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Abstract

Image segmentation, i.e., assigning each pixel a discrete label, is an essential task in
computer vision with lots of applications. Major techniques for segmentation include for
example Markov Random Field (MRF), Kernel Clustering (KC), and nowadays popular
Convolutional Neural Networks (CNN). In this work, we focus on optimization for image
segmentation. Techniques like MRF, KC, and CNN optimize MRF energies, KC criteria,
or CNN losses respectively, and their corresponding optimization is very different. We are
interested in the synergy and the complementary benefits of MRF, KC, and CNN for in-
teractive segmentation and semantic segmentation. Our first contribution is pseudo-bound
optimization for binary MRF energies that are high-order or non-submodular. Secondly,
we propose Kernel Cut, a novel formulation for segmentation, which combines MRF reg-
ularization with Kernel Clustering. We show why to combine KC with MRF and how to
optimize the joint objective. In the third part, we discuss how deep CNN segmentation
can benefit from non-deep (i.e., shallow) methods like MRF and KC. In particular, we pro-
pose regularized losses for weakly-supervised CNN segmentation, in which we can integrate
MRF energy or KC criteria as part of the losses. Minimization of regularized losses is a
principled approach to semi-supervised learning, in general. Our regularized loss method
is very simple and allows different kinds of regularization losses for CNN segmentation.
We also study the optimization of regularized losses beyond gradient descent. Our regu-
larized losses approach achieves state-of-the-art accuracy in semantic segmentation with
near full-supervision quality.
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Chapter 1

Introduction

1.1 Image Segmentation

(a)interactive segmentation; (b)motion segmentation; (c)semantic segmentation.

Figure 1.1: Segmentation problems of different kinds [200, 177, 74].

Segmentation is the task of decomposing an image to disjoint subsets of pixels. Each
subset, a.k.a. segment, is usually assigned a discrete label. Fig. 1.1 shows various types
of segmentation problems, including interactive segmentation given user input scribbles,
motion segmentation of a moving object, and semantic segmentation with a predefined set
of labels (e.g. car, horse and person). Other kinds of segmentation include, for example,
superpixel segmentation [2] and instance segmentation [101].
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Segmentation has many applications in autonomous driving, image editing, remote
sensing, augmented reality, and medical image analysis etc. For example, interactive seg-
mentation [200, 10] in image editing software enables faster content creation. Autonomous
driving relies on road segmentation [179] to perceive the environment in order to navigate.
Automatic segmentation of the building footprint in remote sensing [61] allows faster ur-
ban planning and disaster management. Another example is organ segmentation of medical
images that helps to identify diseases.

Segmentation is an active and fundamental area of research in computer vision. It often
serves as a building block for many other computer vision tasks. It has also been studied
jointly with other problems such as optical flow [209], reconstruction [134], and tracking
[162]. These tasks are complementary in nature and segmentation plays a critical part.

Unlike image classification, segmentation is a dense labeling problem, which should
consider geometry. Is the boundary smooth? Does the shape of a segmentation look like a
target object e.g. a horse? Are the segments connected rather than fragmented? These are
natural properties and constraints in terms of the geometry of segmentation. Some of the
properties have been modelled via graphical models, for instance, boundary smoothness as
pairwise Markov Random Field [30].

Often in segmentation tasks, we only have weak supervision or annotations. For in-
stance, in interactive segmentation, the user provides scribbles or bounding boxes for the
objects of interest. For video segmentation, usually only the first frame is labeled, and the
goal is to propagate the labeling to all subsequent frames. Weakly supervised semantic
segmentation given scribbles, boxes, or image-level tags attracts a lot of interest since it
eliminates the necessity of full labeling, which is laborious to obtain. A good algorithm for
segmentation should make the best use of available annotations and reduce the amount of
supervision needed. It also helps to incorporate prior knowledge into segmentation such
as size, shape, and color distribution about the target segments.

While deep Convolutional Neural Networks achieve record-breaking accuracies, segmen-
tation is far from being a solved problem. Firstly, the current state-of-the-art CNN relies
on full supervision with tens of thousands of training images. Such approach of training is
not scalable. Secondly, CNN segmentation generalizes poorly across different domains for
the same set of classes. Thirdly, geometry and structure of segmentation is not explicitly
modeled and incorporated in CNN segmentation. Lastly, video segmentation is largely
under-explored since CNN is computationally expensive even for a 2D image.

This work focuses on unsupervised and weakly-supervised segmentation techniques.
We are particularly interested in the formulation and optimization of image segmentation
based on regularization.
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notation definition range

Sp segment (label) assignment for given pixel p ∈ Ω {1, . . . ,K}

Sc (Sp ∣p ∈ c) - labeling of pixels in factor c ⊆ Ω {1, . . . ,K}∣c∣

S (Sp ∣p ∈ Ω) - segmentation or labeling of all points {1, . . . ,K}∣Ω∣

Skp indicator for “p is in segment k”, i.e. Skp ≡ [Sp = k] {0,1}

Sk
k-th segment, that is, subset {p ⊂ Ω ∣Sp = k}

or the indicator vector (Skp ∣p ∈ Ω)

power set P(Ω)

or {0,1}∣Ω∣

Sk
′

transpose of vector Sk, i.e. Sk
′
≡ (Sk)T {0,1}∣Ω∣

St segmentation at iteration t same as S

Sθ(I) Softmax output of a CNN parameterized by θ [0,1]∣Ω∣×K

Table 1.1: Frequently used notations for segmentation in this thesis.

1.2 Notation and Conventions

Here we summarize notations commonly used in this thesis. We use notation applicable to
either image segmentation or general data clustering. Let Ω be a set of pixels, voxels, or
any other points p. For example, for a 2D image Ω could be a subset of regularly spaced
points in R2. Set Ω could also represent data points indices. We assume that every p ∈ Ω
comes with an observed feature Ip. For example, Ip could be a greyscale intensity in R1

or an RGB color in R3. The number of segments/clusters/labels is denoted by K. For
instance, K = 2 for interactive foregorund/background segmentation. By convention, the
background is labeled 0.

Our notation describing segmentation of Ω is summarized in Table 1.1. We use the fol-
lowing standard notation: {⋅∣⋅} stands for sets or subsets, (⋅∣⋅) stands for ordered collections
or vectors, and [⋅] is used in the context of intervals, matrices, or Iverson brackets1.

We let A = [Apq] ∈ [0,1]∣Ω∣×∣Ω∣ be an affinity matrix between data points/pixels. The
degree of point p is dp = ∑qApq and D ∈R∣Ω∣×∣Ω∣ is a diagonal matrix with Dpp = dp.

1Iverson brackets [⋅] enclosing a logical proposition, e.g. [Sp = k], return 1 or 0 depending on true or
false value of this proposition.
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1.3 Overview of Segmentation Techniques

Over the last few decades, lots of heuristics, algorithms, and mathematical models have
emerged for image segmentation [37, 211, 42, 30, 53, 200, 185, 6, 130, 150, 223, 101]. Fig.
1.2 shows a word cloud of common techniques and models for segmentation. Notable ones
are Chan-Vese [42], Graph Cut [30], Spectral Method [211], Dense CRF [130], FCN [150],
and Mask R-cnn [101] etc.

Figure 1.2: Segmentation Techniques.

There is no unified taxonomy due to the diversity of these techniques. Here we discuss
segmentation techniques from different perspectives.

• optimization v.s. non-optimization methods: Often, segmentation is driven by
optimization. For example, Graph Cut [30] minimizes a joint objective of unary data
fidelity term and smoothness term. The spectral method minimizes pairwise clus-
tering criterion e.g. normalized cut [211]. However, some algorithms are motivated
by a dynamic or mechanism, and it’s not clear what the objective is. For instance,
a dominant set for segmentation [185] is saught by replicator dynamics arising in
evolutionary game theory. Mean-shift [53] finds the modes in the probability distri-
bution of image features, and we obtain the final segmentation by merging heuristic.
K-means is both optimization and non-optimization method since the dynamic of the
K-means algorithm (updating cluster center & cluster assignment) indeed minimizes
the sum of squared distances. Here we focus on optimization methods.
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• shallow v.s. deep methods: In the era of deep learning, neural networks, in
particular fully convolutional neural networks, have revolutionized image segmenta-
tion. CNNs give record-breaking results for interactive segmentation [246], semantic
segmentation [150] and instance segmentation [101]. Shallow2 methods are largely
overlooked nowadays. In this thesis, we combine shallow and deep methods, includ-
ing Markov Random Field, Kernel Clustering and CNN, see Sec. 1.4.3. We show
that shallow and deep methods are mutually beneficial.

• unsupervised v.s. supervised methods: CNN segmentation is typically fully
supervised and needs thousands of labeled images. The more the supervision, the
better is the segmentation. In contrast, methods like normalized cut [211] are unsu-
pervised and rely purely on low-level features and cues. Recently, weakly-supervised
CNN segmentation has attracted lots of interest with various forms of supervision,
including scribbles [147, 219, 224], bounding boxes [116], polygons [38], and image-
level tags [121]. In the lack of supervision, regularization is useful to yield better
segmentation, as discussed below. Also, we bring principled techniques from semi-
supervised learning [265, 44] to weakly-supervised segmentation, see discussion in
Sec. 1.4.2.

• regularized v.s. unregularized methods: Regularization in the context of seg-
mentation is very different from that in machine learning which prevents from over-
fitting. A standard regularization for segmentation is the Potts model [190] that can
be minimized by MRF method [31, 130], level-set method [42], and convex relaxation
approach [189] etc. Shape regularization and priors [119, 92] were modelled in an
energy minimization based method. Chew et al. [48] investigated semi-supervised
normalized cut with must-link and cannot-link constraints. CNN Segmentation ben-
efits from regularization as shown in previous work that incorporated regularization
as post-processing [45], trainable layers [207, 260], or losses [224]. Regularization
helps fully-supervised and weakly-supervised CNN segmentation.

In the following, we briefly review segmentation techniques that are most relevant to
the work here. We first start with the simple K-means algorithm in Sec. 1.3.1. Then we
review (nonlinear) Kernel Clustering, Markov Random Filed, and Convolutional Neural
Network in Sec. 1.3.2, 1.3.3, and 1.3.4.

2In this thesis, by ”shallow” we mean any method unrelated to deep learning. An example of shallow
methods is the seminal work of (iterated) graph cut [30, 200].
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(a) image (b) K = 3 (c) K = 10

Figure 1.3: K-means segmentation for different number of segments.

1.3.1 A Toy Example: K-means

K-means [153] is one of the simplest segmentation algorithms. K-means clustering, a.k.a.
Lloyd’s algorithm [149], first initializes cluster centers and then iterates between the fol-
lowing two steps until converge.

• For each data point, compute its distances to the K cluster centers. Assign the point
to the cluster corresponding to the closest distance;

• Update the cluster centers to be the arithmetic mean of data points of each cluster.

This iterative algorithm minimizes the sum-of-square distances between data points
and cluster centers. Let Ω be the set of pixels in image I, Ip ∈ R3 be the color for pixel p,
then the K-means objective on color is,

Fkm(S,m) ∶= ∑
p∈Ω

∥Ip −mSp∥
2 (1.1)

where S = {Sp} ∈ {1, ...,K}∣Ω∣ is the discrete labeling and m = {mk} are the cluster centers
or means. Norm ∥.∥ denotes the Euclidean metric.

K-means segmentation basically gives color quantization, see Fig. 1.3. The popular
SLIC superpixel [2] is based on K-means on 5-d RGBXY input features. The Chan-Vese
model [42] minimizes a binary version of the sum of squared ditance (1) with K = 2.
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1.3.2 Kernel Clustering (KC)

Clustering and segmentation are largely synonyms. Clustering algorithms are categorized
as linear or nonlinear. K-means is limited to clusters that are linearly separable while many
other algorithms, including mean-shift [53], linkage based method [96], kernel/pairwise
clustering [211], and dominant set [185], can give complex-shaped clusters. K-means is an
example of partitional clustering that assigns each data point to one cluster. Probabilistic
clustering such as Gaussian Mixture Model (GMM) determines the probability of each
data point belonging to the clusters. The input to clustering algorithms are typically
represented as vectors or graphs.

For data clustering, it is natural and common to assume that,

• data points in the same cluster should be similar ;

• data points in different clusters should be dissimilar.

Different algorithms differ in terms of the distance metric and the criteria for what
is good clustering. Here, we are partucularly interested in (nonlinear) kernel/pairwise
clustering. A seminal work is Normalized Cut (NC) [211] for image segmentation proposed
by Shi & Malik.

Fnc(S) ∶= ∑
k

assoc(Sk,Ω/Sk)

assoc(Sk,Ω)
≡K −∑

k

assoc(Sk, Sk)

assoc(Ω, Sk)
, (1.2)

where Sk = {p∣sp = k} is a cluster, A = [Apq] ∈ [0,1]∣Ω∣×∣Ω∣ is an affinity matrix,
assoc(Sk,Ω∖Sk) = ∑p∈Sk,q∈Ω/Sk Apq is the sum of associations between points in the cluster
Sk and in its complement Ω∖Sk. Normalized Cut (1.2) minimizes the ”cut” between clus-
ters. The normalization by assoc(Ω, Sk) encourages balanced clusters and helps to avoid a
cut that isolates outlier. NC also maximizes the balanced association within each cluster,
since it is equivalent to normalized association up to an additive constant K, see (3.38).
Normalized cut for image segmentation first builds an affinity matrix A using Gaussian
kernel on low level features (color, edge and texture) and then minimizes (1.2).

There are other criteria of kernel clustering such as averaged cut, average association,
or ratio cut. They are all different combinations of ratio terms aiming to maximize the
intra-cluster association or minimize the inter-cluster cut. In Chapter 3, we detail these
criteria and discuss their optimization and biases that are not known before.
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(a) Top 3 eigenvectors (b) K = 8

Figure 1.4: Spectral method for normalized cut segmentation.

Spectral methods for kernel clustering typically involve eigen-decomposition of the
Laplacian matrix or the normalized Laplacian matrix, followed by discretization heuris-
tics on the (weighted) eigenvectors, e.g. K-means. A version of the spectral method for
Normalized Cut is outlined in Alg. 1. Fig. 1.4 visualizes the top eigenvectors.

Algorithm 1: Spectral Method for Normalized Cut Clustering.

Input: Affinity matrix A = [Apq] ∈ [0,1]∣Ω∣×∣Ω∣; Number of clusters K;
Output: Clusters Sk = {p∣sp = k} for k = 1, ...,K;

1: Compute the degree dp = ∑qApq, the degree matrix D ∈ R∣Ω∣×∣Ω∣ with Dpp = dp,
and the Laplacian matrix L =D −A;

2: Find the top K eigenvectors uk of the eigen system Lu = λDu;
3: Construct a matrix Φ̃ of size Ω ×K where each column is the eigenvector uk.
4: Run K-means on rows of Φ̃ which are of K dimension.
5: return Sk;

It is shown in [211] that In the special case of binary clustering with K=2, the eigen-
vectors are the global optimum of normalized cut in the relaxed space [0,1]∣Ω∣×K . Hence a
discretization heuristic like K-means is necessary. It is supposed that the low dimensional
and nonlinear embeddings based on eigenvectors make the data linear separable. Various
spectral clustering methods differ in terms of how to construct the affinity matrix, what
criteria to minimize, which eigensystem to solve, and the discretization heuristics. For
example, the affinity matrix can be based on a Gaussian kernel with fixed bandwidth or
from K nearest neighbors [235], which is robust to density variance of the data. Some
variants find the eigenvectors of the unnormalized Laplacian L.
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Normalized cut is widely used for image segmentation [211], image clustering, and
general graph clustering. Normalized cut and other graph clustering criteria are shown
to be equivalent to kernel k-means [9, 64, 197]. This connection gives an alternative
optimization method beside spectral method. Spectral clustering and Kernel K-means are
also closely related to graph embedding and dimensionality reduction techniques such as
kernel PCA [205], Iso Map [225], and Laplacian eigenmap [15]. In this thesis, we dive into
the formulation, optimization, and extension of spectral clustering, kernel K-means, and
dimensionality reduction. We revisit their connections which allows us to gain insights,
reveal previously unknown biases, and develop new formulation and optimization method
for kernel clustering.

The number of clusters K needs to be specified as a prior for normalized cut. It is also
unclear how to validate the clustering obtained since typically there is no ground-truth for
such an unsupervised task. Here, we focus on optimization algorithms for kernel clustering
rather than model selection, validation [35], or other theoretical aspects [19] of clustering.
Alg. 1 also needs a predefined affinity matrix A, which is often based on simple Gaussian
[211, 235] or KNN kernel [256]. It is possible to learn the affinity matrix [154], but in this
work we assume the affinity matrix to be given.

Kernel clustering is not a solved problem though there exists theoretically sound algo-
rithm e.g. Alg. 1. It is often necessary to incorporate constraints and regularization to
kernel clustering.

• grouping constraints: A subset of points should be in the same cluster;

• must-link constraints: two points should be in the same cluster;

• cannot-link constraints: two points should be in different clusters;

• boundary smoothness regularization: spectral clustering for image segmentation
tends to partition uniform regions, see an example result in Fig. 1.4 (b).

Different formulations and methods have been proposed for constrained or regularized
kernel clustering [252, 245, 132, 73, 51, 48]. For example, a different eigen problem is solved
for semi-supervised normalized cut with must-link and cannot-link constraints [48]. In this
work, we give a principled formulation of kernel clustering and its optimization allowing a
wide range of constraints and regularizations.
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1.3.3 Markov Random Field (MRF)

Markov Random Field, a.k.a undirected graphical model, is a type of probabilistic graph-
ical model [122] which in general encodes probabilistic dependencies between variables
represented by graph nodes.

Definition 1 (Markov Random Field). A Markov Random Field is a graph G = (V ,E ⊂ V ×
V) where nodes V = {S1, ..., S∣Ω∣} represent random variables, edges E represent dependencies
between variables, and a node is independent of all other nodes except its neighbors, which
is also known as Markovian Property.

MRF is a popular model in computer vision [23]. Markovian property is natural for 2D
image grid due to a sense of spatial locality and regularity. Many computer vision problems
like segmentation and optical flow are ill-posed. Regularization is introduced to eliminate
the ambiguity of a possibly infinite number of solutions and incorporate structure and prior
for the output space. Markov Random Filed, as a framework for regularization, has been
studied extensively in computer vision and image processing [23, 113]. Note that unlike
image classification, segmentation is a dense prediction task that outputs some quantities
or labels for all pixels. For such dense prediction problems, MRF is a powerful tool to
incorporating regularization, imposing constraints, and making the output structured.

The joint probability distribution of variables S1, ..., S∣Ω∣ in MRF is a Gibbs distribution
that can be factorized over cliques C,

P(S) ∝ Πc∈CPc(Sc), (1.3)

where each clique c ∈ C is a predefined subset of pixels and Sc is the set of variables Sp
associated with the clique c. The cliques C can be pairwise or higher order, see illustration
in Fig. 1.5. The maximum a posterior (MAP) estimation of MRF is the solution that
maximize the likelihood (1.3),

S∗ = arg max
S
P(S). (1.4)

The maximum of multiplicative probability P(S) can be alternatively sought by min-
imization of the additive energies3, which is the negative log of probability, i.e. Ec(Sc) =
− logP(Sc).

3Due to the connection to statistical physics, such objective is referred as ”energy” in the literature.
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(a) pairwise (b) high-order (c) full-order

Figure 1.5: Factors/Cliques of different orders for 2D image.

Definition 2 (Energy Minimization). The problem of finding the labeling S∗ of minimum
cost for objective Fmrf(S) is called energy minimization, which gives the MAP solution
(1.4) to a Markov Random Field.

S∗ = arg min
S

Fmrf(S), for Fmrf(S) ∶=∑
c∈C
Ec(Sc). (1.5)

It is easy to see that minimizing the energy (1.5) is equivalent to finding the MAP
estimation of a factorizable Gibbs distribution, see [122] for such a probabilistic motiva-
tion. However, energy (1.5) can also be motivated intuitively, e.g. towards smoothness
in segmentation. In the last few decades, different formulations, optimization algorithms,
and learning strategies have been proposed for MRF. Here we are particularly interested
in the optimization of MRF/CRF4 energies in the context of image segmentation.

A widely studied energy for computer vision is the following that consists of unary
potentials φp(Sp) and pairwise potentials φpq(Sp, Sq).

Fpmrf(S) ∶=∑
p∈Ω

φp(Sp) + ∑
p,q∈N

φpq(Sp, Sq). (1.6)

Modeling of MRF

The energy (1.5) can be defined on pairwise, high-order, or even full-order cliques/factors,
as illustrated in Fig. 1.5. For instance, standard graph cut based segmentation [30, 200]
combines unary log likelihoods and pairwise smoothness term.

Fgc(S; θ0, ..., θK−1) ∶= ∑
p∈Ω

− logP (Ip∣θ
Sp) + ∑

pq∈N
wpq ⋅ [Sp ≠ Sq], (1.7)

4A Conditional Random Field (CRF) models the conditional dependencies between latent variables and
observed data. For simplicity, we use the term MRF and CRF interchangeably in this paper.
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(a) bounding box; (b) by GrabCut [200]; (c) edited image.

Figure 1.6: GrabCut (Iterated Graph Cut) [200, 30] for interactive segmentation with box.

where θ0, ..., θK−1 are appearance models for the K segments, a set of pairwise factors N
includes edges c = {pq} between pairs of neighboring nodes, [⋅] are Iverson brackets, and
wpq is a discontinuity penalty between p and q. Penalty wpq can be a constant or may be
set by a decreasing function of intensity difference ∥Ip − Iq∥ attracting the segmentation
boundary to image contrast edges [30]. The term wpq ⋅[Sp ≠ Sq] measures contrast-sensitive
boundary length and prefers edge alignment. The neighborhood system N is typically a
4 or 8 connected grid. This is similar to the image-based boundary length in geodesic
contours [37, 28]. Fig. 1.6 shows an example of interactive segmentation and editing, the
energy of which can be efficiently optimized by graph cut [30].

High-order MRFs involve high-order factor/clique of more than two pixels. In general,
higher-order potentials are more expressive than pairwise potentials in terms of incorpo-
rating regularization and prior. However, they are often more challenging to optimize.
The basic Potts model in (3.2) prefers two nearby pixels that are similar to take the same
label. P n Potts model [120] generalizes the basic Potts model and encourages consistent
labeling among a set of pixels. For example, the consistency potential is defined on each
superpixel [120] or bins of pixels [220, 183] with the same color/features. Also, the min-
imization of log likelihoods in standard MRF based segmentation can be interpreted as
entropy minimization [220], which is essentially high-order. High-order MRFs have also
been utilized in other computer vision tasks besides segmentation. Woodford et al. [242]
proposed second order smoothness prior for stereo reconstruction which relies on triple
cliques. High-order models like filed-of-experts [196] have been demonstrated useful for
denoising and inpainting.

Shape priors and other geometric constraints often require high-order potentials. For
instance, objects may have convex shape in some cases. The convexity shape prior [92]

12



Figure 1.7: Typical CRF models used for image segmentation. Left: Sparse or grid CRF
[30]; Right: Dense CRF [130].

has been formulated as MRF potentials on triple clique that can be optimized by dis-
crete algorithms. An issue with the Potts model (3.2) is its shrinking bias towards shorter
boundaries. Curvature regularization avoids such bias and works better than length-based
regularization (3.2) for thin structures. It is shown that squared curvature can be approx-
imated by high-order potentials [173]. Some seemingly complex prior such as star-shape
prior [229] can be reduced to simple pairwise MRF for pixels along centered rays.

Worth mentioning are high-order potentials defined on all pixels, a.k.a. full-order5. A
simple example is the volume prior [91] ∥∑p∈Ω Sp − V0∥

2 that penalizes the deviation from
a target volume V0. Volume is a moment term of order zero. Higher-order moments like
1st and 2nd moments control the center and aspect ratio of a segment. Gorelick et al. [91]
formulated moment constraints as high-order MRF. Besides the target volume and moment,
we may know about the appearance model, e.g. color distribution of the target object. A
distribution matching term between a target distribution and the achieved distribution is
high-order [91, 217] and can be optimized approximately. Another prior is connectivity.
An object should be connected rather than fragmented. Whether a segment is connected
or not is obviously full-order since we need to consider the connectivity for all pixels.
Connectivity prior [233] has been incorporated to graph cut based optimization. Another
example of full-order MRF defined for a single high-order factor c = Ω is label cost [60] that
is a sparsity potential. In its simplest form, it penalizes the number of distinct segments
(labels). Co-occurrence statistics [135] is introduced to measure how likely objects appear
together in an image and is shown useful for semantic segmentation.

