
 

1 
 

Plasma polymer coatings to direct the differentiation of mouse kidney derived stem cells into 

podocyte-and proximal tubule-like cells 

Isabel Hopp1#, Melanie MacGregor-Ramiasa2#, Kyle Doherty3, Rahul M. Visalakshan2, Krasimir 

Vasilev2, Rachel L. Williams3* and Patricia Murray1 

 

1. Institute of Translational Medicine, University of Liverpool, L69 3GE, UK  

2. School of Engineering, Future Industries Institute, University of South Australia, SA 5095, Australia 

3. Department of Eye and Vision Science, University of Liverpool, L7 8TX, UK 

# Joint first author 

*corresponding author (rlw@liverpool.ac.uk)  

Short running title: Plasma polymers direct differentiation of kidney-derived stem cells 

 

Summary 

Kidney disease is now recognised as a global health problem and is associated with increased 

morbidity and mortality, along with high economic costs. To develop new treatments for 

ameliorating kidney injury and preventing disease progression, there is a need for appropriate renal 

culture systems for screening novel drugs and investigating the cellular mechanisms underlying renal 

pathogenesis. There is a need for in vitro culture systems that promote the growth and 

differentiation of specialised renal cell types.  In this work, we have used plasma polymerisation 

technology to generate gradients of chemical functional groups to explore whether specific 

concentrations of these functional groups can direct the differentiation of mouse kidney-derived 

stem cells into specialised renal cell types. We found that amine-rich (-NH2) allylamine-based plasma 

polymerised coatings could promote differentiation into podocyte-like cells, whereas methyl-rich 

(CH3) 1,7-octadiene-based coatings promoted differentiation into proximal tubule-like cell (PTC). 

Importantly, the PT-like cells generated on the substrates expressed the marker megalin and were 

able to endocytose albumin, indicating that the cells were functional. 
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Introduction 

There is an increasing prevalence of chronic kidney disease (CKD) and it has been estimated that 11-

13% of the world’s population is affected.1 Most patients with CKD will die of cardiovascular disease2 

and those that survive are likely to progress to end stage kidney disease (ESKD), requiring dialysis or 

renal transplantation. Currently, understanding the molecular and cellular mechanisms that underlie 

kidney disease and the development of novel drug therapies is challenging because of the lack of 

appropriate renal culture systems.3 The availability of culture systems comprising podocytes and 

proximal tubule cells (PTC) would be of particular value given that these two cell types are affected 

in most types of kidney disease.4-5 Podocytes (visceral epithelial cells) are highly complex cells that 

form an essential part of the glomerular filtration barrier, whereas PTCs are crucial for the 

reabsorption of molecules from the urinary filtrate and the excretion of organic anions and cations.6-

7  A problem with culturing these cell types in vitro is that podocytes are terminally differentiated 

cells with no scale-up potential, and PTCs only maintain their functionality and differentiated 

phenotype for a few days following isolation from the kidney.8 Although the development of 

conditionally immortalised podocyte9 and PTC lines10 has facilitated progress in this field, the 

phenotype of such transformed cells does not exactly mimic that of their in vivo counterparts. 

We have previously isolated a clonal stem cell line from neonatal mouse kidneys and demonstrated 

that these mouse kidney-derived stem cells (mKSCs) generate podocyte and proximal tubule cells in 

vitro and ex vivo.11-12  Plasma polymerised substrates with varying degrees of nanoroughness and 

different surface chemistries have shown that substrates comprising a high degree of 

nanoroughness in combination with high amine content could promote the differentiation into 

podocyte-like cells (~32% of the mKSC population generating podocytes), whereas surfaces with low 

amine and high methyl content appeared to promote differentiation towards PTC-like cells, though 

this was not quantified.13  Given that the chemical composition of the surfaces appeared to have a 

greater influence on mKSC differentiation than did the nanotopography, the aim of the current study 

was to focus specifically on the role of surface group chemistries in regulating the differentiation of 

mKSCs into podocyte- and PT-like cells. To this end, we generated gradients of plasma polymerised 

allylamine (AA)- and 1,7-octadiene (OD)-based surfaces to determine the effect of amine- and 

methyl- rich surfaces without different topographies on mKSC behaviour. The advantage of gradient 

technology is that it enables rapid identification of the functional group concentration that promotes 

differentiation to the required cell type. To validate the results obtained with the gradient surfaces, 

we also assessed mKSC behaviour on the following homogenous plasma polymerised surfaces: (1) 

100% OD:0% AA; (2) 75% OD:25% AA; (3) 50% AA :50% OD; (4) 25% OD:75% AA; (5) 0% OD:100% AA. 
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These homogeneous surfaces will be referred to as 0% AA, 25% AA, 50% AA, 75% AA, and 100% AA, 

respectively. 

Materials and methods 

Substrate preparation and sterilisation: Plasma polymerisation was performed in a custom-built 

13.56 MHz radiofrequency plasma reactor described previously.14 13 mm glass coverslips were 

cleaned with air plasma for 3 min. Allylamine (AA) (98%, Sigma) and 1,7-octadiene (OD) (98%, Sigma) 

precursors were mounted on two separate needle valves. The AA:OD ratio entering the plasma 

polymerisation chamber was carefully controlled by the automated needle valves with a precursor 

flow rate of 10 sccm. Plasma polymer films were deposited for 30 s at 30 W. Prior to cell culture, 

substrates were incubated with Penicillin/Streptomycin (Sigma) for 10 min to reduce the risk of 

infection. Throughout these studies the cultures were examined under the microscope for signs of 

infection and there was no indication of contamination throughout experiments conducted in these 

surfaces.   

