View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by OpenKnowledge @NAU

Gaussian Process Derivative at Uncertain Input for SE Kernel

Truong X. Nghiem
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
truong.nghiem@nau.edu

Abstract

Given a Gaussian Process with a zero mean and a Squared Exponential (SE) kernel. We are interested in
the exact mean and covariance of the predictive distribution of the latent function f and its gradient g—i, at an
uncertain input ~ A (u,X). This technical note develops the calculations of these quantities and documents
an implementation of these calculations in a Matlab function called gppred_exactmoments_se.

https://core.ac.uk/display/222792795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
truong.nghiem@nau.edu

Contents

I _Noftations| 3
L1 SE covariance functionl Lo e e 3
L2 Vectorizationl e e 3

2_Problem Formulationl 3

B__Mathematical results| 3
B.1 Derivatives of the SE Kernell oo 3
8.2 Moments of SE kernell 4
.3 Mean and covariance of latent functionl. oo 6

BT _DMeanl o oo 6
B32 Variancd o 6
3.4 Mean and covariance of derivative and latent function| o o oL 6
8.4.1 Mean of derivativel L e e 6
8.42 Variance of derivativel L e 7
13.4.3 Covariance between latent function and derivativel 9

[4 Matlab Implementation| 9

4.1 Function Inputs and Outputs] e 9
4.1.1 Input arguments| e 9

4 Outputs| 9

4.2 Check arguments and basic setup| L L 10
4.3 Common values and helper functions| o 10
431 Kernel-related valued 10
4.3.2 Other values related to predictions| 10

4.4 Implementation of mean and variance of latent function| o000 12
4.4.1 The special but common case when X 1s diagonall L. 13
4.4.2 The general casel e 14

4.5 Implementation of mean and covariance of derivative and latent function|. 14
0.1 e special but common case when > is diagonall 14

4.5.2 The general casel 18

1 Notations

1.1 SE covariance function

The Squared Exponential (SE) covariance function (ARD in the general case) is given by

Koy a (2,2) = 0% exp (-2@ —)TA (& — z)> .

Usually the matrix A is a diagonal matrix of the lengthscales, hence all computations involving A can be simplified
significantly. The SE kernel has lengthscales \;, for i = 1,...,D, and of as hyperparameters. Therefore, A =
diag(A\?,...,A%). When the covariance function is written without subscripts, it implies A and o ¢ of the GP model
is used. Any omitted part of the subscript means the default value from the GP model is assumed.

The noise variance, y = f(x) + €, with €, ~ N (0, 0721), is 02.

1.2 Vectorization

If is a vector then z; is its i*® element. Given a collection X of vectors, we will write () to denote the it vector
in the collection. So xy) is the j*" element of the i*" vector in the collection.

Given a scalar function f(x,z), and X and Z are collections of vectors « and z (X and Z can be singletons).
We will write f(X, Z) to denote a matrix whose (i, ;) element is f(z(®, 2(9)).

The Hadamard product (element-wise product) of z and y is * ©® y. We extend this operator to make it a
broadcasting operation, in which the dimensions of x and y do not need to match and the multiplication is broadcast
along all dimensions. This is similar to the .* operators in Julia, and the function bsxfun in Matlab.

2 Problem Formulation

Given a latent function f(x) with Gaussian Process prior with zero mean and SE covariance function k., A (., 1)t
was shown that if the input z is deterministic, the gradient g—g’: is a multi-variate Gaussian Process [I]. In fact, the
T

T
vector | f(x), (%) has a joint Gaussian distribution.

In this technical note, we consider the case when x is non-deterministic and has a Gaussian distribution = ~
N (i, %). In other words, the input z is uncertain. Its uncertainty is propagated through the Gaussian Process f to
the output f(x), resulting in a non-Gaussian complex distribution of f(z) and its gradient %. We will approximate
this distribution by a multi-variate Gaussian distribution, by calculating the exact mean and covariance matrix of
the non-Gaussian distribution and set the mean and variance of the approximate Gaussian distribution to these
values. Therefore, the goal of this technical note is to calculate the first two moments of the joint distribution of
f(z) and % at a Gaussian uncertain input z ~ N (i, X).

3 Mathematical results

Let’s define the difference between the inputs in training data and a vector x as the columns of a matrix X,

X, =X —z=[" -2z

3.1 Derivatives of the SE kernel

We derive several derivatives of the SE kernel.
Let’s denote various derivatives of the covariance function as follows:

o K10 (z,2") = V,k (z,2) is the gradient of k (z,2’) with respect to the first argument x;

o KO (z,2") =Dy k (z,2') is the Jacobian of k (x,2’) with respect to the second argument z’;

2

o kLY (2,2") = D, (V,k (z,2")) is the D x D matrix such that kg}j’l) (z,2') = #&C;kz (z,z).

