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Irregular dynamics of cellular blood flow in a model microvessel
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The flow of red blood cells within cylindrical vessels is complex and irregular, so long as the vessel diameter
is somewhat larger than the nominal cell size. Long-time-series simulations, in which cells flow 10° vessel
diameters, are used to characterize the chaotic kinematics, particularly to inform reduced-order models. The
simulation model used includes full coupling between the elastic red blood cell membranes and surrounding
viscous fluid, providing a faithful representation of the cell-scale dynamics. Results show that the flow has
neither classifiable recurrent features nor a dominant frequency. Instead, its kinematics are sensitive to the initial
flow configuration in a way consistent with chaos and Lagrangian turbulence. Phase-space reconstructions show
that a low-dimensional attractor does not exist, so the observed long-time dynamics are effectively stochastic.
Based on this, a simple Markov chain model for the dynamics is introduced and shown to reproduce the statistics

of the cell positions.
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I. INTRODUCTION

Blood is a complex suspension whose primary components
are red blood cells suspended in plasma. Red cells typically
make up between 20% and 45% of whole blood by volume,
depending upon the vessel size [1,2]. The next most substan-
tial contributions are from white blood cells and platelets,
though together they contribute less than 2% to the volume
of whole blood [3], and thus the cell-scale dynamics are
generally dominated by red blood cells [4], which are flexible
elastic membranes encasing a hemoglobin solution called the
cytosol. The motion of red cells typically appears disordered,
as shown in Fig. 1, except when the confining vessel diameter
is smaller than the nominal cell diameter [7-10], for which
the cells flow in linearly stable trains [11,12]. Though blood
was one of the first complex fluids to be studied [13,14],
its irregular flow behaviors remain crudely described and
challenging to predict.

The kinematics of the cellular flow are important for many
biomedical applications: the design of microfluidic devices
that operate on flowing cells [15,16], targeted drug delivery
[17-19] and screening [20,21], and the development of arti-
ficial blood [22,23] and organs [24-26], among others. Fully
describing these flows is challenging. The small spatiotem-
poral scales often hinder accurate experimental observations
[27], and while computer simulations are not limited in this
regard, even basic flow predictions require sophisticated nu-
merical techniques and significant computational resources
[28]. Thus, reduced-order models are potentially useful for
guiding engineering design. Continuum models based upon
rheological fluids are successful examples of this, but they are
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best suited to reproduce the mean-flow properties of blood
when the confining geometry is significantly larger than the
individual cells [29-32]. We aim to characterize the irregu-
lar single-cell-scale motion to facilitate the development of
reduced-order models that represent their behavior.

The dynamics of irregular flows can be classified as chaotic
or nonchaotic. Chaotic dynamics are well understood to have
a fractal character and exhibit extreme sensitivity to initial
conditions. Even seemingly simple and dissipative Stokes
flows can exhibit this property: perturbations to three rigid
spheres suspended in a rotating cylinder [33], sedimenting
under gravity [34], or in confined shear flow [35] diverge ex-
ponentially, a property often called chaotic advection [36,37]
or Lagrangian turbulence [38,39]. However, not all irregular
flows are chaotic; a flow system need not be extremely sen-
sitive to the initial conditions to be mechanically unstable in
a way consistent with the kinematics observed of red blood
cells in the microcirculation. Further, the highly dissipative
mechanics of the confined low Reynolds number (<0.01;
see Sec. III) flow might indicate a suppression of chaotic
kinematics.

We consider whether or not this flow has an associated
strange attractor that can characterize the dynamics with fewer
degrees of freedom than the full system. However, this is
not obvious from simple direct observations: low- and high-
dimensional chaotic behavior can appear qualitatively similar,
as shown in Fig. 2. After we assess its existence in Sec. [V B,
we consider its dimension D. The extensively studied Lorenz
system has a relatively low-dimensional attractor, D = 2.06
[43], which allows for a reduced description of the dynamics
[44]. Turbulent fluid flow also has a strange attractor [45—47],
though for streamwise periodic channel flow its dimension is
large D > 1 (Keefe et al. [48] estimated D > 780, though
faithful estimation of such large dimensionality is challenging

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.012203&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1103/PhysRevE.100.012203

BRYNGELSON, GUENIAT, AND FREUND

PHYSICAL REVIEW E 100, 012203 (2019)

(b)

FIG. 1. Cellular blood flow in a tube as (a) observed in vitro [5]
and (b) simulated using numerical techniques. Figure reprinted with
permission from Microcirculation in Ref. [6].