X-ray photoelectron spectroscopy (XPS): The instrument used for this study has been described in 

detail previously.15 XPS analyses were conducted using a VSW ESCA XPS spectrometer fitted with an 

AlKα 1486.6 eV monochromator. Survey, valence, C1s, O1s and N1s spectra were recorded at a 45° 

take-off angle at 150 eV, 0.8 mm slit, 1.8 kW. Charge compensation was provided by a low energy 

electron flood gun (Scienta FG300) in the analyses chamber under optimal spectral resolution. The 

spectra were analysed by curve fitting using CasaXPS (Casa software Ltd) software. 

Primary amine quantification: Coomassie Brilliant Blue (CBB): Polymer-coated samples were 

immersed in 0.3 mL of a solution of 0.5 mg/mL CBB in acidic solution (85:10:5 v/v 

dH2O/methanol/acetic acid, pH 2.2) for 5 min at room temperature (RT). To eliminate excess dye, 

the samples were washed with the acidic solution without dye until the rinsing solution was clear. 

The samples were then dried at RT in air. To remove the amine-bound dye, 0.3 mL of an alkaline 

solution (0.125 M K2CO3 in 50:50 v/v dH2O/ methanol, pH 11.25) was added, transferred into a 96 

well plate and adjusted to pH 3 (by adding 7.5% v/v of 3 M HCl). The absorbance of the solution was 

measured at 615 nm. Orange 2: Polymer coated samples were immersed in 0.3 mL of a solution of 

14 mg/mL Orange 2 dye in acidic solution (dH2O at pH 3 adjusted with 1 M HCl) for 30 min at 40°C. 

To eliminate any excess dye, the samples were thoroughly washed in the acidic solution without dye 

until the rinsing solution was clear. The samples were then dried at RT in air. To remove the amine-

bound dye, 0.3 mL of an alkaline solution (dH2O at pH 12 adjusted with 1 M NaOH) was added, 

transferred into a 96 well plate and adjusted to pH 3 (by adding 1% v/v of 12.3 M HCl). The 

absorbance of the solution was measured at 484 nm. Quantification: Prior measurements a standard 
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acidic solution of 0.05 g/mL CBB or 0.05 g/mL Orange II was prepared and served as a standard. CBB 

and Orange 2 were shown to interact with N+ stoichiometrically 1:1 (Ndye = NNH2)16.  

Contact angle (CA): Sessile drop and captive bubble CA measurements were conducted using a drop 

shape analysis system (DSA100m, Krüss) consisting of a piezo dosing head, a camera combined with 

a microscope and a software controlled micro-step x–y stage. Sessile drop: Droplets of 80 pL 

degassed and deionized water (dH2O) were dropped on the substrate and images were recorded. 

For collection of contact angle maps, the sample stage was moved in x and y directions by 0.5 mm 

increments and contact angles were collected at each point. Captive bubble: An air bubble of 10 µL 

in volume was placed on the underside of a sample that was exposed to water using a syringe. The 

contact angles in degrees were calculated using the circular segment method for both sessile drop 

and captive bubble measurements. 

Protein adsorption study: Protein adsorption onto 100%AA and 100% OD substrates was measured 

using Micro BCA protein assay kit (Thermo Fisher Scientific, Life Technologies Australia.). 12 well 

plates (4 cm2 surface area per well) coated with allylamine and octadiene were used as substrates to 

study the protein adsorption following established procedures. 17-18 FBS (10%), bovine serum 

albumin (BSA, Sigma-Aldrich) and fibronectin (GIBCO Invitrogen cell culture , cat no 33016-015), 0.5 

mg/mL in phosphate buffer saline (PBS), were pipetted onto the surface and incubated for 1 h at 37 

°C. The surface were rinsed three times with PBS to remove the unbound proteins before adding to 

each well 250 μL of micro BCA reaction solution and incubating for 2 h at 37 °C. The solution were 

then aspirated and transferred to a 96 well plate for spectrophotometric measurement of the 

colored solution absorbance at 562 nm. 19 The amount of protein adsorption was calculated from 

the standard curve. All measurements were conducted in triplicate. 