We will derive these derivatives below.
The gradient k9 (z,2') is ((A.33) in [2])

ECO (2,2) = =AY & — ')k (x,2)) .
Extending to the case when z’ is the collection X, we have

kL0 (2 X) = A1 (Xm ok (x,X)) € RPN,

The Jacobian k(®V) (z,2') is ((A.34) in [2])
EOY (2, 2") = —(kMO (2,2)T = (¢ — 2")TA ™k (2, 2)

where we note that A is symmetric (diagonal in fact). Extending to the case when z is the collection X and z’ is
x, we have

~ T
KOV (X,2) = (X 0k (2, X)) A7 = k00 (2, X)7 € RN <P,
Finally ((A.37) in [2]),
KO (2,07) = A7 (1= (2 = o) (@ — 2T AT ke (,0)

When z = 2’ we will have
= Ak (z,2) = a}%Afl.

’

3.2 Moments of SE kernel

Given an uncertain input ~ N (u, X). Note that X’# =X —pu.
Define the mean of the kernel ((A.30) in [2])

Ek(p,x(i), S,A)=E, [k (m,x(i)ﬂ = |EA71 —1-11}_1/2 ksia (,u,m(i)> .
In particular for the entire data X
_ —1/2
Ei = Ee(u, X, 5, A) = By [k (2, X)] = [SA + 1|7 kyyon (1, X)
which is a row vector. Its transpose is the column vector

—1/2

Ep(X, 1, A, 3) = E, [k (X, 2)] = |[SA™! + 1 ksin (X, p).

Define the mean of z times a kernel ((A.39) in [2])
By (pn2® 2, 8) = B, [ak (2,00)] = B2, 2 MAS +4)7 (24420 4)
which is a column vector. For the entire data X we can define the matrix of the above column vectors for the z(¥,

E.x = Eup(p, X, X, A) = {Ex [:Uk (x,x(i)>”i
=E, [z 0k (z,X)]
=AZ+A)HEATIX + p) diag (Br (1, X, 3, A))
=AZH+AN)HESATX 4 p) 6 Er(p, X, 2, A).

Define the mean of the product of the kernel and itself ((A.33) in [2])

Eo(t, 29,29 2 A) = K, [k (x7x(i)) k (x’xm)}

(@)) (2) (4)
"z "+ x A
= kA/Q (27 2) Ex (/h 9 %, 2)

where we note that @ 6)
z\vV Y) -
hare () = VR 00)

We also note that

(4) () (4) (4)
" +x A _ —1/2 W+
B (12 5 2) ot s (1252

= ’22/_1 +H’71/2 k4§;+2/\ (@) _ My b — .IT(J))

Therefore we can calculate Ey;, for all X as

X X

_ —1/2
Ekk(/"aXaxvzaA) = ‘QZA 1+]I‘ / kA/Z (2 2

) © kasiyon (Xw —XM)
Define the mean of x times the product of the kernel and itself ((A.40) in [2])

Epre(p, 2@, 29 2 A) = E, [zk (x x(i)) k (x,zu'))]

(1) () (4))
x x z\¥ 4+ A
b (2.2 o (1 2022 5)
@ L@ (4) @) -
A z\¥ 4+ A\ A A i
=kp/2 (2, 2) By (u,2,2 2) - <Z+ 2) (ZA ((@) _|_x(J)> +M)

’ 2
-1
— Ekk(u,x(i)’x(j)72,/\)§ (2+ A) (gA (>+I<J>) +u)
2 2
= B, 2,20 2 A)28A~ + 1)1 (u + AN 2D 4 xm))
= Epe(p, 2@, 29 5 A)M

where | |
M=(25A"! + 1)} (M +EA T @ 4 gc(a)))

Define the mean of the product of #(?), 2(9), and the kernels at these two inputs ((A.43) in [2])

Eparr(pt, 2,29 S A) = E, [mTk (mu)) k (mmﬂ

—1/2 2) 2 1 5
ka2 (2) ksias2 (,u, 2) (S+MMT)

= Br(p, 2,29 5, A) (S + MMT)

where S = 2A71 4+ X7)7 = 2A 1 + 271718718 = 28A T + I) 1%
Define the covariance ((A.37) in [2])

Ckk(u,x(i),x(j),Z,A) = Cov, (k: <x,x(i)> Jk (x,o:(j)))
= Ekk(ﬂ» :E(Z)J (E(‘]), E? A) - Ek(,lh x(l)7 27 A)Ek(,u7 .’17(]), E7 A)

A
= |A|1/2 5_’_2

and so for all X
Ckk(M7X7 X727A) = Ekk(MaX7 XaEaA) - Ek(,U/7X,E,A)TEk(,U/7X,E,A)

Define the covariance ((A.41) in [2])
C’wkk(u,x(i),x(j), ¥, A) = Cov, (a:k (m x(i)) k (x x(j))>
= Eork(p, 2@ 20) % JAN) — Epr(p ,x(i),Z,A)Ek(u,x(j),E,A)
Define the covariance ((A.46) in [2])
Czkwk(u,m(i),x(j)7Z,A) = Cov, (sck (m,x(i)) ,ok (x,m(j)>)
= Euarr (1, 20,20, 2, A) = Eppe(p, 29, 5, A) By (1, 29, 5, A)T

3.3 Mean and covariance of latent function

Given an uncertain input z ~ A (u,Y). The calculations of the mean and variance of the latent function f are
summarized below (see section 2.4.1 of [2] for details).