A popular MRF model for segmentation is the Dense CRF [130] with Gaussian poten-

tials ∑p,q∈Ωwpq[Sp ≠ Sq] = ∑p,q∈Ω e
− ∥Ip−Iq∥

2

2σ2 [Sp ≠ Sq], see Fig. 1.7. The regularization effects
of grid vs. dense CRF are different [231].

5In this case, the local Markovian property doesn’t hold. We still refer to as MRF by convention.
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Inference of MRF

Here, we briefly review optimization/inference for discrete MRF, i.e. S ∈ S = {0, ...,K −

1}∣Ω∣. There are two kinds of inference problems, namely MAP inference and probabilistic
inference [122]. MAP inference finds the most likely solution S∗ = arg maxP(S) which
boils down to optimizing the energy (1.5) S∗ = arg minS Fmrf(S). Probabilistic inference
computes the marginal Pp(Sp) = ∑S∈S,S′p=Sp P(S) and finds the solution of max-marginals

S∗p = argSp maxPp(Sp). This work is focused on MAP inference.

Pairwise MRF (1.6) is in general NP-hard to optimize, while limited cases can be
optimized globally in polynomial time. If the neighboring system N forms a chain or more
generally a tree, then dynamic programming solves minS Fpmrf(S) globally in the order of
K2 × ∣Ω∣. For a graphical model with low treewidth, the junction tree algorithm [59] can
be used to obtain the global optimum.

Dynamic programming on a chain is a special case of belief propagation [186, 247] (BP)
for tree-structured MRF. Belief propagation works as beliefs are propagated from a node to
its neighbors in a certain order. The min-sum algorithm and sum-product algorithm solve
MAP inference and marginal inference exactly for a tree, involving two passes from leaves
to root and from root to leaves (backtracking). BP also gives all the min-marginals in
the forward pass from leaves to root and can be seen as re-parameterization of the energy
parameters φp and φpq [124].

Often it is natural in computer vision to deal with graphs, e.g. 4-connected image
grid. Loopy belief propagation (LBP) [80, 239, 76] passes messages on loopy graphs. The
order in which to update the messages can be parallel or sequential. For example, in the
parallel scheme, messages for each node are updated simultaneously. However, LBP is not
guaranteed to converge, and its theoretical analysis is limited.

Besides belief propagation, another widely-used technique for MRF inference is graph
cut6 [98, 31, 30]. For binary MRF of K = 2, if it holds that

φpq(0,0) + φpq(1,1) ≤ φpq(0,1) + φpq(1,0) ∀p, q, (1.8)

then (1.6) is graph representable and can be optimized globally using graph cut [98, 31, 127].
This method constructs a graph with each node representing each pixel, together with two
special nodes of source and sink. The cut of the constructed graph is equivalent to pairwise
energy (1.6) with the corresponding labeling. Standard maxflow algorithms such as Ford-
Fulkerson algorithm and push-relabel [86] find the mincut and optimal labeling S.

6This technique of mincut/maxflow is referred as ”graph cut” in computer vision by convention. Here,
we do not mean the general task of cutting or partitioning a graph.
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The energy of a binary MRF, i.e. K = 2, can be thought as a set function F (A) on the
set A = {p∣Sp = 1}. Graph cut is an example of submodular set functions whose minimum
can be found in strongly polynomial time7 [99, 206].

Definition 3 (Submodularity). A set function F ∶ 2∣Ω∣ → R is submodular if for every
A ⊂ Ω, B ⊂ Ω,

F (A ∪B) + F (A ∩B) ≤ F (A) + F (B). (1.9)

Equivalently, a set function F is submodular if for A ⊂ B ⊂ Ω and p ∈ Ω / B,

F (A ∪ p) − F (A) ≥ F (B ∪ p) − F (B). (1.10)

It is proved that pairwise MRF with potentials satisfying (1.8) is submodular [128].

Optimization of general multi-label MRF is usually NP-hard. Special cases exist that
allows global optimum in polynomial time. For example, if the pairwise potential φ(Sp, Sq)
is in the form of φ(Sp, Sq) = g(∣Sp −Sq ∣) with convex g(⋅), then its global optimum is found
by maxflow/mincut on the graph proposed by Ishikawa [109].

Boykov et al. [31] developed move making algorithms, α-expansion and αβ-swap, for
MRF inference when the pairwise potentials φ(Sp, Sq) are metric and semimetric. α-
expansion is an efficient algorithm with a constant approximation factor of the global
optimum. αβ-swap deals with more general energies that are semimetric. At each iteration
of move making algorithms, a global optimum is sought by graph cut in a restricted search
space in {0, ...,K−1}∣Ω∣. For example, at each iteration of α-expansion, variables can choose
to stay as their original labels or be updated to α. For αβ-swap, those variables whose
labeling is α or β can swap their labels.

Graph cut and move making [31] is the first widely-used algorithm for MRF inference
in various applications such as stereo, optical flow, and segmentation. It gives much better
results than earlier work including iterated conditional modes (ICM) [21, 68] and simu-
lated annealing (SA) [82]. ICM [21, 68] is in a way analogous to move-making as finding
optimum sequentially for each node. However, unlike α-expansion or αβ-swap, the search
space of ICM at each iteration is very limited, leading to a poor local minimum. SA [82]
incorporated randomization by randomly updating a variable based on a probability dis-
tribution defined by the energies. However, SA is also restricted to optimizing one variable
at a time and converges slowly in practice. Note that Boykov et al. [31] is not the first to
use graph cut for computer vision problems. Greig [98] utilized maxflow/mincut for binary

7Though polynomial, the general algorithm for submodular minimization is usually impractical for
computer vision problems with ∣Ω∣ in the order of millions.
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image restoration and achieved global optimum. Roy and Cox [70] proposed a maxflow
formulation of multi-label stereo. However, these work is restricted to binary energy or
particular multi-label energy.

Move-making algorithms have been extended in many different ways. Veksler [230]
proposed range move for truncated convex potentials which is common in computer vision.
Another notable work along this line is the fusion move invented by Lempitsky et al. [142]
that fuses multiple candidate solutions which comes from different algorithms maybe with
different parameter settings. It is a meta-algorithm applicable to many problems.

An important class of methods for MRF optimization is based on linear programming
(LP) relaxation and dual decomposition [12]. We first rewrite the discrete MRF energy in
(1.6) as an integer linear program (ILP). We let xp,i = 1 if Sp = i and 0 otherwise. Similarly,
xpq,ij = 1 if xp = i, xq = j and 0 otherwise. Then we have,

min
X

F (Φ,X) ≡ ∑
p∈Ω

φp,ixp,i + ∑
pq∈N

φpq,ijxpq,ij ≡ < Φ,X >

subject to ∑
i

xp,i = 1, ∀p,

∑
j

xpq,ij = xp,i, ∀p,

xp,i ∈ {0,1}, ∀p

xpq,ij ∈ {0,1}, ∀pq ∈ N ,

(1.11)

where X = [.., xpi, .., xpq,ij, ..] are binary variables xpi, xpq,ij to be determined, and Φ =

[.., φpi, .., φpq,ij, ..] are MRF parameters φpi, φpq,ij.

ILP problem like (1.11) is NP-hard in general. If we relax the integer constraints
xp,i ∈ {0,1}, xpq,ij ∈ {0,1} to the range of [0,1], i.e., xp,i ∈ [0,1], xpq,ij ∈ [0,1], then it
becomes the linear programming (LP) relaxation8 of (1.6), which is widely studied in
many approximation algorithms. However, LP relaxation still involves many variables and
constraints in typical computer vision applications. It cannot be solved in practice using
off-the-shelf LP solver like CPLEX [1].

Decomposition is a general principle for optimization. An optimization problem that
is difficult can be decomposed into many smaller problems that are easier to solve, and
the solution for the original original problem is from the solutions of the subproblems.

8LP relaxation is one of many possible convex relaxations for MAP-MRF, see a review and detailed
analysis in [133].
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Wainwright et al. [236] considered a convex combination of trees parameterized as∑mΦm =

Φ and maximized the dual of LP relaxation.

max ∑
m

F ∗(Φm)

subject to ∑
m

Φm = Φ,
(1.12)

where F ∗(Φm) = minXF (Φm,X) is the minimum for the subproblem. Tree reweighted
message passing (TRW) algorithms [236, 124] maximize the dual which is a lower bound
of the original problem F (Φ,X). Like any other dual method, the gap between the dual
objective and the original objective indicates how good is the solution. TRW algorithms
iterate between reparameterization via belief propagation on trees and averaging of min-
marginals to give new Φm. The iteration scheme matters for convergence of the algorithm.
Kolmogorov [124] proposed TRW-S which updates messages sequentially which never de-
creases the lower bound, unlike what happens when updating the messages in parallel
[236]. Through convergent, TRW-S is not guaranteed to find the global optimum of the
dual problem. However, for particular class such as pairwise MRF with submodular poten-
tials, it gives strong tree agreement and hence global optimum of the original MAP-MRF
problem. In general, TRW-S may converge to a point of weak tree agreement where the
dual objective no longer increases.

Komodakis et al. proposed a general dual decomposition (DD) method [129] that gives
theoretical and practical benefits compared to other message passing algorithms. Similar
to TRW-S, the original MRF on general graph is decomposed to a combination of solvable
subproblems. A Lagrange dual is maximized through projected supergradient descent.
MRF-DD [129] is more powerful than TRW-S since it achieves the global maximum of the
dual objective while TRW-S leads to local maximum. MRF-DD is also more general allow-
ing different forms of decomposition while TRW-S is limited to tree based decomposition.
Such generality allows tighter relaxations of the original MRF by different decomposition
scheme and the DD framework [129] is applicable to high-order MRFs.

So far, we’ve briefly reviewed MRF inference techniques based on graph cut, belief
propagation, LP relaxation, and dual decomposition. Kappes et al. [113] systematically
compared modern inference techniques for discrete energy minimization. Thorough ex-
periments with different approaches, e.g. α-expansion, LBP, TRW-S, QPBO, DD, are
conducted on various MRF models. The code is publicly available in OpenGM9. It is be-
yond the scope of this section to review in detail. A tutorial of MRF inference is given by
Savchynskyy [203].

9http://hciweb2.iwr.uni-heidelberg.de/opengm/
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Figure 1.8: Architecture of LeNet-5 for digits recognition [138]. ©IEEE

1.3.4 Convolutional Neural Networks (CNN)

The above mentioned MRF and clustering method for segmentation are typically not re-
lated to deep learning [137]. We refer to them as ”shallow” method for image segmentation.
These shallow methods are driven by minimization of some objectives such as MRF energy
or clustering criterion, while neural networks are trained to minimize the empirical risk
loss w.r.t. lots of labeled data.

Deep learning [137, 106] has revolutionized computer vision [131, 102], natural language
processing [52, 87], speech recognition [104] etc. Nowadays, deep learning dominates most
of computer vision tasks, for example image classification [131, 102], tracking [237, 167],
segmentation [45, 259, 101], optical flow [108, 214], human pose estimation [227] and image
captioning [249].

Convolutional Neural Networks are widely used for computer vision. It is a type of
multi-layer neural networks originally designed for visual recognition. LeNet [138] is the
very first CNN successfully used for for digit classification. Fig. 1.9 shows the architecture
of LeNet which is composed of convolution layers, subsampling layers, and fully connected
layers. The stacking of nonlinear layers yields very complex nonlinear transformation of
an input image. A convolution layer has far less parameters than that of a fully connected
layer. Convolution operation is linear w.r.t. the nuber of pixels. What’s more, convolution
is spatially invariant. The receptive field is enlarged by applying convolution several times.

CNNs for classification are trained to minimize a cross entropy loss. LeNet is relatively
simple while recently developped network architectures such as GoogLeNet and ResNet are
much deeper. However, a challenge with deeper network is optimization since the gradients
are more likely to vanish or explode with deeper networks. The optimization of these
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Figure 1.9: Fully convolutional neural networks for semantic segmentation [150]. ©IEEE

really deep network is feasible nowadays with advanced optimization and regularization
techniques such as auxiliary losses [216], Dropout [213] and residual network [102].

In the era of deep learning, convolutional neural networks originally developed for
classification also revolutionized the field of segmentation. The seminal work of Long et
al. [150] is the first that trains a fully convolutional network for semantic segmentation,
achieving accuracy significantly better than previous state-of-the-art. The observation is
that a fully connected layer in a classification network, e.g. AlexNet [131], is also a 1 × 1
convolution. So the fully connected layer is removed and striding and pooling layers are
used less frequently to yield a coarse feature map. The coarse feature maps are restored
to the original resolution via e.g. deconvolution layer [150]. In order to utilize both high-
level and low-level features, coarse and fine layers are concatenated and convolved to give
combined features. An example of such network with skip-connection is FCN-8s [150].
Finally, pixel-wise segmentation in the form of probability distributions is obtained by a
softmax layer on the scores.

CNNs for semantic segmentation are trained end-to-end by back-propagation. It re-
quires a set of images {I1, ..., IN} and the corresponding ground truth labeling or mask
{Y1, ..., YN}. The number of images N is typically in the order of thousands. Let Sθ(I) ∈

[0,1]∣Ω∣×K be the output of a segmentation network parameterized by θ and S
Yp
p be the

probability that pixel p belongs to its ground-truth label Yp. We minimize an empirical
risk loss w.r.t. ground truth Y ∈ {1, ...,K}∣Ω∣,

min
θ

1

N

N

∑
n=1

`(Sθ(In), Yn). (1.13)

where `(Sθ, Y ) = ∑p∈Ω − log(S
Yp
p ) is the cross-entropy loss.
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Figure 1.10: Illustration of the general bound optimization procedure: Iteration t of opti-
mizing function F (S) using auxiliary functions (bounds) at(S). Step I minimizes at(S).
Step II computes the next bound at+1(S).

Nowadays, almost all segmentation networks are fully convolutional, and lots of ar-
chitectures have been proposed. These networks differ in the ways low-level features are
aggregated with high-level features [45, 250, 46, 259, 257], i.e., combining fine details with
semantics and context cues. Strided convolution and pooling layers reduce spatial resolu-
tion. Various ways of upsampling and variants of convolution [150, 45, 250] are brought
forward to restore to the original spatial resolution. Ever-deeper networks are trained using
ever-larger dataset, improving segmentation accuracy.

1.4 Our Motivation and Contribution

Having reviewed standard and relevant techniques for segmentation in Sec. 1.3, here we give
a glimpse of our motivation, while elaboration is left in subsequent chapters. We identified
limitations with these techniques. We have three important motivations discussed in Sec.
1.4.1 - 1.4.3. With these motivations and insights, we propose new formulations and
corresponding efficient optimization methods that take advantage of the complementary
benefits of different segmentation techniques.

1.4.1 Bound Optimization

Our first observation and motivation is that many segmentation technique such as K-means
(1.1) is related to bound optimization. In general, bound optimizers are iterative algorithms
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at(S)

St St+1

(I)

(II)

at+1(S)
F(S)

Figure 1.11: K-means as linear bound optimization: As obvious from (1.1), the bound at(S)
in Theorem 1 is a unary function of S. KM procedures (1.18) correspond to optimization
of linear auxiliary functions at(S) for KM objectives.

that optimize auxiliary functions (upper bounds) for a given objective F (S) assuming that
these auxiliary functions are more tractable than the original difficult optimization problem
[136, 168, 18, 217].

Definition 4 (Auxiliary function). Let t be a current iteration index, at(S) is an auxiliary
function of F (S) at current solution St if

F (S) ≤ at(S) ∀S (1.14a)

F (St) = at(St). (1.14b)

The auxiliary function is minimized at each iteration t (Fig. 1.10)

St+1 = arg min
S
at(S). (1.15)

This procedure iteratively decreases function F (S) since

F (St+1) ≤ at(St+1) ≤ at(St) = F (St).

Here, we show how K-means (KM) is related to bound optimization. The most ba-
sic iterative KM algorithm [69] can be described as the block-coordinate descent for the
mixed objective F (S,m) (1.1) combining discrete variables S = {Sp} with continuous vari-
ables m = {mk}

K
k=1 representing cluster “centers”. For any given S the optimal centers
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arg minmF (S,m) are the means

µSk ∶=
∑p∈Sk Ip

∣Sk∣
(1.16)

where Sk = {p∣Sp = k} is the kth segment and ∣Sk∣ is the segment’s cardinality. This reduce
(1.1) to KM energy of the single variable S,

Fkm(S) = ∑
k

∑
p∈Sk

∥Ip − µSk∥
2. (1.17)

Assuming current segments Skt the update operation giving arg minS F (S,µSt)

(
basic KM
procedure

) Sp ← arg min
k

∥Ip − µSkt ∥ (1.18)

defines the next solution St+1 as per standard K-means algorithm. This greedy descent
technique converges only to a local minimum of KM objective (1.1), which is known to be
NP hard to optimize. There are also other approximation methods.

We show that standard KM procedures correspond to bound optimization for K-means
objective (1.1). Note that variables mk in mixed objective Fkm(S,m) (1.1) can be seen as
relaxations of segment means µSk in single-variable KM objective Fkm(S) (1.17) since

µSk = arg min
mk
∑
p∈Sk

∥Ip −mk∥
2

and Fkm(S) = min
m

Fkm(S,m). (1.19)

Theorem 1 (bound for KM). Standard iterative K-means procedure (1.18) is a bound
optimization method for K-means objectives Fkm(S) (1.17) using auxiliary function

at(S) = Fkm(S,µt) (1.20)

at any current segmentation St = {Skt } with means µt = {µSkt }.

Proof. Equation (1.19) implies at(S) ≥ Fkm(S). Since at(St) = Fkm(St) then at(S) is an
auxiliary function for F (S). Re-segmentation step (1.18) gives optimal segments St+1 mini-
mizing the bound at(S). The re-centering step minimizing Fkm(St+1,m) for fixed segments
gives means µt+1 defining bound at+1(S) for the next iteration. These re-segmentation (I)
and re-centering (II) steps are illustrated in Figs. 1.10,1.11.
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(a) bounding box [200]; (b) scribbles [30, 147];

(c) first frame annotation for video [187].

Figure 1.12: Weakly-supervised segmentation with different forms of weak supervision.

1.4.2 Weakly-supervised Segmentation and Semi-supervised
Learning (SSL)

Often in segmentation tasks, we are given only some weak-supervision. For example, the
users provide bounding boxes or strokes for interactive segmentation [30, 200]. For video
and 3D volume in medical imaging, it is laborious to segment all frames in a video, so only
the first frames are labeled [187]. Fig. 1.12 shows examples of weak supervision. Other
types of supervision include for instance clicks [13], polygons [38], extreme point [156],
and image-level tags [121]. Training a CNN for segmentation with weak-supervision has
attracted lots of interests [147, 13, 121, 156].

We address weakly-supervised segmentation by principled approaches from semi-supervised
learning [265, 44], which is about learning from both labeled and unlabeled data [265, 44].
Fig. 1.13 shows a toy example of semi-supervised classification.

Definition 5 (Semi-supervised Learning). Given M labeled data points (xi, yi) ∈ (X ,Y),
i = 1, ...,M and U unlabeled data points xi ∈ X , i =M + 1, ...,M +U , learn f(x) ∶ X → Y.

Weakly-supervised segmentation and semi-supervised learning are closely related. For
example, segmentation with scribbles is essentially a SSL problem since scribbled pixels
are labeled while the rest are unlabeled. In fact, standard MRF formulation for interactive
segmentation [30] is very similar to SSL formulation based on graph regularization [264,
265]. However, they are independently developed in computer vision and machine learning
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Figure 1.13: A synthetic example of semi-supervised learning with labeled and unlabeled
data for binary classification. Given unlabeled data, the test point (?) is expected to be
of positive class though it is closer to negative samples.

communities. We revisit the connections and leverage well-established SSL techniques for
weakly-supervised CNN segmentation, which is dominated by heuristically training from
fully labeled proposals [147, 121, 116].

Semi-supervised learning works since certain assumptions hold [44]. For example, it is
natural to assume that two points x1, x2 nearby in feature space X should be of the same
output label y. Also, the decision boundary should lie in the low-density region.

Semi-supervised learning algorithms include for example self-training, generative mod-
els, co-training, semi-supervised support vector machines, and graph-based algorithms.
Simple self-learning [79], as a wrapper method, is sensitive to the reinforcement of early
mistakes. The iterative EM algorithm maximizes the likelihood of labeled and unlabeled
data with generative models [175], e.g. Gaussian Mixture Models (GMMs). Transductive
SVM (TSVM) maximizes the margin for both labeled and unlabeled data, but its optimiza-
tion is difficult [44]. Graph-based algorithms [24, 264, 262, 15] are the most relevant to our
work, which assume that two nodes with larger graph affinity are more likely to have the
same label. Graph Cut [24] solves a combinatorial problem in polynomial time. Harmonic
Functions [264] relaxes discrete labeling to real values and admits a closed-form solution.
Manifold regularization [15] prevents over-fitting to training examples by including extra
regularization on the whole feature space. As such, it gives better generalization and a
natural extension to test data.

Deep learning needs lots of labeled data in general, which is particularly problematic
for pixel-wise segmentation since such ground-truth is very expensive to obtain. We adapt
principled SSL techniques to weakly-supervised CNN segmentation. Our proposed regular-
ized loss framework is simple, general, and applicable to a wide range of weak-supervisions
such as scribbles, clicks, and image-level tags.
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1.4.3 Combining KC, MRF, and CNN

While CNNs [150, 45, 101] achieved record-breaking accuracy on benchmarks, segmentation
is far from being solved. CNN segmentation has the following limitations.

1. Training needs lots of fully labeled images. Manual image segmentation is very
tedious and time-consuming. For example, it takes approximately 10 min× 11,000 =
73 days for PASCAL dataset [74] that contains 11,000 training images. Also, it takes
much more efforts to annotate videos. For modality like medical images, expertise is
required to segment the training images precisely.

2. Segmentation networks trained on one dataset often don’t generalize well on another
dataset of different-looking images. However, generalization is critical to enable de-
ployment of computer vision systems for various scenes. An example is road segmen-
tation in autonomous driving for different cities with different street views. It is too
costly and infeasible to annotate data and retrain the networks for each city. Fully
supervised training has limitation and is not scalable.

3. Output segmentation from CNNs may not align well with object boundaries, in
particular for thin structured objects. Coarse upsampling from downsampled feature
maps leads to poor boundary alignment. Post-processing by e.g. MRF [45] also
improves segmentation on the boundary. However, few works explicitly incorporate
boundary alignment and other regularization into training [260, 207, 11].

4. CNN segmentation does not model geometric constraints and priors about the object
of interest. Ideally, networks are supposed to learn everything including geometry
about objects. However, it is not the case in practice. For example, output segmen-
tation can still be fragmented for objects that should be connected components [233].
Also, it is natural to have shape prior [57, 229, 92] for objects. However, there is no
mechanism to constrain the shape of output segmentation.

Shallow v.s. Deep Segmentation: To address some of the issues with CNN seg-
mentation, we propose to combine shallow and deep segmentation techniques. Shallow
segmentation methods including MRF [30] and clustering [211, 64] are complementary to
deep segmentation from the following reasons. Firstly, clustering or MRF techniques are
unsupervised or weakly-supervised with a little amount of annotation, for example with
scribbles or first-frame annotation for video segmentation. On the contrary, the main-
stream of CNN segmentation is based on full-supervision on tens of thousands of images.
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Figure 1.14: We study optimization in image segmentation with particular focus on com-
bining these techniques in a principled way. For example, we jointly optimize MRF energy
and clustering criterion in our Kernel Cut method [223]. Our regularized loss framework
[224] bridges deep CNN segmentation and shallow segmentation methods including MRF
and clustering.

Secondly, the formulation of shallow segmentation is usually motivated by regularization,
prior and constraints including boundary alignment, color clustering, volume prior, shape
prior, and geometric constraints. These regularizations are exactly what’s lacking for CNN
segmentation. Thirdly, shallow segmentation is usually based on raw or low-level features
including color and texture while deep segmentation is good at extracting discriminant
higher-level features.

A naive way to combine shallow and deep segmentation is to extract features from CNNs
for shallow segmentation techniques. This work goes beyond and we propose to combine
shallow with deep segmentation in a principled way through minimization of regularized
loss. Segmentation CNNs are typically trained to minimize pixel-wise classification loss
w.r.t. target label, i.e., empirical risk loss. Shallow segmentation is often formulated
as minimizing some objectives referred as MRF ”energies” or clustering ”criteria” in the
literature. So we take these objectives as regularization part and combine with empirical
risk loss as a regularized loss for CNN segmentation.