Cell culture and analyses: mKSCs (established by the Stem Cell Research group, University of 

Liverpool11-12) were cultured in DMEM supplemented with 10% FBS, 2mM L-glutamine and 1% MEM 

non-essential amino acids (Sigma). When cells were cultured on plasma polymerised or control 

coverslips, the medium was supplemented with 1% penicillin / streptomycin (Sigma) and changed 

every 2-3 days. Sterile 13 mm plasma coated glass coverslips were transferred to a 24 well plate and 

cells were seeded at a density of 1x103 cells/well and shaken gently 1 h post seeding to ensure 

homogeneous distribution of the cells.  Cells on coverslips were fixed using 4% (w/v) 

paraformaldehyde (PFA) and subsequently stained with Alexa Fluor® 488 Phalloidin (Invitrogen) for 

30 min at RT (room temperature) in the dark, washed with phosphate buffered saline (PBS) and co-

stained with DAPI (Life Technologies) for 15 min at RT, washed and mounted onto microscopy slides 

and imaged using a Leica DM2500 microscope coupled to a Leica DFC420C camera. An average of 10 
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fields of view per coverslip were imaged.  In order to quantify the number of podocyte-like cells, the 

proportion of cells with podocyte-like morphology and characteristics was determined under phase 

contrast 13 from at least 5 fields of view per sample. Briefly, cells displaying characteristic podocytes 

morphological features including high cytoplasmic-to-nuclear ratio, arborized appearance and 

binucleation were counted by eye.12, 20 All experiments were performed in biological triplicates with 

3 technical replicates. 

Immunofluorescence: Cells were fixed with 4% (w/v) PFA for 5 mins at RT and washed in PBS. The 

following primary antibodies were used: Mouse anti-megalin (1:200, Acris, DM3613P) and anti-

nephrin (1:250, Abcam, ab58968.) The secondary antibodies used were: Alexa fluor-conjugated goat 

anti-mouse IgG1 (1:500) and Alexa fluor-conjugated chicken anti rabbit IgG (1:500) (all Life 

Technologies). Primary antibodies were incubated overnight at 4°C; secondary antibodies were 

incubated for 2h at room temperature. Controls includes samples where the primary antibody was 

omitted. Nuclei were stained with DAPI. Coverslips were then mounted and images taken using a 

Leica DM2500 coupled to a Leica DFC420C camera. 

Alkaline Phosphatase staining: Following 10 min cell fixation with 4% (w/v) PFA at room temperature 

cells were washed 3 times with PBS and incubated in Tris-HCl at pH 9.2 for 5 min at room 

temperature.  Subsequently Tris-HCl was removed and cells were incubated in a solution of 2 mg 

(0.02% (w/v)) naphtol AS-MX phosphate and 10 mg (0.1% (w/v) Fast Red TR in 10 mL Tris-HCl (pH 

9.2) for 15 min at room temperature in the dark. The staining solution was then removed and cells 

were washed once with Tris-HCl pH 9.2 and twice with PBS. Cells were co-stained with DAPI for 30 

min in the dark at room temperature. The coverslips were then carefully removed from the 24 well 

plates and mounted with Dako Fluorescence Mounting Medium and images acquired under 

epifluorescence illumination using a Leica DM2500 microscope coupled to a Leica DFC420C camera. 

Uptake of bovine serum albumin: Cells were cultured in serum free medium for 24 h, then incubated 

with 40 mg/ml FITC-conjugated bovine serum albumin (F-BSA) (Life Technologies) in serum free 

medium for 1 h in a humidified chamber with 5% CO2 at 37 °C. The samples were then washed 

thoroughly with PBS, trypsinised and analysed using flow cytometry (BD FACScalibur). A minimum of 

1x104 cells per coverslip were analysed and the percentage of F-BSA-positive cells was quantified 

using a BD FACScalibur (BD Biosciences) instrument. Cells cultured on glass were used as controls. All 

experiments comprised three biological and three technical replicates.  

Statistical analyses: One-way analyses of variance (ANOVA) and post-hoc Tukey test were performed 

to evaluate statistical significances between groups of samples. All statistical analyses were 

performed using Graphpad (GraphPad Prism v5.0 software for Windows, GraphPad Software Inc., 
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San Diego, CA). The statistical significance is shown using the p-value (p) with p<0.05 (*) considered 

as “significant” p< 0.01>p>0.001 (**) “very significant and p<0.001 (***) highly significant”. If no 

significant difference was detected this is indicated either in the figure captions or indicated by n.s. 

(not significant) within the graphs. 

Results 

Substrate physicochemical analyses 

The surface elemental composition was quantified from XPS survey spectra and the nitrogen:carbon 
(N/C) and oxygen:carbon (O/C) ratios were determined for all homo- and copolymers and across the 
gradient (Figure 1A, B). The results showed that the N/C ratio increased from OD rich surfaces 
towards AA rich surfaces and this trend was maintained on the gradient substrates, as expected.  

 
Figure 1: Surface chemical analyses. Oxygen/Carbon (O/C, black) and Nitrogen/Carbon (N/C, green) 
atomic ratio of (A) homo- and copolymers and (B) across the gradient. (C) Homo-and copolymer 
surface primary amine quantification using Coomassie Blue (CBB) method and (D) Orange 2 method. 
(E) Correlation between CBB and Orange 2 method. (F) Correlation between XPS ratio (N/C) and 
primary amine group density quantification obtained by colorimetry using CBB (blue) and Orange 2 
(orange) method. The x-axis error bars correspond to the general XPS 10% error. Data represent an 
average of a minimum of 5 samples ± SD. Asterisks indicate statistical significance between 
substrates (p<0.05). 
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Although the surfaces were only composed of carbon and nitrogen, oxygen was detected as a result 

of surface oxidation due to contact with air, as described previously21. Interestingly, substrates with 

a higher content of AA also showed a higher content of oxygen surface species.  

