
Chapter 1

Sound and Relaxed Behavioural
Inheritance

Nuno Amálio

Abstract Object-oriented (OO) inheritance establishes taxonomies of OO
classes. Behavioural inheritance (BI), a strong version, emphasises substi-
tutability: objects of child classes replace objects of their ascendant classes
without any observable effect difference on the system. BI is related to data
refinement, but refinement’s constrictions rule out many useful OO subclass-
ings. This paper revisits BI at the light of Z and the theory of data refinement.
It studies existing solutions to this problem, criticises them, and proposes
improved relaxations. The results are applicable to any OO language that
supports design-by-contract (DbC). The paper’s contributions include three
novel BI relaxations supported by a mathematical model with proofs carried
out in the Isabelle proof assistant, and an examination of BI in the DbC
languages Eiffel, JML and Spec].

Key words: refinement; Z; object-orientation, inheritance, design-by-contract;
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1.1 Introduction

The object-oriented (OO) paradigm has a great deal in common with bio-
logical classification (taxonomy) and the ever present human endeavour to
establish taxonomies that reflect degree of relationship [30]. This is, perhaps,
a factor behind OO’s popularity, which uses classification to tame diversity
and complexity. Whilst biologists go from life into classification, computer
scientists use classification as templates that generate computing life.
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OO design builds taxonomies around classes: abstractions representing liv-
ing computing objects with common characteristics. This resembles biological
classifications, which group similar entities into taxa [30]. OO classes define
both static and dynamic characteristics. Each object of a class is a distinct
individual with its own identity. A class has a dual meaning: intension and
extension [20]. Intension sees a class in terms of the properties shared by all
its objects (for example, a class Person with properties name and address),
whereas extension views a class in terms of its living objects (for example,
class Person is {MrSilva, MsHakin, MrPatel}).

Biological classifications hierarchically relate taxa through common ances-
try [30]. This is akin to OO inheritance, which builds hierarchies from similar-
ity to specificity in which higher-level abstractions (superclasses or ancestors)
capture common characteristics of all descendant abstractions (subclasses).
Inheritance provides a reuse mechanism: descendants reuse their ancestor
definitions, and may define extra characteristics of their own.

The essence of OO inheritance lies in its is-a semantics. A child abstraction
(a subclass) is a kind of a parent abstraction. The child may have extra
characteristics, but it has a strong link with the parent: a living object of a
descendant is at the same time also an object of its ascendant classes, and a
parent class includes all objects that are its own direct instances plus those of
its descendants. For example, when we say that a human is a primate, then
any person is both a human and a primate; characteristics of primates are
also characteristics of humans, however humans have characteristics of their
own which they do not share with other primates.

OO computing life becomes more complicated when it comes to dynamics
or behaviour, which is concerned with objects doing something when stim-
ulated through operations. To understand operations, we resort to a button
metaphor: operations are buttons, part of an object’s interface, triggered
from the outside world to affect the internal state of an object and produce
observable outputs. Often, such button-pushes require data (or inputs). In-
heritance implies that ancestor buttons belong to descendants also and that
descendants may specialise them. For example, walk on primate could be spe-
cialised differently in humans and gorillas as upright-walk and knuckle-walk,
respectively, to give rise to polymorphism. Operations apply the principle of
information hiding; we have the interface of an operation — its name and
expected data with respect to inputs outputs —, which is what the outside
world sees, and its definition in terms of what it actually does (programs
at a more concrete computing level). Through operations the outside world
derives and instils meaningful outcomes from and into the abstraction.

Inheritance’s is-a semantics entails substitutability : a child object can be
used whenever a parent object is expected. For instance, a human is suitable
whenever a primate is expected. This, in turn, entails a certain uniformity to
prevent unwanted divergence, which is enforced at two levels. Interface con-
formity, the more superficial level, requires that the interfaces of the shared
buttons, in sub- and super-class, conform with each other with respect to the
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data being interchanged (inputs and outputs)1. This guarantees that sub-
classes can be asked to do whatever their superclasses offer, but this leaves
room for undesirable deviation. For example, a gorilla class may comply with
a primate walk button, but be actually defined just as standing upright with-
out any movement. The second deeper level of enforcement tackles this issue
through behavioural inheritance (BI) [28, 21]: not only the interfaces must
conform, the behaviour must conform also to ensure that subclass objects
may stand for superclass objects without any difference on the object’s ob-
servable behaviour from a superclass viewpoint. In our primates example,
just standing upright would fail to meet the underlying motion expectations.
Only through proof can the satisfaction of BI be verified.

Deep substitutability is captured by the theory of data refinement [22,
39, 16]. Inheritance relations induce refinement relations between parent and
child2. This paper tackles the refinement restrictions, a major obstacle to
BI’s ethos of correctness already acknowledged by Liskov and Wing [28].

This paper delves into BI’s foundations to propose relaxations that tackle
refinement’s overkills and constrictions. The investigation is in the context of
Z [39, 24], a formal modelling language with a mature refinement theory [39,
16]. The work builds up on ZOO, the OO style for Z presented in [10, 2, 3],
that is the semantic domain of UML + Z [11, 2, 12] and the Visual Contract
Language (VCL) for graphical modelling of software designs [7, 8, 9, 6].

Contributions. This paper’s contributions are follows:

• The paper presents four relaxations to BI. Three of these relaxations are
novel. A fourth relaxation has been proposed elsewhere, but lacked a formal
proof; it is proved here with the aid of the Isabelle proof assistant.

• A thorough examination of the BI relaxations that underpin the design by
contract languages JML, Eiffel and Spec].

Paper outline. The remainder of this paper is as follows. Section 1.2 presents
the mathematical model that underpins the paper’s BI study. Section 1.3 in-
troduces the paper’s BI setting and derives conjectures for BI. Section 1.4
presents the running example, which is analysed in section 1.5 to better under-
stand how BI’s restrictions affect inheritance. Section 1.6 performs a thorough
examination of BI in the DbC languages JML, Eiffel and Spec]. Section 1.7
presents the paper’s four relaxations which are applied to the running ex-
ample. Finally, the paper concludes by discussing its results (section 1.8),
comparing the results with related work (section 1.9) and by summarising its
main findings (section 1.10). The accompanying technical report [4] provides
supplementary material not included in the main text.

1 This involves type-checking, a computationally efficient means of verification which checks
that variables hold valid values according to their types (e.g. boolean variables cannot hold

integers).
2 Whereas in data refinement the refinement relation varies, in BI this relation is always a

function from subclass to superclass. BI is a specialisation of data refinement.
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Fig. 1.1: An abstract data type (ADT) (a) comprises state (SA, SB) and
operations (OA, OB). Mathematically (b), an ADT T is made-up of a set of
states ST , an initialisation i (a relation from environments E to states ST ),
a finalisation f (a relation from states ST to environments E ) and operations
os (an indexed set of relations between states ST ).

1.2 An Abstract Mathematical Model of OO

This section presents the paper’s OO mathematical model, drawn from
ZOO [10, 2, 3], our approach to couch OO models in Z. The model rests
on abstract data types (ADTs), enabling a connection to data refinement.

The sequel refers to mathematical definitions of appendix 1.A, which
abridge the definitions of the accompanying technical report [4].

1.2.1 The ADT foundation

ADTs, depicted in Fig. 1.1, are used to represent state-based abstractions
made-up of structural and dynamic parts that capture computing life-forms.
They comprise a state definition and a set of operations (Fig. 1.1a).

Figure. 1.1b depicts ADTs’ mathematical underpinnings. There are sets
of all possible type states S , all possible environments E , all possible identi-
fiers I , and all possible objects O (def. 1). An ADT (def. 3) is a quadruple
T = (ST , i , f , os) comprising a set of states ST ⊆ S (the state space), an
initialisation i : E↔ ST (a relation between environment and state space), a
finalisation f : ST↔E (a relation between state space and environment) and
an indexed set of operations ops : I 7→ ST ↔ ST (a function from operation
identifiers to relations between states). Functions sts, ini , fin, and ops (def. 3)
extract the different ADT components (e.g. for T above, sts T = ST ).
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Fig. 1.2: Promoted abstract data types (PADTs) (a) comprise an inner type
T and global operations (GOA, GOB) promoting inner operations (OA, OB);
OO classes are PADTs here. Mathematically (b), classes have a global func-
tion (stm) mapping class objects os (identities) to their inner states (type T );
this is the basis for constructor (c from inner initialisation), destructor (d ,
from inner finalisation) and modifier operations (ms from inner operations).

1.2.2 Classes

ADTs lack an intrinsic identity. In the model of Fig. 1.1b (def. 3), two ADT
instances with the same state denote a single instance. Classes are populations
of individuals, suggesting uniquely identifiable individuals that retain their
identity irrespective of the state in which they are in. Z promotion [39, 35] is a
modular technique that builds ADTs with a collective identity by promoting
a local ADT in a global state without the need to redefine the encapsulated
ADT; promoted operations are framed, as only a portion of the global state
changes. Figure 1.2 depicts classes as promoted ADTs (PADTs), which un-
derpin the OO model presented here. A PADT PT (Fig. 1.2a), is made up
of an inner (or local) type T that is encapsulated and brought into a global
space to make the compound (or outer) type PT . The inner type represents
class intension; the outer type is concerned with class extension.

The mathematical underpinnings of a class as PADT are pictured in
Fig. 1.2b. A class (def. 6) is a 9-tuple C = (ci , t , os, stm, ot , c, d ,ms), com-
prising a class identifier ci : I , an inner type t : ADT , a set of objects os ⊆ O
of all possible object identities of the class, a global class state made up of
an object to state mapping stm ∈ os 7→ sts t , a typing mapping ot ∈ os 7→ I
indicating the direct class of the classes living objects, a constructor class op-
eration c ∈ nOps, a destructor class operation d ∈ dOps and class modifiers
ms ∈ uOps (see def. 5 for nOps, dOps and uOps). Functions icl , ity , osu,
los, csts, ost , ocl , cop, dop and mops extract information from class com-
pounds (def. 6) to yield: class identifier (icl), inner type (ity), universe of the
class’s possible objects (osu), class’s living objects (los), set of class states
(csts), object to state mapping (ost), object to direct class mapping (ocl),
and constructor (cop), destructor (dop) and modifier operations (mops).
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Fig. 1.3: Class inheritance: descendants inherit their ancestor characteristics
and add something of their own. In (a), state and operations of Parent are
inherited by Child, which adds SC and OC. Mathematically (b), inheritance
involves a pair of functions that preserve the class’s object to state mappings
(expressed as diagram commutativity); one function is identity (id) — child
objects are a subset of their parent objects —, the other is the abstraction
function ϑ, which gives the state as a parent when given the state of a child.

1.2.3 Inheritance

Inheritance, pictured in Fig. 1.3, embodies a constructive approach that
builds specificity on top of commonality (Fig. 1.3a). Its is-a semantics means
that a child is a parent with possibly something extra (Fig. 1.3a), which has
implications at the level of inner and outer types.