Fig. 1.14 gives a schematic overview of related segmentation techniques and the cor-
responding objectives to be optimized. In this thesis, we focus on the formulation and
optimization of segmentation techniques including MRF, Clustering, and CNN.
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1.5 Outline of the Thesis and Publication

In Chapter 2, we study optimization of MRF energies that are high-order or non-submodular.
Minimization of such energies is generally NP-hard. We propose pseudo-bound optimization
[217] that relaxes the upper-bound condition for an auxiliary function and to replace it with
a family of pseudo-bounds. Our Pseudo-Bound Cuts algorithm improves the state-of-the-
art in many applications: appearance entropy minimization, target distribution matching,
and curvature regularization.

In Chapter 3, we combine MRF regularization with Clustering, which are two popular
methodologies for image segmentation. We identify previously unknown secrets and bias of
MRF based segmentation and kernel clustering [218, 158]. We explain how regularization
and kernel clustering can work together and why this is useful. Our joint energy combines
standard regularization, e.g. MRF potentials, and kernel clustering criteria like normalized
cut. Complementarity of such terms is demonstrated in many applications using our bound
optimization Kernel Cut algorithm for the joint energy.

In Chapter 4, we combine deep CNN segmentation with non-deep or shallow techniques
including MRF and clustering. We propose MRF energies and kernel clustering criterion
as regularization losses [219, 224] for weakly supervised CNN segmentation. Minimization
of regularized losses is a principled approach to semi-supervised learning well-established
in deep learning, in general. However, it is largely overlooked in semantic segmentation
currently dominated by methods mimicking full supervision via ”fake” fully-labeled masks
(proposals) generated from available partial input. We propose different regularization
losses including normalized cut [219], MRF [224], and volume constraints [115]. We also
investigated novel optimization algorithm for regularized segmentation losses beyond gra-
dient descent [157].

In Chapter 5, we conclude the thesis and discuss future work & new directions.

This thesis is based the following published articles.

1. ”Pseudo-Bound Optimization for Binary Energies”, Meng Tang, Ismail Ben Ayed,
Yuri Boykov, In European Conference on Computer Vision (ECCV ), Zurich, Switzer-
land, September 2014.

2. ”Secrets of GrabCut and Kernel K-means”, Meng Tang, Ismail Ben Ayed, Dmitrii
Marin, Yuri Boykov, In IEEE International Conference on Computer Vision (ICCV ),
Santiago, Chile, December 2015.
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3. ”Normalized Cut Meets MRF”, Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri
Boykov, In European Conference on Computer Vision (ECCV ), Amsterdam, the
Netherlands, October 2016.

4. ”Kernel Clustering: Density Biases and Solutions”, Dmitrii Marin, Meng Tang,
Ismail Ben Ayed, Yuri Boykov, In IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI ), 2017.

5. ”Normalized Cut Loss for Weakly-supervised CNN Segmentation”, Meng Tang,
Abdelaziz Djelouah, Federico Perazzi, Yuri Boykov, Christopher Schroers, In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
USA, June 2018.

6. ”On Regularized Losses for Weakly-supervised CNN Segmentation”, Meng Tang,
Federico Perazzi, Abdelaziz Djelouah, Ismail Ben Ayed, Christopher Schroers, Yuri
Boykov, In European Conference on Computer Vision (ECCV ), Munich, Germany,
September 2018.

7. ”Kernel Cuts: Kernel and Spectral Clustering meet Regularization”, Meng Tang,
Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov, In International Journal of Computer
Vision (IJCV ), 2019.

8. ”Beyond Gradient Descent for Regularized Segmentation Losses”, Dmitrii Marin,
Meng Tang, Ismail Ben Ayed, Yuri Boykov, In IEEE Conference on Computer
Vision and Pattern Recogniton (CVPR), Long Beach, USA, June 2019.

9. ”Constrained-CNN losses for weakly supervised segmentation”, Hoel Kervadec, Jose
Dolz, Meng Tang, Eric Granger, Yuri Boykov, Ismail Ben Ayed, In Medical Image
Analysis (MedIA), Volume 54, P. 88-99, May 2019.
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Chapter 2

Pseudo-bound Optimization for
Binary MRF Energies

2.1 Introduction

Recently high-order [17, 18, 91, 95, 112, 164, 188, 243] and non-submodular pairwise
[90, 113, 126, 123] energy minimization have drawn tremendous research interests. Those
energy functions arise naturally in many computer vision and image processing applica-
tions. Examples of high-order functions include but are not limited to constraints on
segment volume [91, 243], clique labeling consistency [95, 120, 220] and matching target
distributions [17, 18, 91, 188]. Pairwise non-submodular energies occur in deconvolution
[90], curvature regularization [72, 90, 173], inpainting [113] and surface registration [113].

In general, optimization of high-order or non-submodular pairwise energy is NP-hard.
Existing approximation methods make optimization tractable either by global or local lin-
earization. Well established LP relaxation methods such as QPBO [25, 198] and TRWS
[123] are examples of global linearization techniques for solving non-submodular energies
in vision [113]. By relaxing the integrality constraints, they globally transform the orig-
inal function into a linear function with extra variables and linear constraints. Unlike
global linearization, local techniques iteratively approximate the original energy around
current solution, for instance, using Taylor approximations [90, 91, 117, 143] or auxiliary
functions [17, 18, 90, 168, 188, 199]. The recent Fast Trust Region (FTR) method [91]
finds the optimal solution of a local approximation within a trust region, i.e. a region
near current solution where the approximation can be trusted. The trust region size is
adaptively adjusted depending on the quality of current approximation using well-known
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trust region paradigms [255]. The recent studies [90, 91] have shown that FTR achieved
the state of the art performance in many applications. Our work is more closely related
to bound optimizers, which take auxiliary functions [17, 18, 90, 136, 168, 188, 199] as lo-
cal approximations and were recently shown to yield competitive performances in several
vision problems [18, 90, 188].

In this paper, we tackle binary energy functions E(S) where S = (Sp ∣p ∈ Ω) ∈ {0,1}∣Ω∣

is a vector of binary variables. We let bold font S = {p∣Sp = 1} ⊂ Ω be the set of pixels
labeled as foreground, and S̄ = Ω ∖ S as the complementary background segment.

2.1.1 Bound optimization

Bound optimizers iteratively minimize an auxiliary function bounding the original energy
across the entire solution space, see its definition 4. Denote the auxiliary function to be
At(S), then the current solution St is updated to the global optimum of the auxiliary
function:

St+1 = arg min
S

At(S) , t = 1,2, . . . (2.1)

Ideally optimization of the auxiliary function is easier than that of the original energy.
Bound optimizers guarantee not to increase the original energy at each iteration,

E(St+1) ≤ At(St+1) ≤ At(St) = E(St). (2.2)

Examples of well-known bound optimizers include mean-shift [75], difference of con-
vex functions (DC) programming techniques [5], expectation maximization (EM) and
submodular-supermodular procedures [168]. Besides, bound optimizers successfully tackled
various problems in machine learning [258], computational statistics [136] and nonnegative
matrix factorization [139]. In vision, bound optimizers were recently used for high-order
or non-submodular pairwise energies [18, 188, 90, 199]. The recent Auxiliary Cuts [18]
work derived bounds for certain class of high-order functions. A variant of Auxiliary Cuts
(LSA-AUX) is proposed in [90] for quadratic pseudo-boolean optimization.

2.1.2 Motivation and Contributions

Typically, for bound optimizers, one auxiliary function is chosen and optimized at each
iteration. Furthermore, such an auxiliary function has to be an upper bound for the
original energy E(S) across the entire solution space, see At(S) in Fig.2.1. However, in
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Figure 2.1: Illustration of how pseudo-bound optimization framework updates current
solution from St to St+1. Instead of optimizing only one auxiliary function At(S), we explore
a parametric family of pseudo-bounds. The best solution with the minimum original energy
is chosen among the set of all global minima for the family. They correspond to breakpoints
of parametric maxflow method [125] that can be efficiently explored in polynomial time. By
optimizing the family of pseudo-bounds, larger decrease in energy is achieved (St → St+1).
[Best viewed in color]

practice, it is difficult to find bounds that approximate well the original energy while being
amenable to fast global solvers. Although working well for some applications, auxiliary
cuts [18, 90] may converge to undesirable solutions for several types of functions, see a
representative example in Fig. 2.2.

Our main idea is to relax the bound condition for an auxiliary function replacing it with
pseudo-bounds, which may better approximate the original energy. Consider the example
in Fig.2.1. Auxiliary function At(S) does guarantee that its global minimum decreases
the original energy E(S), see Sec.2.1.1. However, there are many other approximation
functions whose global minimum also decrease the original energy. For example, optimal
solutions for (a) and (c) decrease E(S) because these functions are local upper bounds for
E(S) around their global minima. Function (b) does not have this local bound property,
but its global minimum still decreases the original energy. Moreover, solutions obtained
by minimizing other approximation functions, e.g. (c), could be better than the one from
the upper bound, i.e. auxiliary function At(S). In that sense, relaxing the upper bound
constraint allows better approximations of E(S).
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We want to design an optimization algorithm using a larger class of relaxed bounds,
which could give better solutions than proper auxiliary functions. The key challenge is
choosing such pseudo-bounds so as to guarantee the original energy decrease; note that the
upper bound constraint was used when proving (2.2). One way to proceed could be to
design some specific relaxed bounds that guarantee the decrease for E(S) by construction.
For example, in some applications it might be possible to design a particular approximation
function that is guaranteed to locally dominate the original energy only around its global
optimum, as in Fig.2.1 (a) or (c), which is sufficient to prove the decrease of E(S).

This paper follows an alternative approximation approach. Instead of a single auxiliary
function, at each iteration we optimize a family of pseudo-bounds that includes only one
proper bound, while the bound constraint is relaxed for the other functions. As shown
in Sec.2.2.1, inclusion of one proper bound is sufficient to guarantee the original energy
decrease when the best solution is selected among global minima for the whole family. As
illustrated in Fig.2.1 and confirmed by our experiments, relaxation of the bound constraint
allows to significantly improve the quality of optimization compared to auxiliary functions,
even when pseudo-bounds come from the same class of globally optimizable functionals.

A parametric family of pseudo-bounds is built as follows. We start from a known
optimizable, i.e. submodular, auxiliary function and add a unary bound relaxation term
weighted by a parameter. In order to explore all global minima for the whole parametric
family efficiently, we propose parametric maxflow [125, 105, 81], reviewed in Sec. 2.2.2.
To find all global minima for the whole family in polynomial time, the unary bound relax-
ation term must be monotone w.r.t. parameter. This practical consideration is important
when selecting parametric pseudo-bound families for specific applications, e.g appearance
entropy (2.11), distribution matching (2.15), or supermodular function (2.18). Note that
parametric maxflow can be easily parallelized.

Our contributions can be summarized as follows.

• This paper proposes a new general pseudo-bound optimization paradigm for approx-
imate iterative minimization of high-order and non-submodular binary energies. It
is a generalization of the standard majorize-minimize principle relaxing the bound
constraint for an auxiliary function.

• We optimize a parametric family of pseudo-bounds at each iteration. To guarantee
the energy decreases we include one proper bound in the family.

• In the context of discrete optimization, we propose parametric maxflow technique
[125, 105, 81] to explore all global minima for the whole family in low-order polyno-
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Figure 2.2: Matching target foreground color distribution using auxiliary cuts [18], fast
trust region [91] and pPBC. pPBC achieves the lowest energy.

mial time. To guarantee this complexity, we can choose families of pseudo-bounds
with monotone dependence on parameter.

• We propose and discuss several examples of pseudo-bound families for different high-
order and non-submodular pairwise energies.

• Our parametric Pseudo-Bound Cuts algorithm (pPBC) improves the-state-of-the-art
in many energy minimization problems, e.g. entropy based image segmentation,
target distributions matching, curvature regularization and image deconvolution. In
particular, we outperform the standard GrabCut algorithm [200] both in terms of
energy and segmentation error statistics. Our pseudo-bound approach is more robust
to initialization and binning. Our pPBC algorithm also gives lower energy than
Auxiliary Cuts [18] and Fast Trust Region [91] for distribution matching, see Fig.
2.2, and other challenging optimization problems in computer vision, see Section 3.5.

2.2 Parametric Pseudo-Bound Cuts (pPBC)

2.2.1 Our pseudo-bound framework

First, we define a family of pseudo-bounds for a scalar parameter λ with values in some set
Λ ⊆ R, for example Λ = [λmin, λmax].

Definition 6 (pseudo-bound). Assume energy E(S), some current solution St ∈ {0,1}Ω

and parameter λ ∈ Λ. Then, function Ft(S,λ) ∶ {0,1}Ω × Λ → R is called a pseudo bound
for energy E(S) if there exists λ′ ∈ Λ such that Ft(S,λ′) is an auxiliary function for E(S)
at current solution St.
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Algorithm 2: Parametric Pseudo-Bound Cuts (pPBC)

1 S0 ←Ð Sinit;
2 For t = 0,1,2, ..., repeat until convergence ;
3 Construct an auxiliary function At(S) at current solution St;;
4 Combine At(S) with unary relaxation term Rt(S) to form pseudo-bound

Ft(S,λ) = At(S) + λ Rt(S);
5 //Optimize the parametric family of pseudo-bounds

Sλ = arg minS Ft(S,λ), for λ ∈ Λ;
6 //Score candidate solutions and update

λ∗ = arg minλE(Sλ), St+1 ←Ð Sλ
∗
;

We may informally refer to pseudo-bound function Ft(S,λ) as a family of pseudo-
bounds or a parametric family.

Our goal is to iteratively update current solution St for energy E(S). Instead of bound
optimization discussed in Sec.2.1.1, we propose to computes new better solution St+1 by
optimizing pseudo-bound Ft(S,λ) as follows.

Proposition 1. Assume energy E(S), current solution St and a pseudo-bound family
Ft(S,λ) over parameter λ ∈ Λ. Let Sλ denote an optimal solution for Ft(S,λ) at any
particular λ:

Sλ = arg min
S
Ft(S,λ). (2.3)

Then, λ∗ = arg minλE(Sλ) gives solution St+1 ∶= Sλ
∗

reducing original energy

E(St+1) = E(Sλ
∗
) ≤ E(St).

Proof. Pseudo-bound family Ft(S,λ) contains an auxiliary function Ft(S,λ′) for some λ′.
Optimization over the whole family should give better solution than one particular function
E(Sλ

∗
) ≤ E(Sλ

′
). Then, the proposition follows from the property of auxiliary functions

E(Sλ
′
) ≤ E(St), see (2.2).

We construct a pseudo-bound family at current solution St by augmenting some aux-
iliary function At(S) with a weighted bound relaxation term Rt(S):

Ft(S,λ) = At(S) + λ Rt(S). (2.4)

Note that for λ = 0 our pseudo-bound Ft(S,λ) in (2.4) reduces to auxiliary function At(S).
Starting from the same current solution St, our pseudo-bound optimization is guaranteed
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to find at least as good or better solution than optimization of bound At(S). While pseudo-
bound may not be a proper bound for λ ≠ 0, it may better approximate the original energy
E(S), see Fig.2.1.

In the context of binary energies E(S) we typically choose some submodular At(S)
and modular (unary) Rt(S). The resulting pseudo-bound family (2.4) is of the form (2.5)
that allows to efficiently explore the whole set of solutions Sλ with standard parametric
maxflow techniques reviewed in Sec. 2.2.2. The next solution St+1 = Sλ

∗
can be computed

by selecting Sλ with the lowest value of original energy E(S), as summarized in Alg.2.

2.2.2 Overview of parametric maxflow

Parametric maxflow technique [125, 105, 81] is a building block in our proposed algorithm.
For all λ in some interval Λ = [λmin, λmax], parametric maxflow can efficiently generate a
(finite) set of all distinct solutions Sλ ∈ {0,1}Ω minimizing energy E(S,λ) of form

Sλ = arg min
S

E(S,λ)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
p∈Ω

(ap + λbp)sp + ∑
(p,q)∈N

φpq(sp, sq) (2.5)

where φpq are submodular pairwise terms for a set of pairwise factors N . Note that the
unary terms in (2.5) linearly depend on parameter λ.

As discussed in [71, 125], interval Λ can be broken into a finite set of subintervals
between breakpoints λ1 < λ2 < ... < λk ∈ Λ such that any λ inside each given interval
[λi, λi+1] gives the same solution Sλ = Si. Parametric maxflow identifies all breakpoints
and solutions Si by making a finite number of calls to the maxflow procedure, see [125, 71]
for details. Importantly, in monotonic case when coefficients bp in (2.5) are either all non-
negative or all non-positive, optimal solutions Si have a nestedness property leading to
guaranteed polynomial complexity. This necessitates our choice of relaxation term Rt(S)
to have unary coefficients of the same sign.

2.3 Examples of pseudo-bounds

Algorithm 2 for minimizing energy E(S) depends on pseudo-bound (2.4) and requires
specific choices of a submodular auxiliary function At(S) and a unary relaxation term
Rt(S). This section provides practical pseudo-bound examples for a wide range of high-
order and non-submodular pairwise energies E(S).
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(a) Volumetric prior, Sec.2.3.1 (b) Bhattacharyya prior, Sec.2.3.1

Figure 2.3: Pseudo-bound families for two cardinality functions. Auxiliary functions are
red.

2.3.1 High-order energies

Volumetric potential [91, 243]

Energy like ψ(∣S∣ − V0) for convex symmetric function ψ(⋅) penalizes deviation of size of
segment ∣S∣ from target volume V0. For example, if ψ(x) = x2 and S ⊂ St we can use the
following pseudo bound family1 illustrated in Fig.2.3(a)

Ft(S,λ) = (∣St∣ − 2V0)∣S∣ + V 2
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
At(S)

+λ (∣S∣ − ∣St∣)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rt(S)

. (2.6)

Appearance Entropy

Appearance entropy was proposed for image segmentation in [220] as a general color consis-
tency criterion. It can be combined with other standard terms, e.g. boundary smoothness,
as in the following binary segmentation energy known as maximum description length
(MDL)

EMDL(S) = ∣S∣ ⋅H(S) + ∣S̄∣ ⋅H(S̄) + ∣∂S∣ (2.7)

where H(S) and H(S̄) are entropies of color histograms inside foreground S and back-
ground S̄ and ∣∂S∣ = ∑{p,q}∈N ωpq ∣sp − sq ∣ is segmentation boundary length. Indirectly, color
entropy was also used for segmentation in [263, 200, 60]. Entropy can also be used as a
clustering criterion for any image features that can be binned. In fact, entropy and related

1For ψ(x) = x2 our volumetric potential is non-submodular pairwise, see also Sec.2.3.2.
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information gain criterion are widely used in learning, e.g. for contextual clustering [145]
or decision trees [212].

Entropy-based energy (2.7) from [220] is related to a well-known minimum description
length (MDL) functional [263, 60] for color model fitting. In particular, for two segments
it reduces to a color model fitting energy in GrabCut [200]

EMDL(S, θ
1, θ0) =∑

p∈Ω
− logP (Ip∣θ

sp) + ∣∂S∣ (2.8)

where θ1 and θ0 are variables corresponding to unknown color models for foreground S and
background S̄. As shown in [220], globally optimal S for high-order energy (2.7) and mixed
optimization functional (2.8) coincide if color models θ are represented by histograms. Since
(2.8) is known to be NP-hard [234], it follows that high-order entropy energy in (2.7) is
also NP-hard.

Equivalence of global solutions for entropy (2.7) and color-model fitting (2.8) suggests
that (2.7) is minimized indirectly when applying standard block-coordinate descent (BCD)
techniques [263, 200, 60] to energy (2.8) separately optimizing variables S and θ at each
iteration. Below, we show that BCD in [200] can be seen as a bound optimization method
for entropy (2.7). Then, we use the corresponding auxiliary function to build a family of
pseudo-bounds that generate significantly better results, as shown by our experiments in
Sec.2.4.1.

Proposition 2. Assume fixed histograms θ1
t and θ0

t computed from the colors of current
solution St (foreground) and its complement S̄t (background). Then,

At(S) ∶= EMDL(S, θ
1
t , θ

0
t ), (2.9)

with E as in (2.8), is an auxiliary function for entropy-based energy (2.7) at St.

Proof. It follows from a cross entropy discussion in [220]. Indeed, it is easy to check

EMDL(S, θ
1
t , θ

0
t ) = ∣S∣ ⋅H(S∣St) + ∣S̄∣ ⋅H(S̄∣S̄t) + ∣∂S∣ (2.10)

where H(⋅∣⋅) is a cross-entropy of color distributions in two sets of pixels. Inequality
H(A∣B) ≥H(A∣A) =H(A) ∀A,B ⊂ Ω implies

EMDL(S, θ
1
t , θ

0
t ) ≥ EMDL(S)

where EMDL(S) is from (2.7). It is also easy to check that EMDL(St, θ1
t , θ

0
t ) = EMDL(St).

Corollary 1. Block-coordinate descent (BCD) for mixed functional (2.8), as in GrabCut
[200], is a bound optimization for entropy-based energy (2.7), see Sec.2.1.1.

Proof. Two steps during each iteration of BCD in GrabCut are (I) optimization of
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segmentation S by applying graph cuts to energy (2.8) with
fixed color models, as in Boykov-Jolly [30], and (II) optimiza-
tion of color models θ0, θ1 in energy (2.8) with fixed seg-
mentation. Prop. 2 implies that the segmentation step op-
timizes auxiliary function At(S) for energy (2.7) at St and
gives next solution St+1, as illustrated on the right. Color
model re-estimation step gives new auxiliary function At+1(S)
at St+1.

Our proposed pPBC method for entropy-based segmentation energy (2.7) augments the
auxiliary function At(S) in (2.9) with weighted bound relaxation term λ(∣S∣ − ∣St∣) giving
the following family of pseudo-bounds:

Ft(S,λ) = EMDL(S, θ
1
t , θ

0
t ) + λ (∣S∣ − ∣St∣). (2.11)

Matching color distributions [18, 91, 188, 17]

One way of matching target color distributions is to minimize Bhattacharyya measure:

Bha(S ∣ p) = −∑
k

√

pknS
k /∣S∣, (2.12)

where nS
k is the number of foreground pixels in color bin k and ∑k pk = 1 is the target

distribution. For S ⊂ St, a family of pseudo-bounds (Fig. 2.3) is given as:

Ft(S,λ) = −∑
k

√
pk

nSt
k ∣St∣

nS
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
At(S)

+λ (∣S∣ − ∣St∣)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rt(S)

(2.13)

Another option for matching distributions is to use the KL divergence [18]:

KL(S) =∑
k

pk log
pk

nS
k /∣S∣ + ε

=∑
k

pk log pk −∑
k

pk log(
nS
k

∣S∣
+ ε), (2.14)

where ε is a small constant used to avoid numerical issue. In this case, for S ⊂ St, we have
the following family of pseudo-bounds (omitting constant ∑k pk log pk):

Ft(S,λ) =∑
k

pk

nStk

⎛
⎜
⎝

log
ε

n
St
k

∣St∣ + ε

⎞
⎟
⎠
nS
k − log ε

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
At(S)

+λ (∣S∣ − ∣St∣)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rt(S)

, (2.15)

where At(S) is the auxiliary function derived recently in [18].
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Figure 2.4: pPBC-T: Pseudo-bounds (purple) and auxiliary functions (red) of non-
submodular potential mpqspsq for current configuration sp,t = 0, sq,t = 0 (left) and sp,t =
0, sq,t = 1 (right).