[49]). This is important for model reduction, since such high
dimensionality means that the dynamics cannot be reduced to
a few degrees of freedom. This precludes common methods
for describing the dynamics, such as Poincaré sections and
return maps, and prohibits attractor reconstruction [50].

In crafting a reduced statistical model, it is also important
to consider the possibility of stochastic behaviors. Stochas-
tic systems are probabilistic and random, and thus have no
underlying strange attractor. As a result, different methods
are needed to model the statistics. This is true even though
such systems show qualitative similarities to chaotic systems,
such as the heart-rate signal of Fig. 2(c). Observables of
high-dimensional chaotic systems, such as isotropic turbu-
lence [51], solar winds [52], electrical discharge fluctuation
[53], and gel transitions [54], can be quantitatively indis-
tinguishable from those of a stochastic system. Thus, given
the difficulty of reconstructing the high-dimensional attractor,
such systems have sometimes been modeled as stochastic
processes. To this end, Markov, Langevin, and Lévy processes
have been able to reproduce the statistics of the true nonlinear
chaotic dynamics [55,56], whereas otherwise attractive linear
models (e.g., autoregressive moving average models) have
not [57].

Our physically faithful computational model for the flow-
ing red blood cells consists of a three-dimensional Stokes
flow of elastic capsules confined in a rigid tube model of
a microvessel, such as is typical in the microcirculation or
microfluidic devices. The simulation model and specific flow

ISOTROPIC TURBULENCE:
CHAOTIC; D > 1

LORENZ SYSTEM:
CHAOTIC; D = 2.06

configuration are described in Sec. II, along with a discussion
of its physical validity as a mathematical model for actual
flowing blood cells. The numerical methods used to solve for
the flow, which include full coupling between the viscous fluid
and elastic cell membranes, are summarized in Sec. III.

Our statistical modeling goal is linked to the characteristics
of the basic kinematic behavior of flowing red blood cells.
Assessing this involves analyzing the chaotic and stochastic
characteristics of the flow observables. In Sec. IV A, we in-
troduce the long-time flow used for this analysis. Space—time
correlations and Fourier power spectra are used to probe for
any recurrent behaviors and frequencies. Chaotic dynamics
are addressed in Sec. IV B, wherein we assess their existence,
bound their dimensionality, and make quantitative compar-
isons with stochastic behaviors. In Sec. IV C, we use these
results to guide the development of a reduced-order statistical
model for the flow. A summary and discussion of our results
are presented in Sec. V.

II. MODEL FLOW AND KINEMATIC METRICS

A schematic of the model flow system is shown in Fig. 3.
The streamwise-periodic cylindrical model microvessel has
diameter D = 17 um and length L = 32 um, with e, and
e, unit vectors in the corresponding radial and streamwise
directions. N, = 8 model red blood cells of nominal radius
r, = 2.82 um (the radius of a sphere of the same volume) are
initiated in their at-rest biconcave geometry (as described else-
where [5]) and uniformly spaced along the vessel with their
symmetry axis aligned with that of the vessel. We confirm
that our principal conclusions are insensitive to doubling both
L and N,. The flow in the vessel has mean velocity U = 2.9 x
10? um/s, which is physiologically realistic [29]. The interior
cellular (cytosol) and exterior (plasma) fluids are Newtonian
with the same viscosity i = 1.2 x 1073 Pas. Actual red blood
cells are estimated to have an elevated cytosol viscosity by
about a factor of 5 [58-60], yet matched-viscosity models are
simpler and have been shown to be sufficient to reproduce
microcirculatory phenomenology [9], and to quantitatively
reproduce the suspension effective viscosity [28,61].

The red blood cell elastic membrane is described with the
commonly used Skalak constitutive model, with independent
shear, dilatation, and bending moduli [61]. The shear and
bending moduli are E; = 4.2 x 107°N/m and E, = 1.8 x
107" N'm, respectively, which are based on experimental

CELLULAR BLOOD FLOW:
UNKNOWN

HEART-RATE SIGNAL:
STOCHASTIC
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FIG. 2. Examples of different dynamic behaviors: (a) First component of the Lorenz system following Bryant ez al. [40], (b) streamwise
velocity of a fixed location in a turbulent Poiseuille flow [41], (c) tachogram of a supraventricular ectopy [42], and (d) radial centroid position
of a flowing model red blood cell, used in this work. Panels (a) and (b) include approximations of the strange attractor dimension D.
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FIG. 3. The model flow system.

measurements [5]. Red-blood-cell membranes are known to
be nearly incompressible, which is approximately enforced by
a large dilatation modulus E; = 67.7 x 107 N/m.