The inner type captures how the child inherits the characteristics of the
parent and adds something of its own through ADT extension (def. 8), ex-
pressed in Z as schema conjunction (def. 9): C == A ∧ X . Given inner ADTs
C (concrete or child) and A (abstract or parent), then C is defined as being
A with something extra, X .

From a child state space it is possible to derive the parent’s (by remov-
ing what is extra) as captured in the abstraction function ϑ (def. 10). The
mathematical relation between classes parent Cp and child Cc , depicted in
Fig. 1.3b, rests on this ϑ function that maps inner object states of child
to the ones of parent; in all states of the system the relation between child
and parent must preserve the diagram commuting of Fig. 1.3b. This relation,
described as a mapping from child to parent (def. 11), materialises the is-a
semantics at the mathematical level of classes in terms of the commuting of
Fig. 1.3b: at any system state a child object can be seen as a parent object.

Abstract classes (def. 12) have no direct instances and, hence, lack a direct
existence. They capture general ancestors in a hierarchy. For example, a class
primate would be an abstract class because its existence is indirectly defined
by the specimens of its descendants, such as human and gorilla.
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1.3 Behavioural Inheritance (BI) and Refinement

The following investigates BI under the prism of data refinement; it refers to
mathematical definitions from appendix 1.A.

1.3.1 Data Refinement

Refinement is a stepwise approach to software development, in which abstract
models are increasingly refined into more concrete models or programs with
each step carrying certain design decisions [38]. Data refinement [22] provides
a foundation to this process through a theory that compares ADTs with
respect to substitutability and preservation of meaning.

abstract 
initialisation 
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initialisation 

(ci)

abstract 
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concrete 
finalisation 

(cf)

abstract 
operation

concrete 
operation
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Fig. 1.4: Data refinement simulation: every
step in the concrete type is simulated by a
step in the abstract type.

Data refinement is founded
on total relations [22]; opera-
tions are relations over a data
type, programs are sequence
of operations. Complete pro-
grams over a ADT start with
an initialisation, carry out op-
erations and end with a finali-
sation (def. 13). In this setting,
data refinement is set inclusion:
given ADTs C and A, then for
all complete programs pC and
pA, with the same underlying

operations over C and A respectively, C refines A ( C w A) if and only
if pC ⊆ pA (def. 14).
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Fig. 1.5: Contractual total-
isation of a relation [39].

It is difficult to prove refinements through
complete programs. In practice, refinement
proofs resort to simulations (Fig. 1.4) where
ADTs are compared inductively [22] through a
simulation relation (R in Fig 1.4). For each op-
eration in the abstract type, there must be a
corresponding operation in the concrete type.
A refinement is verified by proving conjectures
(or simulation rules), given in definitions 15 for
forwards (or downwards) simulation and 16 for
backwards (or upwards) simulation and which
are related to the three commutings of Fig 1.4.
The two types of simulations are sufficient for
refinement (anything they can prove is a refine-
ment) and together they are necessary (any re-

finement can be proved using either one of them) [22].
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Fig. 1.6: Behavioural inheritance class simulation. An inherited class opera-
tion icop is simulated by a corresponding parent class operation pcop from
which it inherits. There may be child only class operations (represented as
coop), which are simulated by some step operation in the parent (pstepop).

In OO with design by contract [31], operations are described in terms of
pre- and post-conditions. Operations are partial relations applicable only in
those ADT states that satisfy the pre-condition (the relation’s domain). The
language Z operates in this partial setting. Refinement based on total rela-
tions is adapted to Z in [39] by deriving simulation rules based on a totalisa-
tion of partial relations. There are two Z refinement settings [16]: non-blocking
(contractual) refinement interprets an operation as a contract and so outside
the precondition anything may happen, while blocking (behavioural) refine-
ment says that outside the precondition an operation is blocked. Figure 1.5
gives the contractual totalisation of relation r = {a 7→ a, a 7→ b, b 7→ b, b 7→ c}
where undefinedness (⊥) and all elements outside the relation’s domain are
mapped to every possible element in the target set augmented with ⊥.

This paper focuses on the contractual interpretation, the most relevant for
our OO context; [4] covers both interpretations. Simulation rules for contrac-
tual refinement are given in facts 1 (forwards) and 2 (backwards).

1.3.2 BI Refinement

Although developed to support refinement (from abstract to concrete) or
abstraction (other way round), data refinement compares data types with
respect to substitutability making it applicable to BI.

BI needs to relate the types being compared (R in Fig. 1.5). Such a re-
lation can be discerned from Fig. 1.3b by looking into how child and parent
are related through inheritance (def. 11). This gives a basis for the BI class
simulation portrayed in Fig. 1.6, depicting inherited child operations (icop)
simulated by the parent operation they inherit from (pcop) and child-only
operations being simulated by parent step operations. Figure 1.6 suggests a
refinement relation as illustrated in Fig. 1.3b made up of a morphism com-
prising two functions: the ϑ abstraction function (def. 10) and identity. This
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hints at a modular approach for BI: we start with inner type refinement
(class intension) through function ϑ, followed by outer type refinement (class
extension), which is related to Z promotion refinement [16, 39, 29].

1.3.3 Inner BI as ADT Extension Refinement

For any classes ClA,ClC : Cl (def. 6), such that ClC is a child of ClA
(ClC inh ClA, def. 11), we have that inner BI equates to ADT extension
refinement of the class’s inner types: ity ClC wExt ity ClA.

Two alternative extension refinement settings are considered: one based
on the general function ϑ (def. 17) and a ϑ specific to the Z schema calculus
(def. 18) to cater to the ZOO approach. Simulation rules were derived with the
aid of Isabelle (see [4] for details). For backwards and forwards simulation,
the rules reduce to a single set (unlike the general case with separate rule
sets) — corollary 1 of appendix 1.A, a consequence of fact 3.

Let A,C : ADT be two ADTs — such as the inner ones of classes ClC and
ClA above, such that A = ity ClA and C = ity ClC — where C extends A
(def. 8). If C and A are two Z schema ADTS, then their their relation is
described by the schema calculus formula C == A ∧ X . Let A and C have
initialisation schemas AI and CI , operations AO and CO , and finalisation
schemas AF and CF 3. As established by fact 5, C wExt A if and only if:

1. `? ∀C ′ • CI ⇒ AI (Initialisation)
2. `? ∀C ; i? : V • pre AO ⇒ pre CO (Applicability)
3. `? ∀C ′; C ; i?, o! : V • pre AO ∧ CO ⇒ AO (Correctness)
4. `? ∀C • CF ⇒ AF (Finalisation)

The first rule allows initialisations to be strengthened. The second rule al-
lows the weakening of the precondition of a concrete operation (CO). The
third rule says that the extended operation (CO) must conform to the be-
haviour of the base operation (AO) whenever the base operation is applicable
— the postcondition may be strengthened. The last rule allows finalisation
strengthening, but reducing to true if the finalisation is total (the ADTs lack
a finalisation condition). Fact 4 captures extension refinement in the more
general relational setting.

3 The finalisation condition describes a condition for the deletion of objects; e.g. a bank
account may be deleted provided its balance is 0.
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1.3.4 Extra operations

Refinement requires that each execution step in the concrete type is simulated
by the abstract. A non-inherited operation in a child class (concrete) needs
to simulate something in the parent (abstract).

A common approach to this issue involves an abstract operation that does
nothing and changes nothing (called a stuttering or a skip operation). The
proofs verify that the new concrete operation refines skip: in the abstract
type, skip does nothing; in the concrete type, the button executes the new
operation. The rules for checking child-extra operations are obtained from
the rules above by replacing AO with skip (ΞA in Z).

1.3.5 Outer BI

Freeness

Cl
B
   S

B
 

B 

ists

ity sts
=

Fig. 1.7: Class (or pro-
motion) freeness

The BI simulation rules above (section 1.3.3) cater to
the class’s inner (or local) ADT only. In the class’s
outer ADT, the concern is whether the refinement
proved locally is preserved globally.

Z promotion refinement relies on promotion free-
ness [16, 39, 29]: a class refines another if there
is a refinement between the inner types and the
child class is free or unconstrained from the global
state [29]. Figure 1.7 describes freeness as a diagram
commuting: a class is free if the set of global object

states (function ists) is the same as the set of states of its inner type (function
composition sts ◦ ity) — as per def. 19. Hence, given classes ClA,ClC : Cl
(def 6) such that ClC is a child of ClA (ClC inh ClA, def. 11), as per fact. 6,
class ClC BI-complies with ClA (ClC wBI ClA) when ity ClC wExt ity ClA
and the classes are free (Fig. 1.7, def. 1.7). Hence, the rules of section 1.3.3
can be carried safely to contexts in which freeness holds.

1.4 The ZOO model of Queues

Figure 1.8 presents the running example of a hierarchy of queues. Class
QueueManager holds an indexed set of queues (HasQueues); the hierarchy
is as follows:

• Abstract class Queue holds a sequence of items. It has two operations:
join adds an element to the queue, and leave removes the queue’s head.

• Class BQueue (bounded queue) bounds the size of the queue.
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join (item : [item])
leave () : [Item]

items : seq [Item]
Queue [Item]

reset ()

RBQueue

BQueue
privileged [*]: Item

PBQueue JQBQueue

QueueManager
HasQueues

0..1
0..*

- bounded
- privileged
- jumpqueue
- resettable
- rab

QueueKind
<<enumeration>>

QId Qid
<<datatype>>

abandon ()

RABQueue

Fig. 1.8: A UML class diagram describing an inheritance hierarchy of queues
made-up of classes Queue, BQueue (bounded-queue), RBQueue (resettable-
bounded-queue), RABQueue (resettable-abandonable-bounded-queue).

• Class PBQueue (privileged-bounded queue) reserves the last place in the
queue to some privileged item.

• Class RBQueue (resettable-bounded queue) adds operation reset to empty
the queue.

• Class JQBQueue (jump-the-bounded-queue) add an extra behaviour to
operation join: the item taking the queue’s last place jumps the queue.

• Class RABQueue (resettable-abandonable-bounded-queue) adds abandon
enabling any element to leave the queue irrespective of its position.

The following presents excerpts of the ZOO model formalising the class
diagram of Fig. 1.8. The complete model is given in [4]. Further information
on ZOO can be obtained from [4, 3, 2, 10].

1.4.1 ZOO model Excerpt: Inner ADTs

Inner ADT of class Queue holds a sequence of items, which is initially empty.
Operation join receives an item and adds it to the back of the sequence.
Operation leave removes and outputs the sequence’s head.