2.3.2 Non-submodular pairwise energies

We consider a general class of binary pairwise non-submodular energies, which are useful in
various vision applications [113, 90], e.g., segmentation, stereo, inpainting, deconvolution,
and many others. Such energies can be expressed as:

E(S) = ∑
(p,q)∈N

mpqSpSq = S
TMS, S ∈ (0,1)Ω (2.16)

where M = {mpq ∈ R ∣p, q ∈ Ω} is a symmetric matrix containing pairwise potentials. if
mpq ≤ 0 ∀(p, q), energy (2.16) is submodular and, therefore, global optima can be reached
in a low-order polynomial time using graph cuts [25]. The general non-submodular case is
NP-hard. In the following, we propose three different pseudo-bounds families for (2.16) for
non-submodular pairs (mpq > 0).

pPBC-T(touch) gives pseudo-bounds for each non-submodular potentialmpqSpSq,mpq >

0. Depending on the current configuration Sp,t and Sq,t for Sp and Sq, we augment the
bound recently proposed in [90] with the relaxation terms specified as in Table 2.1. Fig. 2.4
shows the auxiliary functions in red and pseudo-bounds in purple for current configuration
(0,0) and (0,1). Note that the bound relaxation term for current configuration (0,1) and
(1,0) is different from that of (0,0) and (1,1). This relaxation allows the pseudo-bounds
to touch the original energy at as many points as possible, yielding better approximation.

pPBC-B(ballooning) This option uses the auxiliary function in Table 2.1 augmented
with a linear ballooning term λ (∣S∣ − ∣St∣).

pPBC-L(Laplacian) We derive the third pseudo-bounds family based on the Laplacian
matrix. Let d(p) = ∑qmpq and D be the diagonal matrix having d on its diagonal. Notice
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(Sp,t, Sq,t) Auxiliary function relaxation term (pPBC-T)
(0,0) mpq(Sp + Sq)/2 λ(Sp − Sp,t + Sq − Sq,t)
(0,1) mpqSp λ(Sp − Sp,t)
(1,0) mpqSq λ(Sq − Sq,t)
(1,1) mpq(Sp + Sq)/2 λ(Sp − Sp,t + Sq − Sq,t)

Table 2.1: Auxiliary functions [90] and weighted bound relaxation term for pPBC-T.

that, in the case of supermodular terms (mpq ≥ 0), D is diagonally positive and, therefore,
positive semidefinite. With symmetric matrix M , it is well known that the corresponding
Laplacian matrix L = D −M is positive semidefinite [211]. Now we write (2.16) as follows
for λ ∈ Λ:

E(S) = ST (M − λD)S
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G(S)

+λSTDS
´¹¹¹¹¹¸¹¹¹¹¹¶
H(S)

. (2.17)

H is a unary potential for binary variables: H(S) = ∑p d(p)s
2
p = ∑p d(p)sp. Also, notice

that ∀λ ≥ 1, G is concave w.r.t S because M −λD is negative semidefinite (as it is the sum
of two negative semidefinite matrices: M − λD = −L + (1 − λ)D). Therefore, let ∇ denotes
the gradient, we have the following pseudo-bounds at current solution St which includes
bounds of (2.16) for λ ≥ 1.

Ft(S,λ) = G(St) +∇G(St)
T (S − St) + λH(S)

= G(St) −∇G(St)
TSt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Constant

+2[(M − λD)St]
TS + λH(S)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Unary potential

(2.18)

2.4 Experiments

2.4.1 Appearance entropy based segmentation

Robustness w.r.t initialization and binning: We use GrabCut and BCD interchange-
ably for the rest of the paper. Left part of Fig. 2.5 depicts an example of interactive
segmentation with BCD or our proposed pPBC, and shows that BCD is sensitive to initial-
izations, unlike pPBC. pPBC can even tolerate trivial initialization, see an un-supervised
segmentation example in the right of Fig. 2.5.

Furthermore, we observed that with more appearance model variables, namely the
number of color bins, BCD is more likely to get stuck in weak local minima. We randomly
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Figure 2.5: Left: interactive segmentations with BCD (GrabCut) or pPBC from different
initialization (ellipses). Proposed pPBC method is more robust to inferior initialization.
Right: unsupervised figure-ground segmentation with pPBC. Average color is shown.

generated 500 box-like initializations for an input image, and run BCD and pPBC for
different numbers of color bins, ranging from 163 to 1283. From the solutions we obtained
with BCD or pPBC, we computed the corresponding error rates and energies. Fig. 2.6
depicts the scatter plots of error rates versus energies for the 500 solutions. Points on
bottom-left give low energy and small error rate. The wider these dots spread across the
plane, the more local minima the algorithm converged to. pPBC works much better than
BCD for finer binning and is more robust to initializations.

Comparisons with the state of the art [220, 234] We compare with GrabCut,
which as demonstrated in Sec.2.3.1, can be viewed as a bound optimizer. We run both
algorithms on the GrabCut dataset [200] (The cross image excluded for comparison with
[234]). We set the weight of the 8-connected contrast-sensitive smoothness term to 15 and
vary number of color bins. As shown in Tab.2.3, pPBC consistently gives lower energies and
misclassification errors. Our current implementation does not use a straightforward multi-
core CPU parallelization of parametric maxflow by breaking the range of λ into intervals.

Figure 2.6: Scatter plots; error rates versus energies for 500 solutions of BCD and pPBC.
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Error rate Time
GrabCut (163 bins) 7.1%2 1.78 s
GrabCut (323 bins) 8.78% 1.63 s
GrabCut (643 bins) 9.31% 1.64 s
GrabCut (1283 bins) 11.34% 1.45 s
DD (163 bins) 10.5% 576 s
One-Cut (163 bins) 8.1% 5.8 s
One-Cut (323 bins) 6.99% 2.4 s
One-Cut (643 bins) 6.67% 1.3 s
One-Cut (1283 bins) 6.71% 0.8 s
pPBC (163 bins) 5.80% 11.7 s
pPBC (323 bins) 5.60% 11.9 s
pPBC (643 bins) 5.56% 12.3 s
pPBC (1283 bins) 7.51% 15.9 s
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Figure 2.7 & Table 2.2: Error rates and speed on GrabCut dataset for GrabCut [200], Dual
Decomposition (DD) [234], One-Cut [220] and our pPBC method.

Thus, significant speed up of our pPBC algorithm is possible. In the next experiment we
tuned the smoothness term weight for pPBC and other methods [200, 220] to obtain the
best error statistics for each. Fig. 2.7 shows a competitive performance of pPBC.

Mean Energy # of lower energy Mean time(s)
GrabCut [200] - 163 bins 1.2349 × 106 1 1.0s
pPBC - 163 bins 1.2335 × 106 38 11.2s
GrabCut [200] - 323 bins 1.7064 × 106 2 0.9s
pPBC - 323 bins 1.7029 × 106 37 11.7s
GrabCut [200] - 643 bins 2.2408 × 106 1 0.9s
pPBC - 643 bins 2.2361 × 106 47 14.1s

Table 2.3: Statistics of pPBC and GrabCut [200] over the GrabCut database.
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KL divergence (2.14) Bhattacharyya distance (2.12)
Method energy error Time energy error Time
Auxiliary Cuts [18] 6189 16.54% 1.8s -12402 24.1% 1.7s
pPBC(λ ≤ 0) 6150 14.88% N/A -12451 23.7% N/A
FTR [91] 5868 7.70% 4.40s -14499 3.2% 2.71s
pPBC(λ ∈ [−∞,+∞]) 5849 3.63% 2.98s -14504 2.9% 1.99s

Table 2.4: Matching color distribution (KL or Bhattacharyya distance) with Auxiliary
Cuts [18], FTR [91], pPBC and its limited version with λ ≤ 0 for the pseudo-bounds. Mean
energy and error are reported.

2.4.2 Matching color distributions

We experiment on the database [200], and used the bounding boxes as initializations.
Similar to [18, 91], the target distribution is learned from the ground truth. We compared
pPBC with auxiliary cuts [18] and FTR [91]. We also tested a limited version of pPBC
where only non-positive λ’s were explored within the family of pseud-bounds. Note that,
when λ is non-positive, the parametric family includes only auxiliary functions. The mean
error rate, energy and running time are reported in Table 2.4. Exploring only a family
of auxiliary functions (λ ≤ 0) did not improve the results. pPBC with parameter λ ∈ R
yielded the best performance, while being slightly slower than auxiliary cuts (even though
pPBC explores a family of functions instead of only one). FTR yielded comparable mean
energy to pPBC, but is slower. Fig. 2.2 depicts typical examples.

2.4.3 Curvature Regularization

We applied our framework to the curvature model proposed in [72], which penalizes 90
degree angles in a 4-connect neighborhood system. We also compare pPBC to the recent
algorithms (LSA-AUX and LSA-TR) in [90], which were shown to outperform standard
state-of-the-art methods such as QPBO [198] and TRWS [123]. Fig. 2.8 plots the energies
of the solutions with different weights of the curvature term. pPBC-T gives the lowest
energy among all methods. We also observed that the best λ for pPBC-T often does not
make the pseudo-bound an auxiliary function, which means the bounding constraint is
violated.
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Figure 2.8: Segmentation with the curvature regularization model in [72].

2.4.4 Deconvolution

Fig. 2.9 depicts a binary image convolved with a mean 3 × 3 filter, with a Gaussian
noise added. The purpose is to recover the original image via optimizing the energy:
E(S) = ∑p∈Ω (Ip −

1
9 ∑q∈Np sq)

2, where Np is a 3 × 3 neighborhood window centered at pixel
p. In this energy, all pairwise interactions are supermodular. We compared our pPBC-B,
L or T to the recent algorithms in [90] (LSA-AUX and LSA-TR). Table 2.5 shows average
energy of those methods. Note that LSA-TR achieves lower energy but visually worse
deconvolution. For σ = 0.05 noise, LSA-AUX takes 0.12s, LSA-TR 0.73s and pPBC-T
1.46s.

image+noise LSA-AUX LSA-TR pPBC-T

Figure 2.9: Deconvolution results. Top row: noise σ = 0.10, bottom row: σ = 0.2.
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Noise σ LSA-AUX [90] LSA-TR [90] pPBC-L pPBC-B pPBC-T
0.05 40.34 30.83 39.49 39.65 30.81
0.10 130.24 119.84 128.68 128.06 121.20
0.15 277.27 263.06 275.89 276.62 266.35
0.20 482.54 451.78 480.80 482.09 471.11

Table 2.5: Average energy with 10 random noisy images.

2.5 Conclusion

This chapter proposes a new general pseudo-bound optimization paradigm for approximate
iterative minimization of high-order and non-submodular binary energies. It generalizes
the standard majorize-minimize principle relaxing the bound constraint for an auxiliary
function. We propose to optimize a family of pseudo-bounds at each iteration. To guarantee
the energy decreases we include at least one bound in the family. We propose parametric
maxflow [125, 105, 81] to explore all global minima for the whole family in low-order
polynomial time.

To guarantee polynomial time complexity, pseudo-bounds families with monotone de-
pendence on parameter are chosen. We propose and discuss several options of pseudo-
bound families for various high-order and non-submodular pairwise energies. Our para-
metric Pseudo-Bound Cuts algorithm (pPBC) improves the-state-of-the-art in many energy
minimization problems, e.g. entropy based segmentation, target distributions matching,
curvature regularization and deconvolution. In particular, we show that the well-known
GrabCut algorithm [200] is a bound optimizer. Our pseudo-bound approach is more robust
to inferior initialization and finer binning for image segmentation. Our pPBC algorithm
also gives lower energy than Auxiliary Cuts [18] and Fast Trust Region [91] for distribution
matching and other challenging optimization problems in vision.
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Chapter 3

Kernel Clustering Meets MRF
Regularization

3.1 Introduction: Terminology and Motivation

While independently developed as different methodologies, standard regularization and
kernel clustering techniques are based on objective functions with many complementary
properties. Our goal is to combine these functions into a joint objective or energy appli-
cable to image segmentation or general clustering problems. On the one hand, we show
that common regularization methods can use extra terms like normalized cut (NC) [211]
to enforce balanced partitioning of arbitrary high-dimensional image features, e.g. a com-
bination of color, texture, depth, or motion, where model-fitting [263, 200] fails, compare
Fig. 3.1(b)(e). On the other hand, standard clustering applications can benefit from an
inclusion of basic pairwise or higher-order regularization constraints, e.g. edge alignment
[37, 30], bin-consistency [120], label cost [60]. Regularization and kernel clustering could
not be combined before due to optimization difficulties [132].

On a surface, even the formulations of kernel clustering and regularization-based seg-
mentation may seem significantly different. While the general terms clustering and seg-
mentation are largely synonyms, the latter is more common for images where data points
are intensities, colors, or higher dimensional features Ip ∈ RN sampled at regularly placed
pixels p ∈ RM . For example, the image in Fig. 3.1(a) combines colors and motion vectors
into RGBUV features Ip ∈ R5 on grid points p ∈ R2. The pixels’ locations are important.
Many regularization methods for image segmentation treat Ip as a function I ∶ RM → RN

and process domain RM (locations) and range RN (features) in very different ways. For
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RGB and UV features MRF + RGBUV hist. fitting NC (XY+RGBUV)

(a) image + optic flow (b) grab-cut (c) spectral clustering
(input data) (weak local minima) (weak edge alignment)

NC (RGBUV) MRF + NC (RGBUV)

(d) spectral clustering (e) kernel cut
(irregular boundary) (our approach)

Figure 3.1: Segmentation of 5D image data (a). For higher-dimensional features, regu-
larized model-fitting [263, 60] becomes sensitive to local minima, e.g. grabcut [200] fitting
RGBUV histograms (b). Spectral clustering like normalized cut (NC) [211] is scalable to
high dimensional features, but it is known for splitting regions (c) or lack of regularity
(d). Our kernel cut (e) combines kernel clustering over arbitrary features with standard
regularization in the image domain, see energy (3.1).
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example, MRF [82] and variational techniques [166] use pixel locations for geometrically
motivated segments’ shape priors, while pixel features are used in segments’ appearance
likelihood models [37, 30, 28, 189], e.g. Fig. 3.1(b).

In contrast, clustering typically assumes arbitrary data points Ip with non-informative
indices p. General clustering techniques [69, 235, 4], e.g. K-means or spectral methods,
apply to images [211, 2] by combining pixel locations with colors or other features into
data points Ip in RM+N . For example, the result in Fig. 3.1(c) uses R7 points combining
locations XY and RGBUV values. Without the locations the result is spatially noisy (d).
We focus on a well-known general group of kernel clustering methods [107, 211, 9, 64].

Some differences in formulations of kernel clustering and regularization methods are
not essential and easily resolve with proper notation working as a common platform for
both (Sec. 3.1.1, Tab. 3.1). Our notation presents spectral clustering as a high-order term
in a joint energy making similarities and differences more transparent. Once notation is
established, we present our joint energy (3.1) combining kernel clustering and regularization
terms, give some specific basic examples (Tab. 3.2), and further motivate our approach.
Later background section reviews standard (MRF) regularization and kernel clustering
objectives in details and technical sections explain how to optimize the joint energy using
new linear bounds for the high-order kernel clustering term.

3.1.1 Notation

Sec. 1.2 has introduced some frequently used notations used in this thesis. Here, we
describe extra notations for this Chapter.

Tab. 3.1 summarizes our notations for segmentation. In Tab. 3.1, we give alternative
representations of the same notations. Such alternative representation is somewhat super-
fluous, but it gives flexibility needed for uniting diverse methodologies for segmentation
and clustering covered in Sec. 3.2. We equivalently represent segmentation of Ω either as
a labeling S ∶= (Sp∣p ∈ Ω) combining integer point labels 1 ≤ Sp ≤ K or as a partitioning
{Sk} of set Ω into K non-overlapping subsets or segments Sk ∶= {p ∈ Ω∣Sp = k}. As a minor
abuse of notation, Sk will also be a set indicator vector {0,1}∣Ω∣. Exact interpretation of
Sk is clear from the context. Since our bounds are also useful for relaxation methods, we
may discuss relaxed segment support vectors Sk in [0,1]∣Ω∣.

48



variable alternative relaxed representation

Sp vector [0,1]K , p-th row of assignment matrix S

Sc subset of rows of assignment matrix S

S an assignment matrix [0,1]∣Ω∣×K

Skp element of assignment matrix in [0,1]

Sk vector [0,1]∣Ω∣, k-th column of assignment matrix S

Sk
′

transposed vector [0,1]∣Ω∣

Table 3.1: Our notation for segmentation of points p ∈ Ω uses discrete labels and binary
indicators, see Tab. 1.1. Without much ambiguity, segment Sk could mean both a subset of
Ω or its indicator vector, i.e. Sk is either an element of power set P(Ω) or a vector {0,1}∣Ω∣.
While unnecessary for most of the technical results in this paper, in the context of relaxation
methods it is easy to switch to an alternative representation (the last column) where
segment Sk becomes a relaxed vector [0,1]∣Ω∣. This is consistent with a common (relaxed)
assignment matrix representation of segmentation S where integer label Sp becomes a
vector on probability simplex ∆K specifying pixel’s support/distribution over K labels.

3.1.2 Our approach summary

We combine standard kernel (pairwise) clustering criteria such as Average Association
(AA) or Normalized Cut (NC) [211] and common regularization functionals such as MRF
potentials [82, 144]. The general form of our joint energy is

E(S) = EA(S) + γ ∑
c∈F

Ec(Sc) (3.1)

where the first term is some kernel clustering objective based on data affinity matrix or
kernel A ∶= [Apq] with elements Apq ∶= A(Ip, Iq) defined by some similarity function A(⋅, ⋅).
The second term in (3.1) is a general formulation of MRF potentials [31, 120, 60]. Tab.
3.2 previews basic examples of the terms in joint energy (3.1) using different “graph cut”
criteria.
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Figure 3.2: Our Kernel Cut approach to minimizing energy (3.1). Standard (MRF) regu-
larization solvers can easily integrate our linear kernel or spectral bounds for the clustering
term (Sec.3.3,3.4) producing an iterative bound optimization for (3.1).

Constant γ in (3.1) is a relative weight of the (MRF) regularization term. Subset c ⊆ Ω
represents a factor often consisting of nearby pixels. Factor labels Sc ∶= (Sp ∣p ∈ c) is a
restriction of labeling S to c. Potentials Ec(Sc) for a given set of factors F represent
various unary, second, or higher order constraints, where factor size ∣c∣ defines the order.
The left column in Tab. 3.2 is an example of the second-order Potts model that can
be equivalently written as a quadratic function. Factor features {Ip ∣p ∈ c} often work as
parameters for potentials Ec. For example, wpq = w(Ip, Iq) is a common way to set pairwise
penalties in Tab. 3.2 (left column).

Typical kernel clustering methods encourage balanced segments using ratio-based ob-
jectives EA as in Tab. 3.2 (right column). Due to normalization, such objectives can be
seen as high-order potentials of order ∣Ω∣ that are difficult to optimize. Sections 3.2.2, 3.2.3
review popular kernel clustering criteria and standard approximate optimization methods.

In order to optimize the combination of kernel clustering term EA with regularization
constraints in energy (3.1), we propose two unary (linear) bounds for EA. Such bounds
are easy to integrate into many existing regularization solvers as outlined in Fig. 3.2. In
general, the second term in (3.1) could be any discrete or continuous objective with a
good solver. We focus on discrete (MRF/CRF) regularization potentials in (3.1) only to
be specific and because the code for the corresponding solvers is widely available. The
following two subsections summarize the motivation and the main technical contributions
of this paper.
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regularization terms ∑c∈F Ec(Sc) kernel clustering terms EA(S)

∑
pq

wpq ⋅[Sp ≠ Sq] ≡
1

2
∑
k

Sk
′
W(1−Sk) ∑

k

Sk
′
A(1 − Sk)

∣Sk∣
or ∑

k

Sk
′
A(1 − Sk)

d′Sk

multi-way cut
a.k.a. Potts model [31], see (3.2)

average and normalized cuts [211]
see (3.37) and (3.38)

Table 3.2: Examples of “graph cut” criteria appearing in the contexts of (MRF) regu-
larization and kernel clustering that can be used in joint energy (3.1) simultaneously. The
cut cost, i.e. the sum of edge weights wpq or affinities Apq between the segments, can be
represented via matrices W = [wpq] or A = [Apq], and segment indicators Sk, see Tab. 3.1.
The right column differs only by normalization over segment cardinality ∣Sk∣ or weighted
cardinality d′Sk where d ∶= A1 are node degrees.

3.1.3 Motivation and Related work

Due to significant differences in their existing optimization methods, kernel clustering
(e.g. NC) and regularization methods (e.g. MRF) are used separately in unsupervised or
weakly-supervised applications of vision and learning. They have complementary strengths
and weaknesses.

For example, NC optimizes a balanced kernel clustering criterion based on a kernel
(affinities) between any high-dimensional features [211, 155, 6]. In contrast, regularization
methods for unsupervised or weakly-supervised image segmentation typically combine con-
straints on segments shapes with probabilistic K-means [114] or explicit model fitting over
segments features [42, 263, 200, 60]. Fitting parametric models seems viable when data
in each segment supports a simple model, e.g. Gaussian [42] or line/plane [60]. But, if
segment’s data is arbitrarily complex, the corresponding model should be sufficiently gen-
eral in order to represent such complexities. Thus, image segmentation of generic objects
requires fitting models like histograms or GMMs [263, 200]. This results in over-fitting, see
Fig. 3.1(b). Indeed, we show that such over-fitting happens even for low dimensional color
features [220], see Fig. 3.3(b,e) and Fig. 3.4(b). Our joint energy (3.1) allows to combine
regularization of segments shapes with unsupervised kernel-based clustering of arbitrarily
complex segments features. In general, kernel-based clustering methods are a prevalent
choice in the learning community as model fitting (e.g. EM) becomes intractable in high
dimensions. Sec. 3.5.2 shows potent segmentation results for basic examples of energy (3.1)
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(a) initialization (b) histogram fitting (c) basic K-means (d) elliptic K-means

(e) GMM: local min (f) GMM: from gr. truth (g) K-modes ∼mean-shift (h) kernel K-means

Figure 3.3: Model fitting (pKM) (3.13) vs kernel K-means (kKM) (3.21). Histogram fitting
converges in one step assigning initially dominant bin label (a) to all points in the bin (b):
energy (3.13,3.14) is minimal at any volume-balanced solution with one label inside each
bin [114]. Basic and elliptic K-means (one mode GMM) under-fit the data (c,d). Six mode
GMMs over-fit (e) as in (b). GMMs have local minima issues; ground-truth initialization
(f) yields lower energy (3.13,3.14). Kernel K-means (3.20,3.21) with Gaussian kernel k in
(h) outperforms pKM with distortion ∥∥k in (g) related to K-modes or mean-shift (weak
kKM, see Sec.3.2.2).

with features like RGBXY (color + location), RGBD (color + depth), RGBUV (color +
motion) where regularized model-fitting methods fail.

Standard applications of kernel clustering methods can also benefit from regularization
constraints [252, 73, 48]. For example, NC approach to image segmentation is known for
weak alignment to contrast boundaries [6], see Fig. 3.1(cd). Adding the standard contrast-
sensitive Potts (regularization) term [31, 30] offers a principled solution, see Fig. 3.1(e).
We also show benefits from combining NC with higher-order constraints, such as sparsity
or label costs [60]. For example, P n-Potts regularization [120] can enforce tag-consistency
in the context of image database clustering. Sec. 3.5.1 shows many proof-of-the-concept
examples.

Kernel clustering vs. Potts model: Kernel clustering objectives EA (Sections 3.2.2,
3.2.3) in our joint energy (3.1) can be juxtaposed with the most basic MRF regularizer,
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the Potts model (Sec. 3.2.1), e.g. compare two columns in Tab. 3.2. Kernel clustering
and Potts regularization minimize the sum of weighted edges between segments on a given
graph. Both corresponding objectives are often called “pairwise” or “cuts”. The main
difference is that clustering criteria EA normalize the sum of edge weights to encourage
balanced partitioning, while the Potts model minimizes the sum “as is” to reduce segmen-
tation boundary length. Due to normalization, EA is a hard-to-optimize high-order term
in energy (3.1).

Both kernel clustering and Potts model objectives are defined by the graph connectivity
and/or the corresponding edge weights or affinities, e.g. wpq or Apq in Sections 3.2.1 and
3.2.2. It is usual to set the neighborhood and edge weights based on specific features,
criteria, and application. For instance, Potts model over nearest-neighbor pixel grid defines
first-order geometric shape priors [28], while an example of larger connectivity Potts is
dense CRF [130, 231]. All Potts models lack balancing. Their minimization results in
a trivial solution unless there are some additional constraints, e.g. volumetric or data
likelihood terms (Sec.3.2.1).

Kernel clustering criteria EA normally use dense graphs. But unlike dense CRF or any
other Potts model, the corresponding ratio-based objectives are designed for unsupervised
balanced partitioning that does not require any known or estimated data likelihood models.

3.1.4 Main contributions

Our energy (3.1) combines standard concepts in unsupervised learning with regulariza-
tion methodologies common in computer vision. Previous efforts [132] combining kernel
clustering (e.g. NC) with the Potts model significantly altered the latter to make it fit
the standard trace-based formulation of NC, see Sec.3.2.4. In contrast, we propose a gen-
eral majorize-minimize optimization principle directly integrating our new unary/linear
bounds for kernel clustering objectives EA into existing powerful solvers for Potts or other
regularization models. Examples of such solvers are combinatorial [31, 109], LP relaxation
[124, 240], mean field approximation [130], or TV-based [39, 41, 57] methods.