In addition to the analyses of substrate elemental composition, the amount of primary amine groups 

on the outermost surface of AA and OD homo- and copolymer substrates was quantified via 

Coomassie Brilliant Blue (CBB) and Orange 2 (Figure 1C, D) colorimetric analyses. A maximum of 1.5 

x 104 ± 0.5 x 104 primary amine groups / pm2 were present on 100% AA coated substrates and this 

amount decreased with increasing OD content. A 25% increase of OD concentration caused a 

decrease of about 0.5 x 104 primary amine groups / pm2. This trend was consistent regardless of the 

dye used.  The Orange 2 method showed a small amount of primary amines on the 0% AA samples, 

but this is likely to be nonspecific binding because the CBB method did not indicate the presence of 

any amine groups on this substrate.  No amines were detected on the glass control substrate.  As the 

amine concentration changed across the gradient substrates, it was not possible to quantify primary 

amines / pm2. The results showed a higher amount of primary amines (16.76 ± 1.15 x 103) using the 

CBB method compared to the Orange 2 method (7.86 ± 2.18 x 103). A correlation of both methods 

showed a similar amount of primary amines on the particular substrate (Figure 1E); the correlation 

of the primary amine group density obtained by colorimetry with the amine content obtained from 

XPS N/C ratio analysis showed an increase in primary amine density with an increasing AA 

concentration (Figure 1F). 

Increasing the AA content in the plasma deposited film led to changes in the surface chemistry which 

were accompanied by changes in wettability, as demonstrated by sessile drop (Figure 2A-B) and 

captive bubble water contact angle measurements (Figure 2D). The largest water contact angles 

were measured on OD rich surfaces (0% AA: ~80 °), whereas increasing AA concentration led to a 

decrease in the contact angle (100% AA: ~60 °). This trend was confirmed with all measurements 

across the gradients. However, only small, insignificant (p>0.05) differences were obtained on the 

AA-rich half of the substrate (position 6 mm to 12 mm). The surface wettability analysis was 

complemented by generating sessile drop water contact angle maps of all surfaces. These maps are 

used to reveal prominent wettability changes across the surface of the substrate of interest, 

revealing inconsistencies that could be due to contamination or flaws caused by an uneven 

distribution of functional groups during the plasma polymerisation process (Figure 2C). The 

distribution of the water contact angles across the surfaces investigated was found to be 

homogeneous with very little variation. The OD surface was the most hydrophobic (indicated by 

green colour) and with increasing AA, the surfaces became more hydrophilic (indicated by orange 

colour). A glass substrate served as a control and was the most hydrophilic substrate. The gradient 
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substrates showed an even transition (colour change) from the hydrophobic, OD-rich half of the 

coverslip to the hydrophilic, AA-rich half.  

 

Figure 2: Sessile drop water contact angle of (A) AA and OD homo- and copolymers and (B) across 
the gradient. Date represent the mean of a minimum of 5 samples ± SD. (C) 2D water contact angle 
maps, representing the homogeneity of (sessile drop) contact angles across the surface plasma 
polymer coating.  (D) Captive bubble contact angles 2 h post incubation of AA and OD homo- and 
copolymers in water (ddH20, black) and FBS (grey). Error bars represent the standard error of a 
minimum of 5 samples ±SD. Asterisks indicate statistical significance between substrates compared 
to a glass control (Tukey test, p < 0.005). (E) Protein adsorption BCA assay on 100%AA and 100%OD 
surfaces and tissue culture plate control (TCP) Error bars represent the standard error of a minimum 
of 5 samples ±SD. “!” symbol indicate statistical difference between TCP and OD, “#” between AA 
and  TCP, “*” between AA and OD (P < 0.05) 

 

In addition, the captive bubble method was applied to analyse surface wettability of homo- and 

copolymers after 2 h incubation in either water (ddH2O) or foetal bovine serum (FBS) (Figure 2D). In 

good agreement with the sessile drop measurements described above, OD rich samples were the 

most hydrophobic surfaces and contact angles decreased significantly with increasing AA 
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concentration. 2 h post incubation in FBS, the CAs of all substrates were in a very similar range of 

about 40°.  

AFM analyses showed a consistent layer thickness of about 10 ± 5 nm for all substrate and did not 

reveal any differences in surface roughness (consistently 4 ± 1.5 nm) nor mechanical properties (1 ± 

0.3 GPa) (See supplementary information Figure S1-S4). 

Protein adsorption 

In order to further investigate the interaction between the plasma coated surfaces and the cell 

culture media, protein adsorption assays were conducted in which 100%AA and 100%OD surfaces 

were incubated with a FBS, albumin or fibronectin solution. The amount of protein adsorbed was 

consistently higher on the hydrophilic AA coated surfaces than on the tissue culture plate control 

surface (Figure 2E). The OD coated surface bound the least protein from FBS and albumin solutions. 

Less than 100ng/cm2 of albumin was measured on OD surface compared to 350ng/cm2 on AA 

surfaces. In contrast, significant amounts of fibronectin were bound to the hydrophobic OD surface, 

in excess of 500ng/cm2 compared to only 100ng/cm2 on AA. 

Cell response  

There was no significant difference in the population doubling times for mKSCs cultured over a 96h 

period on plasma homo- and copolymer films on any of the substrates (Supplementary Figure S5).  

