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Abstract 

Pregabalin is the first-line treatment for neuropathic pain (NeP) in humans. Dogs with Chiari-

like malformation and syringomyelia (CM/SM) associated with NeP could benefit from pregabalin. 

The aim of this study was to evaluate the efficacy of pregabalin for NeP in dogs with CM/SM. Eight 

dogs with symptomatic CM/SM were included in a double-masked, randomised, crossover placebo–

controlled clinical trial. All dogs received anti- inflammatory drugs as base-line treatment during 

placebo or pregabalin phase of 14 ± 4 days each. Analgesic efficacy was assessed with a daily 

numerical rating scale (NRS) recorded by dog owners (0–10, 10 = worst pain) and quantitative sensory 

testing at baseline, placebo and pregabalin phases. Blood samples were collected to report pregabalin 

exposure and to assess renal function. 

Daily NRS scores recorded by dog owners in the pregabalin group were lower than in the 

placebo group (P = 0.006). Mechanical thresholds were higher with pregabalin compared to baseline 

or placebo (P = 0.037, P < 0.001). Cold latency at 15 °C was prolonged on the neck and humeri with 

pregabalin compared to baseline (P < 0.001 for both) or placebo (P = 0.02, P = 0.0001). Cold latency 

at 0 °C was longer on pregabalin compared to baseline and placebo (P = 0.001, P = 0.004). There was 

no pregabalin accumulation between first and last dose. This study demonstrates the efficacy of 

pregabalin for the treatment of NeP due to CM/SM on daily pain scores recorded by dog owners. 

Pregabalin significantly reduced mechanical hyperalgesia, cold hyperalgesia (0 °C) and allodynia 

(15 °C) compared to placebo. Pregabalin was non-cumulative and well tolerated with occasional mild 

sedation. 
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Introduction 

Chiari-like malformation and syringomyelia (CM/SM) is a disease complex described in dogs, 

which can cause clinical signs suggestive of central neuropathic pain (NeP; Rusbridge and Jeffery, 

2008). Clinical signs such as vocalisation, avoidance and perhaps scratching behaviour in response 

to noxious and non-noxious stimuli have been suggested to represent hyperalgesia and allodynia 

respectively (Nalborczyk et al., 2017; Plessas et al., 2012; Rusbridge and Jeffery, 2008). 

The assessment of effective analgesics to manage NeP in dogs has been limited and has focused 

on either assessment of the cardinal clinical signs of CM/SM or on quality of life (QoL) scoring 

(Plessas et al., 2012; Plessas et al., 2015). The use of quantitative sensory testing (QST) could help 

to evaluate more objectively the efficacy of treatment, may increase sensitivity to discriminate between 

NeP-affected vs unaffected dogs and help to identify the possible mechanisms involved (Backonja et al., 

2009). 

Current treatment for NeP disorders is limited by a lack of clinically tested, effective 

analgesics to provide sufficient respite for affected dogs and humans (Finnerup et al., 2015; Moore, 

2016). In humans with NeP, pregabalin and amitriptyline are recommended as first line therapy 

(NICE CG 173, 20131). In veterinary medicine, some data suggest that gabapentin and potentially 

pregabalin might improve NeP signs associated with CM/SM (Plessas et al., 2012; Plessas et al., 

2015). 

The pharmacokinetics of pregabalin have been investigated in healthy laboratory dogs after 

oral administration of a single 4 mg/kg dose (Salazar et al., 2009). The terminal half-life of 

approximately 7 h, suggests that two administrations per day may be appropriate, unlike gabapentin, 

which has a terminal half-life of 3 to 4 h and requires its administration three times a day (KuKanich, 

2013). Dewey et al. (2009) evaluated long-term pregabalin at 3 to 4 mg/kg three times daily for 

idiopathic epilepsy as an add-on to phenobarbital and/or potassium bromide administration. Increase in 

sedation or ataxia levels were the only side-effects reported. There are currently, however, no 

published randomised controlled trials evaluating the drug exposure and efficacy of pregabalin in the 

treatment of canine NeP. 

The aim of this study was to evaluate the efficacy of pregabalin for treatment of canine NeP 

in a randomised placebo-controlled double-masked study. We hypothesised that pregabalin would 

demonstrate a superior effect on pain assessment outcomes compared to baseline and placebo. The 

primary efficacy endpoint was the ‘daily pain assessment’ with numerical rating scale (NRS; score 

from 0 [no pain] to 10 [worst pain]) recorded by dog owners and the secondary endpoint was the QST. 