Our preliminary results appear in [218] and [222]. The main contributions of our work
are summarized below:

• We propose a general multi-label segmentation or clustering energy (3.1) combining
kernel clustering (e.g. NC) with second or higher-order regularization (e.g. MRF). The
clustering term can enforce balanced partitioning of observed features and MRF or
other terms can enforce regularization constraints. In particular, including balanced
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kernel clustering term is a robust well-motivated alternative to model-fitting terms
[263, 200], which fail on higher dimensional image features.

• We use a concave relaxation to derive two types of unary (linear) upper bounds for
several classes of kernel clustering criteria EA. The two types are kernel bound (exact)
and spectral bound1 (approximate). Interestingly, optimizing our linear bounds for
EA(S) (no other terms) over discrete segmentation variables Sk ∈ {0,1}∣Ω∣ is equiv-
alent to iterative kernel K-means or K-means discretization heuristic in spectral
relaxation methods.

• Our unary/linear bounds for EA give solvable auxiliary functions for joint energy (3.1)
as long as its second term has a solver that can integrate extra unary/linear potentials,
see Fig. 3.2. For example, the second term can be any regularization potentials
solvable by discrete (e.g. message passing, relaxations, mean-field approximations)
or continuous (e.g. convex, primal-dual) algorithms. In the context of standard
pairwise and higher-order MRF potentials we demonstrate move-making algorithms
generalizing α-expansion and αβ-swap moves to energy (3.1).

• As our experiments show, typical applications of kernel clustering (e.g. NC) can
benefit from extra MRF constraints. MRF segmentation also benefits from kernel
clustering terms encouraging balanced partitioning of object features. In particular,
NC+MRF framework scales to object segmentation with higher-dimensional image
features (e.g. RGBXY, RGBD, RGBM) where standard regularization methods with
model-fitting [263, 200, 60] fail.

The rest of the paper is organized as follows. Background Section 3.2 starts from re-
viewing standard (MRF) regularization models for segmentation. Due to importance for
our work, Sec. 3.2 also covers the basics of clustering from K-means to its powerful kernel-
based generalizations, including normalized cut (NC). The main technical Sections 3.3 and
3.4 present our kernel and spectral bounds for standard kernel clustering objectives EA.
They also discuss combinatorial move making graph cut algorithms using such unary/-
linear bounds for optimizing joint energy (3.1) combining EA with MRF regularization
constraints. Sec. 3.5 presents many experiments where either standard kernel clustering
methods benefit from additional MRF constraints or common applications of MRF benefit
from an additional kernel clustering term for various high-dimensional image features.

1Here spectral bound means spectral auxiliary function in the context of optimization, not to be confused
with bounds on eigenvalues.
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3.2 Background on Regularization and Clustering

3.2.1 Overview of MRF regularization

Probably the most basic MRF regularization potential corresponds to the pairwise (second-
order) Potts model [31] used for segmentation boundary smoothness and edge alignment

∑
c∈F

Ec(Sc) = ∑
pq∈N

wpq ⋅ [Sp ≠ Sq] ≈ ∣∣∂S∣∣ (3.2)

where a set of pairwise factors F = N includes edges c = {pq} between pairs of neighboring
nodes and [⋅] are Iverson brackets. Weight wpq is a discontinuity penalty between p and q.
It could be a constant or may be set by a decreasing function of intensity difference Ip − Iq
attracting the segmentation boundary to image contrast edges in (1.7) [30]. This is similar
to the image-based boundary length in geodesic contours [37, 28].

A useful bin consistency constraint enforced by the P n-Potts model [120] is defined
over an arbitrary collection of high-order factors F . Factors c ∈ F correspond to predefined
subsets of nodes such as superpixels [120] or bins of pixels with the same color/feature
[183, 220]. The model penalizes inconsistency in segmentation of each factor

∑
c∈F

Ec(Sc) = ∑
c∈F

min{T, ∣c∣ − ∣Sc∣
∗} (3.3)

where T is some threshold and ∣Sc∣∗ ∶= maxk ∣Sk∩c∣ is the cardinality of the largest segment
inside c. Potential (3.3) has its lowest value (zero) when all nodes in each factor are within
the same segment.

Standard label cost [60] is a sparsity potential defined for a single high-order factor
c = Ω. In its simplest form it penalizes the number of distinct segments (labels) in S

EΩ(S) = ∑
k

hk ⋅ [∣S
k∣ > 0] (3.4)

where hk could be a constant or a cost for each specific label.

Potentials (3.2), (3.3), (3.4) are only a few examples of regularization terms widely used
in combination with powerful discrete solvers like graph cut [31], belief propagation [248],
TRWS [124], LP relaxation [240, 113], or continuous methods [39, 41, 57].

Image segmentation methods often combine regularization with a likelihood term in-
tegrating segments/objects color models. For example, [30, 29] used graph cuts to combine
second-order edge alignment (3.2) with a unary (first-order) appearance term

−∑
k

∑
p∈Sk

logP k(Ip) (3.5)
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where {P k} are given probability distributions. Unary terms like (3.5) are easy to integrate
into any of the solvers above. If unknown, parameters of the models {P k} in a regularization
energy including (3.5) are often estimated by iteratively minimizing the energy with respect
to S and model parameters [263, 42, 8, 200, 60]. In presence of variable model parameters,
(3.5) can be seen as a maximum likelihood (ML) model-fitting term or a probabilistic K-
means clustering objective [114]. The next section reviews K-means and other standard
clustering methods.

3.2.2 Overview of K-means and clustering

Many clustering methods are based on K-means (KM). The most basic iterative KM algo-
rithm [69] can be described as the block-coordinate descent for the mixed objective (1.1)

Fkm(S,m) ∶= ∑
k

∑
p∈Sk

∥Ip −mk∥
2 (3.6)

combining discrete variables S = {Sk}Kk=1 with continuous variables m = {mk}
K
k=1 represent-

ing cluster “centers”. For any given S the optimal centers arg minmFkm(S,m) are the
means

µSk ∶=
∑q∈Sk Iq

∣Sk∣
(3.7)

where ∣Sk∣ is the segment’s cardinality. The greedy KM procedue (1.18) converges only to
a local minimum of KM objective (3.6), which is known to be NP hard to optimize. There
are also other approximation methods. Below we review the properties of KM objective
(3.6) independently of optimization.

The optimal centers mk in (3.7) allow to represent (3.6) via an equivalent objective of
a single argument S

∑
k

∑
p∈Sk

∥Ip − µSk∥
2 ≡ ∑

k

∣Sk∣ ⋅ var(Sk). (3.8)

The sum of squared distances between data points {Ip∣p ∈ Sk} and mean µSk normalized
by ∣Sk∣ gives the sample variance denoted by var(Sk). Formulation (3.8) presents the basic
KM objective as a standard variance criterion for clustering. That is, K-means attempts
to find K compact clusters with small variance.

K-means can also be presented as a “pairwise” or kernel clustering criteria with Eu-
clidean affinities. The sample variance can be expressed as the sum of distances between
all pairs of the points. For example, plugging (3.7) into (3.8) reduces this KM objective to

∑
k

∑pq∈Sk ∥Ip − Iq∥
2

2 ∣Sk∣
. (3.9)

56



Taking the square in the nominator transforms (3.9) to another equivalent KM energy with
Euclidean dot-product affinities

c
= −∑

k

∑pq∈Sk⟨Ip, Iq⟩

∣Sk∣
. (3.10)

Note that we use
c
= and

c
≈ for “up to additive constant” relations.

Alternatively, K-means clustering can be seen as Gaussian model fitting. Formula (3.5)
for normal distributions with variable means mk and some fixed variance

−∑
k

∑
p∈Sk

logN(Ip∣mk) (3.11)

equals objective (3.6) up to a constant.

Various extensions of objectives (3.6), (3.8), (3.9), (3.10), or (3.11) lead to many power-
ful clustering methods such as kernel K-means, average association, and Normalized Cut,
see Tab. 3.3. In the following, we discuss extensions of the basic K-means to probabilistic
K-means and kernel K-means, see a summary in Tab. 3.3.

Probabilistic K-means (pKM) and model fitting

One way to generalize K-means is to replace squared Euclidean distance in (3.6) by other
distortion measures ∥∥d leading to a general distortion energy commonly used for clustering

∑
k

∑
p∈Sk

∥Ip −mk∥d. (3.12)

The optimal value of parameter mk may no longer correspond to a mean. For example, the
optimal mk for non-squared L2 metric is a geometric median. For exponential distortions
the optimal mk may correspond to modes [202, 36], see [221, Appendix B].

A seemingly different way to generalize K-means is to treat both means and covariance
matrices for the normal distributions in (3.11) as variables. This corresponds to the stan-
dard elliptic K-means [215, 201, 60]. In this case variable model parameters θk = {mk,Σk}

and data points Ip are not in the same space. Yet, it is still possible to present elliptic
K-means as distortion clustering (3.12) with “distortion” between Ip and θk defined by an
operator ∥ ⋅ − ⋅ ∥d corresponding to a likelihood function

∥Ip − θk∥d ∶= − logN(Ip∣θk).
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A. basic K-means (KM) (e.g. [69])

∑k∑p∈Sk ∥Ip − µSk∥
2 Variance criterion

= ∑k
∑pq∈Sk ∥Ip−Iq∥

2

2∣Sk ∣ ∑k ∣Sk∣ ⋅ var(Sk)

c
= −∑k

∑pq∈Sk ⟨Ip,Iq⟩
∣Sk ∣

c
= −∑k∑p∈Sk lnN (Ip∣µSk)

B. probabilistic K-means (pKM) C. kernel K-means (kKM)
equivalent energy formulations: equivalent energy formulations:

∑
k
∑
p∈Sk

∥Ip − θk∥d = −∑
k
∑
p∈Sk

lnP(Ip∣θk) ∑
k
∑
p∈Sk

∥φ(Ip) − µSk∥
2 = ∑

k

∑
pq∈Sk

∣∣Ip−Iq ∣∣2k

2∣Sk ∣

c
= −∑

k

∑
pq∈Sk

k(Ip,Iq)

∣Sk ∣

related examples: related examples:

elliptic K-means [215, 201] Average Association or Distortion [197]

geometric model fitting [60] Average Cut [211]

K-modes [202] or mean-shift [53] Normalized Cut [211, 64]

Entropy criterion ∑
k

∣Sk∣ ⋅H(Sk) [263] Gini criterion ∑
k

∣Sk∣ ⋅G(Sk) [32]

for highly descriptive models (GMMs, histograms) for small-width normalized kernels [158]

Table 3.3: K-means and related clustering criteria: Basic K-means (A) minimizes clusters
variances. It works as Gaussian model fitting. Fitting more complex models like elliptic
Gaussians [215, 201, 60], exponential distributions [8], GMM or histograms [263, 200]
corresponds to probabilistic K-means [114] in (B). Kernel clustering via kernel K-means
(C) using more complex data representation.
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Similar distortion measures can be defined for arbitrary probability distributions with any
variable parameters θk. Then, distortion clustering (3.12) generalizes to ML model fitting
objective

∑
k

∑
p∈Sk

∥Ip − θk∥d ≡ −∑
k

∑
p∈Sk

logP (Ip∣θk) (3.13)

which is (3.5) with explicit model parameters θk. This formulation suggests probabilistic
K-means2 (pKM) as a good idiomatic name for ML model fitting or distortion clustering
(3.12), even though the corresponding parameters θk are not “means”, in general.

Probabilistic K-means (3.13) is used in image segmentation with models such as elliptic
Gaussians [215, 201, 60], gamma/exponential [8], or other generative models [163]. Zhu-
Yuille [263] and GrabCut [200] use pKM with highly descriptive probability models such as
GMM or histograms. Information theoretic analysis in [114] shows that in this case pKM
objective (3.13) reduces to the standard entropy criterion for clustering

∑
k

∣Sk∣ ⋅H(Sk) (3.14)

where H(Sk) is the distribution entropy for {Ip∣p ∈ Sk}.

Intuitively, minimization of the entropy criterion (3.14) favors clusters with tight or
“peaked” distributions. This criterion is widely used in categorical clustering [145] and de-
cision trees [32, 151] where the entropy evaluates histograms over “naturally” discrete fea-
tures. However, the entropy criterion with either discrete histograms or continuous GMM
densities has limitations in the context of continuous feature spaces, see [221, Appendix
C]. Iterative fitting of descriptive models is highly sensitive to local minima [220, 217] and
easily over-fits even low dimentional features in R2 (Fig. 3.3b,e) or in R3 (RGB colors,
Fig. 3.4b). This may explain why this approach to clustering is not too common in the
learning community. As proposed in (3.1), instead of entropy criterion we will combine
MRF regularization with general kernel clustering objectives EA widely used for balanced
partitioning of arbitrary high-dimensional features [211].

Kernel K-means and related “pairwise” clustering

This section reviews pairwise extensions of K-means (3.10) such as kernel K-means (kKM)
and related kernel clustering criteria. In machine learning, kKM is a well established data

2The name probabilistic K-means in the general clustering context was coined by [114]. They formulated
(3.13) after representing distortion energy (3.12) as ML fitting of Gibbs models 1

Zd
e−∥x−m∥d for arbitrary

integrable metrics.
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(a) Input and initialization

(b) GMM fitting in RGB (GrabCut without edges)

(c) Normalized Cut in RGB

Figure 3.4: Without edge alignment (3.2) GMM-fitting [200] shows stronger data over-
fitting compared to kernel clustering [211].

clustering technique [228, 165, 83, 64, 49, 110] that can identify non-linearly separable
structures. In contrast to pKM based on complex models, kKM corresponds to complex
(nonlinear) mappings

φ ∶RN → H

embedding data {Ip∣p ∈ Ω} ⊂RN as points φp ≡ φ(Ip) in a higher-dimensional Hilbert space
H. The original non-linear problem can often be solved by simple linear separators of the
embedded points {φp∣p ∈ Ω} ⊂ H. Kernel K-means corresponds to the basic K-means (3.6)
in the embedding space

Fkm(S,m) = ∑
k

∑
p∈Sk

∥φp −mk∥
2. (3.15)

Optimal segment centers mk corresponding to the means

µSk =
∑q∈Sk φq

∣Sk∣
. (3.16)
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reduce (3.15) to kKM energy of the single variable S similar to (3.8)

F (S) = ∑
k

∑
p∈Sk

∥φp − µSk∥
2. (3.17)

Similarly to (3.9) and (3.10) one can write kernel clustering criteria equivalent to (3.17)
based on Euclidean distances ∥φ(Ip) − φ(Iq)∥ or inner products ⟨φ(Ip), φ(Iq)⟩, which are
commonly represented via kernel function k(x, y)

k(x, y) ∶= ⟨φ(x), φ(y)⟩. (3.18)

The (non-linear) kernel function k(x, y) corresponds to the inner product in H. It also
defines Hilbertian metric3

∥x − y∥2
k ∶= ∥φ(x) − φ(y)∥2

≡ k(x,x) + k(y, y) − 2k(x, y) (3.19)

isometric to the Euclidean metric in the embedding space. Then, pairwise formulations
(3.9) and (3.10) for K-means in the embedding space (3.17) can be written for the original
data points using isometric kernel distance ∥∥2

k in (3.19)

F (S) ≡ ∑
k

∑pq∈Sk ∥Ip − Iq∥
2
k

2∣Sk∣
(3.20)

or using kernel function k in (3.18)

F (S)
c
= −∑

k

∑pq∈Sk k(Ip, Iq)

∣Sk∣
. (3.21)

The definition of kernel k in (3.18) requires embedding φ. Since pairwise objectives
(3.20) and (3.21) are defined for any kernel function in the original data space, it is possible
to formulate kKM by directly specifying an affinity function or kernel k(x, y) rather than
embedding φ(x). This is typical for kKM explaining why the method is called kernel
K-means rather than embedding K-means4.

Given embedding φ, kernel function k defined by (3.18) is positive semi-definite (p.s.d),
that is k(x, y) ≥ 0 for any x, y. Moreover, Mercer’s theorem [165] states that p.s.d. condition

3These can be isometrically embedded into a Hilbert space [103].
4This could be a name for some clustering techniques constructing explicit embeddings [14, 253] instead

of working with pairwise affinities/kernels.
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for any given kernel k(x, y) is sufficient to guarantee that k(x, y) is an inner product in
some Hilbert space. That is, it guarantees existence of some embedding φ(x) such that
(3.18) is satisfied. Therefore, kKM objectives (3.17), (3.20), (3.21) are equivalently defined
either by embeddings φ or p.s.d. kernels k. Thus, kernels are commonly assumed p.s.d.
However, as discussed later, kernel clustering objective (3.21) is also used with non p.s.d.
affinities.

To optimize kKM objectives (3.17), (3.20), (3.21) one can use the basic KM procedure
(1.18) iteratively minimizing mixed objective (3.15) explicitly using embedding φ

⎛

⎝

explicit
kKM

procedure

⎞

⎠
Sp ← arg min

k
∥φp − µSkt ∥ (3.22)

where µSkt is the mean (3.16) for current segment Skt . Equivalently, this procedure can use
kernel k instead of φ. Indeed, as in Section 8.2.2 of [210], the square of the objective in
(3.22) is

���
∥φp∥

2 − 2φp
′µSkt + ∥µSkt ∥

2 = −2
φp

′φSkt
∣Skt ∣

+
Skt

′
φ′φSkt
∣Skt ∣

2

where we use segment Sk as an indicator vector, embedding φ as an embedding matrix
φ ∶= [φp] where points φp ≡ φ(Ip) are columns, and ′ denotes the transpose. Since the
crossed term is a constant at p, the right hand side gives an equivalent objective for
computing Sp in (3.22). Using kernel matrix K ∶= φ′φ and indicator vector 1p for element
p we get

⎛

⎝

implicit
kKM

procedure

⎞

⎠
Sp ← arg min

k

Skt
′
KSkt

∣Skt ∣
2

− 2
1′pKS

k
t

∣Skt ∣
(3.23)

where the kernel matrix is directly determined by kernel k

Kpq ≡ φ
′
pφq = ⟨φp, φq⟩ = k(Ip, Iq).

Approach (3.23) has quadratic complexity O(∣Ω∣2) iterations. But, it avoids explicit high-
dimensional embeddings φp in (3.22) replacing them by kernel k in all computations, a.k.a.
the kernel trick.

Note that the implicit kKM procedure (3.23) is guaranteed to decrease pairwise kKM
objectives (3.20) or (3.21) only for p.s.d. kernels. Indeed, equation (3.23) is derived
from the standard greedy K-means procedure in the embedding space (3.22) assuming
kernel (3.18). The backward reduction of (3.23) to (3.22) can be done only for p.s.d.
kernels k when Mercer’s theorem guarantees existence of some embedding φ such that
k(Ip, Iq) = ⟨φ(Ip), φ(Iq)⟩.
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Pairwise energy (3.20) helps to explain the positive result for kKM with common Gaus-

sian kernel k = exp
−(Ip−Iq)2

2σ2 in Fig. 3.3(h). Gaussian kernel distance (red plot below)

∥Ip − Iq∥
2
k ∝ 1 − k(Ip, Iq) = 1 − exp

−(Ip − Iq)2

2σ2
(3.24)

is a “robust” version of Euclidean metric (green) in basic K-means
(3.9). Thus, Gaussian kKM finds clusters with small local vari-
ances, Fig. 3.3(h). In contrast, basic K-means (c) tries to find
good clusters with small global variances, which is impossible for
non-compact clusters.

Average association (AA) or distortion (AD): Equivalent pairwise objectives (3.20)
and (3.21) suggest natural extensions of kKM. For example, one can replace Hilbertian
metric ∥∥2

k in (3.20) by an arbitrary zero-diagonal distortion matrix D = [Dpq] generating
average distortion (AD) energy

Ead(S) ∶= ∑
k

∑pq∈SkDpq

2∣Sk∣
(3.25)

reducing to kKM energy (3.20) for Dpq = ∥Ip − Iq∥2
k. Similarly, p.s.d. kernel k in (3.21)

can be replaced by an arbitrary pairwise similarity or affinity matrix A = [Apq] defining
standard average association (AA) energy

Eaa(S) ∶= −∑
k

∑pq∈Sk Apq

∣Sk∣
(3.26)

reducing to kKM objective (3.21) for Apq = k(Ip, Iq). We will also use association between
any two segments Si and Sj

assoc(Si, Sj) ∶= ∑
p∈Si,q∈Sj

Apq ≡ Si
′
ASj (3.27)

allowing to rewrite AA energy (3.26) as

Eaa(S) ≡ −∑
k

assoc(Sk, Sk)

∣Sk∣
≡ −∑

k

Sk
′
ASk

1′Sk
(3.28)

The matrix expressions in (3.27) and (3.28) represent segments Sk as indicator vectors
such that Skp = 1 iff Sp = k and symbol ′ means a transpose. Matrix notation as in (3.28)
will be used for all kernel clustering objectives in this paper.
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Figure 3.5: Equivalence of kernel clustering methods: kernel K-means (kKM), average
distortion (AD), average association (AA) based on Roth et al. [197], see (3.29), (3.30).
Equivalence of these methods in the general weighted case is discussed in [221, Appendix
A, Fig.33].

kKM algorithm (3.23) is not guaranteed to decrease (3.26) for improper (non p.s.d.)
kernel matrix K = A, but general AA and AD energies could be useful despite optimization
issues. However, [197] showed that dropping metric and proper kernel assumptions are
not essential; there exist p.s.d. kernels with kKM energies equivalent (up to constant) to
AD (3.25) and AA (3.26) for arbitrary associations A and zero-diagonal distortions D, see
Fig. 3.5.

For example, for any affinity A in (3.26) the diagonal shift trick of Roth et al. [197]
generates the “kernel matrix”

K =
A +A′

2
+ δ ⋅ I. (3.29)

For sufficiently large scalar δ matrix K is positive definite yielding a proper discrete kernel
k(Ip, Iq) ≡ Kpq

k(Ip, Iq) ∶ χ × χ→R
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for finite set χ = {Ip∣p ∈ Ω}. It is easy to check that kKM energy (3.21) with kernel k ≡ K
in (3.29) is equivalent to AA energy (3.26) with affinity A, up to a constant. Indeed, for
any indicator X ∈ {0,1}∣Ω∣ we have X ′X = 1′X implying

X ′KX

1′X
=
X ′AX

2(1′X)
+
X ′A′X

2(1′X)
+ δ

X ′X

1′X
=
X ′AX

1′X
+ δ.

Also, Section 3.4.1 uses eigen decomposition of K to construct an explicit finite-dimensional
Euclidean embedding5 φp ∈R∣Ω∣ satisfying isometry (3.19) for any p.d. discrete kernel k ≡ K.
Minimizing kKM energy (3.17) over such embedding isometric to K in (3.29) is equivalent
to optimizing (3.21) and, therefore, (3.26).

Since average distortion energy (3.25) for arbitrary D is equivalent to average asso-
ciation for A = −D2 , it can also be converted to kKM with a proper kernel [197]. Using
the corresponding kernel matrix (3.29) and (3.19) it is easy to derive Hilbertian distortion
(metric) equivalent to original distortions D

∥Ip − Iq∥
2
k ∶=

D +D′

2
+ 2δ(1 ⋅ 1′ − I). (3.30)

For simplicity and without loss of generality, the rest of the paper assumes symmetric
affinities A = A′ since non-symmetric ones can be equivalently replaced by A+A′

2 . However,
we do not assume positive definiteness and discuss diagonal shifts, if needed.