Changes in mKSC morphology on the different substrates using phase contrast microscopy and DAPI 

and phalloidin staining to assess the actin cytoskeleton (Figure 3A) after 96h showed a greater 

proportion of cells on the amine-rich regions of the gradient substrates appeared more spread and 

had a typical podocyte-like morphology, including a high cytoplasmic-to-nuclear ratio and an 

arborized cytoskeleton as described previously.9, 20 In contrast, cells resembling podocytes were 

rarely seen within mKSC populations cultured on OD-rich sections of the gradients. This trend was 

confirmed on homo/copolymer substrates (Figure 3B).  

The number of cells on each substrate that displayed a podocyte-like morphology 96h post seeding 

was significantly greater when cells were cultured on AA-rich sections of the gradient substrates 

compared with OD-rich regions and the glass control. This trend was also confirmed on 

homogeneous copolymer films (Figure 4A). This would be consistent with the observation that there 

appeared to be more podocytes on the AA-rich substrates, as podocyte differentiation is associated 

with an increase in cell spreading.12 
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Figure 3: mKSC morphology. Representative phase contrast and phalloidin/DAPI stained fluorescent 
images of mKSCs cultured on gradients (A) and homo- and copolymers (B) for 96 h. mKSCs were 
seeded at a density of 1 x 103 cells / well. White arrows indicate cells with podocyte-like 
morphology. Scale bar is 100 µm.  

 

The correlation between cell differentiation into podocyte-like cells and surface amine content 

(Figure 4B) for both homogenous and gradient samples underline our findings (R2=0.9475, gradient 

and R2=0.9303, homogeneous copolymers). To investigate whether these podocyte-like cells also 

express characteristic markers, these cells were stained for the podocyte specific marker nephrin 

(NPHS2, Figure 4C and D). The images illustrate an increase of podocytes with an increasing 

concentration of AA. Moreover, many of these cells were binuclear, which is a common 

characteristic of podocytes in culture (white arrows).  
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Figure 4: Differentiation of mKSCs into podocyte-like cells. There is a significant increase in the 
number of podocyte-like cells on amine-rich substrates. mKSCs were seeded at a density of 1 x 103 
cells / well. (A) Quantification of podocyte-like cells on homo- and copolymers (black bars) and 
gradients (green bars). (B) Correlation of the amount of podocyte-like cells 96h post seeding with 
surface amine content as quantified using XPS ratio (N/C) analysis on homo-and copolymers (black) 
as well as gradients (green), respectively. Asterisks indicate significant differences compared with 
glass control (p < 0.05, Tukey test). Results represent the mean of three biological replicates. (C) 
Nephrin staining of mKSCs cultured on homo- and copolymers and (D) Nephrin staining of mKSCs 
cultured on gradients. Blue: DAPI. Red: Nephrin. White arrows indicate binuclear podocyte-like cells. 
Scale bar: 100 µm. 

 

In order to explore whether plasma polymers also directed mKSC differentiation into proximal 

tubule (PT)-like cells, mKSCs were stained for the presence of megalin, a PTC transmembrane 

receptor (Figure 5A). The fluorescence micrographs appear to indicate that the number of megalin 

positive cells (red stain) increased with AA content on the gradient substrates. Results were 

confirmed on homogeneous films where higher numbers of megalin positive cells were present on 

OD-rich surfaces compared to AA-rich surfaces and glass controls (Figure 5B). 

Subsequently the number of megalin expressing cells was quantified at three different time points: 

6, 48 and 96h post seeding (Figure 5C). The results showed that 6h post seeding, a similar proportion  
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Figure 5: Differentiation of mKSCs into PTCs. There is a significant increase in the number of PTC-like 
cells on methyl-rich substrates. mKSCs were seeded at a density of 1 x 103 cells / well and cultured 
for 96 h. (A) Megalin staining of mKSCs cultured on gradient substrates and (B) on homo- and 
copolymers. Blue: DAPI. Red: megalin. Scale bar: 100 µm (C) Quantification of megalin expressing 
cells on gradients and (D) homo- and copolymers at three time points, 6 h, 48 h and 96 h post 
seeding. (E) Flow cytometry data showing F-BSA uptake of cells cultured for 96 h on homo and 
copolymers. (F) Quantification of F-BSA+ cells cultured on homo- and copolymers. Asterisks indicate 
significant difference compared to a glass control (p < 0.05, Tukey test). Results represent the mean 
of three biological replicates. (G) Alkaline Phosphatase staining of mKSCs cultured on 
heteropolymers and AA/OD rich sections of the gradient substrates compared to a glass control. 
Scale bar: 100 µm 

 

of cells (10%) were megalin positive on all substrates and areas across the gradient which can be 

attributed to spontaneous differentiation. After 48 and 96h, significantly more megalin positive cells 

were detected on OD-rich surfaces on homo- and copolymers and gradients (Figure 5C, D). However, 

on gradient substrates, a greater number of megalin positive cells were also detected towards the 

middle portion of the substrates. Megalin is a transmembrane receptor that uptakes albumin via 

endocytosis. Therefore, to investigate whether these PT-like cells displayed this functionality in vitro, 

the cells were cultured for 24 h in serum free medium and subsequently incubated in the presence 

of fluorescently labelled albumin (F-BSA) for 1h on homo- and copolymers. Our results showed that 
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the proportion of cells displaying F-BSA uptake was highest on OD rich surfaces (up to ~ 45% of the 

population). The number of F-BSA up-taking cells decreased with increasing AA concentration 

(Figure 5E, F). It is worth noting that this assay could not be performed on the gradient substrates 

because it is not feasible to collect enough cells for cytometry analysis from a particular region of the 

gradient, since it would include cells from adjacent regions and thus distort the results. 