3.3.1 Mean
Efj=F=pr=q"a
where « is the constant weight vector used in calculating the predictive mean (at deterministic input), and
_ —-1/2
¢ =By = Eofk (X,2)] = [SA7 1] kya (X,)

is the common FE}, calculated above.

3.3.2 Variance

Var(f) = E, [Vary(f)] + Var, (Ef [f])
E, [Vary(f)] = 0} = tr (K + 02D)7'Q)
Var, (E; [f]) = a7 Qa — 2
where
Qi = [22A 1]k (g;“),u) k (x(j), u) Qi)
Qij = exp ((2ij —)" P(2ij —)
where z;; = (29 4 2(9))/2 and

-1

P= E+1A 712/*1—/*171 E+1A = A+1AE*1A -
o 2 o 2 2 o 2

We can write Q succintly as

Q==+ 1 (R (X,)k (X, 0)") ©Q

3.4 Mean and covariance of derivative and latent function

Given an uncertain input ~ N (u,3). This section develops the mean and covariance of the derivative (GMEAN
and GCOV) and the covariance between the latent function and its derivative (FGCOV) at this uncertain input.

3.4.1 Mean of derivative

As derived in [2] (Appendix A.3), we can use the rule of iterated expectations to calculate the mean derivative as
((A.48) in [2]):

N
E[g] = 7A71 Z aiEack(.uv x(l)a 27 A) - O‘ix(i)Ek(:uﬂ I(Z)7 Ea A)
=1

N
=AY @B (2,2, A) (A(A +2)"HEA 2D) — x<i>)
=1

I
M=

0B, Z,8) (A2 — (A4 2)7H(ZA 0 4 p))

.
Il
_

@i B (p, 2, %, A) ((A*l (A E)TIBAT) 2D — (A4 z)*lu) :

I
.MZ

&
Il
—

We have
AP (A+D) AT =AT (A D) T (A MDA = (A D)

Therefore,

WE

Elg] = (A + %)~

-
Il
—

=A+2)7?

S

#(CYQEk(Xa/%Aa E))v
or, by expanding FEy,
Elg) = [SAT + 1|72 (A +5) 7' X, (0 © ksya (X, 1)) .

3.4.2 Variance of derivative

Using the rule of total variance, we have ((A.49) in [2]),
Var(g) = E. [Var;(g)] + Var, (Ef [g]) -

We have that
Ef[g] = IEf [vxf] = vfo

because of linearity of differentiation.
It has been calculated in [2] that 3
V.Ep = A1 X, (k(X,2) 0 a).

We also have that

Var(g) = kMY (z,2) — k09 (2, X) K1EOY (X, 2).

Therefore,
Var(g) = E, [k (2,2) = KO (2, X) KTROD (X,)| + Var, (A7 %, (k (X,2) ©)
=GW -G® +6®.
We will calculate each of the above terms separately.
1. First component
6 =E, [k (2,2)] =B, [0}A~1] = o3A.

2. Second component
T
6® =E, [k09 (2, X) KK (X,2)| = E, [k“v(’) (2, %) K (K (2, X)) }
This is a D x D matrix, whose (7, j) element is given by
G = E, K0 (2, x) K (K00 (2, 3))
i = e Ry (z,X) J (z,X)

where kgl’o) (2, X) denotes the i*" row of k(10 (x, X). This is essentially the expectation of an inner product
of two random vectors. We know that E [X7KY] = E[X]KE[Y] + tr (K Cov(X,Y)). Therefore,

G? =E, {kz(“” (z, X)] K'E, {k§1’0) (z, X)} ik (K*l Cov, (kgl"’) (w, X), k0 (o, X))) .

We have derived earlier that k(10 (2, X) = A~! (Xz Ok (x,X)). The expectation E, [k:gl’o) (aX)} is the
ith row of the matrix

E, {k“»O) (z, X)} = AIE, [Xx © k(z, X)} .

Since X, = X — z, we have
E, [k<170> (z, X)] =AY (X OF, [k (2, X)] - E; [z © k (z, X))
=N (X ©Ey, — Eu)
which can be calculated immediately from Ej and E,;. We can also expand it by writing E, in terms of Fy:
E, [k<1’0> (z, X)} AT (X —AC+A)HEATIX 4) © Ey).

We have that
AE+ A)_lEA_1 =AZX+ A)_I(E + A — A)A_1 =I-AXE+ A)_1

Substituting this into the above equation gives us
E, (K00 (2, X)] = A7 (AMZ + A)7H(X =) © By)
=(2+A)7'X,0E.
This equation will be used in the code.