Queue[Item]

items : seq Item

QueueInit [Item]

Queue[Item] ′

items′ = 〈〉

QueueJoin[Item]
∆Queue[Item]

item? : Item

items′ = items a 〈item?〉

QueueLeave[Item]
∆Queue[Item]; item! : Item

items 6= 〈〉 ∧ item! = head items

items′ = tail items
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BQueue extends Queue by bounding the queue with constant maxQ.

maxQ : N1

BQueue[Item]
Queue[Item]

# items ≤ maxQ

BQueueInit [Item]
BQueue[Item] ′

QueueInit [Item]

BQueueLeave[Item]
∆BQueue[Item]

QueueLeave[Item]

BQueueJoin[Item]
∆BQueue[Item]

QueueJoin[Item]

RBQueue extends BQueue; extra operation Reset empties the queue.

RBQueue[Item]
BQueue[Item]

RBQueueReset [Item]
∆RBQueue[Item]

items′ = 〈〉

PBQueue extends BQueue by adding a set of privileged items, set at
initialisation, and reserving the last place in the sequence to such an item.

PBQueue[Item]
BQueue[Item]
privileged : P1 Item

# items = maxQ ⇒ last items ∈ privileged

PBQueueInit [Item]
PBQueue[Item] ′

BQueueInit [Item]

privileged? : P1 Item

privileged ′ = privileged?

JQBQueue slightly modifies operation join inherited from BQueue: the
item occupying the last place left in the queue is placed at the queue’s head.

JQBQueue[Item]

BQueue[Item]

JQBQueueInit [Item]

JQBQueue[Item] ′

BQueueInit [Item]

JQBQueueLeave[Item]
∆JQBQueue[Item]

BQueueLeave[Item]

JQBQueueJoin[Item]
∆PBQueue[Item]; item? : Item

# items < maxQ − 1⇒ BQueueJoin[Item]

# items = maxQ − 1⇒ items′ = 〈item?〉a items

RABQueue extends RBQueue by adding abandon, allowing elements to
leave the queue no matter their position.

RABQueue[Item]
RBQueue[Item]

RABQueueInit [Item]
RABQueue[Item] ′

BQueueInit [Item]
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ABQueueLeave[Item]

∆RABQueue[Item]

RBQueueLeave[Item]

ABQueueJoin[Item]

∆RABQueue[Item]

RBQueueJoin[Item]

RABQueueReset [Item]
∆RABQueue[Item]; RBQueueReset [Item]

RABQueueAbandon[Item]

∆RABQueue[Item]; item? : Item

∃ q1, q2 : seq Item • items = q1 a 〈item?〉a q2 ∧ items′ = q1 a q2

1.4.2 Global Properties

Class extensions are obtained by instantiating the SCl Z generic (see [10]).
State extensions of Queue, BQueue, and RBQueue are:

SQueue[Item] == SCl [O QueueCl ,Queue[Item]][stQueue/oSt ]

SBQueue[Item] == SCl [O BQueueCl ,BQueue[Item]][stBQueue/oSt ]

SRBQueue[Item] == SCl [O RBQueueCl ,RBQueue[Item]][stRBQueue/oSt ]

Extension initialisations say that classes have no living instances:

SQueueInit [Item] == [SQueue[Item] ′ | stQueue′ = ∅ ]

SBQueueInit [Item] == [ SBQueue[Item] ′ | stBQueue′ = ∅ ]

SRBQueueInit [Item] == [ SRBQueue[Item] ′ | stRBQueue′ = ∅ ]

Association HasQueues is represented as a function relating QueueMan-

ager objects with sets of Queues indexed by set QId (the queue identifier).

AHasQueues
rHasQueues : O QueueManagerCl 7→ (QId 7→ O QueueCl)

The next invariant says that the RBQueue instances held by a QueueM-

anager must have queues of size at most 5.

RBQueuesInHasQueuesSizeLeq5[Item]

SystemGblSt [Item]

∀ oqm : O QueueManagerCl ; rq : O RBQueueCl | oqm ∈ dom rHasQueues •
rq ∈ (ran (rHasQueues oqm)) ∩ sRBQueue ⇒ #(stRBQueue abq).items ≤ 5
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Relevant outcome Issue

BQueue.join applicability proof fails applicability

PBQueue.join applicability proof fails applicability
RBQueue.reset does not refine skip (ΞBQueue) refinement of skip

ABQueue.abandon does not refine skip (ΞBQueue) refinement of skip

JQBQueue.join correctness proof fails operation overriding
QueueManager Global invariant breaches freeness assumption global Interference

Table 1.1: Results of the BI analysis of the queues example of Fig. 1.8.

1.5 The refinement straight-jacket and some loopholes

The BI proof rules derived in section 1.3 are over-restrictive. Ordinary inher-
itance hierarchies, such as the queues example of Fig. 1.8, fail to be pure BIs.
Furthermore, the rules may be misleading as one may wrongly conclude that
inner BI entails overall BI, which is not necessarily the case because global
constraints may invalidate what is proved locally (section 1.3.5).

Table 1.1 summarises the BI analysis for the example of figure 1.8. The
next sections discuss the four issues that emerged.

1.5.1 Applicability

In Fig. 1.8, class BQueue fails to refine Queue and PBQueue fails to refine
BQueue; applicability fails for operation join on both accounts:

• Precondition of Queue.join is, true, whilst that of BQueue.join is # items <
maxQ . The former does not imply the latter and so applicability fails.

• Pre-condition of PBQueue.join includes # items = maxQ − 1⇒ item? ∈
privileged , which does not imply precondition of BQueue.join.

In refinement, the concrete type may weaken the precondition; here, the
subclass preconditions are stronger.

These failures happen because the concrete operations strengthen the in-
herited pre-condition, violating substitutability as the behaviour becomes
observably different when the concrete type is used in place of the abstract
one. Suppose a braking system of a car; the abstract type says “upon brake
slow down” (precondition true), and the concrete type says, “upon brake slow
down when speed is less than 160 Km per hour” (precondition speed < 160)
— substitutability cannot possibly hold when pre-conditions are strenthned.
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1.5.2 Refinement of skip

Inner BI for RBQueue and ABQueue also fail with operations reset and
abandon failing to correctness-refine skip because both breach skip’s (ΞBQueue)
constraint saying that inherited state remains unaltered.

1.5.3 Operation overriding

The BI proofs for JQBQueue.join, which overrides BQueue.join, also fail.
The correctness conjecture cannot be proved as JQBQueue.join changes the
inherited post-condition.

1.5.4 Global interference

The inner BI rules of section 1.3.3 have a local scope (section 1.3.5, fact 6).
They can safely be used in contexts where objects of some class hierarchy
are not constrained by the environment, following from the freeness rule of
promotion refinement. However, when freeness is breached, BI checks become
severely complicated due to the complexity of global proofs.

Global constraint RBQueuesInHasQueuesSizeLeq5 (section 1.4.2) illus-
trates this issue. For any client of QueueManager that uses its queues, the
behaviour of instances of RBQueue and its descendants are observably differ-
ent from the remaining queues. In that context, freeness is breached and the
locally proved inner BI no longer holds globally. This global interference is
due to divergence of RBQueue with respect to the behaviour of other classes
in the hierarchy, such as, BQueue, PBQueue and JQBQueue. Suppose that
we create, using some QueueManager, objects oBQ of class BQueue and
oRABQ of class RABQueue (initially, both queues are empty). If we execute
operation join five times on them, the observed behaviour is the same. How-
ever, a sixth call to join on oBQ allows an item to be added to the sequence,
but fails on oRABQ because the precondition is breached (the queue already
holds five items); substitutability is violated: oRABQ cannot replace of oBQ .

1.6 A BI Examination

Apart from the insufficiently discussed global interference, the problems of the
previous section are acknowledged in Liskov and Wing’s seminal paper [28].
This section investigates BI in OO programming languages that support de-
sign by contract (DbC), namely: JML [15], Eiffel [33] and Spec] [27]. DbC
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languages are more formal and they support BI following [28], overcoming
BI’s restrictions through relaxations known as specification inheritance [17].

The next sections present (a) BI’s support in examined languages, (b) the
examination results, and (c) an appraisal of specification inheritance [17].

1.6.1 BI in DbC languages

class

COUNTER

create

make

feature -- State attributes

count : NATURAL_8

feature -- constructor

make

do

count := 0

ensure

count = 0

end

feature -- routines

inc

require

count < 127

do

count := count +1

ensure

count = old count + 1

end

end

(a) Eiffel

public class Counter {

private /*@ spec_public*/ byte count;

//@ public initially count == 0;

//@ ensures count == 0;

public Counter() { count = 0;}

/*@ requires count < 127;

@ assignable count;

@ ensures count == \old(count) + 1;*/

public void inc() { count++;}

}

(b) Java/JML

public class Counter {

[SpecPublic]

private byte count;

public Counter()

ensures count == 0;

{ count = 0;}

public void inc()

requires count < 127;

modifies count;

ensures count == old(count) + 1;

{ count++; }

}

(c) Spec]

Fig. 1.9: A simple Counter class in Eiffel, Java/JML and Spec]

DbC languages express invariants, contracts made of a pre- and a post-
condition and various code checks in the form of assertions. Assertions are
used for both static- and run-time verification; the former involves theorem
proving and aims to prevent run-time errors. JML is a satellite Java lan-
guage; assertions are written as program annotations. Eiffel and Spec] make
assertion specification an integral part of the language.
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Figure 1.9 presents a Counter class in Eiffel (Fig. 1.9a), Java/JML
(Fig. 1.9b) and Spec] (Fig 1.9c). The Eiffel assertions of Fig. 1.9a are in-
cluded in the require (pre-condition) and ensure (post-condition) clauses.
The JML specifications of Fig. 1.9b start with an @ symbol; the predicates
coming after requires and ensures denote pre- and post-conditions, respec-
tively. Spec] uses the same clauses to denote contracts (Fig 1.9c).

In DbC languages, both contracts and invariants are inherited following
specification inheritance [17]. This is based on two principles of refinement:
weakening of precondition and strengthening of postcondition. Inherited op-
erations may be extended or overridden and the accompanying contracts may
be combined in the following ways:

• Disjunction of pre-condition of parent and child.
• Conjunction of post-condition of parent and child.

This enables contract extension. JML provides the also clause to define new
pre- and post-condition pairs; Eiffel provides require else and ensure then

to achieve the same effect. Spec] disallows pre-condition extension, how-
ever, child invariants may result in extra inherited preconditions; new post-
conditions may be added (strengthening) using the usual requires clause.

Given a superclass A (abstract), a subclass C (concrete) and an operation
Op of A specialised in C , the pre-condition of Op in C is:

pre A.Op ∨ pre C .Op

The languages differ slightly in the way the subclass post-condition is
constructed. Eiffel and Spec] use a simple conjunction [33]:

post A.Op ∧ post C .Op

JML uses a conjunction of implications [17, 26]:

pre A.Op ⇒ post A.Op ∧ pre C .Op ⇒ post C .Op

1.6.2 The BI examination proper

The BI examination uses the queues example of Fig. 1.10, a slight variation
from Fig. 1.8 specified in Z in section 1.4, with the following changes:

• Generic Item is removed as generics are not supported in JML and Spec].
• To avoid complications with unbounded queues (in machines things are

always bounded), Queue is removed and BQueue is made the root of the
hierarchy.