We focus on the radial centroids of the red cells within
the vessel, R = {Ry, ..., Ry, }, as measured from the vessel
streamwise-centerline. This is an important quantity when
analyzing cellular blood flow, particularly when considering
so-called shear-induced migration [62—65], and for designing
microfluidic devices for plasma—cell separation [66,67], cell
sorting [68,69], and cell-focusing [16]. For the configurations
we consider, the initial radial centroid positions R(¢ = 0)
are perturbed by uniformly sampled distances up to 0.1r, in
a randomly selected radial and streamwise direction. This
is done to accelerate breakdown into the disordered flow
we study in detail. However, since the flow is unstable it
will eventually become disordered regardless of the specific
perturbation [12].

III. NUMERICAL METHOD

Reynolds numbers of microcirculatory flow are typically
small, Re = pUD/u < 0.01 (where p is the fluid density), so
inertia is neglected and the flow velocity u is governed by the
Stokes equations,

—Vp+uViu =0, (1)

with the usual incompressibility constraint V - u = 0 enforced
by the pressure p. We utilize a standard boundary integral
formulation [70-72], for which the velocity is

1
ui(x,) = u (x,) — H/QGij(x—xo)A(fj(x)dS(x)» 2)

for coordinate direction i = {1, 2, 3}. In Eq. (2), x, is a point
on a cell surface, 2 is the union of all surfaces as shown in
Fig. 3, Ao is the surface traction on the fluid, and G is the
triply periodic Stokes Green’s function. Here, > = {0, 0, U}
is the total mean velocity in the periodic rectangular computa-
tional domain, where U is useful for setting the flow strength.
However, U does not exactly match U, since there is also flow
outside the cylindrical vessel; we compute U = 1.25U [61].
The cell membranes x are represented with spherical har-
monics, which are advantageous as a relatively small number
of spherical harmonic modes are required to accurately de-
scribe the cell shape, as well as for facilitating a nondissipative

approximate dealiasing method for stabilization [61]. There
are M? spherical harmonic modes per cell membrane. We use
M = 12, though three times this amount are carried during
each time step for dealiasing [73]. The surface traction is
evaluated from the Skalak model using the spherical harmonic
expansion.

In our formulation, boundary integrals are evaluated using
a quadrature scheme for the collocation points ¥ [61]. For
close interactions, we switch to a nearly singular formulation
of the integrands [61]. The resulting system is approximately
evaluated by a particle-mesh-Ewald (PME) algorithm gener-
alized for Stokes flow [61,74].

The vessel wall is represented by 6588 triangular mesh
elements. A single-layer potential is used to enforce the no-
slip condition by solving for the required surface traction on
the wall with a GMRES algorithm [61,75].

Since both the cytosol and plasma are incompressible,
there should be no change in cell volume, though errors
can accumulate over long times. We correct the cell volume
through adjustment of the cell membrane in its normal di-
rection [61]. Reported simulations require adjustments of less
than 10~°r, per time step.

Once the velocity u is computed by evaluating Eq. (2), the
cell surfaces are advanced according to

) 3)

— =u(x),

dt
which is integrated using a first-order explicit method with
time step At =0.0014r,/U. These numerical parameters
have been sufficient to successfully reproduce the effective
viscosity of blood flowing in confined tubes such as we
consider here [73].

IV. RESULTS

A. Flow kinematics and patterns
1. Long-time flow simulations

First, we simulate the flow of Sec. II until t =T =
2800r,/U, which corresponds to about 8000 flow-throughs
for a typical cell through the streamwise-periodic tube. Fig-
ure 4 shows the cell centroid positions R;(¢) for two example
cells of the eight total. After the transient period ¢ < ¢, =
300U /r, no obvious pattern can be discerned. Thus, we
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FIG. 4. Radial cell centroid position R;(t) for example cells j = 1 and 2. The symbols indicate numerical time steps. The dashed vertical

line marks the start of our sampling, ¢ = 1, (see text).

analyze kinematics for ¢ > ¢,. The time series data for the jth
cell is compactly represented as a column vector 7 whose ith
elements are

ri=Rijt,+iAt) for i=1,....,N, j=1,....,N, (4

where N, =2 x 10° is the number of time steps. Indeed,
for most analysis, we only require data from one cell, as
our principal conclusions are independent of the specific cell
observed.