Let’s consider the covariance
Cov, (kgl"” (w, X) , B0 (w,X))

which is an N x N matrix. First, note that
kO (2, X) = A7 (XI Ok (, X))

where A; ! is the i*" row of A1, which is a row vector of all zeros except 1/A? in the i*" position. Define X, ;
to be the i row of X,. We then have

Cov,, (kgl’o) (x, X), k:(l 0) (z, X)) Cov, (~J;,i Ok(x,X) ,)N(x,j ok (x,X))

)\2>\2

where the covariance matrix is an N x N symmetric matrix. Its (p, ¢) element is
Cov, (k (2,20) (s = 21) K (2,20) (27 = 2;))
22l Cov, (k (x,o:(p)) k (x,g:@)) — 2P Cov, (k: (z,x(”)> zk (x,x(q))) -
D Cov, (wiks (w,2®) & (2,2)) + Cov, (wike (,29) a2k (w,2()))

_ xgp)x§q)olgz7q)

_ x(l’)c(l’ﬂ) (q)C P,q) +C (p,9)

% zkk,j zkk,i ckak,(i,7)

From this equation, the trace in GZ(-Z-) can be computed as follows (note that K ! is symmetric):

tr (K_l Cov, (kgl’o) (x,X), k§-1’0) (z, X)))

N
1 »),.(a) ~(p.q) (p) ~(p:q) ()() (p,a)
=)\2)\2 ZZKP,Q <xip Ijq Ckiq - zip Cz;ll;clg,j ! Ca,zljclgz CxIl)émqk ,(4, j))

For an efficient implementation, see the implementation section below.

. Third component
The (4,) element of G is

GY) = Cov, (;Xm(k: (X,2) ®a), %X (k (X, z) @a))
i i

N N
Z(xgp) _ 1‘7)16 (I(p),;zj> Qp, Z(xgq) — :cj)k (;c(q)71‘) aq)

p=1 q=1

N N
v ZZ g (x(p)x(rI)C(p Q) (p)Cxig)J (Q)Cg(cz;gz Cg(ﬁ};;;zl)C))
Aj p=1g=1

Observe that this equation constains elements similar to those in the previous equation. This can be used to
implement them more efficiently.

3.4.3 Covariance between latent function and derivative

The final equation is therefore:

N N
Cov(f,9)" = Cov(g, f) = A7 D3 apag (CEVa® — Clit) — K (ERDa@ — BLD)

p=1g¢=1

4 Matlab Implementation

4.1 Function Inputs and Outputs

The function’s signature is:

function [POST, FMEAN, FCOV, GMEAN, FGCOV, GCOV] = ...
gppred exactmoments se(GP, XMEAN, XCOV, POST)

4.1.1 Input arguments
GP the GP model object, of type nextgp.GP.

XMEAN a vector of length D of the mean of the uncertain input z

XCOV a matrix of size D x D; the covariance matrix of the uncertain input z; if the covariance matrix is diagonal,
it can also be a vector of length D of the diagonal.

POST internal structure to store reusable values; in the first call, this structure is created; in subsequent calls, this
structure should be passed to the function to save computation time.

Note that ~ A (XMEAN, XCOV).

4.1.2 Outputs

POST the structure containing reusable values; see above; should always store this structure and pass to the next
call.

FMEAN the mean of the latent function f, a scalar.

FCOV the self-covariance (variance) of the latent function f, a scalar.
GMEAN the mean of the derivative of f, vector of length D.

FGCOV the covariance between f and derivative of f, matrix of size 1 x D.

GCOV the self-covariance of the derivative of f, matrix of size D x D.

The covariance matrix of [f; g], where g is the derivative / gradient, is therefore:

o f1\ [Fcov Facav
“\lgl) = |Fecov” ccov

4.2 Check arguments and basic setup

We check the arguments and set up some variables:

e D is the input dimension

N is the number of training points

e COVF is the covariance function (nextgp covariance function object, ky, A (7, z) in the math)
e calc_f_mean if the mean of latent function f is to be calculated

e calc_f_cov if the self-covariance of latent function f is to be calculated

e calc_g_mean if the mean of derivative g is to be calculated

e calc_g_cov if the self-covariance of derivative ¢ is to be calculated

e calc_fg_cov if the covariance between f and g is to be calculated

e xcov_diag if the input covariance is diagonal (XCOV is a vector rather than a matrix)

e xtype is the type of the input (0: numeric, 1: CasADi, 2: other symbolic type)

e Lchol is GP.post.Lchol

4.3 Common values and helper functions

We calculate some common values that will be used throughout the later calculations.

4.3.1 Kernel-related values

st2 = COVF.m_sf2; % \|sigma_f"2 of the kernel

invLengthscales = COVF.m_ellinv (:); % inverse of lengthscales (not their squares)
Lambda = COVF.m_ell .~ 2; % Lambda matriz but only the diagonal

invLambda = COVF.m _ell2inv; % inversed Lambda matriz but only the diagonal

alpha = GP.post.alpha; % alpha vector for posterior computation

4.3.2 Other values related to predictions

These are common values used by the calculations in the later sections. See Section
We implement the above common values for the special case when XCOV is diagonal, specified as a vector. Some
important variables:

e Xdiff_mu is X,L as defined above.

e kernel_Sigmalambda is (¥ + A)~!, used to compute the covariance function with ¥ + A instead of just A.

kernel_SigmaLambda_sqrt is (X 4 A)~1/2.

kernel_SigmaLambda_inv is YA~

E_k_det is [SA~1 4+ 1]/,

e E_k is Ej, (row vector) as defined in [Moments of SE kernell

These variables are only calculated in certain cases (related to the derivative):
e kernel_2Sigmalambda_inv_I is (2XA~1 +1T).
e POST.Kinv is K ! but only calculated in certain cases (where it will be needed).

e POST.K_half is ky /5 (X, X).