Table 1.2 presents the tool versions used in the examination carried out
in January 2014: version 5.6 of JML compiler (part of the JML tools) and
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join (item : NAT)

leave () : NAT

items : seq NAT

BQueueN

reset ()

RBQueueN

abandon ()

RABQueueN

privileged [*]: NAT

PBQueueN

JQBQueueN

QueueManager

HasQueues

0..1
0..*

QId

- bounded

- privileged

- jumpqueue

- resettable

- rab

QueueKind

<<enumeration>>

Qid

<<datatype>>

Fig. 1.10: A UML class diagram of an inheritance hierarchy of queues of
natural numbers.

Java/JML Eiffel Spec]

RAC JML version 5.6 rc4 Eiffel studio 7.3 Spec]compiler version 1.0.211.26.0
on Microsoft Visual Studio 2010

Proof ESC/Java 2.0.5, sim-

plify theorem prover

N/A Boogie with theorem prover Z3

version 2.15 (as required by the
used version of Spec])

Table 1.2: Tool versions used in the BI examination of Java/JML, Eiffel and
Spec]. (Abbreviations: RAC = run-time assertion checking)

version 2.0.5 of ESC/Java4, which, at the time the examination took place,
were more stable than the newer open JML. The Eiffel part used release 7.3
of Eiffel studio5 and Eiffel’s static verification6.

The code implementing the diagram of Fig. 1.10 is given in [4], using an
implementation of queues as circular arrays. The examinations consisted of:

• Static assertion verification using theorem proving.
• Runtime assertion checking (RAC) by running code tests.

Table 1.3 summarises the results, indicating, for each test, whether an
error was raised or not. The colouring sets this paper’s expectation: green
(or medium gray) indicates that the result is seen as correct, red (or dark
gray) denotes incorrect, and yellow (or light gray) says that the marked issue

4 JML tools are available from http://bit.ly/1aYSdHZ and ESC/Java 2 from http://

bit.ly/1a4VTUS.
5 Available from http://bit.ly/1iTH8fn.
6 The examination used the research version of Eiffel verification environment (EVE),

available from http://bit.ly/1g7avuS, which includes the auto-proof tool [36] that uses
Boogie and the Z3 theorem prover as the verification back-end. Despite many efforts, all

attempts to try EVE have failed; EVE’s team was contacted but the issue was not solved.

http://bit.ly/1aYSdHZ
http://bit.ly/1a4VTUS
http://bit.ly/1a4VTUS
http://bit.ly/1iTH8fn
http://bit.ly/1g7avuS
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Java/JML Eiffel Spec#

proof runtime proof runtime proof runtime

PBQueueN.join no error no error N/A error no error error
JQBQueueN.join error error N/A error error error

RBQueueN.reset no error no error N/A no error no error no error

RABQueueN.abandon no error no error N/A no error no error no error
QueueManager no error N/A N/A error no error no error

Table 1.3: Results of the BI examination in JML, Eiffel and Spec] using
static verification (proof) and runtime assertion checking. Each cell can have
the values no error (no error raised or signalled), error raised and N/A (not
applicable, because test could not be run). (Green or medium gray = correct.
Yellow or light gray = Requiring attention. Red or dark gray = Incorrect.)

deserves further attention. The examination focused on BI’s critical points
discussed in section 1.5, namely:

• Applicability refinement was examined through class PBQueueN, its priv-
ileged items invariant, and the operation join. The results are inconsistent.
JML does not signal any errors (statically or at runtime); at run-time, both
Eiffel and Spec] raise pre-condition violation exceptions; Spec]’s static
checking does not signal any error7.

• Subclass extra operations altering inherited state is exercised through op-
erations RBQueueN.reset and RABQueueN.abandon. These are not sig-
nalled as errors in any of the examined languages.

• Operation overriding is exercised through operation JQBQueueN.join; er-
rors are signalled by all examined languages both statically and at runtime.

• Global interference is exercised here through the class QueueManager and
its invariant. The static checks do not raise any errors or warnings. Eiffel
raises an invariant violation exception at run-time. The runtime test could
not be run in JML; Spec] does not raise any error.

As mentioned, the DbC languages make certain relaxations to the rules of
Liskov and Wing [28]. This is why the results of table 1.3 differ from those
of table 1.1, which emerge from the strictest setting. This paper’s position
concerning the results of table 1.3 is as follows:

• A striking difference from table 1.1 is that the refinements involving the
subclass extra operations (RBQueueN.reset and RABQueueN.abandon)
are deemed valid by the DbC languages. This is because the DbC languages
use a relaxation that is proved in the next section.

• The results involving JQBQueueN.join are consistent with those of ta-
ble 1.1: it is not a refinement and rightly so.

7 Spec] does not allow preconditions to be added to inherited operations; however,

the precondition of the inherited operation PBQueueN.join could be specialised through

PBQueueN’s invariant.
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• It is erroneous to deem PBQueueN.join as valid, as confirmed statically
in JML and Spec] and at runtime in JML, as it is not a refinement. This
is an issue that stems from the pre-condition rule of specification inheri-
tance [17]. It is this paper’s position that an error should be signalled; only
the Eiffel and Spec] runtime checks are correct. In PBQueueN queues, the
last place in the queue must be occupied by a privileged item, implying
that the subclass precondition is strengthened which causes divergence:
when there is only one place left in the queue the superclass allows any
item to be added, whereas the subclass (PBQueueN) only allows privileged
items. The refinement static checks based on proof ignore this problem;
it is only Eiffel and Spec] that correctly signal this problem at runtime.
This highlights an inconsistency: the static checks guarantee absence of
such runtime errors, but the tests witness such errors on Eiffel and Spec].

• Static verification ignores global interference. Locally-proved BI checks
are context-dependent; the user should be informed about contexts that
may invalidate the local check. No such warnings were provided by the
static checks, but errors were observed at runtime (as invariant violation
exceptions) in Eiffel. Spec] does not raise an exception. Compilation errors
prevented the execution of the test in JML.

The next section looks into specification inheritance [17] to investigate the
problem with the pre-condition rule observed in the examination.

1.6.3 A Critique of specification inheritance [17]

The rules of specification inheritance are as follows: (a) pre-condition of par-
ent and child are combined using disjunction (weakening), (b) post-condition
of parent and child are combined using conjunction (strengthening). This
is contrived; the precondition rule implies that applicability is always true,
which may not reflect what the actual precondition says. In the braking ex-
ample given above — “upon brake slow down” (parent precondition, true)
and “upon brake slow down when speed is less than 160km/h” (child precon-
dition speed < 160) —, the subclass precondition is effectively strengthened,
but this is not reflected in the proof which always yields true and should not
because the inherited precondition is being strengthened.

1.7 Relaxing the refinement constraints

There are two ways to address the refinement restrictions: (a) we live with
the constraints and refactor the OO models to conform to them, or (b) we
relax the restrictions. Refactoring seeks to change a model while preserving
its meaning and is always a useful remedy. However, in this example, the
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sole use of refactoring would mean giving up on inheritance as all classes
would have to be merged into a single one. Operations reset and abandon

change abstract state, so they need moving in to the superclass; BQueue’s
special behaviour requires moving into the superclass; overall, we achieve a
valid refactoring at the cost of inheritance’s modularity.

Classical refinement, established to cater to stepwise software develop-
ment, requires that programs or concrete models conform to the more ab-
stract specifications to ensure that vital aspects captured by the abstraction
are fulfilled by the more concrete abstraction levels. The relaxations that
follow liberate BI by challenging assumptions of refinement. The sequel in-
troduces virtual operations which underpin all three relaxations, followed by
an explanation on the particularities of OO abstract classes that are exploited
for relaxations before explaining each relaxation.

1.7.1 Virtual operations

ClA

A

SA SB

OA OB

GOA GOB

GS

OC OD

Fig. 1.11: Virtual Operations.
Inner operations OC and OD

are not promoted and invisi-
ble to the class’s environment
— they are virtual.

The common remedy proposed here to
counter all identified BI malaises (section 1.5)
is the notion of virtual operation, depicted
in Fig. 1.11. An operation is virtual if it is
defined in the class’s inner type but it is
not made available to the environment. In
Fig. 1.11, inner operations OC and OD are
virtual because they are invisible to the envi-
ronment as they are not promoted (def. 20).

Virtual operations provide the right condi-
tions to lift the applicability refinement proof
obligation. There is no need to comply with
the circumstances in which the abstract but-
ton may be pressed because it cannot be

pressed (it is invisible); correctness, however, remains as the concrete op-
eration needs to comply with the effects of the abstract operation. Formally,
any inner operation co extension-refines a virtual operation ao (co wExt ao) if
and only if refinement-correctness holds — applicability is dropped (def. 21).

1.7.2 The particularities of OO abstract classes

Certain relaxations exploit the particularities of OO abstract classes8, which
lack a direct existence as all their instances directly belong to their descen-

8 not to be confused with a class that is abstract in the context of formal refinement!
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Child

Parent

SA SB

OA OB

SC

OC
OA

OB

(a) Class inheritance of a

non-abstract parent

Child

Abstract

SA
SB

OA

OB

SC
OC

OA

OB

OA

OB

(b) Class inheritance of an

abstract parent

Legend

Ordinary 
Class

C

Inherits

Abstract 
class 
operation

OA

OA Child 
operation

Abstract 
class

A

Varies

Fig. 1.12: Inheritance of non-abstract (a) and abstract classes (b).

dant classes (def. 12). Operations of an abstract class are inherently virtual as
they cannot possibly be executed; they have two purposes: (i) set a template
model of behaviour to be varied and specialised by descendants without a
commitment to the environment, and (ii) provide polymorphism in the outer
view by offering a multitude of possible descendant behaviours chosen depen-
dently on the class of the object on which the operation is called. Figure 1.12
uses the button analogy (rounded-rectangles) to contrast inheritance of non-
abstract and abstract classes; the former (Fig. 1.12a) have an actual existence
determined by their direct living instances with their buttons being pushable
from the environment; abstract parents (Fig. 1.12b), on the other hand, have
an indirect existence determined by the living instances of their progeny with
their environment-hidden buttons acting as templates to be specialised and
elaborated by child classes in the inner view, and those environment-exposed
buttons being polymorphic in the outer view.

1.7.3 The child-extra operations relaxation

Subclasses may have extra (or non-inherited) operations. The classical ap-
proach to this problem involves a skip parent operation doing nothing (sec-
tion 1.5) and ensuring substitutability: the skip button does nothing with the
concrete button doing something but respecting skip. This is too restrictive
(section 1.5) as it implies that inherited state cannot be altered.

The relaxation proposed here replaces skip with an operation that simu-
lates the concrete operation in the abstract world. This operation is virtual
as it is not expected by the environment. For example, when RBQueue is
used when a BQueue is expected, all is needed are operations join and leave,
the simulating substitute of reset is invisible to the environment.