Discussion 

Substrate physicochemical analyses 

The combination of AA and OD in different ratios provides a route to tune the amine surface 

density.22-23 In addition, copolymerisation of AA with OD increases AA film stability in aqueous 

solution, as pure AA films have been shown to quickly undergo ageing, such as surface oxidation.24 

As expected, the XPS analyses showed a high concentration of carbons in all substrates originating 

from the hydrocarbons within AA and OD films. For both homogeneous and gradient samples, the 

nitrogen content of the films increased with the AA concentration in the plasma precursor mix.  All 

films also contained oxygen species in increasing proportions as AA concentration increased. This is 

commonly encountered in plasma polymer films and is typically due to residual moisture in the 

plasma reactor during polymerisation and post-deposition reaction of the reactive plasma polymer 

film with oxygen species present in ambient air.25 

Recent research has shown that the AA plasma layer is composed of several different nitrogen-based 

chemical groups, including amines, imines, amides and nitrile groups, depending on the 

experimental conditions.21, 26 In particular, primary amine group density is expected to increase with 

AA concentration in the copolymer films.27 Primary amine groups have been linked to cellular 

regulation in the past, including enhanced proliferation, adhesion and differentiation.28-33 Several 

methods used to quantify primary amine group density  have been described previously,  including 

fluorometry and spectrometry, most of which can be very time consuming and expensive.34-35 Here 

we employed a colorimetric approach using the two commonly used negatively charged dyes, 

Coomassie Brilliant Blue (CBB) and Orange 2  that bind to positively charged amine groups via 

electrostatic interactions.16, 36 Both dyes showed an increase of primary amine groups with 

increasing AA concentration, but we observed a higher amount of primary amines when employing 

the larger CBB molecule compared to the small and monovalent Orange 2.  Noel et al. previously 

used CBB and Orange 2 to quantify the amount of primary amines on aminated polyethylene 

terephthalate (PET) films and also found that CBB returned higher values than Orange 2,35 which 

could possibly result from  non-specific adsorption of CBB. Therefore, we conclude that Orange 2 

might be more suitable for primary amine quantification.  
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Both sessile drop and captive bubble contact angle measurements showed a decreasing contact 

angle with increasing AA concentration. This is due to the fact that AA contains a large number of 

nitrogen functional groups, prone to hydrogen bonding,27, 33, 37 as well as oxygen species.   The 

captive bubble method allowed the surface analyses of substrates in a more physiological relevant 

environment. For instance,  AA films are composed of a complex and flexible network that can 

rearrange itself to minimise the interfacial energy.38 Thus, in an aqueous environment it is more 

likely that the hydrophilic groups will align at the surface, contributing to the increased wettability of 

AA rich films. After exposure to FBS, all contact angles decreased and were more comparable to 

each other, irrespective of the AA content. This suggests protein adsorption increases the wettability 

of the hydrophobic surfaces even though we demonstrated that more FBS adsorbed to the AA than 

the OD surfaces. This phenomenon is known to occur within seconds due to a cumulative effect of 

non-covalent interactions, such as electrostatic interactions and van der Waals forces.39-40 The 

contact angles on the hydrophilic surfaces did not reveal any significant differences between the 

substrates pre- or post-exposure to FBS.41-42  

We also found that the chemical substrate composition did not affect surface topography and 

mechanical properties. Therefore, the results suggested a rather smooth surface and transition from 

the hydrocarbon rich side to the AA rich side of the gradient without the formation of distinct 

surface structures.  

Mouse KSC behaviour 

We found that the population doubling time for the mKSCs was similar on all plasma films, indicating 

that changes in surface chemistry did not significantly influence mKSC proliferation.  We found, 

however, that mKSCs showed a significantly greater propensity to differentiate into podocyte-like 

cells on AA-rich surfaces, and into PT-like cells on OD-rich surfaces. This was initially identified using 

the gradient surfaces and then confirmed using the homogeneous surfaces, demonstrating that the 

gradient technology can be a convenient approach for rapidly identifying the optimal surface 

chemistry required for directing the differentiation of stem cells into particular types of specialised 

cells.  