10

e POST.invLinvL is diag(A~") diag(A~")”, which is the matrix of 1oz.
i

e POST.aa is aaT

POST.aaKinv is aaT — K1

E_kk is Ex (N x N) as defined in [Moments of SE kernell

e E_xk is F,i (D x N) as defined in [Moments of SE kernell

C_kk is Crr(p, X, X, X, A) as defined in [Moments of SE kernell

% Kinv is calculated in certain cases, and only when it ’s not in POST
if Lchol && (xtype "= 0 || calc_g cov) && Tisfield (POST, ’Kinv’)
% if mot mumeric or if GCOV is calculated , we should compute Kinv
% instead of calling | or solve on symbolics
POST.Kinv = GP.post.Kinv; % Kinv solve chol(GP.post.lhsA’, eye(N,N));
end
if (calc_g cov || calc fg cov) && “isfield (POST, ’Kinv’)
% If GCOV or FGCOV is calculated , we will need Kinv
if Lchol
POST. Kinv = GP. post . Kinv;
else
if isnumeric (GP.post.L)
POST. Kinv = —GP. post .L;
else
POST.Kinv = —GP. post.L(eye(N,N));
end
end
end

Xdiff mu = trainXt — XMEAN;

% Calculations of other common values depend on the special or general cases
if xcov_diag

% E k is a row vector, as derived in the technote
kernel SigmaLambda = 1./(XCOV + Lambda);
kernel SigmaLambda sqrt = sqrt(kernel SigmaLambda);
kernel SigmaLambda_inv = XCOV .* invLambda;
if xtype =— 0

% Numerical values

E k det = 1 / sqrt(prod(kernel SigmaLambda inv + 1));
else

% Symbolic, prod() may not be defined, so we nmeed to calculate

% the cumulative product manually, or use det(diag(...))

tmp = XCOV.xinvLambda + 1;

tmpprod = tmp(1);

for kk = 2:numel(tmp)

tmpprod = tmpprod = tmp(kk);

end

E k det = 1 / sqrt(tmpprod);
end
% Below, XMEAN is a vector, so no mean values meed to be provided
E k = E_k_detxsf2x

exp(—nextgp.sq_dist casadi (...
kernel SigmaLambda_ sqrt .x XMEAN, ...
kernel SigmaLambda sqrt .* trainXt)/2);

if calc_fg cov
% E_zk

11

E xk = (Lambda .x kernel SigmaLambda .x
(kernel SigmaLambda inv .* trainXt + XMEAN)) .x E k;

% E_kk
kernel 2SigmaLambda_inv_I = 2xkernel_ SigmaLambda_inv + 1;
if Tisfield (POST, 'K _half’)
% covariance matriz of k_{Lambda/2}(X/2, X/2)
POST.K half = sqrt(sf2 x GP.post.K);
end
% covariance matriz to compute k() with 4*Sigma + 2+Lambda
E kk cov = 1./sqrt(4«+XCOV + 2xLambda);
E_kk cov_ Xdiff mu = E_kk cov .x Xdiff mu;
% Note that in the call below, the mean of input data is 0,
% so we explicitly specify zeros()
E kk = (POST.K half % (sf2 / sqrt(prod(kernel 2SigmaLambda inv_1)))) .x

exp(—nextgp.sq_dist casadi(E_kk cov_Xdiff mu, —E_kk cov_Xdiff mu,...

0, 0)/2);

% C_kk
C kk=FE kk — E k' = E_k;

if “isfield (POST, ’invLinvL’)
POST.invLinvL = invLambda #* invLambda ’;
end

if “isfield (POST, ’aa’)
POST.aa = alphaxalpha ’;
end

if Tisfield (POST, ’aaKinv’)

if Lchol
POST. aaKinv = solve chol(GP.post.lhsA’,
GP.training data.yxalpha’ — eye(N));
else
POST. aaKinv = POST.aa — POST. Kinv;
end
end
end
else
error (’General_case_currently _not_supported.’);

end

4.4 Implementation of mean and variance of latent function

The equations are derived in section (3.3

e If ¥ is diagonal, the above calculations can be specialized and we can avoid complex computations.

particular, P = diag (Ai - ﬁ)

In

e Both Q and Q are symmetric, so two nested loops can be used to calculate just the lower (or upper) triangular

part of each matrix. Not for Matlab but for a language like C, Julia.

e tr(AB) can be calculated faster in Matlab as sum(sum(A.*B?,2)).

o If (K + 02I) (which will be written simply as K) is already factorized (Cholesky), perhaps by factor-
izing @, the calculation can be done faster. In the code, if Lchol is true, lhsA is available such that
1hsA*1lhsA’ = K, which mean inv(lhsA)’#inv(lhsA) = inv(K). If Q = RTR (Cholesky decomposition)
then tr(K~'Q) is sum(sum((1hsA\R_tilde’).~2)). Alternatively, we can use solve_chol function from
GPML as: trace(solve_chol(lhsA’, Q_tilde)) (this calculates the full matrix but only uses its diagonal).