  



Materials and methods 

The study was performed as a double masked, randomised, crossover placebo-controlled trial. 

Client-owned dogs with clinical signs compatible with NeP (at least cervical hyperaesthesia or 

spontaneous vocalisation) and with CM ± SM confirmed by Magnetic Resonance Imaging (MRI) scan 

performed within the preceding 6 months were included. The definition of CM and SM was made 

according to the British Veterinary Association Scheme for CM and SM2 as grade 2 for both. 

A recent MRI was necessary to ensure that the clinical signs were not related to other painful 

myelopathies such as intervertebral disc disease. Images followed the same guidelines.2 A European 

Diplomate in Veterinary Neurology performed a neurological examination on the first visit and 

confirmed the diagnosis of CM/SM being the only clinically relevant diagnosis. All dogs received non-

steroidal anti-inflammatory drugs (NSAIDs) for at least 2 days prior to the start of the trial. 

Dogs that presented a heart murmur or heart disease could be included, but heart failure was 

an exclusion criterion. Dogs with chronic kidney disease in IRIS stage 3 or higher (serum creatinine 

>180 µmol/L, International Renal Interest Society3), were excluded from the study. Although 

previous pregabalin treatment was an exclusion criterion, previous treatment with gabapentin was 

accepted as long as the last dose had been given at least 5 days before starting the trial. If additional 

treatment for other conditions was necessary, additional drugs could be administered with the 

exception of those referenced in Appendix A. Dogs with dermatological conditions were excluded 

following a dermatological exam performed during the first visit. 

Any adverse event, even unrelated with the administration of the drug or the procedures 

performed during the trial, was followed up, but the dog was excluded from the study. Dogs were also 

withdrawn if the owners were unable to comply with the daily dosing routine or were unable to attend 

any visit. 

Study design 

The study consisted of a baseline phase with NSAIDs as sole treatment and two periods during 

which the dogs additionally received pregabalin (5 mg/kg twice daily, orally) or placebo for 14 ± 4 

days each. Animals were randomly assigned (block randomisation, Excel, Microsoft Office 2016) 

to one of two sequences (pregabalin-placebo or placebo-pregabalin) as displayed in Fig. 1. The baseline 

treatment ensured some analgesia was provided for the two-week period to avoid ethical or welfare 

constrains during the placebo treatment phase. 

The study was carried out under the European Directive 2010/63/EU on the protection of 

animals used for scientific purposes (Project License PPL 70 / /8152). The study was monitored to 

Good Clinical Practice standards, according to VICH GL94 and was approved by the Royal Veterinary 

College Ethics and Welfare Committee on the 29th August 2013 (URN 2013 1243). 

Pregabalin and placebo administration 

The pregabalin formulation was the oral solution Lyrica (20 mg/mL, bottle of 473 mL Pfizer). 



The placebo formulation was reverse-engineered according to Good Manufacturing Practices5 from 

qualitative information available about the vehicle used in Lyrica. Dog owners and the investigator 

remained masked to the treatment. The administration of the first dose occurred during Visit 1 (Fig. 

1). At 24 h after the first dose, the dogs continued with the same treatment at home twice daily for 14 ± 4 

days until Visit 2. Dog owners recorded each dose given and the time of administration on a diary to 

confirm the compliance. 

The treatments were switched over at Visit 2 (Fig. 1). A dispenser administered the 

medication in the hospital so the primary investigator remained masked to the treatment during 

treatment switch. The dogs that were receiving pregabalin during period 1, received their last dose of 

pregabalin followed by the first dose of placebo 24 h thereafter. 

Alternatively, the dogs that were receiving placebo during period 1, received their first dose of 

pregabalin followed by another dose 24 h thereafter. After Visit 2, dogs continued with the second 

treatment twice daily for 14 ± 4 days, until Visit 3. The dogs were officially signed off the study after 

the last sample collection of Visit 3 and transferred to the care of their usual veterinarian. If 

efficacious, open-label pregabalin treatment could be continued by the primary veterinarian. 

Efficacy assessment 

Daily pain scores (NRS) recorded by dog owners 

During the two periods of medication, dog owners recorded in a booklet a pain score with NRS 

at the end of each day of medication at home. They were assessing spontaneous vocalisations, phantom 

scratching episodes and exercise impairment (Plessas et al., 2012) to score the pain severity daily 

(from 0 [no pain] to 10 [worst pain]) after being previously instructed how to perform it. 