2. Space-time separation

We first construct a space—time separation map to show
dynamic correlations, patterns, and coherent structures in the
data [76], which are useful tools when considering a reduced-
order model for the cell motion. To do this, the data are recast
using spatial and temporal separations,

8 =lrj—ri| and § =|[j—ilAr, )

respectively, for which §, € (At, 20r,/U) is sampled uni-
formly and randomly and §,(8;) is computed 10°® independent
times.

Figure 5 shows the space-time separations of 7 and the
cumulative probability P(§, < X|§;) for varying X. As ex-
pected, small &; (< 5r,/U in this case) always corresponds
to small §,. Importantly, P(5;) is approximately constant for
8; 2 5r,/U. Thus, any recurrent features in 7 (e.g., small §, for
large §,, which has been observed for several low-dimensional
chaotic systems [76]) are unclassifiable by this method. While

0 0.25 0.5 0.75 1
I
P =0.99
W P = 0.75
P =0.50
P =0.25
20

6:U/ro

FIG. 5. Space-time separations of 7 and corresponding curves of
constant P(5, < X|8,).

this behavior is similar to that of some stochastic systems
(e.g., 1/f noise [76] and eye movement dynamics [77]), it
is insufficient to distinguish between chaotic and stochastic
features. As such, we further analyze the cell kinematics for a
lower-order description of the flow.

3. Fourier power spectrum

Next, we consider the frequency-domain representation
of our data. A dominant frequency, or a compact set of
frequencies, indicates recurrent flow dynamics that can pro-
vide a basis for reduced-order modeling [78,79]. While the
flow is of course fundamentally recurrent since it is spatially
confined, a recurrence associated with a unique frequency can
indicate nontrivial low-dimensional dynamics. We compute
the discrete Fourier transform F using a Hann windowing
function [80] and the time series 7 as

N,—1
: 2mik
E:rjexp< ik ”) for n=0,...,N,/2—1,

(6)

F(F)=—=

where i = /—1 is the imaginary unit, k, = 27n/T is the
wave number index, and w, = k,r,/U follows as the dimen-
sionless frequency.

Figure 6 shows the power spectrum for the radial cell
positions. We observe a power-law behavior for w 2 U/L,
with F(F) oc %3 being a modestly better fit to the data
than F(7) x w=3. This slope is distinct from the “flicker”

101t
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FIG. 6. Fourier spectrum of 7 and frequencies corresponding to
U/r,and U/L as labeled.
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FIG. 7. Radial displacement A of cell perturbations to initial
configuration R(t) (see text). Magnitudes range from ¢ = 10~*r, to
0.5r,.

or pink 1/w and Brownian 1/w? signatures observed for
some physical systems, such as metal films [81], condensed
matter electronics [82] and semiconductors [83], and phase
transitions [84], and thus cannot be directly connected to these
noise processes.

For w < U/L there is no distinct frequency, and so we
conclude that the dynamics are sufficiently coupled that their
time scales are unidentifiable by this analysis (this does not
prohibit recurrent behaviors generally, but rather suggests that
they are sufficiently high-dimensional to be inseparable). This
property is generally observed for high-dimensional chaotic
systems, which presents an additional modeling opportunity
that we focus on next.

B. Chaotic properties
1. Sensitivity to initial conditions

We next assess if the flow has chaotic characteristics.
Chaotic flows exist in a so-called phase space which, if it
can be reconstructed, provides a reduced-order description
of the flow. Of course, the dimensionality of the associated
phase space limits the reducibility of the dynamics. Here, we
determine if the flow can be considered chaotic, and if so, the
dimensionality of its associated strange attractor.

The assess the existence of chaotic behaviors by computing
the sensitivity of the cell kinematics to perturbations in their
initial condition. Here, R(z) are the radial locations of the cell
centroids and R, (¢) are the radial locations with an additional
small displacement at # = 0. These are added in a uniformly
distributed random direction with uniformly randomized mag-
nitude & € [0, e]. The sensitivity is measured as a nominal
distance between these two configurations:

A(t) = [|R: (1) = R()l]2, )

where || - ||» is the usual L, norm.