12

In my profiling, the first approach is faster but I am not sure if Q is positive definite. In addition, the first
approach won’t work with symbolic inputs.

e When Lchol is false, -post.L is inv(K).

e () above can be calculated using the sq_dist function, by rewriting it as pair-wise distances between two
collections of vectors.

@iy =exp ((= = u=2D)" (Pa) (@0) = (0= a))

By factorizing P = RT R, we can calculate Q = exp(sq_dist(0.5R(X — u),0.5R(u — X))).

4.4.1 The special but common case when ¥ is diagonal

% Mean of latent function FMEAN
FMEAN = E k * alpha; % ¢ is E k

% Variance of latent function FCOV
if calc_f cov
F R Xdiff mu = (sqrt(invLambda — 1./(2+«XCOV + Lambda)) / 2) .x Xdiff mu;
% Note that in the call below, the mean of input data is 0,
% so we explicitly specify zeros()
F Q = exp(nextgp.sq_ dist casadi(F R _ Xdiff mu, —F R Xdiff mu, 0, 0));

% Calculate k(X, mu): because the covariance function is SE-ARD,
% we can directly calculate k() without calling cov()
% kXmu = COVF. cov(trainX , XMEAN’);
if xtype — 0

% Numeric XMEAN, do calculation directly

kXmu = sf2 * exp(—sum((Xdiff mu . Xdiff mu) .x invLambda, 1)’/2);
else

kXmu = sf2 x exp(—nextgp.sq_ dist casadi(invLengthscales .x trainXt ,...

invLengthscales .x XMEAN)/2);

end

if xtype =— 0

% Numeric

F Q=1 / sqrt(prod(2+XCOV.*invLambda + 1)) * ...

((KXmuxkXmu’) .x F_Q); % This is |tilde{Q}

else

% Symbolic, prod() may not be defined

tmp = 2xXCOV.*invLambda + 1;

tmpprod = tmp(1);

for kk = 2:numel(tmp)

tmpprod = tmpprod * tmp(kk);

end

F Q=1 / sqrt(tmpprod) * ((kXmuxkXmu’) .x F Q); % This is |tilde{Q}
end

FCOV = alpha’ % F Q % alpha — FMEAN"2 + sf2;

switch xtype
case 0 % numeric

if isfield (POST, ’Kinv’)
% If Kinv is available , use it: trace(KxQ) = sum(sum(K’.*Q))
% but note that Kinv is symmetric
F trace = sum(sum(POST.Kinv .* F Q));

elseif Lchol % L contains chol decomp => use Cholesky parameters (alpha ,sW,L)
F_trace = trace(solve chol(GP.post.lhsA’, F Q));

13

else % L is mot triangular => use alternative parametrisation
if isnumeric (GP.post.L)
F_ trace = —sum(sum(GP. post.L.xF Q));
else
F _trace = —trace(GP.post.L(F _Q));
end
end

case {1, 2} % CasAD: and other symbolic
if Lchol % L contains chol decomp => use Cholesky parameters (alpha,sW,L)
% CasADi doesn’t override | (mldivide) yet, but we
% can use solve() to compute V; or we can
% compute the inverse matriz and perform
% matriz multiplication , which 1s faster
% for CasADi’s MX type.
%V = solve (casadi .DM(lhsA), Ks);
F_ trace = sum(sum(POST.Kinv .x F Q));
else % L is not triangular => use alternative parametrisation
if isnumeric (GP.post.L)
F_ trace = —sum(sum(GP. post .L.xF Q));
else
F_trace = —trace(GP.post.L(F _Q));
end
end
end

FCOV = FCOV — F_trace;
end

4.4.2 The general case
Not supported currently.

4.5 Implementation of mean and covariance of derivative and latent function

The equations are derived in section

4.5.1 The special but common case when ¥ is diagonal

The implementation of GMEAN is straightforward.

For the implementation of GCOV, that second part of G and G are complex. For each (i, j), we need to loop
over p and ¢, which is both expensive and redundant. Instead, we will loop over p and ¢, noting that the resulting
matrices are all symmetric, and for each pair (p, q), where p < ¢ due to symmetry, we calculate the matrices (for all
1,7 € {1,...,D}) in one shot and add them up. This can be seen from the two sums above: instead of calculating
the sum over p and ¢ for each (i, j), for each (p, ¢) we calculate the full D x D matrix for all (¢, j) and add them up.