The primary investigator (SSM) performed the physical and neurological examinations and 

QST. The dogs stayed in hospital for at least 24 h at Visit 1, Visit 2, and Visit 3, during which the 

following parameters were recorded. 

Quantitative sensory testing 

The somatosensory function was then assessed with QST following the Sensory Threshold 

Examination Protocol (STEP) described previously (Sanchis-Mora et al., 2017). The stimuli were 

applied on the skin of six body areas (BA) in a randomised order in unrestrained dogs. A threshold was 

obtained when the animal responded according to previously used criteria (Sanchis-Mora et al., 2017) 

with the addition of phantom scratching. The body areas tested were lateral neck, humeri and tibias 

(bilaterally; Appendix BB). It was necessary to clip a 1.5 × 1.5 cm square of hair for each BA. The 

STEP consisted of the evaluation of the sensory modalities briefly explained below. Von Frey filaments 

(Bioseb) were used for tactile sensory thresholds (TST) and tactile allodynia. The 50% response 

technique described by Sanchis-Mora et al. 2017) was used. Mechanical stimulus was applied with an 

algometer (ProdPro, Topcat Metrology Ltd). Heat stimulus was applied using a handheld thermal 

probe (HotPro, Topcat Metrology Ltd). Both the mechanical thresholds (MT) and heat thresholds (HT) 

were measured in triplicate for each BA. Cold / /cool stimuli were applied using a handheld thermal 



probe (NTE-2A, Physitemp Instruments) set at 0 ± 0.2 °C and 15 ± 0.2 °C, respectively. The latency 

(measured in s) between cold/cool application and the time at which the animals responded to the probe 

was recorded. The measurements were performed in triplicate for each BA and for each temperature. 

Blood and urine samples  

At each visit, 1 mL of blood was taken for plasma pregabalin concentration measurement at 

baseline (0 h, time of treatment administration), at 90 ± 9 min post-dose administration (presumed time 

of peak plasma concentration, (Salazar et al., 2009)) and at 12 h ± 72 min post-dose administration 

(trough concentration; Fig. 1). Blood samples were taken through a preplaced peripheral catheter 

(Introcan IV catheter, Braun Vetcare) according to the method from Elliott et al. (2010). The samples 

were transferred into EDTA tubes, then centrifuged at 1000 g for 10 min (Jouan C3i-CR3I 

Multifunction Centrifuge, Thermo). Two aliquots of at least 150 µL of EDTA plasma were separated 

and stored at −80 °C within 6 h after collection. 

Plasma pregabalin concentration was measured by liquid chromatography tandem mass 

spectrometry using a validated method (Appendix C). Plasma creatinine was measured on each visit 

using a calibrated portable machine (creatinine cartridges, ISTAT-1, VetScan Abaxis). A urinary 

sample was collected by free catch for urinary dipstick analysis (Siemens Multistick Siemens 

Healthcare) and urinary specific gravity. 

Statistical analysis  

Sample size calculation6 estimated that nine dogs would be required to demonstrate an 

increase 3 N (standard deviation, SD = 1.9) in MT in the neck area with 90% power and 5% type I error 

rate. The mean and SD were based on previous non-published data testing in asymptomatic and 

symptomatic CM/SM dogs.  

Baseline, pregabalin and placebo were considered as three phases for statistical comparisons. 

Data were analysed using a commercial statistical software (SPSS 21, IBM and R7). For continuous 

data, normality of distribution was verified by Kolmorov–Smirnov’s test and by visual assessment of 

Q–Q plots and histograms. 

Linear mixed models were used to assess effects of treatment period (baseline, pregabalin and 

placebo), BA and their interaction for TST, MT and HT, and dog identification was considered as a 

random effect. 

Cold thresholds at 0 (0 se latency or >1 s latency) and 15 °C (censored at 60 s) were analysed 

with generalized linear mixed effects model and mixed effects Cox model, respectively, with the same 

fixed and random effects as above. Additionally, linear mixed effects model was used to assess the 

effects of pregabalin versus placebo and number of days within treatment on owner-recorded daily NRS 

scores. 

It was not possible to test the sequence effect due to the small sample size. Post hoc comparisons 

were made when appropriate using the Fisher’s Least Significant Difference (LSD). The mean peak 

and trough plasma concentrations after the first and last dose were compared with a paired t-test to 



evaluate an increase in plasma concentration by the end of the period. 

