 or |

⋂m
k=1Dik \

⋃m
k=1Djk | ≥ ω

for all finite sets of domains Di1 , . . . , Dim and Dj1 , . . . , Djn in D
(inf-compl-s) |

⋂m
k=1Dik | ≤ 1 or |

⋂m
k=1Dik \

⋃m
k=1Djk | = 0 or

|
⋂m
k=1Dik \

⋃m
k=1Djk | ≥ ω for all finite sets of domains Di1 , . . . , Dim and

DDj1 , . . . , Djn in D
(convex) if

⋂m
k=1Dik ⊆

⋃m
k=1Djk , then there exists `, 1 ≤ ` ≤ n,

such that
⋂m
k=1Dik ⊆ Dj` for all finite sets of domains Di1 , . . . , Dim and

Dj1 , . . . , Djn of datatypes in D

Table 7.2: Properties of unary multiple datatypes D [4]

designed with specific application requirements in mind. OWL QL in particular is aimed
at applications which use large volumes of instance data whilst allowing users to query
such data in an effective way using relational database systems; this is done by rewriting
queries into a standard relational query language, as we will see later. DL-Lite was
introduced in [32] and further studied in [33] and [34] by the same authors; recently a
systematic study of combined and data complexity of reasoning in extensions of DL-Lite
was undertaken in [2].

The DL-Lite family comprises basically DL-Litecore, DL-LiteR and DL-LiteF , where
DL-Litecore is DL-LiteR (whose extensions with attributes were described in Chapter 2)
without role inclusions and DL-LiteF is DL-Litecore added with the ability of specifying
functionality on roles and their inverses. Checking satisfiability of a DL-Lite-TBox w.r.t.
an ABox A is in PTIME in both combined complexity and data complexity [33].

Rewriting Since that is a requirement for understanding some of the results in the
literature, we now briefly sketch a well-known technique called first-order (FO) rewriting,
or simply rewriting. The technique consists (informally) in showing for a certain language
L that it is possible to combine any CQ q and L-TBox T into a new FO query qT
(see [13]) whose answers coincide exactly with the answers to q w.r.t. T , for all ABoxes
A (considered as finite interpretations i.e. closed-world databases). Thus qT can be
translated into a SQL statement and evaluated using a RDBMS [1]. The problem
of evaluating such (fixed) queries is in AC0; see [1, 63].6 FO-rewritability has been
extensively discussed in [35, 13]. We now provide a simple example of rewriting of a CQ
over a DL-LiteR-TBox (recall Chapter 2) into a new UCQ.

Example 7.4.1. Let (T ,A) be a DL-LiteR-KB where A is any ABox and

T ={∃r v A1, A2 v A3, r v s}
6The well-known complexity class ACi contains all decision procedures definable using circuits of
polynomial size with AND, OR and NOT gates, depth O((log(n))i), and unbounded fan-in. Thus
AC0 includes all problems definable by such circuits having constant depth.
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and let q(x, y) ← A1(x), s(x, y), A3(y) be a CQ. Now we need to construct a query qT
with the property that A |= qT iff T ,A |= q for all A. This is done by taking into
consideration all axioms that are relevant to q. LetM be a model of T ,A. For instance,
if a pair of individuals a, b is such that a ∈ (A1)M, b ∈ (A2)M and (a, b) ∈ rM, then
a ∈ (A1)M (trivially), a ∈ (A3)M and (a, b) ∈ sM. Therefore the mapping x 7→ a, y 7→ b
is match of q in M. So in order to account for that intensional information in T , we
introduce the query

q1(x, y)← r(x, y), A2(y).

And so on. It can be seen that the UCQ qT := q1 ∨ q2 ∨ . . . ∨ q5, where

q1(x, y)←r(x, y), A2(y),
q2(x, y)←r(x, z), s(x, y), A3(y),
q3(x, y)←r(x, z), s(x, y), A2(y),
q4(x, y)←s(x, y), A1(x), A2(y),
q5(x, y)←A3(y), r(x, y).

has the desired property. In the literature qT is called a rewriting of q w.r.t. T .

Query answering under DL-Lite with datatypes Now notice that any algorithm for
rewriting CQs over DL-LiteR (the classical result of [33]), similarly for the language
called DL-LiteA in [90], can be adapted for DL-LiteattribR (D) where D is a multiple unary
datatype satisfying (inf). In the query, in addition to atoms of the form A(x) and r(x, y),
where A is a concept name, r is a role and x, y individual variables, we allow for atoms
of the form U(x, v) and D(v) where v is a data variable, U is an attribute name, and D
is a unary relation from D. It can be checked that attributes under current assumptions
behave exactly as roles. Also, it has been shown that this generalises to UCQ answering.

Theorem 7.4.2. (from [90]) UCQ answering under DL-LiteattribR (D), where D is a
multiple unary datatype and satisfies (inf), is in AC0.

Extending these languages with either constructors of the form ∃r.A on the left-hand
side, or of the form ∀r.A on the right-hand side of axioms already makes UCQ answering
NLOGSPACE-complete in data complexity (and thus typical rewritability is lost; see [35],
Theorem 4.1).