We will rewrite the above two sums as:

or (K Cov, (kg“n (2. 5) K (2,))

4]
— (A aing(A)) © 3316 (39 (10) 0fp e (et oty (v0) "+ ol
p=1qg=1
and
G® = (diag(A Dy diag(A 1 @ ZZa 0y (x(”) (x(Q))TC,(:;’q) z®) (C(p’,g))T — Ci’,';’,g) (x(Q)) + C’;;’gk)
p=1qg=1

14

Therefore, we have

Var(g) = GV —G® +G®
T
— oA —E, [k“#’) (z, X)} K'E, [k“m (m,X)} +
(diag(A~") diag(A™ 1)) @
N N T T T
oY (e — K) (x@ (+@) cp? —a® (c?) —ch (+9) + ci’;;tz,l)
p=1qg=1

Let’s consider the summand in the last term and denote
T T T
7(p.a) — (aparg — Kpié) (x(p) (x(q)> Clgzz,q) _ P (Cfcif)) _ CQ(CII?];J) (x(q)) + Ciigi))

T
Note that in the above equation, we have C’,g;’q) = C’,(;,i’p) and C’a(:],';’g,)c = <Cg(c‘§€5,)€) . Therefore, we can loop over

p < q and calculate 29 4+ Z@P) for p # ¢, to save some computational operations. This is described in the
following pseudocode.

e Initialize Z to zero matrix; Z will be the sum of all Z(®9)
e Forp+1...N

— Forg«1...N

« fp=q: Z Z+4 2P0
x Else: Z < Z + Z2®9) 4 z(@p)

e Calculate Var(g)

Note also that (apaq - K, ;) is the (p, q) element of the following matrix

adl —K'=K Yol — K7 ' =K Y(Ya? 1)

For Cov(f,g), the equation is similar to the latter part of Cov(g) above and therefore can be implemented in
the same loop of p and ¢ (and reuse some values already calculated). Let’s define a similar variable Z](f;’q) as

2557 = agorg (CL70 — C0) = Ky (B2 — ERY)

which we can rewrite (for computation purpose) as

20 = apay (EREY - B EL D) + (apaq — Kpp) (G2 - B5D)

When p # ¢, we have
23" = agy (O - CP) - Ko (B — ESY)

= apa (O V2 - C4P) — K (BR V2" — ERD)

where we use the fact that K1, Eyy, and Cj;, are symmetric and Ei’z’q) = Ei‘}c’,f). Hence, we can simplify the sum

200 4+ 2057 = (00,007 = Kl BRD) (29 +29) — apag (CR0 + C1) + 26, EGY

The computation of Cov(f,g) will be fused inside the nested loops for calculating Var(g).

To make it easier to implement the most time-consuming part (the nested for loops) in C, that part of the code is
implemented as a private Matlab function, after the main code block below. A C version of the loop was implemented
in +nextgp/private/gppredse_covloop_c*. To build the MEX file, use +nextgp/private/make_gpppredse_mex.m
and make sure that the generated MEX file is named gppredse_covloop.mexx*.

15

% Mean of derivative GMEAN
GMEAN = kernel SigmaLambda .x (Xdiff mu % (alpha .x E k’));

% Covariance of derivative GCOV
if calc_fg cov
% For cov(f,g), we will actually calculate cov(g,f) then transpose it

if calc_g cov

% \EE[k~{(1,0)}(z,X)]
Ek10 = kernel SigmaLambda .x (Xdiff mu .« E k); %D z N

% The second term of GCOV
if Lchol
GOOV = Ekl10*solve chol(GP.post.lhsA’, Ek10’);
else
if isnumeric (GP. post.L)
GCOOV = Ek10%GP. post .LxEk10’;
else
GOOV = Ek10%GP. post .L(Ek107);
end
end

% The first two terms of GCOV
GOOV = diag(sf2 # invLambda) — GCOV;

% Calculate the last term
% Some common wvalues that are not changed during iterations
G S = diag(1./(2+invLambda + 1./XCOV)); % S term

[FGCOV, G_Z| = gppredse_covloop (...
XMEAN, ...
N, D, POST, trainXt,
kernel SigmalLambda inv, kernel 2Sigmalambda inv_I, invLambda,
E k, E kk, E xk, C_Kkk,
G S, true);

GCOV = GCOV + POST.invLinvL .x G_Z;
else
[FGCOV| = gppredse covloop (...
XMEAN, ...
N, D, POST, trainXt,
kernel SigmalLambda inv, kernel 2Sigmalambda inv_I, invLambda,
E k, E kk, E xk, C kk, [], false); % G S =[] is required for MEX to work
end

end

The main nested loops:

function [FGCOV, G Z] = ...
gppredse covloop (XMEAN, ...
N, D, POST, trainXt,
kernel SigmalLambda_inv, kernel 2SigmaLambda_ inv_I, invLambda,
E k, E kk, E xk, C_Kkk,
G_S,
calc_g cov)
% Internal function to calculate the main nested loops in calculating the
% covariance between latent function and derivative.
% FGCOV does not need G_S; so only need to provide G S if G _Z is computed
%

16

% XMEAN: vector [D z 1]