Virtual simulating operations are constructed from subclass operations.
Given a subclass operation co (concrete) and the BI refinement function ϑ
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(def. 10), the required simulating abstract operation is (def 22):

ao∅ = ϑ∼ #co # ϑ

Any concrete operation co extension-refines its corresponding abstract virtual
operation ao∅ — co wExt ao∅ by fact. 7. Correctness was proved for all cases
in the Isabelle proof assistant (further details in [4]) and as ao∅ is virtual
there is no need to prove applicability. Hence, child extra operations can be
added freely: for any concrete operation co there is always an abstract virtual
operation ao∅ that simulates it!

1.7.4 The abstract class relaxation

This relaxation exploits the inner facet of abstract class operations discussed
above (section 1.7.2), namely the fact that internally such operations are
inherently virtual (def. 20). The relaxation stipulates that the inner BI checks
for inherited operations of an abstract class require the correctness proof only
as applicability proofs are lifted because the operations are virtual (def. 23).

1.7.5 The soft parent relaxation

ClA

ClB

(a) Problem

ClA

ClB

soft

(b) Solution

ClA

VClA

ClB

(c) Underpinning

Fig. 1.13: The soft parent relaxation.

This relaxation builds up on
the abstract class relaxation ex-
plained above. It tackles the prob-
lem of divergent subclass be-
haviour, which the abstract class
relaxation also tackles, but avoids
the need for abstract classes. The
soft parent relaxation (Fig 1.13)
should be used whenever we need
divergent subclass behaviour and

a non abstract parent, exemplified in Fig. 1.13a by classes ClB and ClA re-
spectively; the assertion that the parent is soft (Fig. 1.13b) results in an
underpinning configuration with a virtual abstract class (VClA), an abstrac-
tion of the parent class ClA, subclassed by both ClB and ClA (Fig. 1.13c).

The relaxation introduces a virtual abstract superclass behind the scenes,
an abstraction of the soft parent, to exploit the divergence offered by abstract
classes (Fig. 1.13c). It should be used whenever we need both (i) subclass
divergent behaviour, and (ii) parent instantiability. Due to unwanted diver-
gence, it should be used with care. It cannot be applied when the parent is a
child of a hard parent (neither abstract nor soft).
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1.7.6 The inheritance freeness relaxation

Inheritance Freeness

Cl
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Fig. 1.14: Inheritance freeness.

Global interference occurs whenever
global constraints cause divergence
between the behaviour of objects in
the global space and what would be
observed in a locally-confined space.
Inheritance-divergence concerns the
behaviour of child objects becom-
ing observably different from their
parent counter-parts. Global interfer-
ence can be seen as the often in-
evitable effect of the environment
upon the living objects that inhabit

it. If inheritance-divergence is caused by global interference, locally proved
BIs do not hold globally. The classical condition ensuring global BI-
preservation is class freeness (Fig. 1.7, def. 19), which is breached whenever
global constraints affect the local spaces of classes. As class freeness is an
overkill (fact 6), this paper proposes the inheritance freeness relaxation.

Inheritance freeness stipulates that child classes should not be more glob-
ally constrained than their hard parents (those neither abstract nor soft)
to prevent unwanted divergence. This covers two cases: (i) the parent is ei-
ther abstract or soft and the child is directly affected by global constraints
with inheritance divergence being allowed because the parent operation in
the outer view is polymorphic; (ii) the parent is hard and all relevant global
constraints are expressed in terms of the parent, which implies absence from
inheritance divergence because global constraints affect equally both parent
and descendants. The relaxation relies on a more relaxed freeness condition,
which widens the range of situations in which BIs hold globally as captured
by the commuting in Fig. 1.14 (def. 24), resulting in the following equations:

αLM r xs = r L xs M

((αLM ϑ) ◦ ists) ClC = ists ClA ∩ ((αLM ϑ) ◦ sts ◦ ists) ClC

Above, function αLM applies the relation image to the given relation; it is used
to take the relation image of function ϑ (def. 10). The left-hand side of the
equation obtains the set of object states of ClC and casts them to A using ϑ.
The right-hand side obtains the unconstrained objects states and casts them
to the abstract inner type A to yield the intersection with the allowed object
states of ClA. Overall, it says that the set of allowed objects states of ClC in
ClA must be the same as the set of allowed object states in ClC .

Hence, applicability-relaxed BI (def. 23) is elaborated to arrive at a relaxed
BI definition which replaces class freeness with inheritance freeness (def. 25):

vos = vopsids ClA C ((ops ◦ ity)ClA)
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reset ()

RBQueue

BQueue
privileged [*]: Item

PBQueue JQBQueue

QueueManager HasQueues

0..1
0..*

- bounded
- privileged
- jumpqueue
- resettable
- rab

QueueKind
<<enumeration>>

QId
Qid

<<datatype>>

abandon ()

RABQueue

join (item : [item])
leave () : [Item]

items : seq [Item]
Sequence [Item]

BSequence

soft

Fig. 1.15: A UML class diagram of an inheritance hierarchy of queues, result-
ing from a refactoring of the paper’s running example given in Fig. 1.8.

ClC wBI ClA ⇔ ity ClC wExt ity ClA ./ vos ∧ ClA Inhfree ClC

This relaxation implies two things: (a) children may diverge from non-hard
parents; (b) if the parent is hard, then inner children may not be directly
affected by global constraints. This is translated into a design guideline:

Global Invariants constraining the local definitions of classes that are part of
an inheritance hierarchy, should be formulated in terms of classes without

hard parents (neither abstract nor soft).

In the queues example of Fig. 1.8 (page 11), any invariants affecting the local
definitions of RBQueue and RABQueue should be stated in terms of the
abstract Queue or RBQueue, the uppermost non-abstract class.

1.7.7 Queues Revisited

The relaxations above would render the queues example of Fig. 1.8 BI-
conformant, albeit with a refactoring. Figure 1.15 presents the refactored
class model, which is as follows:

• Abstract class Sequence, the root of the hierarchy, provides a non-
deterministic join: an item can be added to either the sequence’s front or
back. Operation Sequence.leave does de-queuing (head of sequence is re-
moved from it). Abstract class BSequence puts a bound on the sequence.
These classes accommodate JQBQueue and its peculiar queue-jumping
behaviour which caused correctness-refinement to fail. This paper offers
no remedy other than refactoring for correctness-refinement malaises. The
refactoring together with the abstract class relaxation (section 1.7.4) would
entail: JQBQueue wBI BSequence wBI Sequence.
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• Class BQueue restores the normal queue behaviour with elements added to
the back of the sequence, and BQueue wBI BSequence as BSequence is ab-
stract. The soft parent relaxation would entail PBQueue wBI BQueue and
retain BQueue’s instantiability (soft annotation indicates that BQueue is
a soft parent of PBQueue).

• The child-extra operations relaxation (section 1.7.3) implies RBQueue wBI

BQueue and RABQueue wBI RBQueue. BQueue provides only two opera-
tions, join and leave; this relaxation allows the addition of RBQueue.reset

and ABQueue.abandon without any proof obligations.
• The inheritance freeness relaxation resolves the global interference issue

as the globally interfering constraint is being stated in terms of RBQueue,
which descends from a non-hard parent.

1.8 Discussion

BI relaxations. With a pair of spectacles focussed on rigour and correct-
ness we see that inheritance induces refinement relations. With another pair
focussed on practice and expressibility, we see how refinement’s restrictions
impair inheritance. The queues running example (Fig. 1.8) shows how triv-
ial inheritance hierarchies fail to be refinements in the strictest sense9. Sec-
tion 1.5 identified the hurdles faced when proving BI. This paper conciliates
correctness with both flexibility and expressibility by proposing four relax-
ations that offer BI without sacrifices to inheritance’s flexibility, reuse or
capacity for incremental definition.

Virtual operations are the key remedy against applicability issues, which is
what lies beneath most refinement hurdles highlighted in section 1.5. Virtual
operations belong to the class’s inner type but are invisible to the environ-
ment. Because they are never executed, the refinement applicability con-
straint may be lifted — the child operation no longer needs to be applicable
whenever the parent operation is also applicable —, implying that child pre-
conditions may be narrowed.

The four relaxations are as follows:

• The child extra operations relaxation allows the addition of extra subclass
operations without any proof obligations. For any concrete child extra
operation, it is possible to find an abstract simulating operation in the
parent, which is virtual and therefore free from applicability restrictions
and which always correctness-refine the simulating operation.

• The OO abstract class relaxation caters to subclass behavioural diversity.
Because abstract class operations are virtual — an abstract class has no
direct instances, implying that its inner operations are invisible to the

9 The subclassing of an unbounded by a bounded queue is a common specialisation that is
not a classical refinement. In general, a bounded type does not refine an unbounded one.
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environment —, applicability is lifted and all that is required to prove
is correctness. This relaxation is consistent with the view that abstract
classes are flexible templates with their objects being polymorphic, mean-
ing they are allowed to have a multitude of slightly diverging behaviours.
As the queues model and other models in [2] show, with due caution,
this relaxation is extremely useful whenever precondition narrowing is re-
quired; it enables OO inheritance designs that are flexible, make use of
polymorphism and preserve semantic behaviour, enabling a whole range
of behavioural diversity whereby the conditions for triggering specialised
operations may vary freely. For example, suppose we capture mating as a
means of sexual reproduction in mammals; abstract class Mammal cap-
tures the general notion of mating; the exact circumstances in which this
occurs would differ from species to species — the mating circumstances
of primates being different from the cetaceans with possibly further diver-
sity at the different sub-species of primate —, however, sub-species must
comply with the general mammal notion of mating if there is one.

• The soft parent relaxation caters to both behavioural diversity and reuse.
A soft parent entails a virtual abstract class (lacks a direct existence), an
abstraction of the soft parent; the parent and all its soft children become
children of the virtual abstract class, enabling the application of the ab-
stract classes relaxation. It should be used whenever we need more liberal
diversity than the one provided by classical (hard) inheritance and, for
the sake of reuse and instantiability, we need to avoid making the parent
abstract. When going from the queues example of Fig. 1.8 into the BI-
compliant model of Fig 1.15, this relaxation kept BQueue’s instantiability
and accommodated the peculiar PBQueue, which in Fig 1.15 was marked
as a soft descendant.

• The inheritance-freeness relaxation tackles global interference. As the
queues example highlights, the outside world may constrain the internal
states of classes, invalidating locally proved BIs. This relaxation widens
the range of situations in which proved BIs hold globally improving upon
promotion (or class) freeness [29], which requires the outside world not to
constrain the local states of classes. Inheritance-freeness is based on the
idea that a child class should not be more globally constrained than its
hard parents (neither abstract nor soft). It results in a design guideline:
global constraints affecting the inner states of classes should not be stated
in terms of instantiable classes with hard parents. For example, suppose
two sub-species of human and an environment that constrains one of these
sub-species to the point that the characteristic human up-right walking is
severely limited; in this context, any locally proved BI for walking would
only hold in this environment by appeal to this relaxation if class human
is made abstract, the sub-species are made soft descendants, or the envi-
ronment constraint is stated in terms of class human. The paper justifies
this relaxation using formal-based argumentation. When this relaxation is



28 Nuno Amálio

not applicable there is not a practical way to verify BI; global refinement
proofs are very complicated even in small systems.