Results 

Descriptive demographics, clinical data and neurological exam 

Nine Cavalier King Charles Spaniels (four males and five females) were recruited for the 

study from February 2016 to August 2016 (Fig. 2). The median age was 6 years old (range, 1.1–9 

years) and the median bodyweight was 9.6 kg (range, 6.6–13.8 kg). All dogs presented with cervical 

hyperaesthesia on palpation and five dogs showed scratching behaviour, either phantom scratching or 

making contact with the skin without evidence of skin/ear disease. 

The baseline NSAID was meloxicam 0.05 mg/kg once daily for seven dogs and carprofen 

2 mg/kg once daily for two dogs. Two dogs were previously treated with gabapentin at 10 mg/kg twice 

daily. Gabapentin administration was stopped between 6 and 10 days before starting the trial. These 

two dogs were randomly allocated to placebo phase during the first period. 

Six dogs had a heart murmur. One had cardiac investigation due to bradyarrhythmia. The 

electrocardiogram revealed benign second-degree auriculo-ventricular block, Mobitz type II and 

echocardiography revealed a trivial mitral valve regurgitation and mild tricuspid regurgitation. None 

of the dogs received additional medication except one dog (ocular treatment with fusidic acid twice 

daily). 

Clinical history and neurological examination results are summarised in Appendix D. Urine 

analysis and plasma creatinine values were within normal limits for all dogs. 

One dog dropped out of the study at day 7 of the first period due to an ailment unrelated to the study 

(Fig. 2). This dog developed haemorrhagic diarrhoea at the same time as other dogs in the household. 

Nevertheless, this dog was subsequently excluded as the treatment with NSAIDs may have been 

contraindicated. This dog was receiving placebo during the first period and its data were excluded 

from the statistical analysis. Sedation was reported in two other dogs. No other side effects were 

reported. 

Dog owner daily pain assessment 

The daily pain scores (NRS) recorded by dog owners was significantly lower during 

pregabalin treatment phase (mean 3.17 ± SD 2.3 units) compared to the placebo phase (mean 4.24 ± SD 

2.4 units, P =  0.006, Fig. 3). Number of days within treatment did not significantly affect daily NRS 

scores recorded by dog owners (P =  0.470). 

Quantitative sensory testing 

For each of the QST modalities, there was main effect of body area (P < 0.001) and treatment 

phase effect for TST (P = 0.002), MT (P = 0.001), CL0 (P = 0.001) and CL15 (P = 0.001), but not 

for HT (P = 0.094). However, the interaction between BA and treatment was not statistically 

significant in any of the QST modalities (P > 0.05) except CL15 (P = 0.005; see below). 



On post hoc comparison, baseline and pregabalin TST were significantly higher than for the 

placebo (P = 0.001 and P = 0.005 respectively). Pregabalin TST were not significantly different 

from baseline P = 0.567. MT for pregabalin were significantly higher than baseline and placebo 

(P = 0.037 and P < 0.001, respectively) overall (represented as mean ± SD in Fig. 4), whereas 

placebo and baseline were not different (P = 0.097). 

Under pregabalin treatment, CL0, was significantly longer from baseline (P = 0.001) and 

placebo (P = 0.004). Placebo and baseline phases were not different from each other (P = 0.686; Fig. 

5). For CL15, the interaction between treatment phase and BA was statistically significant 

(P < 0.005). Neck and humeri showed longer latencies on pregabalin compared to baseline (P < 0.001 

for both) or placebo (P = 0.02, P = 0.0001, respectively; Fig. 6). Latencies were longer during 

baseline than placebo for humeri (P = 0.001) but not the neck (P = 0.167). 

Pregabalin plasma concentration 

Peak plasma concentration at first dose (mean 4128 ng/mL, range 2420–5538 ng/mL) and at 

last dose (mean 4669 ng/mL, range 3704–6023 ng/mL) were not significantly different (P = 0.153). 

Trough plasma concentration (12 h after peak) at first dose (mean 1047 ng/mL, range 541–

1844 ng/mL) and at last dose (mean 1075 ng/mL, range 413–2381 ng/mL) were not significantly 

different (P = 0.769). Pregabalin was undetectable during the placebo phase. 

Discussion 

This is the first randomised controlled trial reporting the efficacy of pregabalin in dogs with 

NeP. Daily NRS scores recorded by dog owners were significantly lower during pregabalin 

treatment phase compared to placebo. Pregabalin also improved mechanical hyperalgesia and cold 

allodynia as defined by Allchorne et al. (2005), compared to placebo and baseline. 