% N, D: scalar

% POST: structure (see fields wused in the code)

% trainXt: matriz [D z NJ

% kernel SigmaLambda_inv, kernel 2SigmaLambda_inv_I, invLambda: vectors [D z 1]
E k: wvector [1 z NJ

E_kk: symmetric matriz [N z NJ

E zk: matriz [D z NJ

C kk: symmetric matric [N z NJ

G _S: diagonal matriz [D z D]

calc_g cov: boolean; true if G Z is returned, false if only FGCOV

About calc_g cov: While a Matlab function can detect the number of outputs
(nargout), MEX function generated by Matlab Coder does not and silently
ignore it, causing logical bugs in the code. Therefore, we explicitly
specify it in the input arguments instead. If C code or MEX function is
created manually, one can instead detect the number of outputs

properly and does not meed this.

N N XN RN N NN R NNKN KX

% calc_g cov = nargout > 1;

% In Matlab, these can be initialized to 0; but in MEX,
% they need to have correct sizes

G Z = zeros (D, D);

FGCOV = zeros (D, 1);

% Because Matlab Coder is stupid, we must define G_Czkzk here or else
% it will complain.

% If manually writing the code, don’t need the following line at all
G_Cxkxk = zeros(D, D);

for p = 1:N
for q = p:N
xp = trainXt (:, p);
xqT = trainXt (:, q)7;

% Calculate Mpq used in calculating Czkk and Czkzk (D z 1)

sum_xpxq = xp + xqT’;

G _Mpq = (XMEAN + kernel SigmalLambda inv .% sum_ xpxq) ./
kernel 2SigmalLambda_inv_T;

% Calculate C {zkk} (D z 1)
G_Exkk = E_kk(p,q)*G_Mpq;
G ExkEk — E_xk(:,p)+E _k(q);
G Oxkk — G_Exkk —C_ExkEk;

if calc_g cov

% Calculate C {zkazk} (D z D)

G _Cxkxk = E_kk(p,q)*(G_S + G_MpgxG_Mpq’) — E_xk(:,p)*E_xk(:,q)’;
end

% Update G Z
if p=g¢
% Update FGCOV
FGCOV = FGCOV + ...
POST.aa(p,q)*(G_ExkEk — E _k(p)~2xxp) + ...
POST. aaKinv(p,q)*(E_kk(p,q)*xp — G_Exkk);

if calc_g cov

% Update G Z
G7Z=G17Z+

17

(xp*xqT*C_kk(p,q) — xpxG_Cxkk’ — G_CxkksxqT + G_Cxkxk)=*...
POST. aaKinv(p,q);
end
else
alpha alpha = POST.aa(p,q);
G Cxkk gp = G_Exkk — E_xk(:,q)*E_k(p);

% Update FGCOV

FGCOV = FGCOV + ...
(alpha _alpha % C_kk(p,q) — POST.Kinv(p,q)*E_kk(p,q))*sum_xpxq ...
— alpha alpha x(G_Cxkk + G_Cxkk qp) + (2%POST.Kinv(p,q))*G_Exkk;

if calc_g cov
xpxq = xp*xqT;
GZ=G7Z+ ...
((xpxq + xpxq’)*C_kk(p,q) — xpxG_Cxkk’ — G_CxkkxxqT
— xqT’+G_Cxkk gp’ — G_Cxkk_qp*xp’ + ...
G_Cxkxk + G_Cxkxk’) * POST.aaKinv(p,q);
end
end
end
end

FGCOV = (invLambda .x FGOOV) ’;

if calc_g cov
% For some reason (possibly due to accumulated calculation errors),
% G Z is not symmetric although it should be. It seems that somehow the
% upper triangle part is more accurate than the lower part (compared to
% Monte Carlo). So we will keep the upper part only (by copying it to
% the lower part).
G Z = triu(G Z) + triu(G_Z,1)’;

end

end

4.5.2 The general case
Not supported currently.

References

[1] E. Solak, R. Murray-smith, W. E. Leithead, D. J. Leith, and Carl E. Rasmussen. Derivative Observations in
Gaussian Process Models of Dynamic Systems. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15, pages 1057-1064. MIT Press, 2003.

[2] Andrew McHutchon. Nonlinear Modelling and Control Using Gaussian Processes. Ph.D., University of Cam-
bridge, 2014.

18

	Notations
	SE covariance function
	Vectorization

	Problem Formulation
	Mathematical results
	Derivatives of the SE kernel
	Moments of SE kernel
	Mean and covariance of latent function
	Mean
	Variance

	Mean and covariance of derivative and latent function
	Mean of derivative
	Variance of derivative
	Covariance between latent function and derivative

	Matlab Implementation
	Function Inputs and Outputs
	Input arguments
	Outputs

	Check arguments and basic setup
	Common values and helper functions
	Kernel-related values
	Other values related to predictions

	Implementation of mean and variance of latent function
	The special but common case when is diagonal
	The general case

	Implementation of mean and covariance of derivative and latent function
	The special but common case when is diagonal
	The general case