The paper’s queues example and other examples from [2] combine refactor-
ing with the paper’s relaxations to construct BI hierarchies. All BI conjectures
of the queues example were proved in Z/Eves. Usually, proofs at the level of
local types are trivial; most of them are automatically provable in Z/Eves.

BI in design by contract languages. This paper examines BI in the
design-by-contract (DbC) technologies Java/JML, Eiffel and Spec] (sec-
tion 1.6). It draws attention to the following:

• The precondition rule is a problem in all examined languages (originating
from specification inheritance [17]). The examination highlighted inconsis-
tencies between static and runtime verification for a specialised operation
that narrows the precondition. The static checks concluded that there were
no problems with the pre-condition of operation PBQUeueN.join, but the
runtime tests triggered pre-condition violations in Eiffel and Spec]. This is
inconsistent; the static checks are there to ensure that such errors do not
occur at runtime. A thorough analysis revealed a problem with contract
inheritance [17], causing discrepancies between contract and code.

• The examined languages ignore global interference. The paper shows how
locally -proved BIs fail to be preserved in all global contexts. DbC lan-
guages should warn users of such problems because they may breach sub-
stitutability and, hence, cause unexpected run-time errors.

It is interesting to compare the examined languages. Eiffel was the best
in runtime verification, but its static verification approach could not be ex-
amined as it was being researched at the time of writing and was not part
of Eiffel’s official release; all efforts to try Eiffel’s verification environment
failed. Spec] was the best language in its support for static verification with
good back-end theorem proving based on Boogie and Z3; however, some novel
features of Spec], tuned for verification, appear to be non-intuitive.

On refinement. The refinement theory founded on total relations [22] is
simple and intuitive, but rests on an assumption not applicable to all com-
puting settings: that computing behaviours can be captured by a total rela-
tion. Once we cater to partial behaviours the rules become more complicated
and they bring out the interesting applicability condition. A large part of the
refinement work presented here involves a careful study of applicability to
understand the circumstances that allow this rule to be lifted.

This work helps to clarify the relation between various concepts that have
distinct designations in the literature, such as, behavioural subtyping, be-
havioural inheritance, data refinement, class refinement and promotion re-
finement. The original concept of behavioural subtyping equates to data re-
finement in the OO setting, where an arbitrary refinement relation is allowed.
Class refinement extends ADT-based data refinement to classes, where class
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refinement equates to Z promotion refinement. Behavioural inheritance is just
one specific class refinement because the refinement relation is fixed.

On OO Inheritance. This paper proposes soft inheritance as opposed to
the classical hard inheritance to help defining BI hierarchies. Languages con-
cerned with BI could consider the soft annotation to say that particular
inheritances are soft (some degree of inheritance-divergence is allowed).

1.9 Related Work

This paper extends the work presented in [3, 2], elaborating and reinforcing
the paper’s BI relaxations. This extension has four key components:

• The abstract model of OO of section 1.2 results from the insight gained
from ZOO, a Z style of OO [2, 10, 3] that builds-up on Hall’s work [19, 20].
It represents a class as two ADTs, making it consistent with models of
OO programming languages with a formal semantics (like those based on
design-by-contract, such as Eiffel, JML and Spec]); Meyer [32] sees the
OO paradigm founded on ADTs with classes having a type view and a
module view, which correspond to the inner and outer ADTs that make-
up a class in the paper’s OO model. This model clearly frames OO within
data refinement, contributing to the generalisability of the paper’s results,
which go beyond Z or ZOO10.

• The effort on mechanical verification with the Isabelle theorem prover
provided insight and feedback, which helped o elaborate the BI relaxations,
and made the proof effort more reliable by diminishing the possibility of
human error through the use of state of the art proof technology. The
derivations of the BI refinement rules have been proved in Isabelle; the
child-extra operations relaxation has been proved in Isabelle also.

• The novel soft parent relaxation and the accompanying notion of soft in-
heritance.

• The paper’s BI examination of the three design by contract (DbC) lan-
guages, JML, Eiffel and Spec], which is entirely new. It highlights a prob-
lem in the precondition rule that stems from [17].

The paper addressees the tension between the constraints of formal re-
finement and the practical needs of software engineering [13]. Retrench-
ment [13, 14] is a more liberal formal-refinement approach that tackles this
problem. This liberalisation idea drives the paper’s relaxations. However, the
paper’s approach to relaxation differs from retrenchment; whilst retrench-
ment provides conjectures that give room for narrowing the pre-condition
and widening the post-condition, this paper follows the refinement tradition

10 The paper’s model, differs from first-order models, such as Alloy’s [25], which represents

class attributes as relations with the resulting models being global and flat.
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of deriving rules from a more general setting, which are then further analysed
with respect to substitutability to produce relaxations.

Dhara da Leavens [17] used subclass extra operations BI relaxation. How-
ever, this relaxation is neither proved nor justified on formal grounds in [17].
To the author’s knowledge, this paper provides the first mechanical proof of
this relaxation carried out using proof technology to reinforce its foundations.

Abrial [1] proposes keep operations to overcome the restrictions of the skip
approach. keep operations are non-deterministic and guaranteed to preserve
the invariant; they may be safely added to abstract types [1]. They resemble
simulating abstract operations used in the child-extra operations relaxation,
which are safe because they are not visible to the environment.

While the OO model of Liskov and Wing [28] is similar to ZOO’s (there
is a mapping from objects to their state), their approach is based on a ear-
lier method of data refinement [23] that does not consider initialisation and
finalisation. This paper uses data refinement based on simulation [22], the en-
during basis of the theory, which accounts for object creation (initialisation)
and deletion (finalisation); BI cannot be guaranteed if these are not checked.
The rules of [28] correspond to the rule for blocking refinement given in [4].
In [28], the BI overkill is highlighted, but relaxations are not considered.

Wehrheim and Fischer [18, 37] investigate BI in the context of concur-
rency and the CSP process algebra. They studied how extra subclass oper-
ations may interfere with the behaviour of the superclass as observed from
the environment, and under which conditions are safety and liveness proper-
ties preserved by the subclasses. They propose several inheritance refinement
relations; the more liberal they are, the higher the risk of interference. The
one that is closer to ZOO’s relaxation on extra operations is weak subtyping,
which says that the subclass should have the same behaviour as its super-
class as long as no extra operations are called; the extra operations are not
considered in the comparison. The authors also proposed a more restricted
relation, optimal subtyping, which does not allow altering the behaviour of
the superclass at all; it is the same as the skip behaviour.

Object-Z [34, 16] defines a formal semantics for inheritance and a notion
of class refinement, but a discussion of BI is generally absent in its books.
In [16], BI and its relation to refinement is discussed, but no proof obligations
are proposed to check its correctness.

1.10 Conclusions

This paper investigates behavioural inheritance (BI) [28] by building up on
insight gained from previous work [2, 3]. It delves into BI’s foundations
through an abstract mathematical model of object orientation to come up
with sound ways of reconciling the correctness-sensitive refinement facet of
BI with the flexibility that characterises inheritance and the object-oriented
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(OO) paradigm. The paper’s accompanying technical report [4] provides fur-
ther details not given here; the Isabelle proofs supporting the work presented
here are given in [5]; all BI proofs related to the Z models corresponding to
Figs. 1.8 and 1.15 were undertaken in the Z/Eves Z prover.

BI’s constrictions are known since BI’s inception [28]. As this paper shows,
existing BI relaxations [17] are problematic and unconvincing; some relax-
ations are over-permissive (everything is a BI) and untrue to refinement,
resulting from an over-simplification of an intricate reality. This paper re-
visits BI by clearly framing it within the theory of data refinement [22]; it
derives BI proof rules from the foundations of the theory whilst trying to re-
lax the refinement constraints that severely limit BI with respect to an ethos
of inheritance and OO characterised by flexibility.

The mathematical model of OO developed in section 1.2 supports the
framing of BI under the umbrella of data-refinement [22] whilst providing a
mathematical foundation to the paper’s major contributions. Data refinement
is simply and elegantly expressed as sub-setting in the world of total relations.
If totality is appropriate for the concrete computing world of programs where
machine processing requires everything to be defined, it becomes inadequate
for the higher-levels of abstraction focussed on the essence of problems and
which, for the sake of abstraction, demand partial relations. Furthermore,
design by contract (DbC) languages support a computing paradigm based
on explicitly declared assumptions (pre-conditions) and expectations (post-
conditions) which requires partiality. To accommodate partiality and BI, the
paper adapts the rules of data refinement to partial relations specific to BI.
To accommodate object orientation, the paper takes the theory of data re-
finement for abstract data types (ADTs) and adapts it to OO classes. The
abstract OO model of section 1.2 based on ADTs enables the derivation of
BI-specific conjectures from the theory of data of refinement.

The BI conjectures of section 1.3 are derived through the totalisation
technique used in Z refinement. The simple refinement relation (ϑ function,
def. 10) capturing inheritance’s child-parent relation reflects the fact that
there are actually two ADTs involved in a class construction known in Z as
promotion, and this provides a separation: the inner and outer types as rep-
resentative of the corresponding views or worlds of a class. Most derivation
work was grounded on the ϑ refinement function, which is confined to the
inner type. By exploiting the properties of ϑ, the paper proved that the in-
ner BI conjectures reduce to a single set (corollary 1). From here, the paper
derived the actual inner BI conjectures (or ADT extension refinement) in
the relational (fact 4) and Z-schema settings (fact 5), alerting that overall BI
refinement requires class freeness (fact 6).

The derived BI conjectures of section 1.3 were applied to the paper’s run-
ning example in section 1.5, which endorsed what is long known: trivial in-
heritance relations widely used in OO programming are not refinements in
the strictest sense. The analysis of section 1.5 identified issues with child-
extra operations, operation overriding, child operations that strengthen the
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pre-condition and global interference. Global interference, neglected in the
literature, is the realisation that locally proved BIs do not necessarily hold
globally. The analysis resulting from the paper’s running example poses two
questions: (i) how to reconcile BI with an ethos of inheritance characterised
by flexibility? (ii) How do DbC languages deal with BI’s over-restrictiveness?

The examination of the DbC languages Eiffel, JML and and Spec] of sec-
tion 1.6 highlighted inconsistencies between static and dynamic verification,
a neglect for global interference, and issues with the pre-condition conjec-
ture of [17], which is over-permissive (everything is a refinement) validating
statically BIs that turned out to be invalid at run-time.