Weighted kKM and weighted AA: Weighted K-means [69] is a common extension of
KM techniques incorporating some given point weights w = {wp∣p ∈ Ω}. In the context of
embedded points φp it corresponds to weighted kKM iteratively minimizing the weighted
version of the mixed objective in (3.15)

Fw(S,m) ∶= ∑
k

∑
p∈Sk

wp∥φp −mk∥
2. (3.31)

Optimal segment centers mk are now weighted means

µwSk =
∑q∈Sk wqφq

∑q∈Sk wq
≡

φWSk

w′Sk
(3.32)

5Mercer’s theorem is a similar eigen decomposition for continuous p.d. kernels k(x, y) giving infinite-
dimensional Hilbert embedding φ(x). Discrete kernel embedding φp ≡ φ(Ip) in Sec. 3.4.1 (3.55) has finite
dimension ∣Ω∣, which is still much higher than the dimension of points Ip, e.g. R3 for colors. Sec. 3.4.1

also shows lower dimensional embeddings φ̃p approximating isometry (3.19).
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where the matrix formulation has weights represented by column vector w ∈ R∣Ω∣ and
diagonal matrix W ∶= diag(w). Assuming a finite dimensional data embedding φp ∈ Rm

this formulation uses embedding matrix φ ∶= [φp] with column vectors φp. This notation
implies two simple identities used in (3.32)

∑
q∈Sk

wq ≡ w
′Sk and ∑

q∈Sk
wqφp ≡ φWSk. (3.33)

Inserting weighted means (3.32) into mixed objective (3.31) produces a pairwise energy
formulation for weighted kKM similar to (3.21)

Fw(S) ∶= ∑
k

∑
p∈Sk

wp∥φp − µ
w
Sk∥

2 (3.34)

c
= −∑

k

∑pq∈Sk wpwqKpq

∑p∈Sk wp
(3.35)

≡ −∑
k

Sk
′
W KWSk

w′Sk

where p.s.d kernel matrix K = φ′φ corresponds to the dot products in the embedding space,
i.e. Kpq = φ′pφq.

Replacing the p.s.d. kernel with an arbitrary affinity matrix A defines a weighted AA
objective generalizing (3.26) and (3.28)

Ew
aa(S) ∶= −∑

k

Sk
′
WAWSk

w′Sk
. (3.36)

Weighted AD can also be defined. Equivalence of kKM, AA, and AD in the general weighted
case is discussed in [221, Appendix A].

Other kernel clustering criteria: Besides AA there are many other standard kernel
clustering criteria defined by affinity matrices A = [Apq]. For example, Average Cut (AC)

Eac(S) ∶= ∑
k

assoc(Sk, S̄k)

∣Sk∣
≡ ∑

k

Sk
′
A(1 − Sk)

1′Sk

= ∑
k

Sk
′
(D −A)Sk

1′Sk
(3.37)

where D ∶= diag(d) is a degree matrix defined by node degrees vector d ∶= A1. The
formulation on the last line (3.37) comes from the following identity valid for Boolean
X ∈ {0,1}∣Ω∣

X ′DX =X ′d.
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Normalized Cut (NC) [211] in (3.38) is another well-known kernel clustering criterion.
Due to popularity of NC we discuss it and its relation to other kernel clustering criteria in
a dedicated Sec. 3.2.3.

Kernel selection issues: One of the practically important problems in kernel cluster-
ing is selection of the kernel or its bandwidth. It is known [158] that for a common class of
kernels (e.g. popular Gaussian kernel), NC (3.40) and AC (3.37), AA (3.28) and kKM (3.21)
have various density biases. In particular, AA and kKM with a small bandwidth isolate
density modes [211] while AC and NC separate isolated data points [158]. Zelnik-Manor
and Perona [256] discuss other related biases in NC. In practice the bandwidth choice is
a trade-off between the prominence of the density biases for small bandwidths and lack
of non-linear separation for large bandwidths. Instead of fitting a single bandwidth value,
one can employ adaptive weights [158] or adaptive kernel bandwidths [256, 158], e.g. on K-
nearest neighbor (KNN) graphs, to correct the density biases while keeping non-linearity of
the decision boundary. Interestingly, in this case objectives NC, AC, kKM and AA become
equivalent [158].

Pairwise vs. pointwise distortions

Equivalence of kKM to pairwise distortion criterion in (3.25) helps to juxtapose kernel K-
means with probabilistic K-means (Sec.3.2.2) from one more point of view. Both methods
generalize the basic K-means (3.6), (3.9) by replacing the Euclidean metric with a more
general distortion measure ∥∥d. While pKM uses “pointwise” formulation (3.12) where ∥∥d
measures distortion between a point and a model, kKM uses “pairwise” formulation (3.20)
where ∥∥d = ∥∥2

k measures distortion between pairs of points.

These two different formulations are equivalent for Euclidean distortion (i.e. basic K-
means), but the pairwise approach is strictly stronger than the pointwise version using
the same Hilbertian distortion ∥∥d = ∥∥2

k in non-Euclidean cases [221, Appendix B]. The
corresponding pointwise approach is often called weak kernel K-means. Interestingly, weak
kKM with standard Gaussian kernel can be seen as K-modes [202], see Fig. 3.3(g), which
is closely related to popular mean-shift clustering [53], see [221, Appendix B]. An extended
version of Tab. 3.3 including weighted KM and weak kKM is given in [221, Fig.34].

3.2.3 NC objective and its relation to AA, AC, and kKM

Sec. 3.2.2 has already discussed kKM and many related kernel clustering criteria based
on specified affinities A = [Apq]. This section is focused on a related kernel clustering
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method, Normalized Cut (NC) [211]. Shi and Malik [211] also popularized kernel clustering
optimization via spectral relaxation, which is different from iterative K-means algorithms
(3.22) (3.23). Note that there are many other popular optimization methods for different
clustering energies using pairwise affinities [55, 111, 238, 125, 105], which are outside the
scope of this work.

The Normalized Cut (NC) objective [211] is defined as

Enc(S) ∶= −∑
k

assoc(Sk, Sk)

assoc(Ω, Sk)

≡ −∑
k

Sk
′
ASk

1′ASk
c
= ∑

k

Sk
′
A(1 − Sk)

1′ASk
(3.38)

where association (3.27) is defined by a given affinity matrix A. The matrix formulations
above shows that the difference between NC and AA (3.28) or AC (3.37) is in the normal-
ization. In fact, normalization by 1′ASk is chosen specifically to make normalized average
association equivalent to normalized cut, the last two expressions in (3.38). In contrast,
AA and AC are distinct objectives normalized by 1′Sk ≡ ∣Sk∣, which is k-th segment’s size
or cardinality. NC (3.38) normalizes by weighted cardinality. Indeed, using d ∶= A′1

1′ASk ≡ d′Sk ≡ ∑
p∈Sk

dp

where weights d = {dp∣p ∈ Ω} are node degrees

dp ∶= ∑
q∈Ω

Apq. (3.39)

For shortness, NC objective will be formatted like (3.28)

Enc(S) ≡ −∑
k

Sk
′
ASk

d′Sk
. (3.40)

It is known [158] that affinities such that dp ≈ const, e.g. on K-nearest neighbor (KNN)
graphs, remove various density biases in kernel clustering. In this case objectives NC (3.40),
AC (3.37), and AA (3.28) become equivalent. More generally, Bach & Jordan [9], Dhillon
et al. [64] showed that NC objective can always be reduced to weighted AA or kKM with
specific weights and affinities.

Our matrix notation makes equivalence between NC (3.40) and weighted AA (3.36)
straightforward. Indeed, objective (3.40) with A coincides with (3.36) for weights w and
affinity Ã

w = d = A′1 and Ã =W −1AW −1. (3.41)
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The weighted version of kKM procedure (3.23) [221, Appendix A] minimizes weighted AA
(3.36) only for p.s.d. affinities, but positive definiteness of A is not critical. For example, an
extension of the diagonal shift (3.29) [197] can convert NC (3.40) with arbitrary (symmetric)
A to an equivalent NC objective with p.s.d. affinity

K = A + δ ⋅D (3.42)

using degree matrix D ∶= diag(d) ≡ W and sufficiently large δ. Indeed, for indicators
X ∈ {0,1}∣Ω∣ we have X ′DX = d′X and

X ′KX

d′X
=
X ′AX

d′X
+ δ

X ′DX

d′X
=
X ′AX

d′X
+ δ.

Positive definite K (3.42) implies positive definite affinity (3.41) of weighted AA

K̃ =D−1KD−1 = D−1AD−1 + δD−1. (3.43)

The weighted version of kKM procedure (3.23) for this p.d. kernel [65] greedily optimizes
NC objective (3.40) for any (symmetric) A.

3.2.4 Optimization methods for kernel clustering

As discussed in the previous section, both NC and AC can be reduced to weighted AA. Thus,
all of these objectives can be optimized by basic kernel K-means procedure (1.18,3.23) or
its weighted variant. However, there are many other standard methods for approximate
optimization of NP-hard kernel clustering energies.

Spectral relaxation: Shi, Malik, and Yu [211, 251] popularized spectral relaxation
methods in the context of normalized cuts. Such methods also apply to AA and other
problems [211]. For example, similarly to [251] one can rewrite AA energy (3.26) as

Eaa(S) = − tr(Z ′AZ) for Z ∶=

⎡
⎢
⎢
⎢
⎢
⎣

. . . ,
Sk

√
∣Sk∣

, . . .

⎤
⎥
⎥
⎥
⎥
⎦

where Z is a ∣Ω∣ ×K matrix of normalized indicator vectors Sk. Orthogonality (Si)′Sj = 0
implies Z ′Z = IK where IK is an identity matrix of size K × K. Minimization of the
trace energy above with relaxed Z constrained to a “unit sphere” Z ′Z = IK is a simple
representative example of spectral relaxation in the context of AA. This relaxed trace
optimization is a generalization of Rayleigh quotient problem that has an exact closed
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form solution in terms of K largest eigenvectors for matrix A. This approach extends to
general multi-label weighted AA and related graph clustering problems, e.g. AC and NC
[211, 251]. The main computational difficulties for spectral relaxation methods are explicit
eigen decomposition for large matrices and integrality gap - there is a final heuristics-based
discretization step for extracting an integer solution for the original combinatorial problem
from an optimal relaxed solution. For example, one basic discretization heuristic is to run
K-means over the row-vectors of the optimal relaxed Z.

Fuzzy kernel k-means: Buhmann et al. [107, 197] address the general AD and AA
energies via mean-field approximation. They derive an iterative algorithm that can be seen
as a soft or fuzzy version6 of kKM procedure (3.23). In particular, at current segments Skt
they compute unary “potentials”

Uk
p,t =

Skt
′
KSkt

∣Skt ∣
2

− 2
1p

′KSkt
∣Skt ∣

(3.44)

where Uk
p,t is a penalty for assigning label k to pixel p identical to the expression evaluated

in (3.23). But, instead of updating point labels according to the lowest penalty Sp,t+1 =

arg mink U
k
p,t as in (3.23), the updates in [107] use soft-min operation based on temperature

parameter T

Skp,t+1 =

exp(
−Ukp,t
T )

∑l exp(
−U lp,t
T )

(3.45)

where soft assignments Skp ∈ [0,1] define probability distributions (Skp ∣1 ≤ k ≤ K) ∈ ∆K

over labels, see the “alternative” side of Table 3.1. As T → 0 soft-min (3.45) converges to
binary indicators Skp ∈ {0,1} and distributions over labels become vertices of simplex ∆K .
That is, soft-min (3.45) reduces to “hard-min” Sp,t+1 = arg mink U

k
p,t in (3.23).

Handling extra constraints: Some efforts to combine kernel clustering and regular-
ization were made before us. For example, to combine kKM or NC objectives with Potts
regularization, [132] normalizes the corresponding pairwise constraints by cluster sizes.
This alters the Potts model to fit the problem to a standard trace-based formulation. In
contrast, we address joint optimization via new bounds for the kernel clustering terms.

Adding non-homogeneous linear constraints into spectral relaxation techniques also
requires approximations [252] or model modifications [245]. Exact optimization for the
relaxed quadratic ratios (including NC) with arbitrary linear equality constraints is possible
by solving a sequence of spectral problems [73]. To incorporate must-link and cannot-link
constraints, [48] reformulated normalized cut and solved a different eigen problem .

6Similar to fuzzy K-means in [152, 69, 195] if extended to kKM.
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3.3 Kernel Bounds

Our bound optimization approach allows to combine many standard kernel clustering ob-
jectives and any regularization terms with existing solvers. We interpret kernel clustering
objectives as high-order energy terms and approximate them by linear upper bounds during
optimization.

First, we review the general bound optimization principle and present basic K-means
as an example. Sec. 3.3.2 derives kernel bounds for standard kernel clustering objectives.
Without loss of generality, we assume symmetric affinities A = A′ since non-symmetric
ones can be equivalently replaced by A+A′

2 , e.g. see (3.29) in Sec.3.2.2. Positive definiteness
of A is not assumed and diagonal shifts are discussed when needed. Move-making bound
optimization for energy (3.1) is discussed in Sec. 3.3.3.

3.3.1 Bound optimization and K-means

As detailed in Sec. 1.4.1, bound optimization iteratively minimizes an auxiliary function
and is guaranteed to decrease the objective. One of our motivation is that standard K-
means algorithm can be interpreted as bound optimization, see Theorem 1.

Theorem 1 could be generalized to probabilistic K-means [114] by stating that block-
coordinate descent for distortion clustering or ML model fitting (3.13) is a bound opti-
mization [217, 218]. Theorem 1 can also be extended to pairwise and weighted versions
of KM. For example, one straightforward extension is to show that Fw(S,µwt ) (3.31) with
weighted means µwt = {µw

Skt
} (3.32) is a bound for weighted KM objective Fw(S) (3.34)

[221, Th.6]. Then, some bound for pairwise wkKM energy (3.35) can also be derived [221,
Cor.1]. It follows that bounds can be deduced for many kernel clustering criteria using
their reductions to various forms of kKM reviewed in Sec.3.2.2 or 3.2.3.

Alternatively, the next Section 3.3.2 follows a more direct and intuitive approach to
deriving kernel clustering bounds motivated by the following simple observation. Note
that function at(S) in Theorem 1 is unary with respect to S. Indeed, functions F (S,m)

(3.15) or Fw(S,m) (3.31) can be written in the form

F (S,m) ≡ ∑
k

∑
p

∥φp −mk∥
2 Skp (3.46)

Fw(S,m) ≡ ∑
k

∑
p

wp∥φp −mk∥
2 Skp (3.47)
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highlighting the sum of unary terms for variables Skp . Thus, bounds for KM or weighted
KM objectives are modular (linear) function of S. This simple technical fact has useful
implications that were previously overlooked. For example,

• in the context of bound optimization, KM can be integrated with many regularization
potentials whose existing solvers can work with extra unary (linear) terms

• assuming real-valued relaxation of indicators Sk, linearity of upper bound at(S)
(1.20) implies that the bounded function F (S) ∈ C1 (3.21) is concave, see Fig. 1.11.

In Section 3.3.2 we confirm that many standard kernel clustering objectives in Sections
3.2.2 and 3.2.3 have concave relaxations. Thus, their linear upper bounds easily follow
from the corresponding first-order Taylor expansions, see Figure 1.11 and Table 3.4.

3.3.2 Kernel Bounds for AA, AC, and NC

The next lemma helps to find linear bounds for clustering terms AA, AC, or NC in Tab.
3.4 (Theorem 2) and bounds for our joint energy (3.1) in Corolary 2.

Lemma 1 (concave relaxation). Consider function Ìe ∶ RΩ → R1 defined by matrix K
and vector w as

Ìe(X) ∶= −
X ′KX

w′X
. (3.48)

Function Ìe(X) is concave over region w′X > 0 assuming (symmetric) matrix K is positive
semi-definite (see Fig. 3.6).

Proof. Omitted here, see [223] for detail.

The first-order Taylor expansion at current solution Xt

Tt(X) ∶= Ìe(Xt) + ∇Ìe(Xt)
′ (X −Xt)

is a bound for the concave function Ìe(X) (3.48). Its gradient7

∇Ìe(Xt) = w
Xt

′
KXt

(w′Xt)
2
− KXt

2

w′Xt

(3.49)

gives linear bound Tt(X) for concave function Ìe(X) at Xt

Tt(X) ≡ ∇Ìe(Xt)
′X. (3.50)
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Figure 3.6: Example: concave function Ìe(X) = −X
′X

1′X for X ∈ [0,1]2. Note that convexity/-
concavity of similar rational functions with quadratic enumerator and linear denominator
is known in other optimization areas, e.g. [27, p.72] states convexity of x2

y for y > 0 and

[12, exercise 3.14] states convexity of (v
′X)2
w′X for w′X > 0.

As shown in the second column of Table 3.4, common kernel clustering objectives
defined by affinity matrix A such as AA (3.28), AC (3.37), and NC (3.40) have the form

EA(S) = ∑
k

e(Sk)

with function e(X) as in (3.48) from Lemma 1. However, arbitrary affinity A may not
correspond to a positive semi-definite K in (3.48) and e(X) may not be concave for X ∈

R∣Ω∣. However, the diagonal shift trick [197] in (3.29) works here too. The third column
in Table 3.4 shows concave function Ìe(X) that equals e(X) for any non-zero Boolean
X ∈ {0,1}∣Ω∣, up to a constant. Indeed, for AA

Ìe(X) = −
X ′(δI +A)X

1′X
= −

X ′AX

1′X
− δ

c
= e(X)

since X ′X = 1′X for Boolean X. Clearly, δI + A is p.s.d. for sufficiently large δ8 and
Lemma 1 implies that the first-order Taylor expansion Tt(X) (3.50) is a linear bound for
concave function Ìe(X). Equivalence between e and Ìe over Booleans allows to use Tt(X) as
a bound for e when optimizing over indicators X. Function Ìe ∶R∣Ω∣ →R1 can be described
as a concave relaxation of the high-order pseudo-boolean function e ∶ {0,1}∣Ω∣ →R1.

7Function Ìe and gradient ∇Ìe are defined only at non-zero indicators Xt where w′Xt > 0. We can formally
extend Ìe to X = 0 and make the bound Tt work for Ìe at Xt = 0 with some supergradient. However, Xt = 0
is not a problem in practice since it corresponds to an empty segment.

8A sufficiently large δ can be determined by the smallest eigenvalue of A.
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Concave relaxation Ìe for AC in Table 3.4 follows from the same diagonal shift δI as
above. But NC requires diagonal shift δD with degree matrix D = diag(d) as in (3.42).
Indeed,

Ìe(X) = −
X ′(δD +A)X

d′X
= −

X ′AX

d′X
− δ

c
= e(X) (3.51)

since X ′DX ≡ X ′diag(d)X = d′X for any Boolean X. Clearly, δD + A is p.s.d. for
sufficiently large δ assuming dp > 0 for all p ∈ Ω. Concave relaxations and the corresponding
Taylor-based bounds for EA(S) in Table 3.4 imply the following theorem.

Theorem 2 (kernel bound for EA). For (symmetric) affinity matrix A and current
solution St the following is a unary (linear) bound for any kernel clustering energy EA(S)
in Tab. 3.4

at(S) = ∑
k

∇Ìe(Skt )
′ Sk (3.52)

where Ìe and ∇Ìe are defined in (3.48), (3.49) and δ is large enough so that the corresponding
K in Tab. 3.4 is positive semi-definite.

objective formulation concave relaxation K and w
EA(S) e(X) in ∑k e(S

k) Ìe(X) (3.48) in Lemma 1

AA (3.28) −X
′AX
1′X −

X′(δI+A)X
1′X K = δI +A, w = 1

AC (3.37) X′(D−A)X
1′X −

X′(δI+A−D)X
1′X K = δI +A −D, w = 1

NC (3.40) −X
′AX
d′X −

X′(δD+A)X
d′X K = δD +A, w = d

Table 3.4: Kernel bounds for different kernel clustering objectives EA(S) can be derived
from (3.49) and (3.52) using corresponding K and w. The second column shows formu-
lations of these objectives EA(S) ≡ ∑k e(S

k) using functions e over segment indicator
vectors Sk ∈ {0,1}∣Ω∣. (3.52) gives a unary (linear) upper bound for EA(S) at St based on
the first-order Taylor approximation of concave relaxation function Ìe ∶RΩ →R1 (3.48).
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Note that though Theorem 2 requires a positive semi-definite matrix K, we found in
practice that iterative optimization of (3.52) for non-PSD matrix may still decrease the
energy. An example is with standard KNN kernel that is not necessarily PSD.

Similarly to Theorem 1, optimization of our linear kernel bound in Theorem 2 can be
related to kKM updates (3.23). Indeed, (3.52) can be written in the form

at(S) ≡ ∑
k

∑
p

1′p∇Ìe(Skt )S
k
p = ∑

p

(∑
k

1′p∇Ìe(Skt )S
k
p)

that breakes into the sum of linear terms for each p

∑
k

1′p∇Ìe(Skt )S
k
p . (3.53)

Each of these can be optimized independently over probability simplex ∑k S
k
p = 1. The

optimal solution for (3.53) is always at one of K corners of the simplex corresponding to
label k with the lowest potential 1′p∇Ìe(Skt ). For example, assuming AA objective (3.28)
with w = 1 and A = K, then (3.49) implies optimal k as in the “hard” kKM update (3.23).
Interestingly, combining (3.53) with an “entropy barrier” pushing the solution away from
the simplex corners

∑
k

1′p∇Ìe(Skt )S
k
p + T ⋅ ∑

k

Skp logSkp

results in the optimal “soft” kKM update (3.45) as in [107]. In their mean-field approach,
the objective above comes as KL divergence between Gibbs distributions for the exact and
approximate AA energies. Note 1′p∇Ìe(Skt ) ≡ U

k
p,t, see (3.44).

For the joint energy (3.1) combining kernel clutsering and regularization terms we can
use the following bounds.

Corollary 2 (kernel bound for (3.1)). For any (symmetric) affinity matrix A and any
current solution St the following is an auxiliary function for energy (3.1) with any clustering
term EA(S) from Tab. 3.4

at(S) = ∑
k

∇Ìe(Skt )
′ Sk + γ ∑

c∈F
Ec(Sc) (3.54)

where Ìe and ∇Ìe are defined in (3.48), (3.49) and δ is large enough so that the corresponding
K in Tab. 3.4 is positive semi-definite.
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Algorithm 3: α-Expansion for Kernel Cut

Input : Affinity matrix A of size ∣Ω∣ × ∣Ω∣;
Initial labeling S1

0 , ..., S
K
0

Output: S1, ..., SK : partition of the set Ω
1 Find p.s.d. matrix K as in Table 3.4. Set t ∶= 0;
2 while not converged do
3 Set at(S) to be kernel bound (3.54) at current partition St;
4 for each label α ∈ L = {1, ...,K} do
5 Find St ∶= arg minat(S) within one α expansion of St;
6 end
7 Set t ∶= t + 1;

8 end

3.3.3 Move-making algorithms

Combination (3.54) of regularization potentials with a unary (linear) bound ∑k∇Ìe(Skt )
′ Sk

for high-order term EA(S) can be optimized with many standard discrete or continuous
multi-label methods including graph cuts [31, 109], message passing [124], LP relaxations
[240], or well-known continuous convex formulations [39, 41, 57]. We focus on MRF regu-
larizers (see Sec.3.2.1) commonly addressed by graph cuts [31]. We discuss some details of
kernel bound optimization technique using such methods.

Step I of the bound optimization algorithm (Fig. 1.10) using auxiliary function at(S)
(3.54) for energy E(S) (3.1) with regularization potentials reviewed in Sec.3.2.1 can be
done via move-making methods [31, 120, 60]. Step II requires re-evaluation of the first
term in (3.54), i.e. the kernel bound for EA. Estimation of gradients ∇Ìe(Skt ) in (3.49) has
complexity O(K ∣Ω∣2).

Even though the global optimum of at at step I (Fig. 1.10) is not guaranteed for general
potentials Ec, it suffices to decrease the bound in order to decrease the energy, i.e. (1.14a)
and (1.14b) imply

at(St+1) ≤ at(St) ⇒ E(St+1) ≤ E(St).

For example, Algorithm 3 shows a version of our kernel cut algorithm using α-expansion
[31] for decreasing bound at(S) in (3.54). Other moves are also possible, for example
αβ-swap.

In general, tighter bounds work better. Thus, we do not run iterative move-making
algorithms for bound at until convergence before re-estimating at+1. Instead, one can
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(a) Versions of Kernel Cut

Compare against # of wins p-value†

α-expan-sion αβ-swap 135/200 10−6

α-expan-sion α-expan-sion∗ 182/200‡ 10−34‡

† The probability to exceed the given number of wins by

random chance.
‡ The algorithm stopped due to time limit (may cause

incorrect number of wins).