In this study, the daily NRS assessment recorded by dog owners appeared to be a solid 

parameter. Longitudinal data do not rely on a single time point as for QST evaluation. Daily scoring 

therefore nullifies the bias of assessment at isolated points in time in the context of fluctuating clinical 

signs (Colloca et al., 2016). Similarly, in human clinical trials, pregabalin efficacy in peripheral 

neuropathy has been evaluated with success using patients’ daily pain scores (Jenkins et al., 2012). 

We cannot exclude that other degenerated clinical problems, even if not demonstrated on MRI scans, 

could have also improved with pregabalin, and therefore improved dogs’ mobility. The sample size 

calculation was based on MT data (single measurement), as there was not preliminary data on daily 

NRS pain assessment (repeated measures at home). Further significant changes could have been 

evidenced if we had more dogs included, especially when testing for interactions. For example, to 

demonstrate that NRS was significantly different between placebo and pregabalin treatments on a 

single day, post hoc sample size calculation recommended 13 dogs. We only demonstrated a difference 

of pregabalin over placebo for the overall duration of treatment with the current sample size. 

Based on the response to pregabalin on the affected areas (neck and humeri) this study suggests 

that CM/SM dogs presenting clinical signs of NeP had mechanical hyperalgesia and cold hyperalgesia 

and allodynia. Pregabalin and gabapentin are efficacious if there is central sensitisation and nerve 



damage is present (Patel and Dickenson, 2016). Visual inspection of the plotted data suggested a large 

improvement, especially for CL15 in both, humeri and neck. Reduction of cold allodynia at 15 °C 

with pregabalin was the clearest result, consistent with previous findings in rats with NeP (Lau et al., 

2013). Pregabalin has been shown to decrease hyperalgesia and allodynia for cold, brush and 

mechanical testing in small cohort of humans with NeP (Attal et al., 1998; Dirks et al., 2002). 

Although there was a treatment effect on CL0, there were no differences on the interaction with BA. 

HT thresholds showed no differences between treatment phases and baseline, suggesting HT 

may not be a sensitive test for CM/SM dogs. Another study in dogs with spinal cord injury found a lack 

of thermal sensation compared to control dogs (Gorney et al., 2016). Human patients with SM showed 

impairment of thermal sensation, however, those presenting evoked and spontaneous pain had different 

QST profiles (Hatem et al., 2010). This may be also occurring in dogs with CM/SM. 

There is no reported therapeutic window for the analgesic effect of pregabalin in people or in 

dogs with NeP, just a therapeutic range for seizure control in man (Arroyo et al., 2004; Berry and 

Millington, 2005). The mean steady-state trough concentration in the current study (1075 ng/mL) was 

sufficient to produce the analgesic effect. In elderly people, a reduced dose is indicated for patients 

with impaired renal function8). However, there is no data about pharmacokinetics of pregabalin in 

dogs with renal impairment. No pregabalin accumulation was seen in this study, supporting the safety 

of pregabalin in non-azotaemic dogs. 

The main limitation of this study is the small sample size. The small number of dogs recruited 

in approximately 7 months could be because the incentive to dog owners (free treatment after 

completing the study) was modest compared to the limiting high cost of the MRI. Additionally, dogs 

already on gabapentinoids could not participate unless the treatment was withdrawn, and this was not 

always possible or ethical in severely affected dogs. Another limitation of this study was that the 

sedation observed in two dogs was not objectively quantified nor assessed for all dogs. Sedation can 

alter sensory thresholds slowing the reaction time (Gustorff et al., 2001). However, if sedation would 

have affected sensory thresholds, a generalized altered sensory threshold should have been found for 

all stimuli applied, not just in one region with specific stimuli types. 

Finally, a control group with a healthy cohort of Cavalier King Charles Spaniels would have 

been needed to compare baseline thresholds. The high prevalence of this disease (Thofner et al., 

2015) and financial constraints of imaging in dogs with no clinical signs made this not possible. 

Conclusions 

This is the first double-masked crossover placebo control clinical trial in dogs with NeP to 

investigate the efficacy of pregabalin on daily pain scores recorded by dog owners. Pregabalin also 

significantly reduced mechanical hyperalgesia and cold hyperalgesia and allodynia compared to 

placebo. Pregabalin was well tolerated with mild sedation in few cases. A larger sample is needed to 

confirm effect of pregabalin on other outcome variables. 
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Footnotes 

1See: National Institute for Health and Care Excellence. 

https://www.nice.org.uk/guidance/cg173/resources/neuropathic-pain-in-adults-pharmacological-

management-in-nonspecialist-settings-pdf-35109750554053 (Accessed 27 June 2019). 