Figure 7 shows the sensitivity of the radial centroid po-
sitions. The differences A initially decay a small amount in
some cases, which appears to be due to an initial rapid, though
transient, decay in cell-scale perturbations [11]. Afterward,
A(t) grows exponentially with A ~ exp(At) where A is be-
tween 0.032U/r, and 0.061U/r, for the case we consider
here. This measure provides an estimate of the first local
Lyapunov exponent [85], for which A > 0 indeed indicates
chaotic dynamics. We note that the variance associated with

the estimation of Lyapunov exponents and their relatively
small values means that a certain classification of chaotic
behavior is challenging to provide. Thus, we can only state
that our approximation of the largest Lyapunov exponent
serves as one indication that the flow is chaotic. However,
later we will show that this classification is only of tertiary
importance when formulating a reduced-order flow model.

After r ~ 200U /r, the growth saturates at A =~ r,, as ex-
pected due to the radial confinement of the flow. This gives
a Lyapunov time horizon of 7. = 614U /r, for an IEEE 64-bit
finite-precision error (=10~ 14y to reach unity. Thus, the flow is
indeed chaotic. However, in order to utilize this property for a
reduced-order representation, the associated strange attractor
must have a relatively small dimension [50].

2. Attractor dimension

We use the correlation dimension to estimate D, which is
related to the correlations between 7 and the reconstructed
attractor. Due to the exponential divergence of trajectories,
most pairs (r;, r;), with i # j, will be uncorrelated pairs
of seemingly random radial cell locations. The correlation
between the 7 and the reconstructed attractor is measured by
the correlation integral (though its usual form is presented as a
discrete sum [76]), which is the mean probability that discrete
states at two different times are within a threshold distance £,

N,
1 - ~ o~
CO) =3 D HE =17 =Tilb), ®)
P, j=1
i#]

where H is the Heaviside step function and

?‘;- = {7’,‘, I",'JF-,;,---athr(m*l)}’ (9)

is the time-delay embedding of 7, as parameterized by its
embedding dimension m and time delay t [86]. If for small
£, C(£) has a power law behavior,

C) ~2e, (10)

then v is called the correlation dimension, which serves as a
measure of the local structure of an attractor. If v = m, then
the embedding dimension is not sufficiently large to determine
the attractor dimension. We compute the correlation dimen-
sion v of Eq. (10) as
dlogC(¢)
v(f) = dlogt (11)
The correlation integral of 7 is shown in Fig. 8(a). For £ <
4 x 1073r, the correlation dimension matches the embedding
dimension with C(¢) ~ €™, and so m is not large enough
to discern an attractor dimension. A “knee” in C(£) is seen
for 4 x 1073 < £ < 0.03 and m > 3, where v(£) &~ 1. In the
knee region the data are too close in the reconstructed phase
space to serve as an estimate the correlation integral, a result
also seen for stationary stochastic processes with a power-law
spectrum [76,87] and some low-dimensional chaotic systems
(e.g., pulsar spin-down rates [88]). Thus, we label 0.03 <
£ <1 as a realizable scaling region, where we estimate a
power-law behavior in £. We note that while v(£) < m in
this region, this is not the usual observed behavior and it is
possible that no robust scaling region exists [76]. If this is
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FIG. 8. (a) Correlation integral C(¢) from Eq. (8), (b) correlation
dimension v(¢) from Eq. (11).

the case, then the correlation dimension is too large to be
estimated from 7 and thus traditional attractor reconstruction
is prohibitive regardless.

The correlation dimension v(£) and its maximum value
in the realized scaling region are shown in Fig. 8(b) and
Fig. 9, respectively. In this region we have v < m, though v
still increases with m. Specifically, we have max, v(£) ~ m%3.
Also shown is the Kaplan—Yorke dimension:

1 J
> (12)
i=1

Dxy =j+
[Ajr1l

where A; are the Lyapunov characteristic exponents as com-
puted using the methods of Sano and Sawada [89] and j is the
number of nonnegative exponents. The expected inequality
Dgy > v holds for all computed m [76], and we generally see
DKY ~ m0'3.