(b) BSDS500 training dataset

Figure 3.7: Typical energy evolution wrt different moves and frequency of bound updates.
α-expansion updates the bound after a round of expansions, α-expansion* updates the
bound after each expansion move. Initialization is a regular 5×5 grid of patches.

reestimate the bound either after each move or after a certain number of moves. One
should decide the order of iterative move making and bound evaluation. In the case of
α-expansion, there are at least three options: updating the bound after a single expansion
step, or after a single expansion loop, or after the convergence of α-expansion. More
frequent bound recalculation slows down the algorithm, but makes the bound tighter. The
particular choice generally depends on the trade-off between the speed and solution quality.
However, in our experiments more frequent update does not always improve the energy, see
Fig. 3.7. We recommend updating the bound after a single loop of expansions, see Alg.3.
We also evaluated a swap move version of our kernel cut method with bound re-estimation
after a complete αβ-swaps loop, see Fig. 3.7.
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3.4 Data Embeddings and Spectral Bounds

This section shows a different bound optimization approach to kernel clustering. In contrast
to the bounds explicitly using affinity A or kernel matrices K in Sec.3.3.2, the new approach
is based on explicit use of isometric data embeddings φ, see Sec. 3.2.2. While the general
Mercer theorem guarantees existence of such possibly infinite dimensional Hilbert space
embedding, we show finite dimensional Euclidean embedding

φ ∶= [φp] where {φp∣p ∈ Ω} ⊂ R∣Ω∣

with exact isometry (3.18,3.19) to kernels K in Table 3.4 and lower dimensional embeddings

φ̃ ∶= [φ̃p] where {φ̃p∣p ∈ Ω} ⊂ Rm for m ≤ ∣Ω∣

that can approximate the same isometry with any accuracy. The embeddings use eigen
decompositions of the kernels.

Explicit embeddings allow to formulate exact or approximate spectral bounds for stan-
dard kernel clustering objectives like AA, AC, NC. This approach is very closely related to
spectral relaxation, see Sec. 3.4.3. For example, optimization of our approximate spectral
bounds for m =K is similar to standard discretization heuristics using K-means over eigen-
vectors [211]. Our bound optimization framework provides justification for such heuristics.
Moreover, our spectral bounds also allow to optimize joint energy (3.1) combing kernel
clustering objectives with common regularization terms.

Spectral bound is a useful alternative to kernel bound in Sec. 3.3.2. Their complexity
and other numerical properties are different. In particular, spectral bound optimization
with lower dimensional Euclidean embeddings φ̃ for m≪ ∣Ω∣ is often less sensitive to local
minima. This may lead to better solutions, even though such embeddings φ̃ are only
approximately isometric to given pairwise affinities. For m = ∣Ω∣, the spectral bound is
mathematically equivalent to the kernel bound, but their numerical representations are
different. Fig. 3.8 summarizes the relationship between our (kernel and spectral) bounds
for kernel clustering objective EA(S).

3.4.1 Exact and approximate embeddings φ for kKM

This section uses some standard methodology [56] to build the finite-dimensional embed-
ding φp ≡ φ(Ip) with exact or approximate isometry (3.18,3.19) to any given positive definite
kernel k over finite data set {Ip∣p ∈ Ω}. As discussed in Sec. 3.2.2, kKM and other kernel
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Figure 3.8: Interpreting our linear bounds for EA term in (3.1) via K-means: optimization
of the spectral bound (alone) is equivalent to K-means algorithm over approximately iso-
metric data embeddings in Rm for m ≤ ∣Ω∣, see Sec. 3.4. As m approaches ∣Ω∣, the isometry
becomes more accurate and our approximate spectral bound for EA reduces to the exact
kernel bound. While relations between EA and K-means were known for m = K [211] (as
a heuristic, see Sec.3.4.3) and m = ∣Ω ∣ [197, 9, 64] (as energy equivalence), we establish it
in a new bound optimization context essential for our work.

clustering methods are typically defined by affinities/kernels k and energy (3.21) rather
than by high-dimensional embeddings φ with basic KM formulation (3.17). Nevertheless,
data embeddings φp could be useful and some clustering techniques explicitly construct
them [211, 171, 197, 14, 9, 253]. In particular, if dimensionality of the embedding space
is relatively low then the basic iterative KM procedure (3.22) minimizing (3.17) could be
more efficient than its kernel variant (3.23) for quadratic formulation (3.21). Even when
working with a given kernel k it may be algorithmically beneficial to build the correspond-
ing isometric embedding φ. Below we discuss finite-dimensional Euclidean embeddings in
Rm (m ≤ ∣Ω∣) allowing to approximate standard kernel clustering via basic KM.

First, we show an exact Euclidean embedding isometric to a given kernel. Any finite
data set {Ip∣p ∈ Ω} and any given kernel k define a positive definite kernel matrix9

Kpq = k(Ip, Iq)

of size ∣Ω∣ × ∣Ω∣. The eigen decomposition of this matrix

K = V ′ΛV

involves diagonal matrix Λ with non-negative eigenvalues and orthogonal matrix V whose
rows are eigenvectors, see Fig. 3.9(a). Non-negativity of the eigenvalues is important for

9If k is given as a continuous kernel k(x, y) ∶RN ×RN →R matrix K is its restriction to finite data set
{Ip∣p ∈ Ω} ⊂RN .
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(a) decomposition K = V ′ΛV

(b) decomposition K̃ = (V m)′ΛV m for m < ∣Ω∣

Figure 3.9: Eigen decompositions for kernel matrix K (a) and its rank m approximation K̃
(b) minimizing Frobenius errors (3.56) [56]. Decompositions (a,b) give explicit embeddings
(3.55,3.58) isometric to the kernels, as in the Mercer theorem. One specific example for
the Gaussian kernel is in Fig. 3.10.

obtaining decomposition Λ =
√

Λ ⋅
√

Λ allowing us to define the following Euclidean space
embedding

φp ∶=
√

ΛVp ∈R∣Ω∣ (3.55)

where Vp are column of V , see Fig. 3.9(a). This embedding satisfies isometry (3.18,3.19)
since

⟨φp, φq⟩ = (
√

ΛVp)
′(
√

ΛVq) = Kpq = k(Ip, Iq).

Note that (3.55) defines a simple finite dimensional embedding φp ≡ φ(Ip) only for
subset of points {Ip∣p ∈ Ω} in RN based on a discrete kernel, i.e. matrix Kpq. In contrast,
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(a) data {Ip∣p ∈ Ω} (b) Gaussian matrix K (c) 2D embedding (d) 3D embedding

Figure 3.10: Low-dimensional Euclidean embeddings (3.58) for m = 2 and m = 3 in (c,d)
are approximately isometric to a given affinity matrix (b) over the data points in (a). The
approximation error (3.57) decreases for larger m. While generated by standard MDS
methodology [56], it is intuitive to call embeddings φ in (3.55) and (3.58) as (exact or
approximate) isometry eigenmap or eigen isomap.

Mercer’s theorem should produce a more general infinite dimensional Hilbert embedding
φ(x) for any x ∈RN by extending the eigen decomposition to continuous kernels k(x, y). In
either case, however, the embedding space dimensionality is much higher than the original
data space. For example, φp in (3.55) has dimension ∣Ω∣, which is much larger than the
dimension of data Ip, e.g. 3 for RGB colors.

Embedding (3.55) satisfying isometry (3.18,3.19) is not unique. For example, any de-
composition K = G′G, e.g. Cholesky [88], defines a mapping φGp ∶= Gp with desired proper-
ties. Also, rotational matrices R generate a class of isometric embeddings φRp ∶= Rφp.

It is easy to build lower dimensional embeddings by weakening the exact isometry
requirements (3.18,3.19) following the standard multi-dimensional scaling (MDS) method-
ology [56], as detailed below. Consider a given rank m < ∣Ω∣ approximation K̃ for kernel
matrix K minimizing Frobenius norm errors [56]

∣∣K − K̃∣∣F ∶= ∑
pq∈Ω

(Kpq − K̃pq)
2. (3.56)

It is well known [56, 88] that the minimum Frobenius error is achieved by

K̃ = (V m)′ΛmV m

where V m is a submatrix of V including m rows corresponding to the largest m eignenvalues
of K and Λm is the diagonal matrix of these eigenvalues, see Fig. 3.9(b). The corresponding
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minimum Frobenius error is given by the norm of zeroed out eigenvalues

∣∣K − K̃∣∣F =
√
λ2
m+1 + ⋅ ⋅ ⋅ + λ

2
∣Ω∣. (3.57)

It is easy to check that lower dimensional embedding

φ̃p ∶=
√

ΛmV m
p ∈Rm (3.58)

is isometric with respect to approximating kernel K̃, that is

⟨φ̃p, φ̃q⟩ = K̃pq ≈ Kpq. (3.59)

Fig. 3.10 shows examples of low-dimensional approximate isometry embeddings (3.58) for
a Gaussian kernel. Note that φ̃p ∈ Rm (3.58) can be obtained from φp ∈ R∣Ω∣ (3.55) by
selecting coordinates corresponding to dimensions of the largest m eigenvalues.

According to (3.57) lower dimensional embedding φ̃p in (3.58) is nearly-isometric to
kernel matrix K if the ignored dimensions have sufficiently small eigenvalues. Then (3.58)
may allow efficient approximation of kernel K-means. For example, if sufficiently many
eigenvalues are close to zero then a small rank m approximation K̂ will be sufficiently
accurate. In this case, we can use a basic iterative K-means procedure directly in Rm with
O(∣Ω∣m) complexity of each iteration. In contrast, each iteration of the standard kernel
K-means (3.21) is O(∣Ω∣2) in general10.

There is a different way to justify approximate low-dimensional embedding φ̃p ignoring
small eigenvalue dimensions in φp. The objective in (3.21) for exact kernel K is equivalent
to the basic K-means (3.15) over points φp (3.55). The latter can be shown to be equivalent
to (probabilistic) K-means (3.12) over columns Vp in orthonormal matrix V using weighted
distortion measure

∣∣Vp − µ∣∣
2
Λ ∶=

∣Ω∣
∑
i=1

λi(Vp[i] − µ[i])
2 = ∣∣φp −

√
Λµ∣∣2

where index [i] specifies coordinates of the column vectors. Thus, a good approximation is
achieved when ignoring coordinates for small enough eigenvalues contributing low weight
in the distortion above. This is equivalent to K-means (3.15) over points (3.58).

10Without KNN or other special kernel accelerations.
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3.4.2 Spectral Bounds for AA, AC, and NC

The last Section showed that kKM clustering with given p.s.d. kernel K can be approx-
imated by basic KM over low-dimensional Euclidean embedding φ̃ ∈ Rm (3.58) with ap-
proximate isometry to K (3.59). Below we use equivalence of standard kernel clustering
criteria to kKM, as discussed in Sections 3.2.2 and 3.2.3, to derive the corresponding low-
dimensional embeddings for AA, AC, NC. Then, equivalence of KM to bound optimization
(Theorem 1) allows to formulate our approximate spectral bounds for the kernel cluster-
ing and joint energy (3.1). The results of this Section are summarized in Tab. 3.5. For
simplicity, assume symmetric affinity matrix A. If not, equivalently replace A by A+A′

2 .

Average association (AA): Diagonal shift K = δI+A in (3.29) converts AA (3.28) with
A to equivalent kKM (3.21) with p.d. kernel K. In practice, sufficiently large δ is added
by finding the minimum eigenvalue of A. We seek rank-m approximation K̃ minimizing
Frobenius error ∣∣K − K̃∣∣F . Provided eigen decomposition A = V ′ΛV , equation (3.58) gives
low-dimensional embedding (also in Tab. 3.5)

φ̃p =
√
δIm +ΛmV m

p (3.60)

corresponding to optimal approximation kernel K̃. It follows that KM (3.22) over this
embedding approximates AA objective (3.21). Note that the eigenvectors (rows of ma-
trix V , Fig. 3.9) also solve the spectral relaxation for AA in Tab. 3.6. However, ad hoc
discretization by KM over points V K

p may differ from the result for points (3.60).

Average cut (AC): As follows from objective (3.37) and diagonal shift (3.29) [197],
average cut clustering for affinity A is equivalent to minimizing kKM objective with kernel
K = δI + A − D where D is a diagonal matrix of node degrees dp = ∑qApq. Diagonal
shift δI is needed to guarantee positive definiteness of the kernel. Eigen decomposition for
D−A = V ′ΛV implies K = V ′(δI−Λ)V . Then, (3.58) implies rank-m approximate isometry
embedding (also in Tab. 3.5)

φ̃p =
√
δIm −ΛmV m

p (3.61)

using the same eigenvectors (rows of V ) that solve AC’s spectral relaxation in Tab. 3.6.
However, standard discretization heuristic using KM over φ̃p = V K

p may differ from the

results for our approximate isometry embedding φ̃p (3.61) due to different weighting.

Normalized cut (NC): According to [64] and a simple derivation in Sec.3.2.3 normal-
ized cut for affinity A is equivalent to weighted kKM with kernel K = δD−1+D−1AD−1 (3.43)
and node weights wp = dp based on their degree. Weighted kKM (3.35) can be interpreted
as KM in the embedding space with weights wp for each point φp as in (3.31,3.32). The only
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issue is computing m-dimensional embeddings approximately isometric to K. Note that
previously discussed solution φ̃ in (3.58) uses eigen decomposition of matrix K to minimize
the sum of quadratic errors between Kpq and approximating kernel K̃pq = ⟨φ̃p, φ̃q⟩. This
solution may still be acceptable, but in the context of weighted points it seems natural to
minimize an alternative approximation measure taking wp into account. For example, we
can find rank-m approximate affinity matrix K̃ minimizing the sum of weighted squared
errors

∑
pq∈Ω

wpwq(Kpq − K̃pq)
2 = ∣∣D

1
2 (K − K̃)D

1
2 ∣∣F . (3.62)

Substituting K = δD−1 +D−1AD−1 gives an equivalent objective

∣∣D− 1
2 (δD +A)D− 1

2 −D
1
2 K̃D

1
2 ∣∣F .

Consider rank-m matrix M̃ ∶= D
1
2 K̃D

1
2 as a new minimization variable. Its optimal value

(V m)′(δIm +Λm)V m follows from D− 1
2 (δD+A)D− 1

2 = V ′(δI+Λ)V for eigen decomposition

D− 1
2AD− 1

2 ≡ V ′ΛV. (3.63)

Thus, optimal rank-m approximation kernel K̃ is

K̃ =D− 1
2 (V m)′(δIm +Λm)V mD− 1

2 . (3.64)

It is easy to check that m-dimensional embedding (also in Tab. 3.5)

φ̃p =

√
δIm +Λm

dp
V m
p (3.65)

is isometric to kernel K̃, that is ⟨φ̃p, φ̃q⟩ = K̃pq. Therefore, weighted KM (3.31) over low-
dimensional embedding φ̃p (3.65) with weights wp = dp approximates NC objective (3.40).

Summary: The ideas above can be summarized as follows. Assume AA, AC, or NC
objectives EA(S) with (symmetric) A. The third column in Table 3.5 shows kernels K for
equivalent kKM objectives F (S) (3.21,3.35). Following eigenmap approach (Fig. 3.9), we
find rank-m approximate kernel K̃ ≈ K minimizing Frobenius error ∥K̃ −K∥F (3.56) or its
weighted version (3.62) and deduce embeddings φ̃p ∈ Rm (3.60), (3.61), (3.65) satisfying
isometry

φ̃′pφ̃q = K̃pq ≈ Kpq.
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Basic K-means objective F̃ (S,m) (3.15,3.31) for {φ̃p} is equivalent to kKM energy F̃ (S)
(3.21,3.35) for kernel K̃ ≈ K and, therefore, approximates the original kernel clustering
objective

F̃ (S,µS)
c
= F̃ (S) ≈ F (S)

c
= EA(S).

Theorem 1 gives unary (linear) bound F̃ (S,µt) (3.46,3.47) for objective F̃ (S) (3.15,3.31).
We refer to F̃ (S,µt) as a spectral auxiliary function for approximate optimization of EA(S)
(last column in Table 3.5). We will also simply call F̃ (S,µt) a spectral bound for EA, not
to be confused with a similar term used for matrix eigenvalues.

Theorem 3 (spectral bound for EA). For (symmetric) affinity matrix A assume suf-
ficiently large diagonal shift δ generating p.s.d. kernel K as in Table 3.5. Then, auxiliary
function

ãt(S) = F̃ (S,µt) (3.66)

using F̃ (S,m) (3.46,3.47) with embedding {φ̃p} ⊂Rm in Tab. 3.5 is a unary (linear) bound
for K-means energy F̃ (S) (3.21,3.35) approximating objective EA(S) as m→ ∣Ω∣.

For m = ∣Ω∣ the spectral bounds (Tab. 3.5) are algebraically equivalent to our kernel
bounds (Tab. 3.4) since K̃ = K, see (3.57). Yet, their numerical representation is different.
For m < ∣Ω∣ we obtain a range of approximate spectral bounds since K̃ ≈ K and F̃ ≈ F . Fig.
3.8 summarizes the relation between our spectral and kernel bounds for EA. Matlab code
for kernel bound and spectral bound is provided in Appendix A.1 and A.2.

Interestingly, Sec. 3.4.3 shows that optimization of our spectral bounds for m = K is
algorithmically similar to the common K-means discretization heuristic in spectral relax-
ation solutions for kernel clustering. Thus, our spectral bound optimization can be seen
as a principled formulation justifying this heuristic post-processing step.

Similarly to kernel bound in Section 3.3.2, spectral bound is useful for optimizing joint
energy (3.1). We can iteratively minimize energy E(S) in (3.1) by applying bound opti-
mization approach to its spectral approximation

Ẽ(S) = F̃ (S) + γ ∑
c∈F

Ec(Sc) (3.67)

or its weighted spectral approximation

Ẽ(S) = F̃w(S) + γ ∑
c∈F

Ec(Sc). (3.68)
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(a) Gaussian for data in Fig. 3.10 (b) KNN for data in Fig. 3.10

(c) mPb kernel [6] for image (d) KNN kernel for image

Figure 3.11: Spectrum of eigenvalues of typical kernel matrices for synthetic data (top
row) or real image color (bottom row). This helps us to select approximate embedding
so as to have small approximation error (3.57). For example, with fixed width gaussian
kernel in (a), it suffices to select a few top eigenvectors since the remaining eigenvalues are
negligible. Note that the spectrum elevates with increasing diagonal shift δ in (3.60). In
principle, we can find the optimal shift for a given number of dimensions m to minimize
approximation error.

Corollary 3 (spectral bound for (3.1)). For any (symmetric) affinity matrix A assume
sufficiently large diagonal shift δ generating p.s.d. kernel K as in Table 3.5. Then, auxiliary
function

ãt(S) = F̃ (S,µt) + γ ∑
c∈F

Ec(Sc) (3.69)

using F̃ (S,m) (3.46,3.47) with embedding {φ̃p} ⊂ Rm in Tab. 3.5 is a bound for joint
energy (3.67,3.68) approximating (3.1) as m→ ∣Ω∣.

Approximation quality (3.57) depends on omitted eigenvalues λi for i > m. Represen-
tative examples in Fig. 3.11 show that relatively few eigenvalues may dominate the others.
Thus, practically good approximation with small m is possible. Larger m are computa-
tionally expensive since more eigenvalues/vectors are needed. Interestingly, smaller m may
give better optimization since K-means in higher-dimensional spaces may be more sensitive
to local minima. Thus, spectral bound optimization for smaller m may find solutions with
lower energy, see Fig. 3.12, even though the quality of approximation is better for larger
m.
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Figure 3.12: For data and affinity matrix in Fig. 3.10, we run weighted K-means with our
approximate embedding. The approximation errors ∣∣K − K̃∣∣2F /∣∣K∣∣

2
F for 3, 6, 10 and 50

dim. embedding are 58%, 41%, 27% and 3% respectively. We compute weighted K-means
energy (up to a const) and normalized cuts energy for solution obtained at each iteration.
We observed that normalized cuts energy indeed tends to decrease during iterations of
K-means. Even 10 dim. embedding gives good alignment between K-means energy and
normalized cuts energy. Higher dimensional embedding gives better energy approximation,
but not necessarily better solution with lower energy.

Similarly to the kernel bound algorithms discussed in Section 3.3.3 one can optimize
the approximate spectral bound (3.69) for energy (3.1) using standard algorithms for reg-
ularization. This follows from the fact that the first term in (3.69) is unary (linear).
Algorithm 4 shows a representative (approximate) bound optimization technique for (3.1)
using move-making algorithms [31]. Note that for γ = 0 (no regularization terms) our
bound optimization Algorithm 4 reduces to basic K-means over approximate isometry
embeddings {φ̃p} ⊂ Rm similar but not identical to common discretization heuristics in
spectral relaxation methods.

Some extensions for optimization ideas in Sec. 3.3 and 3.4 are discussed in [221]. For
example, diagonal shift δ can be used to reduce Frobenius error (3.57). We also discuss
pseudo-bounds [217].

3.4.3 Relation to spectral clustering

Our approximation of kernel clustering such as NC via basic KM over low dimensional
embeddings φ̃p is closely related to popular spectral clustering algorithms [211, 171, 14]
using eigen decomposition for various combinations of kernel, affinity, distortion, laplacian,
or other matrices. Other methods also build low-dimensional Euclidean embeddings [171,
14, 253] for basic KM using motivation different from isometry and approximation errors
with respect to given affinities. We are mainly interested in discussing relations to spectral
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Algorithm 4: α-Expansion for Spectral Cut

Input : Affinity matrix A of size ∣Ω∣ × ∣Ω∣;
Initial labeling S1

0 , ..., S
K
0

Output: S1, ..., SK : partition of the set Ω
1 Find top m eigenvalues/vectors Λm, V m for a matrix in the 4th col. of Tab. 3.5 ;

2 Compute embedding {φ̃p} ⊂Rm for some δ and set t ∶= 0;
3 while not converged do
4 Set ãt(S) to be spectral bound (3.69) at current partition St;
5 for each label α ∈ L = {1, ...,K} do
6 Find St ∶= arg min ãt(S) within one α expansion of St;
7 end
8 Set t ∶= t + 1;

9 end

methods approximately optimizing kernel clustering criteria such as AA, AC, and NC [211].

Many spectral relaxation methods also use various eigen decompositions to build ex-
plicit data embeddings followed by basic K-means. In particular, the smallest or largest
eigenvectors for the (generalized) eigenvalue problems in Table 3.6 give well-known exact
solutions for the relaxed problems. In contrast to our approach, however, the final K-
means stage in spectral methods is often presented without justification [211, 235, 6] as
a heuristic for quantizing the relaxed continuous solutions into a discrete labeling. It is
commonly understood that

“. . . there is nothing principled about using the K-means algorithm in this
step” (Sec. 8.4 in [235])

or that

“. . . K-means introduces additional unwarranted assumptions.” (Sec. 4 in [251])

Also, typical spectral methods use K eigenvectors solving the relaxed K-cluster problems
followed by KM quantization. In contrast, we choose the number of eigenvectors m based
on Frobenius error for isometry approximation (3.57). Thus, the number m is independent
from the predefined number of clusters.

Below we juxtapose our approximate isometry low dimensional embeddings in Table 3.5
with embeddings used for ad-hoc discretization by the standard spectral relaxation meth-
ods in Table 3.6. While such embeddings are similar, they are not identical. Thus, our
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Frobenius error argument offers a justification and minor corrections for KM heuristics
in spectral methods, even though the corresponding methodologies are unrelated. More
importantly, our bound formulation allows integration of kernel clustering with additional
regularization constraints (3.1).

Embeddings in spectral methods for NC: Despite similarity, there are differences
between our low-dimensional embedding (3.65) provably approximating kernel K = δD−1 +

D−1AD−1 for the kKM formulation of NC [9, 64] and common ad-hoc embeddings used
for KM discretization step in the spectral relaxation methods. For example, one such
discretization heuristic [211, 235] uses embedding φ̃p (right column in Tab. 3.6) defined by
the columns of matrix UK whose rows are the K top (unit) eigenvectors of the standard

eigen system (left column). It is easy to verify that the rows of matrix V D− 1
2 are non-unit

eigenvectors for the generalized eigen system for NC. The following relationship

φ̃p = UK ≡ [V KD− 1
2 ]rn

where operator [⋅]rn normalizes matrix rows, demonstrates certain differences between ad
hoc embeddings used by many spectral relaxation methods in their heuristic K-means
discretization step and justified approximation embedding (3.65) in Tab. 3.5. Note that

our formulation scales each embedding dimension, i.e. rows in matrix V KD− 1
2 , according

to eigenvalues instead of normalizing these rows to unit length.

There are other common variants of embeddings for the K-means discretization step in
spectral relaxation approaches to the normalized cut. For example, [16, 155, 6] use

φ̃p = [Λ− 1
2U]Kp

for discretization of the relaxed NC solution. The motivation comes from the physics-based
mass-spring system interpretation [16] of the generalized eigenvalue system.