Table 7.3 presents the main results for for (U)CQ answering, depending on which
conditions are satisfied or violated by D. For some languages of the DL-Lite family, it
is not difficult to see that if conditions (inf) or (convex) are violated, then the proof
techniques in [94] can be used to reduce CQ answering to a co-NP-hard problem such as
2+2-CNF (if the cardinality of the intersection of some collection of predicates is 2) or
k-Colourability (if the cardinality of the intersection of some collection of predicates
is ≥ 3). On the other hand, under certain reasonable assumptions which depend on the
language used, if both conditions are satisfied we can use query rewriting techniques–
basically the same ones used for DL-Lite without datatypes– to obtain tractable query
answering.
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Language Complexity
UCQ ans.: DL-LiteattribR (D) where D violates (inf) co-NP-hard [94]

CQ ans.: DL-LiteattribR (D) where D violates (convex) co-NP-hard [94]
CQ ans.: DL-LiteattribR (D) where D violates (inf-compl-s) co-NP-hard [94]

UCQ ans.: DL-LiteattribR (D) where D satisfies (inf-compl-s) & (convex) AC0 [94, 4]

Table 7.3: Data complexity of CQ answering over multiple unary datatypes D

Generalisation to n-ary datatypes To conclude our section on languages of the DL-Lite
family we now review work on the generalisation to n-ary datatypes. The recent data
complexity results we now present were obtained via rewriting; they are uniform, as
they hold for all (fixed) input UCQs, as long as the datatype satisfies certain properties.
In earlier work on datatypes three essential properties had been considered: convexity,
admissibility and p-admissibility. We introduced the first two. The definition of the
latter, which we introduce below, uses a generalisation of (convex) for n-ary datatypes:

Definition 7.4.3. A datatype D is called convex if, whenever a conjunction Φ of atoms
over D implies a non-empty disjunction Ψ of atoms over D, then Φ also implies some
disjunct ψ of Ψ.

Definition 7.4.4. Let D = (dom(D), R1, R2, . . . ) be a convex datatype and Φ be the
set containing all conjunctions, as well as all implications between conjunctions, of atoms
Ri(x̄i) over D. Then D is said to be p-admissible if the problem of deciding whether a
formula ϕ ∈ Φ is satisfiable over D is in PTIME.

In addition to those, in [52] a more restrictive property called cr-admissibility has been
defined. To introduce it we need to define two additional properties of datatypes D which
are mutually independent w.r.t. p-admissibility. We say that D is functional if for all
k-ary relations R in D, d ∈ dom(D) and 1 ≤ i ≤ k, the formula R(v1, . . . , vk) ∧ vi = d
has at most one satisfying assignment in D. When Φ is a first order formula over D, we
let SΦ denote the set of variable assignments that satisfy Φ in D. Then we say that D is
constructive if, for all conjunctions Φ, and all disjunctions Ψ, of atoms over D, such that
SΦ \ SΨ 6= ∅, we can compute an element of this set in polynomial time.

Definition 7.4.5. Let D be a datatype. Then D is called cr-admissible if D is p-
admissible, functional, constructive, and contains all unary relations =v with v ∈ dom(D)
where =Dv is the singleton {v}, as well as the binary relation =, where =D is the set
{(v, v) | v ∈ dom(D)}.

Remark 7.4.6. The main datatype we consider in this work, (Q,≤), is not convex, so it
is not even p-admissible by Definition 7.4.4. To see this, consider the simple implication
(x ≤ y) =⇒ (x′ ≤ y) ∨ (y ≤ x′). While (x ≤ y) implies (x′ ≤ y) ∨ (y ≤ x′), it is however
not the case that (x ≤ y) =⇒ (x′ ≤ y) or (x ≤ y) =⇒ (y ≤ x′).

104



7.4 Query answering over lightweight Description Logics

The main idea behind cr-admissibility is ensuring combined rewritability of CQs.7 It
should be noted that for unary datatypes neither p-admissibility nor constructivity are
required (see Section 6 in [6]); however, convexity is needed for ensuring amenability to
rewriting techniques.
The logic used in [52] is an extension of DL-Lite with attributes over a cr-admissible

datatype D. In addition to other usual constructors, it allows for role functionality,
disjointness constraints, n-ary attribute restrictions of the form ∃U1, . . . , Un.R and n-ary
attribute range restrictions of the form ∀U1, . . . , Un.R, where R is an n-ary relation from
D. Notice that, in contrast, in qualified attribute restrictions in the language we defined
(Horn-ALCHIqattrib(D)), PP formulas with one free variable are used instead of a single
atom. See [52] for a thorough description of the language which here we just denote by
L(D) for D a cr-admissible datatype.