 

2See: British Veterinary Association. Chiari Malformation/Syringomelia Scheme. 

https://www.bva.co.uk/canine-health-schemes/cm-sm-scheme/ 

https://www.bva.co.uk/uploadedFiles/Content/Canine_Health_Schemes/CM_SM_Procedure_Notes

(1).pdf (Accessed 27 June 2019). 

 

3See: International Renal Interest Society IRIS Staging of CKD. http://www.iris-

kidney.com/guidelines/staging.html (Accessed 27 June 2019). 

 

4See: The European Agency for the Evaluation of Medicinal Products Veterinary Medicines and 

Information Technology Unit. VICH Topic GL9 (GCP) 

 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500004

343.pdf (Accessed 27 June 2019). 

 

5See: European Commission. Live, work, travel in the EU. Public Health. 

https://ec.europa.eu/health//sites/health/files/files/eudralex/vol5/dir_1991_412/dir_1991_412_en.pdf 

(Accessed 27 June 2019). 

 

6See: Win Episcope 2.0 http://winepi.net/uk/index.htm (Accessed 30 June 2019). 

 

7See: The R Project for Statistical Computing. https://www.r-project.org/ (Accessed 27 June 2019). 
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8See: Package leaflet: Information for the user Lyrica 20 mg/ml mg/mL oral solution Pregabalin 

https://www.medicines.org.uk/emc/files/pil.4120.pdf (Accessed 27 June 2019). 
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Figure legends 

 

 

Fig. 1 Group allocation during the two period crossover study and timeline of the visits. Representation 

of Visit 1, Visit 2 (treatment switch) and Visit 3 for dogs receiving pregabalin or placebo first. The 

blue line is the average plasma concentration-time curve simulated from the pharmacokinetics from 

Salazar et al. 2009. The red dots are the times at which plasma samples were obtained for measurement 

of pregabalin in the current study.  

 

 

Fig. 2 Dog allocation diagram. The two periods consisted on a 2-week treatment with non-anti-

inflammatory drug and placebo or pregabalin; then they switched treatment for another 2-week period. 

One dog was excluded on the first week of the Period 1 because she developed haemorrhagic diarrhoea 

non-related to treatment. 



 

Fig. 3 Mean and individual daily pain scores recorded by dog owners using numerical rating scale 

(NRS; from 0 [no pain] to 10 [worst pain]) based on the level of spontaneous yelping, scratching 

episodes and exercise impairment. Red triangles represent pregabalin phase daily scores with the red 

line representing the mean and blue triangles represent placebo phase daily scores with the blue line 

representing the mean value.  

 

 

Fig. 4 Box plot of the mechanical thresholds in Newton (N) obtained at baseline, placebo and 

pregabalin treatments in the different body areas. There was a significant effect of treatment group 

(P = 0.001) but the interaction treatment group and body area was not significant. MT during pregabalin 

were significantly higher than baseline and placebo (P = 0.037 and P < 0.001, respectively). Placebo 

MT were not significantly different from baseline (P = 0.097). PGB: pregabalin. 



 

Fig. 5 Cold latency at 0 °C in s obtained at baseline, placebo and pregabalin treatments in the different 

body areas. Right and left sides are display separately. Individual values are represented by the opened 

dots and solid dots are the mean proportion across all dogs. More dogs tolerated Cold (0 °C) latency for 

>1 s with pregabalin compared to baseline (P = 0.001) and placebo (P = 0.004). There were no 

significant differences between placebo and baseline (P = 0.686), or the interaction between treatment 

phase and body area (P = 0.074). PGB: pregabalin. 

 



 

Fig. 6 Cold latency at 15 °C thresholds (measured in s) obtained at baseline, placebo and pregabalin 

treatments in the different body areas. Right and left sides are display separately. Neck and humeri 

showed longer latencies on pregabalin compared to baseline grouping both side together (right and left; 

P < 0.001 for both) or placebo (P = 0.02, P = 0.0001, respectively; Fig. 6). Baseline and placebo were 

also different of each other on humeri (P = 0.001), however not on the neck (P = 0.167). Cold latency 

at 15 °C on the tibias were not significantly different between treatment phases. PGB: pregabalin.  

 

 

 