At this stage the mechanisms by which surface functional groups stimulate mKSC differentiation into 

podocyte- and PT-like cells remain unclear. However, several groups have shown enhanced cell 

adhesion and the promotion of cellular differentiation on hydrophilic surfaces,43-44 introduced by a 

high amine content and potentially oxygen species that were introduced during exposure of 

substrates to air. For example, adipose derived stromal cells spread more on positively charged 

amine groups and neutral hydroxyl groups, whereas they displayed a smaller phenotype and 
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differentiated towards adipocytes on -CH3 functional groups.45 These studies correlate with the 

present study in that, AA rich, hydrophilic surfaces showed an increased number of cells with a more 

spread podocyte-like morphology, whereas cells on the more hydrophobic, carbon rich substrates 

had a more typical mKSC phenotype and did not spread as much. We speculate that surface amine 

groups, which are positively charged under cell culture conditions and generally confer amine-rich 

plasma coated substrates their cytocompatibility,46-47 may induce changes in morphology, which may 

in turn induce cellular mKSC differentiation into podocyte-like cells. Moreover, also the adsorption 

of proteins from the medium and added serum onto the substrates might have impacted on the cell 

differentiation.48 We demonstrated that the amount of FBS, albumin and fibronectin were different 

on the different surfaces with more fibronectin bound to the OD than the AA surfaces and more 

albumin and FBS bound to the AA than the OD surfaces and this may hint that the composition of 

the adsorbed protein layer changes along the gradient of wettability . The two major proteins in 

serum are albumin and globulin. With an isoelectric point (pI) of 4.7 and molecular weight of 66.5 

kDa,  BSA has been reported to adhere in larger quantities and with higher adhesion strength to 

hydrophilic than to hydrophobic surfaces.49 It is commonly used to limit cell attachment and block 

non-specific binding. Fibronectin is also present in serum, but in smaller concentration and unlike 

albumin, Fn has been shown to enhance integrin-receptor-based cell adhesion and spreading while 

reducing cell migration. With a pI of 5.6, fibronectin is constituted of two 220KDa subunit, both 

containing several Arg-Gly-Asp (RGD) domains which act as cell binding region.50 The presence of 

surface functional groups can influence the conformation of the adsorbed proteins and therefore 

cell attachment, differentiation and also migration.45, 51-53 It is more likely that there will be changes 

in the conformation of proteins adsorbed onto more hydrophobic surfaces (OD) than hydrophilic 

surfaces (AA). This could lead to the characteristics of the protein layer being different across the 

gradients and thus influence the differentiation of the mKSC. 

Using substrates with density gradient nanotopographical features, we have recently shown that 

podocyte differentiation is enhanced on rougher surfaces with high nanofeature density, especially 

when coated with AA-rich plasma-polymerised films, where the proportion of podocyte-like cells 

reached 30-35% of the population.13 In the current study we found that on AA-rich surfaces, the 

proportion of podocytes-like cells reached 30-35% of the mKSC population, despite the fact that 

these surfaces were relatively smooth suggesting that surface chemistry has a greater influence on 

differentiation of mKSC to podocyte-like cells than does nanoroughness.  

Our previous work also showed that differentiation into PT-like cells was independent of surface 

topography and appeared to be enhanced on OD-rich surfaces, although this was not quantified. In 

the current study, we found that following culture on the gradient surfaces, the proportion of cells 
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expressing the megalin was maximal at the mid-point of the gradient (~50% OD), where ~30% of the 

population expressed megalin. Interestingly, on the homogeneous surfaces, the proportion of 

megalin-expressing cells was maximal on the 100% OD surfaces (~30% of the population expressing 

megalin). We hypothesise that this disparity could be due to the fact that on the gradient substrates, 

there would be a higher proportion of podocyte-like cells on the AA-rich part of the gradient due to 

the characteristics of the protein layer adsorbed to that part of the gradient. In the developing 

kidney, podocytes within the nascent glomeruli express BMP7, which stimulates PTC proliferation in 

the adjacent tubules.54 It is therefore possible that PT-like cells present at the mid-point of the 

gradient might have been exposed to higher levels of BMP7 than those at the OD-rich part of the 

gradient, leading to enhanced proliferation.  

In this study we have shown the importance of surface functional groups on the differentiation of 

mKSCs and we have shown that AA-rich substrates promote the differentiation into podocyte-like 

cells and OD-rich surfaces into PT-like cells. Surface chemistry acts as an important cue that highly 

influences cell behaviour through the characteristics of the adsorbed protein layer. Although the 

exact mechanisms still remain unclear, it is often correlated with a release of signalling molecules, 

such as growth factors or glycoproteins, through cell adsorption.55 For example, Benoit et al. 

investigated the effects of small molecules on mesenchymal stem cell (MSC) differentiation on 2D 

arrays and found that phosphate groups (physiological important for bone mineralisation) directed 

cell differentiation into osteocytes, whereas carboxyl groups (mimic GAGs in cartilage) directed cell 

differentiation into chondrocytes and t-butyl groups (mimic lipid sustained environment) into 

adipocytes.56 

A number of recent studies have highlighted the importance of surface nano- and microscale 

structures, chemistry and elasticity of the extracellular matrix (ECM) in regulating cell behaviour, 

including morphology, differentiation or migration 57-61 and this has led to an increased development 

of natural biomaterials that are based on ECM proteins.58, 62-65 Cellular differentiation is a highly 

controlled process and micro environmental interactions, such as soluble signals, are critical to 

support or even initiate this process. A major drawback of natural biomaterials is the difficulty to 

manipulate their physical and chemical cues, whereas synthetic biomaterials can be designed and 

tuned in order to mimic these properties. As an alternative, developing synthetic substrates to 

induce this process provides a simple and inexpensive tool to evaluate such complex processes, as 

these can provide often simple chemical and physical cues to induce differentiation triggering effects 

and have been proven to be helpful tools in assessing cellular behaviours.22, 56, 66 The interactions at 

the cell-substrate interface is a complex microenvironment in which the material surface can 

influence cell behaviour through its physical and chemical properties via the adsorbed proteins. The 
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cell response can also result in remodelling the surface and lead to a change in their behaviour, such 

as cytoskeletal organisation and differentiation.56, 67-77 Defining the substrate properties which drive 

cell differentiation to a specific phenotype could provide a route to the production of in vitro cell 

culture systems to study the molecular and cellular mechanisms that underlie specific diseases and 

the development of novel drug therapies. 