The BI analysis (sections 1.5 and 1.6) motivates the quest for improved
relaxations. The paper’s relaxations target two issues identified in section 1.5,
namely: applicability’s restrictions and global interference. The core remedy
against applicability malaises is virtual operations, which result from the ob-
servation that certain inner class operations are invisible to the environment
(hence, virtual), giving room to lift the applicability rule: the child operation
no longer needs to be applicable whenever the parent operation is applica-
ble because the parent operation is invisible to the environment. This idea
underpins all the paper’s relaxations. For global interference, this paper take
as normative the restriction of promotion refinement’s freeness constraint,
which is relaxed through the novel inheritance freeness based on the idea
that children should not be more constrained than their hard parents. To-
gether with refactoring, the relaxations were used to transform the queues
running example of Fig. 1.8 into the BI compliant alternative of Fig. 1.15.

This paper has the following contributions:

• The useful abstract class relaxation and the underlying notion of virtual
operations. Although, they were both proposed in [2, 3], they have been
elaborated here. This paper emphasises virtual operations and the fact
that applicability is lifted whenever a virtual operation is refined.

• The novel soft parent relaxation and the accompanying notion of soft inher-
itance, which is useful in situations requiring both inheritance-divergence
and parent instantiability.

• The reinforcement of the child-extra operations relaxation, which is also
proposed in [2, 3] and [17], by carrying out the required formal proofs in
the state of the art Isabelle prover; this increases the reliability of proof
by diminishing the possibility of human error. Using the virtual operation
notion, the applicability proof obligation is lifted; it was proved that child
extra operations always correctness-refine their corresponding simulating
abstract operations — hence, child extra operations may be added freely.

• The inheritance-freeness relaxation dealing with global interference elabo-
rates on [2, 3]. Due to its complexity, this relaxation was proved informally
using formal argumentation in the accompanying technical report [4].

• The critique to the specification inheritance relaxations [17] grounded on
the examination of three DbC languages relying on [17]. The pre-condition
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(or applicability) conjecture of [17] as being problematic with the examina-
tion highlighting inconsistencies between static and dynamic verification.
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Appendix 1.A: Mathematical Definitions

Definition 1 (Given Sets). Given sets (all disjoint) O , S , I and E represent
objects, states, identifiers and environments respectively. �

Definition 2 (Sets for ADTs). The following definitions support abstract
data types (ADTs):

• Set Init = E↔S , of relations between environments E (def. 1) and initial
states S (def. 1), represents all possible ADT initialisations (initial states).

• Set Fin = S ↔E , of relations between final states S (def. 1) and environ-
ments E (def. 1), represents all possible ADT finalisations (final states).

• Set Op = I 7→ (S ↔ S ), of functions from identifiers (def. 1) of operations
(names), to a relation between states (representing a transition between a
a before- and an after-state), represents all possible ADT operations.

�

Definition 3 (ADTs). An abstract data type (ADT) t = (s, i , f , os) is made
up of set s ⊆ S of all type states (def. 1), an initialisation i : Init (def. 2), a
finalisation f : Fin (def. 2), and an indexed set of operations os : Op (def. 2).

The set of ADTs, such that t : ADT , is defined as:

ADT = {(s, i , f , os) | s ∈ P S ∧ i ∈ E ↔ s ∧ f ∈ s↔ E ∧ os ∈ I 7→ (s↔ s)}

Auxiliary Definitions. Several functions extract information from an ADT:

sts (s, i , f , os) = s init (s, i , f , os) = i fin (s, i , f , os) = f ops (s, i , f , os) = os

�

Definition 4 (Sets for Classes). The following sets support classes:

• Set OSt = O 7→S , of partial functions from an object to a state, represents
the state of a class: its living objects are mapped to their states.
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• Set ONew = E ↔ (OST ↔ OST ), of relations between environments E
and a transition of class global states (OST↔OST ), represents the effect
of a class constructor on the global class state .

• Set ODel = (OST ↔OST )↔E , of relations between a transition of class
global states (OST ↔OST ) and environments E , represents the effect of
a class destructor on the global class state.

• Set OUpd = I 7→I 7→(OST↔OST ), of partial functions from identifiers of
global operations to another function from identifiers of local operations
to a transition of class global states (described as a relation, OST↔OST ),
which represents the effect of a class update operation: the operation re-
sults in a transition from a particular class state to another class state in
which the state of the affected object is updated through a local operation.

�

Definition 5 (Promoted Operations). Partial functions nOps : ADT ×
OST 7→ONew , dOps : ADT×OST 7→ODel , and uOps : ADT×OST 7→OUpd
give constructor, destructor and modifier operations of a class, respectively,
which are built from the given inner type (see defs. 3 and 4 for the used sets).
The functions are as follows:

nOps = (λ t : ADT ; ost : OST • {nop : ONew |
∃ e : E ; o : O \ dom ost ; s : S | (e, s) ∈ init t • e 7→ {(ost , ost ∪ {o 7→ s})} ∈ nop})

dOps = (λ t : ADT ; ost : OST • {dop : ODel |
∃ e : E ; o : dom ost | (ost o, e) ∈ fin t • {(ost , {o} −C ost)} 7→ e ∈ dop})

uOps = (λ t : ADT ; ost : OST • {uop : OUpd |
∃ ig , il : I ; o : dom ost ; s′ : sts t | il 7→ {(ost o, s′)} ∈ ops t •

ig 7→ {il 7→ {(ost , ost ⊕ {o 7→ s′})}} ∈ uop})

�

Definition 6 (Class). A class is C = (ci , t , is, os, stm, ocl , c, d ,ms) is made-
up of a class identifier ci : I , type t : ADT (def. 3), a set of possible object
states is ⊆ sts t , a set of objects os ⊆ O (all possible class objects), a global
class state stm ∈ OST , a mapping ot : os 7→I relating objects to the identifiers
of their direct classes, a constructor c ∈ ONew , a destructor d ∈ ODel and
modifiers ms ∈ OUpd (see def. 4 for ONew , ODel and OUpd).

The set of classes, such that C : Cl is defined as:

Cl = {(ci , t , is, os, stm, ot , c, d ,ms) | ci ∈ I ∧ t ∈ ADT ∧ is ⊆ sts t ∧ os ∈ P O

∧ stm ∈ os 7→ is ∧ ot ∈ os 7→ I ∧ dom ot = dom stm
∧ c ∈ nOps (t , stm) ∧ ms ∈ uOps (t , stm) ∧ d ∈ dOps (t , stm)}

Above, it is asserted that both the global class state function stm and the
typing mapping ot are defined for the set of living objects of the class.

Auxiliary Definitions. Several functions extract information from a class:
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icl (ci , t , is, os, stm, ot , c, d ,ms) = ci ity (ci , t , is, os, stm, ot , c, d ,ms) = t

ists (ci , t , is, os, stm, ot , c, d ,ms) = is osu (ci , t , is, os, stm, ot , c, d ,ms) = os
los (ci , t , is, os, stm, ot , c, d ,ms) = dom stm ost(ci , t , is, os, stm, ot , c, d ,ms) = stm

ocl(ci , t , is, os, stm, ot , c, d ,ms) = ot cop (ci , t , is, os, stm, ocl , c, d ,ms) = c

dop (ci , t , is, os, stm, ocl , c, d ,ms) = d mops (ci , t , is, os, stm, ocl , c, d ,ms) = ms
pops (ci , t , is, os, stm, ocl , c, d ,ms) =⋃
{im : dom ms • dom(ms im)}

Above, icl gives the class’s identifier; ity yields the inner type, ists yields the
set of object states; osu yields the universe of objects of the class (all possible
class objects); los yields the living (or existing) objects of the class; ost yields
the class’s global state; ocl gives the mapping from living objects into the
identifiers of their direct classes; cop, dop and mops yield the constructor,
destructor, and modifier operations, respectively; and pops yields the set of
promoted inner type operations. �

Definition 7 (State Space Composition). Function ω : P S × P S → P S
builds larger state spaces from smaller ones. Given states spaces S1,S2 : P S ,
ω(S1,S2) yields their composition. �

Definition 8 (State Extension). Given C ,A : ADT (def. 3), C is a state
extension of A if and only if C ’s state space is made up of A’s with something
extra (see def. 7 for ω):

C extends A⇔ ∃Sx ∈ P S | sts C = ω(sts A,Sx )

�

Definition 9 (Z schema state extension). Given ADTs C ,A : ADT (def. 3),
defined as Z schemas, C is a state extension of A as per def. 8 if it is defined
using the following Z schema calculus formula:

C == A ∧ X

This says, using the Z schema conjunction operator (equivalent to ω of def. 7),
that the state of C is that of A with something extra (X ). �

Definition 10 (ϑ-function). Given C ,A : ADT (def. 3), such that C extends A
(def. 8), function ϑ : sts C → sts A yields the state being extended:

ϑ (ω(sts A,Sx )) = sts A

This recovers the state space that gave rise to the ADT’s compound state.
Function tϑ : ADT×ADT→(P S→P S ), described as a definite description

(operator µ), yields a ϑ given two ADTs:

tϑ(C ,A) = µϑ : sts C → sts A | C extends A ∧ ϑ (ω(sts A,Sx )) = sts A

�

Definition 11 (Inheritance). Given ClC ,ClA : Cl (def. 6), ClC (child) in-
herits from ClA (parent) if and only if the inner state space of ClC extends
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that of ClA (def. 8), the set of objects of ClC is a subset of that of ClA, and
there exists a function ϑ (def. 10):

ClC inh ClA ⇔ ity ClC extends ity ClA ∧ osu ClC ⊆ osu ClA ∧ los ClC ⊆ los ClA
∧ ∃ϑ | ϑ = tϑ(ity ClC , ity ClA) ∧ (ost Clp) ◦ id = ϑ ◦ (ost Clc)

Above, the equation with function composition (symbol ◦) captures the dia-
gram commutativity of Fig. 1.3b. �

Definition 12 (Abstract Class). An abstract class lacks direct instances.
Set of abstract classes ACl ⊆ Cl , a subset of Cl (def. 6), is defined as:

ACl = {c : Cl | (ocl c)∼ L{icl c} M = ∅ }

This says that the living instances preclude direct instances. �

Definition 13 (Programs). A program is a sequence of operations upon a
data type. A complete program begins with an initialisation and ends with a
finalisation. A program with operations i1, i2 over a type T : ADT (def. 3),
results in the complete program: init T # ops T i1 # ops T i2 # fin T .