The monotonically increasing max, v(£) and Dy with m
for at least up to m = 100, with D = 6.1 for this m, suggest

Correlation Dimension

109 101 102

FIG. 9. Maximum correlation dimension in the tentative scaling
region (see text) and Kaplan—Yorke dimension Dy for a range of m.

it will not terminate at a fixed value for still larger embedding
dimensions. Further, reliable estimation of D > log,,(N;) &~ 6
is prohibitive without larger N; [49]. However, these dimen-
sions are already sufficiently large to preclude a reduced-order
model based upon attractor reconstruction. Given the stochas-
ticlike features of the data, we next explore this property as a
potential model for representing the flow statistics.

3. Distinguishing chaos from stochasticity

High-dimensional chaotic flows can often be accurately
represented by a stochastic system [46,56], including some
turbulent fluid flows [90]. Stochastic process flow states are
decided probabilistically, with the associated probabilities
computed via simulation data. Given the stochastic features
of the correlation integral of Sec. IVB2, we attempt to
more reliably determine if the cellular flow observables can
be classified as stochastic. For this, we utilize the structure
function as an indicator of chaotic and stochastic behaviors; it
is defined as

n=1,...,N, (13)

K’

N,—n
Skm(n) = Z | (risn — 1)
i—1

where

N, 1/k
I lle = (D : |k> (14)
i=1

is the Ly norm, n is the time delay, and d;" is m successive
applications of the first-order explicit time derivative operator.
However, we confirm that the results presented are indepen-
dent of this choice of derivative operator. Chaotic systems
have power-law behavior

Sk.m(n) ~ 1k, (15)

asn — 1 [91-93], while any correlation with n disappears for
stochastic systems with increasing m [76].

Figure 10 shows S, for both k =1 and 2, following
usual practice [76,92,93]. For both k, Sk ,,(n) ~ nF forn <50
and m = 0 and 1, indicative of chaos. For n 2 200 S(n) is
constant, as expected, due to the finite extent of the phase
space. The transition between these two regimes appears
nonlinear, indicating a multifractal behavior [94], and thus
coupled fractal states [95,96]. Indeed, this is typical of other
high-dimensional flow systems, such as turbulence [97-99].
For the flowing red blood cells we consider, we anticipate
that the high-dimensional chaotic trajectories identified in
the previous subsections lead to this behavior. For increasing
time derivatives m, the n < 50 correlation disappears. This
is an indicator of stochastic-like features, which thus entails
stochastic elements for reduced-order modeling [100].

C. Stochastic modeling

The stochastic features we identify, along with the previ-
ous success of stochastic models for high-dimensional flow
physics [56,90], suggest that such a model is appropriate for
the flow kinematics. Thus, we adopt a stochastic modeling
approach to reproduce the features of the flow of Sec. IV A.
Here, we classify the relevant stochastic features of the flow
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FIG. 10. The structure function for time derivatives

m=20,1,...,4and norms (a) k = 1 and (b) k = 2.

such that a faithful stochastic model can be developed, then
train a model and validate it against untrained data.

1. Stationary processes

Stochastic models are generally developed for either sta-
tionary processes, whose mean and variance are time indepen-
dent, or nonstationary processes that do not have this property.
Thus, we first determine if the flow is statistically stationary
before proceeding with model development. Figure 11 shows
the windowed mean and variance of 7; they are both irregular
but do not appear to drift. To determine this feature explicitly,
the probability that the data are stationary is computed via
an augmented Dickey—Fuller test, which determines if the

characteristic polynomial of the data has a unity root [102];
stable systems without unit roots are deemed stationary. The
table of Fig. 11(b) shows the results of the Phillips—Perron
test, where p is the probability of nonstationary behavior
(thus, p = 0 indicates certainty of stationarity). We observe
small p values for all unit root tests, and so we are confident
that the process can be modeled accurately as stationary.

2. Markov chain reduced-order model

We will use a Markov chain model to represent the flow
7. Markov chains are a stochastic model that utilizes the
probability of transitions between identified flow states. The
modeled flow process is every Tth component of the evolving
radial cell locations 7; we choose T = 50, which is guided by
the space-time separations of Sec. IV A 2, though we confirm
that our conclusions are insensitive to doubling of this value.
Each iteration of the flow j is in one of N, = 20 unique states
i, rj; € S, as defined by a uniform discretization of the radial
coordinate:
S; = ib for

2Npr,

S; = (s, si_1), Where i=1,...,N,.