Conclusions 

This study has demonstrated that plasma polymerisation technology can generate gradients of 

chemical functional groups and that specific concentrations of these functional groups can direct the 

differentiation of mouse kidney-derived stem cells into specialised renal cell types. We found that 

amine-rich (-NH2) allylamine-based plasma polymerised coatings could promote differentiation into 

podocyte-like cells, whereas methyl-rich (CH3) 1,7-octadiene-based coatings promoted 

differentiation into proximal tubule-like cell (PTC). Importantly, the PT-like cells generated on the 

substrates expressed the marker megalin and were able to endocytose albumin, indicating that the 

cells were functional. This is important in the design of defined in vitro cell culture systems for 

disease modelling. 
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Figure captions 

Figure 1: Surface chemical analyses. Oxygen/Carbon (O/C, black) and Nitrogen/Carbon (N/C, green) 

atomic ratio of (A) homo- and copolymers and (B) across the gradient. (C) Homo-and copolymer 

surface primary amine quantification using Coomassie Blue (CBB) method and (D) Orange 2 method. 

(E) Correlation between CBB and Orange 2 method. (F) Correlation between XPS ratio (N/C) and 

primary amine group density quantification obtained by colorimetry using CBB (blue) and Orange 2 

(orange) method. The x-axis error bars correspond to the general XPS 10% error. Data represent an 

average of a minimum of 5 samples ± SD. Asterisks indicate statistical significance between 

substrates (p<0.05). 

Figure 2: Sessile drop water contact angle of (A) AA and OD homo- and copolymers and (B) across 

the gradient. Date represent the mean of a minimum of 5 samples ± SD. (C) 2D water contact angle 

maps, representing the homogeneity of (sessile drop) contact angles across the surface plasma 

polymer coating.  (D) Captive bubble contact angles 2 h post incubation of AA and OD homo- and 

copolymers in water (ddH20, black) and FBS (grey). Error bars represent the standard error of a 
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minimum of 5 samples ±SD. Asterisks indicate statistical significance between substrates compared 

to a glass control (Tukey test, p < 0.005). (E) Protein adsorption BCA assay on 100%AA and 100%OD 

surfaces and tissue culture plate control (TCP) Error bars represent the standard error of a minimum 

of 5 samples ±SD. “!” symbol indicate statistical difference between TCP and OD, “#” between AA 

and  TCP, “*” between AA and OD (P < 0.05) 

Figure 3: mKSC morphology. Representative phase contrast and phalloidin/DAPI stained fluorescent 

images of mKSCs cultured on gradients (A) and homo- and copolymers (B) for 96 h. mKSCs were 

seeded at a density of 1 x 103 cells / well. White arrows indicate cells with podocyte-like 

morphology. Scale bar is 100 µm.  

Figure 4: Differentiation of mKSCs into podocyte-like cells. There is a significant increase in the 

number of podocyte-like cells on amine-rich substrates. mKSCs were seeded at a density of 1 x 103 

cells / well. (A) Quantification of podocyte-like cells on homo- and copolymers (black bars) and 

gradients (green bars). (B) Correlation of the amount of podocyte-like cells 96h post seeding with 

surface amine content as quantified using XPS ratio (N/C) analysis on homo-and copolymers (black) 

as well as gradients (green), respectively. Asterisks indicate significant differences compared with 

glass control (p < 0.05, Tukey test). Results represent the mean of three biological replicates. (C) 

Nephrin staining of mKSCs cultured on homo- and copolymers and (D) Nephrin staining of mKSCs 

cultured on gradients. Blue: DAPI. Red: Nephrin. White arrows indicate binuclear podocyte-like cells. 

Scale bar: 100 µm. 

Figure 5: Differentiation of mKSCs into PTCs. There is a significant increase in the number of PTC-like 

cells on methyl-rich substrates. mKSCs were seeded at a density of 1 x 103 cells / well and cultured 

for 96 h. (A) Megalin staining of mKSCs cultured on gradient substrates and (B) on homo- and 

copolymers. Blue: DAPI. Red: megalin. Scale bar: 100 µm (C) Quantification of megalin expressing 

cells on gradients and (D) homo- and copolymers at three time points, 6 h, 48 h and 96 h post 

seeding. (E) Flow cytometry data showing F-BSA uptake of cells cultured for 96 h on homo and 

copolymers. (F) Quantification of F-BSA+ cells cultured on homo- and copolymers. Asterisks indicate 

significant difference compared to a glass control (p < 0.05, Tukey test). Results represent the mean 

of three biological replicates. (G) Alkaline Phosphatase staining of mKSCs cultured on 

heteropolymers and AA/OD rich sections of the gradient substrates compared to a glass control. 

Scale bar: 100 µm 

 