In [52] CQs over datatypes D are defined exactly as in our work: in addition to atoms
of the form A(x), r(x, y) and U(x, z), ones of the form R(z̄) are also allowed, where R
is from D and each z ∈ z̄ is a data variable. A safety assumption for CQs q over a
cr-admissible datatype D, in order to ensure rewritability in general, is that each data
variable z in q occurs either in an atom of the form U(x, z) or in an atom of the form
=v (z), with v ∈ dom(D). Such CQs are called safe. (Recall Definition 7.4.5 above.) For
the case of unary datatypes this assumption is not needed. Let (T ,A) be a L(D)-KB. We
say that a CQ q is combined rewritable w.r.t. T if there exists a UCQ q′ not depending
on A such that (T ,A) |= q iff IT ,A |= q′, where IT ,A is a finite interpretation of T ∪ A.
In the authors’ construction, IT ,A is defined via an “abstract” canonical model of (T ,A).
This canonical model is, similarly to our construction, defined in such a way that the
data nulls are associated to the relevant TBox constraints; the fact that computing an
appropriate assignment to such variables can be done in polynomial time is warranted by
D being p-admissible and constructive. By instantiating this model the authors obtain a
database-like interpretation over which UCQs can be evaluated.

An important assumption is that each individual in the domain of the abstract canonical
model has at most nT possible attribute values (each an assignment to a data null),
where nT is the maximum number of occurrences of attribute names in n-ary attribute
restrictions ∃U1 . . . Um.R, where R is from D, occurring on the right-hand side of axioms
in T . This number is denoted nT . A CQ that satisfies this property is called bounded.

The rewriting algorithm produces a set Q which preserves the answers to the original
query q; in particular, every CQ introduced is also safe and bounded provided that q is
safe and bounded. This implies that Q is finite. Q can then be evaluated over the finite
database obtained by instantiating the canonical model. The following theorem is then
used to show that CQ answering over L(D) is in PTIME in data complexity.

Theorem 7.4.7. ([52]) For D cr-admissible, safe and bound CQs are combined rewritable
w.r.t. L(D)-TBoxes, and the rewritings are computable.

7The so-called combined rewriting approach [76] generalises FO-rewriting. Roughly this is done by
rewriting the ABox A and the TBox T into a first-order structure B (equivalent to a relational
database) that is independent of the CQ q; and then rewriting q and T into a first-order query q′

independent of A. Then q′ has the property that all answers to q′ over B coincides with the answers
to q over (T , A).
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The lightweight language EL The popular ontology language EL originated in the
quest for the design of languages for which concept subsumption and concept satisfiability
are tractable. It first appears in the late 1990s [10] and was systematically studied in [7].
It is at the basis of the widely used medical ontology SNOMED CT [41]. EL-TBoxes
contain inclusions of the form C v D where C,D ::= A | ∃r.C | C uD | > with the
usual semantics.

Theorem 7.4.8. ([35, 1, 92]) UCQ answering in EL is PTIME-complete in data com-
plexity and NP-complete in combined complexity.

The extension of EL called EL++, which underpins the OWL2 EL profile,8 supports
datatypes in addition to allowing role composition and role inclusions of the form
r1 ◦ . . .◦ rn v rn+1, as well as nominals. In order to guarantee tractability of subsumption
under EL++(D), in [7] it is required that D satisfies p-admissibility, defined in the previous
subsection.
Unfortunatelly under EL++ CQ answering is undecidable, as proved independently

in [66] and [92]; both proofs hinge crucially on the use of role composition and role
inclusions. For standard reasoning tasks the more basic EL behaves well in the face
of numerical datatypes, under reasonable restrictions. That has been shown for the
(here normalised as in [7]) language EL⊥(D), where D = (dom(D), R1, R2, . . . ) with
dom(D) ⊆ R and RDi ⊆ dom(D)× dom(D). A normalised EL⊥-TBox allows axioms of
the form

A′1 v A′2, A1 uA2 v A, A v ∃r.A′,∃r.A v A′, A v ∃U.ϕ, and ∃U.ϕ v A (7.1)

where A,A′, A1, A2 are concept names; A′1 is either a concept name or >; A′2 is either
a concept name, ⊥ or >; r is a role name, U is an attribute name, and ϕ is (more
restrictively than in our work) an atomic PPc formula of the form R(x, c) or R(c, x)
with R from D and c ∈ dom(D). In OWL 2 EL, D can contain only the equality
relation. In [80] a detailed non-uniform complexity analysis of the task of classification
(computing all subsumption relations) in EL⊥(D) ontologies was carried out. The analysis
is based on how datatypes occur in EL⊥-TBoxes– in particular, in the polarity of such
occurences. Nonetheless, query answering was not considered and, to our knowledge, no
such investigation exists in the literature. However, a hardness result for UCQ answering
over EL⊥(D)-TBoxes, where D is a numerical datatype with predicates < and =, can be
obtained by a simple reduction from 3-Colourability (using proof techniques similar
to those in [94]) already when datatype atoms are disallowed in the query. The reduction
relies on the use of negative occurences of attribute restrictions ∃U.ϕ (see 7.1 above) in
axioms. Recall that this is disallowed in Horn-ALCHIqattrib(D)-TBoxes.

8https://www.w3.org/TR/owl2-profiles/#OWL_2_EL_2
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