(16)

While this formulation is simple, identifying states via a more
sophisticated K-means algorithm did not provide better agree-
ment [103]. The model flow M is defined by the transition
matrix P;;, which is the probability that 7 switches from S; to
&; after one process iteration; it also has the property

N,
Zg.jzlforizl,...,Np. (17)
j=1

A temporal training window @, € (tU/r, =t,, 1575) of F is
used to compute P, and untrained data ¢ ¢ €2, is used for
validation. We compute P using the training window portion
of 7 iteratively over each state i as

Py (—P,'k+8j,kAP—(1—(Sj’k) for k:l,...,Np,

N, —1
(18)

where AP = 1/i and §; is the Kronecker symbol.

1.2
» 1
g o8
= ' ) Test |Cell|p-value
06 1°() PP (F)| 1 |0.00694
PP (t)| 1 |0.00622
s 0.5 PP (F)| 2 [0.00252
5 o1 PP ()| 2 [0.00256
E 065 PP (F)| 3 [0.00386
= TG PP (t)| 3 |0.00366
0
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
tU/ro

(a)

(b)

FIG. 11. (a) Windowed (i) mean and (ii) variance computations for 7, with window length Aty;, = 1000U/r,. (b) The results of a Phillips—
Perron (PP), or augmented Dickey—Fuller, test for the cell data indicated based upon F' and 7 metrics (see Elder and Kennedy [101]).
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/7o
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0.5
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|

0.5

7/ro

15 (C) PlOO

0.5 1 1.5
7/ro

FIG. 12. (a) Transition matrix P and its products (b) P'° and
(c) P'® as labeled. Axis values 7 are scaled with the s; of Eq. (16)
and r, to give the radial coordinate of the corresponding state.

Figure 12(a) shows that P is only nonzero near the diag-
onal. Thus, a state is most likely to transfer to itself or its
nearest neighbors. Matrix—matrix products of P are shown in
Figs. 12(b) and 12(c); for P'% we see the diagonal components
are smeared nonuniformly across nearly the full range of
states, with the largest components being in the bottom-right

()
o )

portion of the matrix, suggesting more complex dynamics in
this limit. An apparent steady state is reached by P'®°, which
is vertically banded.

The connections indicated by the iterated transition matrix
P3 are illustrated in Fig. 13. We see that dynamics are com-
plex, as was implied by Fig. 12. There are self-reinforcing
feedback loops for clusters 1-5 and 7-10, indicating a circular
transition between the states. Since these clusters are for
neighboring state numbers, cells near the tube centerline are
generally more likely to stay there than to flow towards the
wall, though their exact motion while near the tube center is
relatively complicated, as indicated by the network of con-
nections joining clusters 1-5. Similar behavior is observed for
cells flowing nearer the vessel wall; the cells are more likely to
stay far from the tube center than to flow near it, though their
specific motion is complex, as indicated by the neighboring
connections between clusters 7—10. More important, however,
is the ability of the associated transition matrix to reproduce
the statistics of the model flow, which we consider next.

3. Stochastic model flow

The model flow 7 is generated from P using

My =Prii for i=1,... N/t. (19)

The full and model flows within a temporal verification
window are shown in Fig. 14; the time series have qualita-
tively similar irregularities, though since the flow is chaotic,
we cannot hope to predict 7 exactly. Instead, we analyze the
statistics of the model and full flows. For this, we first compute

the eigenvalue decomposition of P as
PT =SAS™, (20)

where PT is the transpose of P, § is the column matrix of
left eigenvectors, and A is the real-ordered diagonal matrix
of eigenvalues. For the Markov process Eq. (19), the left
eigenvectors S are statistically invariant distributions that can
indicate recurring flow processes not identified via Fourier
analysis [104,105].

0.25 0.5 0.75 1

P,

FIG. 13. The three most probable transitions of P°. The numbers indicate the state index S;, where neighboring states have been coalesced
for visualization purposes, and thus the transitions between them are not shown.
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TABLE 1. The first five moments of P(#) and P(#"), and the
relative error between them. The percentage error is computed as
Poerror = 100{M;[PF")] — Mi[PF)1}/M[PF)].