Function cmpops : ADT×seq I 7→(S↔S ) yields the overall state transition
(a relation between states):

cmpops(T , 〈〉) = id

cmpops(T , 〈i〉a is) = (ops T i) # cmpops (T , is)

Above # is relation composition.
Function cprog : ADT × seq I 7→ E ↔ E , computes the effect of a com-

plete program, yielding a relation between environments corresponding to the
environment expectations and the environment effects of the program:

cprog(T , is) = (init T ) # cmpops(T , is) # (fin T )

�

Definition 14 (Data Refinement). For A,C : ADT (def 3), C refines A
(C w A) if and only if for each finite sequence of operations os over the
indexing set I common to both C and A (dom(ops A) = I = dom(ops C )),
we have that (cprog is as per def 13):

cprog (C , os) ⊆ cprog (A, os)

�

Definition 15 (Forwards Simulation). Given A,C : ADT (def 3) and a
relation relating their state spaces r : sts A↔ sts C , we say that C refines A
(C w A) with r being a forwards simulation if:

(init C ) ⊆ (init A) # r

r # (fin C ) ⊆ (fin A)
r # (ops C io) ⊆ (ops A io) # r
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Above, io is an operation of A and C — io ∈ dom(ops A)∩dom(ops C ). The
rules are as per the commuting of Fig. 1.4 when the relation is upwards. �

Definition 16 (Backwards Simulation). Given A,C : ADT (def. 3) and a
relation relating their state spaces s : sts C ↔ sts A, we say that C refines A
(C w A) with s being a backwards simulation if:

(init C ) # s ⊆ (init A)
(fin C ) ⊆ s # (fin A)

(ops C io) # s ⊆ s # (ops A io)

Above, io is an operation of A and C — io ∈ dom(ops A)∩dom(ops C ). The
rules are as per the commuting of Fig. 1.4 when the relation is downwards.
�

Fact 1 (Forwards Simulation, partial relations). Given A,C : ADT (def 3)
and a relation relating their state spaces r : sts A↔sts C . In a setting of non-
communicating partial operations, C refines A (C w A) and r is a forwards
simulation in the non-blocking (or contractual) setting if:

(init C ) ⊆ (init A) # r (initialisation)

r # (fin C ) ⊆ (fin A) (finalisation)

r L dom(ops A io) M ⊆ dom(ops C io) (applicability)
dom(ops A io) C r # (ops C io) ⊆ (ops A io) # r (correctness)

Above, io is an operation of A and C — io ∈ dom(ops A) ∩ dom(ops C ).

Proof. These rules are proved in [39] and [16] from the rules for total rela-
tions (def. 15) using a totalisation technique (see [39] for details). �

Fact 2 (Backwards Simulation, partial relations). Given A,C : ADT (def 3)
and a relation relating their state spaces s : sts C↔sts A. In a setting of non-
communicating partial operations, C refines A (C w A) and s is a backwards
simulation in the non-blocking (or contractual) setting if:

(init C ) # s ⊆ (init A) (initialisation)

(fin C ) ⊆ s # (fin A) (finalisation)

dom(ops C io) ⊆ dom(s −B (dom(ops A io))) (applicability)
dom(s −B (dom(ops A io)))−C (ops C io) # s ⊆ s # (ops A io) (correctness)

Above, io is an operation of both A and C — io ∈ dom(ops A)∩dom(ops C ).

Proof. These rules are proved in [39] and [16] from the rules for total rela-
tions (def. 16) using a totalisation technique (see [39] for details). �

Definition 17 (Extension refinement function, general). Let C ,A : ADT
(def. 3) such that C extends A (def 8), the refinement function ϑ is obtained
from function tϑ (def. 10):

ϑ = tϑ(C ,A)

�
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Definition 18 (Extension refinement function, schemas). Let A,C : ADT
be two inner Z schema ADTs such that C extends A as described by the
Z schema calculus formula C == A ∧ X . The ϑ BI function of def. 10 is
described by the Z formula:

ϑ = λC • θA

This casts the general ϑ of def. 17 into the context of the Z schema calculus.
�

Fact 3 (Single set of refinement rules). Given C ,A : ADT (def 3), if the
refinement relation is a total function f : sts C → sts A, then data refine-
ment reduces to a single set of rules with forwards simulation (def 15) being
equivalent to backwards simulation (def 16):

(init C ) ⊆ (init A) # f ∼ ⇔ (init C ) # f ⊆ (init A)

f ∼ #(fin C ) ⊆ (fin A)⇔ (fin C ) ⊆ f # (fin A)

f ∼ #(ops C io) ⊆ (ops A io) # f ∼ ⇔ (ops C io) # f ⊆ f # (ops A io)

Above, io is an operation identifier defined in concrete and abstract type —
io ∈ dom(ops A) ∩ dom(ops C ).

Proof. The equivalences were proved in Isabelle. Hand-written proofs are
given in [4]. �

Corollary 1 (Single Set of Rules for Extension Refinement). The rules of
extension refinement reduce to a single set. This results from applying fact 3
to the BI refinement functions of defs. 17 (relations) and 18 (schemas). �

Fact 4 (Extension Refinement, relations). Given C ,A : ADT (def 3), such
that C extends A (def 8), C extension-refines A (C wExt A) with ϑ being the
refinement function (def. 17) if the three major data refinement conditions
— initialisation (init), finalisation (fin) and operations (ops) — are satisfied:

ϑ = tϑ(C ,A) C wExt A⇔ C winit
Ext A ∧ C wfin

Ext A ∧ C wops
Ext A

We define the initialisation and refinement conditions as:

C winit
Ext A⇔ (init C ) ⊆ init A # ϑ∼ (initialisation)

C wfin
Ext A⇔ ϑ∼ #(fin C ) ⊆ (fin A) (finalisation)

An operation extension-refines another if the applicability (appl) and cor-
rectness (corr) conditions are met:

C wops
Ext A⇔ ∀ io : dom(ops C ) • (ops C io) wappl

Ext (ops A io) ∧ (ops C io) wcorr
Ext (ops A io)

co wappl
Ext ao ⇔ dom(ϑ # ao) ⊆ dom(co) (applicability)

co wcorr
Ext ao ⇔ dom ao C (ϑ∼ #co # ϑ) ⊆ ao (correctness)

Proof. The rules above were proved in Isabelle (see [4] for further details). �
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Fact 5 (Extension Refinement, schemas). Given Z schema inner ADTs C ,A :
ADT (def 3) such that C extends A (def 8) — which in Z is described as
C == A ∧ X (where X is the extension) —, then C wExt A if and only if:

∀C ′ • CI ⇒ AI (initialisation)
∀C • CF ⇒ AF (finalisation)

∀C ; i? : V • pre AO ⇒ pre CO (applicability)

∀C ′; C ; i?, o! : V • pre AO ∧ CO ⇒ AO (correctness)

If the finalisation is total (the ADT does not have a finalisation condition)
the finalisation rule reduces to true.

Proof. The rules above were proved in Isabelle (see [4] for further details). �

Definition 19 (Free Classes). Given any class ClB : Cl (def. 6), we say that
ClB is free (or that the underlying promotion is free) if the following holds:

free ClB ⇔ ists ClB = (sts ◦ ity) ClB

This says that the inner states are free from global constraints (commuting
of Fig. 1.7). �

Fact 6 (BI Refinement). Let ClA,ClC : Cl (def 6) such that ClC inh ClA
(def. 11). ClC is BI conformant with ClA (ClC wBI ClA) if and only if:

ClC wBI ClA ⇔ ity ClC wExt ity ClA ∧ free ClC ∧ free ClA

This requires that ClC ’s inner type extension-refines ClA’s and both ClC and
ClA are free (def. 19).

Proof. This applies promotion refinement and freeness of [29] to BI. �

Definition 20 (Virtual operations). Function vopids : Cl 7→ P I identifies
the set of possible inner virtual operations of a class (set Cl , def 6):

vopids cl =

{
(dom ◦ ops ◦ ity) cl \ pops cl ifcl 6∈ACl

(dom ◦ ops ◦ ity) cl otherwise

Above, vopids yields all identifiers of inner type operations not being pro-
moted or the identifiers of all inner operations if the class is abstract.
�

Definition 21 (Extension Refinement with virtual operations). Extension
refinement (def. 4) is extended to cater to virtual operations vops ⊆ I . Given
C ,A : ADT (def 3), such that C extends A (def 8), C extension-refines A
with virtual operations vops (C wExt A ./ vops) if the following holds:

C wExt A ./ vops ⇔ vops ⊆ (dom ops A) ∧ C winit
Ext A ∧ C wfin

Ext A ∧ (C wops
Ext A ./ vops)

The conditions for the refinement of operations then becomes:
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C wops
Ext./ vops ⇔
∀ io : dom(ops C ) \ vops • (ops C io) wappl

Ext (ops A io) ∧ (ops C io) wcorr
Ext (ops A io)

∧ ∀ io : dom(ops C ) ∩ vops • (ops C io) wcorr
Ext (ops A io)

This says that correctness suffices to prove that a concrete operation refines
a virtual operation. All other definitions are as per fact 4. �

Definition 22 (Simulating abstract operations). Given C ,A : ADT (def. 3),
such that C extends A (def. 8), then for any child (or concrete) operation
co ∈ ops C , it is possible to calculate a simulating operation ao∅, which
simulates co in the abstract world, using function tϑ (def. 10):

ϑ = tϑ(C ,A) ao∅ = ϑ∼ #co # ϑ

Operation ao∅ is virtual.
�

Fact 7 (Refinement of virtual operations). Given C ,A : ADT (def. 3), such
that C extends A (def. 8), then any concrete operation co ∈ ops C extension-
refines the simulating operation ao∅ (def. 22) — co wExt ao∅.

Proof. Correctness was proved in Isabelle (further details in [4]). Applicability
is dismissed by the virtual operation principle captured in def. 21. �

Corollary 2 (BI of child extra operations). Let ClA,ClC : Cl (def 6) such
that ClC inh ClA (def. 11). Any child extra operation co not defined in ClA
is inner BI conformant as a result of fact 7. �

Definition 23 (Applicability-relaxed BI). Given ClA,ClC : Cl (def 6) such
that ClC inh ClA (def. 11). ClC is BI conformant with ClA (ClC wBI ClA)
when the following holds:

vos = vopsids ClA C ((ops ◦ ity)ClA)

ClC wBI ClA ⇔ (ity ClC wExt ity ClA ./ vos) ∧ free ClC ∧ free ClA

Above, vos holds virtual operations of ClA. �

Definition 24 (Inheritance freeness). Let ClC ,ClA : Cl (def. 6) such that
ClC inh ClA (def. 11), ϑ be the function relating inner states of ClC and ClA
(def. 10) and αLM be a function that applies the relation image (L M):

ϑ = tϑ(ity ClC , ity ClA) αLM r xs = r L xs M

We say that this inheritance relation is free if the following holds:

ClC Inhfree ClA ⇔ ((αLM ϑ) ◦ ists) ClC = ists ClA ∩ ((αLM ϑ) ◦ sts ◦ ists) ClC

This says that the set of inner states of child ClB held by parent ClA must be
the same as set of inner states held by ClB , which captures the commuting
of Fig. 1.14 and says that the child cannot be more globally constrained than
the parent. �
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Definition 25 (Relaxed BI Refinement). Let ClA,ClC : Cl (def 6) such that
ClC inh ClA (def. 11). Class ClC is BI conformant with ClA (ClC wBI ClA)
with relaxed applicability and freeness when the following holds:

vos = vopsids ClA C ((ops ◦ ity)ClA)

ClC wBI ClA ⇔ ity ClC wExt ity ClA ./ vos ∧ ClA Inhfree ClC

Above, vos holds virtual operations of ClA; Inhfree is as per def. 23. �
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