M;(%) i=1 2 3 4 5
P(F) 0.817 0.788 0.831 0.929 1.081
PEM) 0.795 0.753 0.782 0.858 0.981
Poerror 2.76 452 5.97 7.60 9.21

0
1800

1850 1900 1950 2000

tU/ro

FIG. 14. The full () and model (**') flows within the verification
window 2, € (tU/r, = 1800, 2000).

In Fig. 15(a) we see that the model flow is able to reproduce
the PDF of the full flow. Further, the PDF of §; also matches
that of the model flow, so the first eigenmode of P dominates
the mean statistics. The PDFs of the first three eigenvectors
are shown in Fig. 15(b). We see that the PDFs of S, and S3
exhibit two and three subdomains, respectively, indicating the
propensity of flow states to transition to only nearby states,
a behavior also observed in the graph of Fig. 13 for clusters
1-5 and 7-10; as discussed above, this is associated with the
higher likelihood that cells near the tube centerline will stay
there (and vice-versa for cells flowing near the vessel wall).
To quantitatively assess the statistical validity of our model,
we compare the moments of the PDFs of the full and model
flows. The ith moment of a discrete distribution v of length N
is computed as

N N
1 .
M;(®) = N Z(Uj —0),, where ¥= N Zuj (21)
=1

is the mean.

Table I shows the first five moments of the PDFs of the
flows. We see that the relative error between corresponding
moments is less than 10% for all moments shown, with
the error increasing with increasing moment number. This
relatively small error serves as a demonstration of the ability

N o ,r—.']u ....... Sl (a)
S 01
&= W
~ , »
I Pk
*  0.05 2
58 N
0
— —Si--- Spn S5 (b)
N 0.1 e ’\\
= 3 7 o
Il =T g JN
* 0.05 A,/”,.t ?i / 1 ; \H
2 N \.
0 * =
0 0.5 1 1.5
r/To

FIG. 15. PDF P(-) of (a) model flow 7, full flow 7, and the first
left eigenvector S, and (b) the first three left eigenvectors of P .

of a relatively simple Markov chain model with few degrees
of freedom to statistically reproduce the features of flowing
red blood cells.

V. DISCUSSION AND CONCLUSIONS

Our goal was to analyze and classify the kinematics of
cellular blood flow to facilitate the design of reduced-order
models. We first attempted to uncover any basic flow recur-
rences. Long-time flow separations were analyzed via a space-
time separation map, which showed that only trajectories that
were nearby in time were likely to be nearby in space; thus,
no spatial recurrences were identified. The flow was analyzed
in the frequency domain using a Fourier decomposition of the
time-series data. The Fourier spectrum appeared relatively flat
for small frequencies, and so there was no dominant flow fre-
quency but rather a complex set of coupled flow frequencies.

Given the irregular character of the flow, a lower-
dimensional strange attractor was sought to describe it. For
this, we prescribed small perturbations to the initial flow
configuration and tracked their divergence. A strange attractor
was found to exist, though by our analysis its dimension
was relatively large, with D > 6 for embedding dimension
m = 100. As a result, the flow could not be described with
just a few degrees of freedom, and the usual techniques, such
as Poincaré maps, could not be utilized to further analyze the
chaotic behavior or reconstruct the attractor. However, we did
see that the chaotic dimension of the flow was sufficiently
large to exhibit stochastic-like features. Given this, we utilized
a structure function to show that the cell kinematics were in-
distinguishable from those generated by a stochastic process.

Based upon this stochasticity, a reduced-order statistical
model was formulated for the radial cell positions based
upon Markov chains. The Markov chain transition matrix
was computed with only N, = 20 Markov states. A graph
of the most probable cluster transitions revealed two main
groups of clusters that had self-reinforcing feedback loops,
which indicated regular transitions between these nearby
states. Physically, this was associated with the propensity for
cells near the tube center to stay there, with relatively small
probability of moving toward the vessel wall. The model flow
was generated from the transition matrix over a temporal ver-
ification window. Ultimately, the reduced-order model flow
was shown to closely predict the statistics of the full flow via
comparisons between their associated PDFs and higher-order
moments. Of course, increasing the number of Markov states
will improve model accuracy and require less interpolation
between adjacent states. Further, other modeling options are
available, such as the interpolative models associated with
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machine learning techniques. However, we did not explore
those here in the interest of keeping the model simple and the
associated flow physics easy to interpret.
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