Some spectral relaxation methods motivate their discretization procedure differently.
For example, [251, 9] find the closest integer solution to a subspace of equivalent solutions
for their particular very similar relaxations of NC based on the same eigen decomposition
(3.63) that we used above. Yu and Shi [251] represent the subspace via matrix

X ′ ≡ [
√

ΛmV mD− 1
2 ]cn

where columns differ from our embedding φ̃(Ip) in (3.65) only by normalization. Theorem
1 by Bach and Jordan [9] equivalently reformulates the distance between the subspace and
integer labelings via a weighted K-means objective for embedding

φ̃p =

√
1

dp
V m
p (3.70)
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spectral relaxation [211]
common discretization heuristic [235]

(embedding & K-means)
AA Au = λu φ̃p ∶= UK

p ≡ V K
p ⇐ V ′ΛV = A

AC (D −A)u = λu φ̃p ∶= UK
p ≡ V K

p ⇐ V ′ΛV =D −A

NC (D −A)u = λDu φ̃p ∶= UK
p ≡ [V KD− 1

2 ]rnp ⇐ V ′ΛV =D− 1
2AD− 1

2

Table 3.6: Spectral relaxation and discretization heuristics for objectives for kernel cluster-
ing objectives EA(S) for affinity A. The corresponding degree matrix D is diagonal with
elements dp ∶= ∑qApq. To extract integer labeling from the relaxed solutions produced by
the eigen systems (second column), spectral methods often apply basic KM to some ad
hoc data embedding φ̃ (last column) based on the first K unit eigenvectors u, the rows of
matrix UK . While our main text discusses some variants, the most basic idea [211, 235]
is to use the columns of UK as embedding φ̃p. For easier comparison, the last column
also shows equivalent representations of this embedding based on the same eigen decom-
positions V ′ΛV as those used for our isometry eigenmaps in Tab. 3.5. In contrast, our
embeddings are derived from justified approximations of the original non-relaxed AA, AC,
or NC objectives. Note that NC corresponds to a weighted case of K-means with data point
weights wp = dp [9, 64], see (3.41) in Sec. 3.2.3.

and weights wp = dp. This embedding is different from (3.65) only by eigenvalue scaling.

Interestingly, a footnote in [9] states that NC objective (3.40) is equivalent to weighted
KM objective (3.31) for exact isometry embedding

φp =
1

dp
Gp ∈R∣Ω∣ (3.71)

based on any decomposition A ≡ G′G. For example, our exact isometry map (3.65) for

m = ∣Ω∣ and G =
√

ΛV D
1
2 is a special case. While [9] reduce NC to K-means11, their

low-dimensional embedding φ̃ (3.70) is derived to approximate the subspace of relaxed NC
solutions. In contrast, low-dimensional embedding (3.65) approximates the exact esometry
map φ ignoring relaxed solutions. It is not obvious if decomposition A ≡ G′G for the exact
embedding (3.71) can be used to find any approximate lower-dimensional embeddings like
(3.65).

11 KM procedure (3.22) (weighted version) is not practical for objective (3.31) for points φp in R∣Ω∣.
Instead, Dhillon et al. [64] later suggested pairwise KM procedure (3.23) (weighted version) using kernel
Kpq ≡ ⟨φp, φq⟩.
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3.5 Experiments

This section is divided into two parts. The first part (Sec.3.5.1) shows the benefits of extra
MRF regularization for kernel & spectral clustering, e.g. normalized cut. We consider
pairwise Potts, label cost and robust bin consistency term, as discussed in Sec.3.2.1. We
compare to spectral clustering [211, 155] and kernel K-means [64], which can be seen as de-
generated versions for spectral and kernel cuts (respectively) without MRF terms. We show
that MRF helps kernel & spectral clustering in segmentation and image clustering. In the
second part (Sec.3.5.2) we replace the log-likelihoods in model-fitting methods, e.g. Grab-
Cut [200], by kernel clustering term, e.g. AA and NC. This is particularly advantageous
for high dimension features (location, depth, motion).

Implementation details: For segmentation, our kernel cut method uses either Gaus-
sian kernels of fixed bandwidth σ or common KNN kernels with adaptive bandwidth e.g. see
[256, 22] and [158]. Pixel features Ip can be concatenation of LAB (color), XY (location)
and M (motion or optical flow) [33]. For KNN, we choose 400 neighbors for each pixels and
randomly sample 50 neighbors for efficiency. Sampling does not degrade our segmentation
but expedites bound evaluation. We also use popular mPb contour based affinities [6]. The
window radius is set to 5 pixels.

Another detail to mention is diagonal shift of the kernel matrix. It is necessary to
give PSD matrix so that our bounds hold. However, in practice, we find the energies to
decrease at each iteration even without any diagonal shift for some kernels that are not
necessarily PSD, e.g. KNN kernel. As such, we choose not to add any diagonal shift in our
experiments bellow. Also adding too large a diagonal shift may lead to poor local minima
in kernel K-means algorithm, as discussed in [65].

For regularization in (3.2) we use standard contrast-sensitive penalty wpq =
1
dpq
e−0.5∥Ip−Iq∥22/η

[30] where η is the average of ∥Ip − Iq∥2 over a 8-connected neighborhood and dpq is the
distance between pixels p and q in the image plane. We set wpq =

1
dpq

for length regulariza-
tion.

We compare kernel clustering term EA(S) in (3.1) with a standard model-fitting term
(3.5) using histogram-based probability model, as is common in Grabcut approach [234,
140]. We tried various bin size for spatial and depth channels.

With fixed width Gaussian kernel, the time complexity of the naive implementation
of kernel bound evaluation in (3.54) is O(∣Ω∣2). The bottleneck is the evaluation of KXt

and Xt
′
KXt in derivative ∇Ìe(Xt) (3.49). In this case, we resort to fast approximate dense

filtering method in [181], which takes O(∣Ω∣) time. Also notice that the time complexity
of the approach in [181] grows exponentially with data dimension N . A better approach
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Figure 3.13: Sample results on BSDS500. Top row: spectral clustering. Middle & Bottom
rows: our Kernel & Spectral Cuts.

for high-dimensional dense filtering is proposed in [3], which is of time O(∣Ω∣×N). We use
[181] for low-dimensional color spaces.

3.5.1 MRF helps Kernel & Spectral Clustering

Here we add MRF regulation terms to typical normalized cut applications, such as unsu-
pervised multi-label segmentation [6] and image clustering [51]. Our kernel and spectral
cuts are used to optimize the joint energy of normalized cut and MRF (3.1) or (3.68).

Normalized Cut with Potts Regularization

Spectral clustering [211] typically solves a (generalized) eigen problem, followed by simple
clustering method such as K-means on the eigenvectors. However, it is known that such
paradigm results in undesirable segmentation in large uniform regions [6, 155], see examples
in Fig. 3.13. Obviously such edge mis-alignment can be penalized by contrast-sensitive
Potts term. Our spectral and kernel cuts get better segmentation boundaries. As is in [64]
we use spectral initialization.

Tab. 3.7 gives quantitative results on BSDS500 datasal. Number of ground truth
segments is provided to each method. Kernel and spectral cuts give better covering, PRI
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Figure 3.14: Segmentation using our kernel cut with label cost. We experiment with
increasing value of label cost hk for each label (from left to right)

(probabilistic rand index) and VOI (variation of information) than spectral clustering. Fig.
3.13 gives sample results. Kernel K-means [64] gives results similar to spectral clustering
and hence are not shown.

Normalized Cuts with Label Cost [60]

Unlike spectral clustering, our kernel and spectral cuts do not need the number of segments
beforehand. We use kernel cut to optimize a combination of the normalized cut, Potts
model and label costs terms. The label cost (3.4) penalizes each label by constant hk.
The energy is minimized by α-expansion and αβ-swap moves in Sec.3.3.3. We sample
initial models from patches, as in [60]. Results with different label cost are shown in Fig.
3.14. Due to sparsity prior, our kernel and spectral cuts automatically prune weak models
and determine the number of segments, yet yield regularized segmentation. We use KNN
affinity for normalized cut and mPb [6] based Potts regularization.

method Covering PRI VOI
Spectral Clustering 0.34 0.76 2.76

Our Kernel Cut 0.41 0.78 2.44
Our Spectral Cut 0.42 0.78 2.34

Table 3.7: Results of spectral clustering (K-means on eigenvectors) and our Kernel Cut &
Spectral Cuts on BSDS500 dataset. For this experiment mPb-based kernel is used [6].
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Normalized Cut with High-Order Consistency

It is common that images come with multiple tags, such as those in Flickr platform or
the LabelMe dataset [178]. We study how to utilize tag-based group prior for image
clustering [51] enforced as a high-order consistency potential common in MRF-based image
segmentation [120, 183, 220].
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Figure 3.15: Incorporating group prior achieves better NMI for image clustering. Here
we use tags-based group prior. Our method achieved better NMI when more images are
tagged. The right plot shows how the weight of bin consistency term affects our method.

We experiment on the LabelMe dataset [178] which contains 2,600 images of 8 scene
categories (coast, mountain, forest, open country, street, inside city, tall buildings and
highways). We use the same GIST feature, affinity matrix and group prior as used in [51].
We found the group prior to be noisy. The dominant category in each group occupies only
60%-90% of the group. The high-order consistency term is defined on each group. For
each group, we introduce an energy term that is akin to the robust P n-Potts [120], which
can be exactly minimized within a single αβ-swap or α-expansion move. Notice that here
we have to use robust consistency potential instead of rigid ones.

Our kernel cut minimizes NC plus the robust P n-Potts term. Spectral cut minimizes
energy of (3.67). Normalized mutual information (NMI) is used as the measure of clustering
quality. Perfect clustering with respect to ground truth has NMI value of 1.

Spectral clustering and kernel K-means [64] give NMI value of 0.542 and 0.572 respec-
tively. Our kernel cut and spectral cut significantly boost the NMI to 0.683 and 0.681.
Fig. 3.15 shows the results with respect to different amount of image tags used. The left
most points correspond to the case when no group prior is given. We optimize over the
weight of high order consistency term, see Fig. 3.15. Note that it’s not the case the larger
the weight the better since the grouping prior is noisy.

We also utilize deep features, which are 4096 dimensional fc7 layer from AlexNet [131].
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(a) (b)

Figure 3.16: Illustration of robustness to smoothness weight.

We either run plain K-means, or construct a KNN kernel on deep features. These algo-
rithms are denoted as deep K-means, deep spectral cut or deep kernel cut in Fig. 3.15.
Incorporating group prior indeed improved clustering. The best NMI of 0.83 is achieved
by our kernel cut and spectral cut for KNN kernel on deep features.

3.5.2 Kernel & Spectral Clustering helps MRF

In typical MRF applications we replace the log-likelihood terms by average association or
normalized cut. We evaluate our Kernel Cut (fixed width kernel or KNN) in the context
of interactive segmentation, and compare with the commonly used GrabCut algorithm
[200]. In Sec. 3.5.2, we show that our kernel cut is less sensitive to choice of regularization
weight γ. We further report results on the GrabCut dataset of 50 images and the Berkeley
dataset in Sec. 3.5.2. We experiment with both (i) contrast-sensitive edge regularization,
(ii) length regularization and (iii) color clustering (i.e., no regularization) so as to assess
to what extent the algorithms benefit from regularization.

From Sec. 3.5.2 to Sec. 3.5.2, we also report segmentation results of our kernel cut with
high-dimensional features Ip, including location, texture, depth, and motion respectively.

Robustness to regularization weight

We first run all algorithms without smoothness. Then, we experiment with several values
of γ for the contrast-sensitive edge term. In the experiments of Fig. 3.16 (a) and (b), we
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Figure 3.17: Average error vs. regularization weights for different variants of our KernelCut
on the GrabCut dataset.

used the yellow boxes as initialization. For a clear interpretation of the results, we did
not use any additional hard constraint. In Fig. 3.16, ”KernelCut-KNN-AA” means Kernel
Cut with KNN kernel for average association (AA). Without smoothness, our Kernel Cut
yields much better results than Grab Cut. Regularization significantly benefited the latter,
as the decreasing blue curve in (a) indicates. For instance, in the case of the zebra image,
model fitting yields a plausible segmentation when assisted with a strong regularization.
However, in the presence of noisy edges and clutter, as is the case of the chair image in
(b), regularization does not help as much. Note that for small regularization weights γ our
method is substantially better than model fitting. Also, our method is less dependent on
regularization weight and does not require fine tuning of γ.

Segmentation on GrabCut & Berkeley datasets.

First, we report results on the GrabCut database (50 images) using the bounding boxes
provided in [141]. For each image the error is the percentage of mis-labeled pixels. We
compute the average error over the dataset.

We experiment with four variants of our Kernel Cut, depending on whether to use fixed
width Gaussian kernel or KNN kernel, and also the choice of normalized cut or average
association term. We test different smoothness weights and plot the error curves12 in Fig.
3.17. Tab. 3.8 reports the best error for each method. For contrast-sensitive regularization
GrabCut gets good results (8.2%). However, without edges (Euclidean or no regularization)
GrabCut gives much higher errors (13.6% and 27.2%). In contrast, KernelCut-KNN-AA

12The smoothness weights for different energies are not directly comparable; Fig. 3.17 shows all the
curves for better visualization.
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Figure 3.18: Our method aKKM is robust to choice of K while GrabCut is sensitive to bin
size for histograms.

boundary color clustering term

smoothness GrabCut
KernelCut
-Gau-AA

KernelCut
-Gau-NC

KernelCut
-KNN-AA

none 27.2 20.4 17.6 12.2
Euclidean length 13.6 15.1 16.0 10.2
contrast-sensitive 8.2 9.7 13.8 7.1

Table 3.8: Box-based interactive segmentation (Fig. 3.19). Error rates (%) are averaged
over 50 images in GrabCut dataset. KernelCut-Gau-NC means KernelCut for fixed width
Gaussian kernel based normalized cut objective.

(Kernel Cut with adaptive KNN kernel for AA) gets only 12.2% doing a better job in color
clustering without any help from the edges. In case of contrast-sensitive regularization,
our method outperformed GrabCut (7.1% vs. 8.2%) but both methods benefit from strong
edges in the GrabCut dataset. Fig .3.18 shows that our Kernel Cut is also robust to the
hyper-parameter, i.e. K for nearest neighbours, unlike GrabCut.

Fig. 3.19 gives some results. The top row shows a failure case for GrabCut where the
solution aligns with strong edges. The second row shows a challenging image where our
KernelCut-KNN-AA works well. The third and fourth rows show failure cases for Kernel
Cut with fixed-width Gaussian kernel due to Breiman’s bias [158] separating uniform color
segments; see green bush and black suit. Adaptive kernel (KNN) addresses this bias.

We also tested seeds-based segmentation on a different database [160] with ground
truth, see Tab. 3.9 and Fig. 3.20.
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Figure 3.19: Sample results for GrabCut and our kernel cut with fixed width Gaussian or
adaptive width KNN kernel, see Tab. 3.8.

boundary smoothness
color clustering term

BJ GrabCut
KernelCut
-KNN-AA

none 12.4 12.4 7.6

contrast-sensitive 3.2 3.7 2.8

Table 3.9: Seeds-based interactive segmentation (Fig. 3.20). Error rates (%) are averaged
over 82 images from Berkeley database. Methods get the same seeds entered by four users.
We removed 18 images with multiple nearly-identical objects from 100 image subset in
[160]. (GrabCut and KernelCut-KNN-AA give 3.8 and 3.0 errors on the whole database.)

99



Figure 3.20: Sample results for BJ [30], GrabCut [200], and our kernel cut for adaptive
KNN kernel, see Tab. 3.9.

Figure 3.21: Visualization of a pixel’s K-Nearest-Neighbours for RGB feature (left) or
RGBXY feature (right).

Segmentation of similar appearance objects

Even though objects may have similar appearances or look similar to the background
(e.g. the top row in Fig. 3.23), we assume that the objects of interest are compact and
have different locations. This assumption motivates using XY coordinates of pixels as
extra features for distinguishing similar or camouflaged objects. XY features have also
been used in [174] to build space-variant color distribution. However, such distribution
used in MRF-MAP inference [174] would still over-fit the data [218]. Let Ip ∈ R5 be the
augmented color-location features Ip = [lp, ap, bp, βxp, βyp] at pixel p where [lp, ap, bp] is
its color, [xp, yp] are its image coordinates, and β is a scaling parameter. Note that the
edge-based Potts model [30] also uses the XY information. Location features in the clus-
tering and regularization terms have complementary effect: the former solves appearance
camouflage while the latter gets edge alignment.
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Figure 3.22: Error on Multi-objects dataset. We vary spatial bin-size for GrabCut and
weight β in [l, a, b, βX,βY ] for Kernel Cut. The connection range is the average geometric
distance between a pixel and its kth nearest neighbor. The right-most point of the
curves corresponds to the absence of XY features. GrabCut does not benefit from
XY features. Kernel Cut achieves the best error rate of 2.9% with connection range of 50
pixels.

We test the effect of adding XY into feature space for GrabCut and Kernel Cut. We try
various β for Kernel Cut. Fig. 3.21 shows the effect of different β on KNNs of a pixel. For
histogram-based GrabCut we change spatial bin size for the XY channel, ranging from 30
pixels to the image size. We report quantitative results on 18 images with similar objects
and camouflage from the Berkeley database [159]. Seeds are used here. Fig. 3.22 shows
average errors for multi-object dataset. Fig. 3.23 gives multi-label segmentation of similar
objects in one image with seeds using our algorithm. We optimize kernel bound with
move-making for NC and smoothness term combination, as discussed in Sec. 3.3.2. Fig.
3.23 (c) shows energy convergence.

(a) Seeds (b) Our solution
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(c) Energy minimization
for NC plus smoothness

Figure 3.23: Multi-label segmentation for similar objects.
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Figure 3.24: The average errors of GrabCut and Kernel Cut methods over 64 images
selected from NYUv2 database [169].

Interactive RGBD Images Segmentation

Depth sensor are widely used in vision for 3D modelling [67, 170], semantic segmenta-
tion [62, 100, 169, 194], motion flow [94]. We selected 64 indoor RGBD images from
semantic segmentation database NYUv2 [169] and provided bounding boxes and ground

Figure 3.25: RGBD+XY examples. The first two rows show original images wit bounding
box and color-coded depth channel. The third row shows the results of Grabcut, the forth
row shows the results of Kernel Cut. The parameters of the methods were independently
selected to minimize their average error rates over the database.
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truth. In contrast to [200], the prepared dataset consists of low-quality images: there
are camera motion artifacts, underexposed and overexposed regions. Such artifacts make
color-based segmentation harder.

We compare GrabCut to Kernel Cut over joint features Ip = [Lp, ap, bp, βDp] as in
Sec.3.5.2. Figs. 3.24 and 3.25 show the error statistics and segmentation examples. While
Kernel Cut takes advantage of the additional channel, GrabCut fails to improve.

Motion segmentation

Besides the location and depth features, we also test segmentation with motion features.
Figs. 3.26, 3.27 and 3.28 compare motion segmentations using different feature spaces:
RGB, XY, M (optical flow) and their combinations (RGBM or RGBXY or RGBXYM).

(a) frames (b) optical flow [33] (c) M+XY (d) RGB+XY (e) RGBM+XY

Figure 3.26: Motion segmentation using our framework for the sequence horses01 in FBMS-
59 dataset [34]. Motion feature alone (M+XY in (c)) is not sufficient to obtain fine
segmentation. Our framework successfully utilize motion feature (optical flow) to separate
the horse from the barn, which have similar appearances. See supplementary material for
results on the video.
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Abbreviation +XY means Potts regularization. We apply kernel cut (Alg.3) to the com-
bination of NC with the Potts term.

Challenging video examples: For videos in FBMS-59 dataset [34], our algorithm
runs on individual frames instead of 3D volume. Segmentation of previous frame initializes
the next frame. The strokes are provided only for the first frame. We use the optical flow
algorithm in [33] to generate M features. Selected frames are shown in Figs. 3.26 and 3.27.
Instead of tracks from all frames in [176], our segmentation of each frame uses only motion
estimation between two consecutive frames. Our approach jointly optimizes normalized cut
and Potts model. In contrast, [176] first clusters semi-dense tracks via spectral clustering
[34] and then obtains dense segmentation via regularization.

(a) frames (b) optical flow [33] (c) RGBXY+XY (d) RGBXYM+XY

Figure 3.27: Multi-label motion segmentation using our framework for the sequence
ducks01 in FBMS-59 dataset [34]. This video is challenging since the ducks have simi-
lar appearances and even spatially overlap with each other. However, different ducks come
with different motions, which helps our framework to better separate individual ducks. See
supplementary materials.
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Kitti segmentation example: We also experiment with Kitti dataset [161]. Fig. 3.28
shows the multi-label segmentation using either color information RGB+XY (first row) or
motion MXY+XY (second row). The ground-truth motion field works as M channel. Note
that the motion field is known only for approximately 20% of the pixels. To build an
affinity graph, we construct a KNN graph from pixels that have motion information. The
regularization over 8-neighborhood on the pixel grid interpolates the segmentation labels
during the optimization procedure.
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Figure 3.28: Motion segmentation for image 000079 10 from KITTI [161] dataset. The
first row shows the motion flow. Black color codes the pixels that do not have motion
information. The second row shows color-based segmentation. The third row shows motion
based segmentation with location features. We also tried M+XY segmentation, but it does
not work as well as MXY+XY above. The results for RGBMXY+XY were not significantly
different from MXY+XY.
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Chapter 4

Regularized Losses for Weakly
Supervised CNN Segmentation

Most recent semantic segmentation methods train deep convolutional neural networks with
tens of thousands of fully annotated masks, which is laborious to obtain. Weakly-supervised
CNN segmentation given e.g. scribbles or image-level tags has increasingly attracted re-
searchers’ attention. Common approaches mimic full supervision via “fake” fully-labeled
masks (proposals) generated from available partial input. To obtain such full masks, the
typical methods explicitly use standard regularization techniques in “shallow” segmen-
tation, e.g. graph cut or mean-field for CRF inference. In contrast, we integrate such
standard segmentation regularizers and criterion directly into the loss, for example pair-
wise MRF energy and normalized cut clustering criterion. Minimization of regularized
losses is a principled approach to weak supervision well-established in deep learning, in
general. We propose and experimentally compare different regularized losses. Besides,
we propose alternative direction method (ADM) as better optimization beyond gradient
descent (GD) for certain type of regularized losses, e.g. Grid CRF, for which GD is not
an effective optimizer. Our regularized loss approach achieves state-of-the-art accuracy in
semantic segmentation with near full-supervision quality.

4.1 Introduction and Motivation

Since the seminal work [131], deep convolutional neural networks (CNN) dominate almost
all aspects of computer vision, e.g. recognition [216, 102], detection [84, 193], and segmen-
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tation [150, 45]. It is capable of learning intermediate representations at different levels
given abundant training data. Typically, pixel-wise cross entropy loss (1.13) is minimized.

Supervised training of FCNs requires a huge number of fully annotated ground-truth
masks that is costly to obtain. Training with weak annotations, e.g. scribbles [147, 244],
bounding boxes [116, 58, 244, 180], clicks [13], and image-level tags [244, 180], has caught
a lot of interest recently.

Weakly supervised semantic segmentation is commonly addressed by mimicking full
supervision via synthesizing fully-labeled training masks (proposals) from the available
partial inputs [192, 180, 147]. These schemes typically iterate between two steps: CNN
training and proposal generation via regularization-based shallow interactive segmentation,
e.g. graph cut [30, 200, 147, 116] for grid CRF or mean-field inference [192, 180, 130, 121]
for dense CRF. However, inaccuracies of such masks (segmentation proposals) mislead
training since typical cross entropy (CE) loss is minimized over mislabeled points and the
network over-fits mistakes, see Fig. 4.3 in Sec.4.2.2.

In contrast, we integrate shallow regularizers directly into the loss for CNN segmenta-
tion. The regularization loss on unlabeled pixels is combined with partial cross entropy loss
on labeled pixels to give a regularized loss. The use of unsupervised loss terms acting as
regularizers on the output of deep-learning architectures is a principled approach to exploit
structure similarity of partially labeled data [241, 89]. Surprisingly, this general idea was
largely overlooked in weakly-supervised CNN segmentation where current methods often
introduce computationally expensive CRF pre-processing [116] or layers [121] generating
“fake” full masks from partial input.

Our regularized loss approach is simple, efficient, and generally applicable to a wide
range of segmentation regularization as we demonstrated through experiments. We pro-
pose different regularization losses including MRF energy, clustering criterion, and volume
constraint. Such losses can be adapted to many forms of weak (or semi) supervision. Here,
we mostly focus on training with partial masks (user scribble) where regularization losses
combined with cross entropy over the partial masks achieve the state-of-the-art close to
full-supervision quality.

It is straightforward to minimize regularized loss via gradient descent in CNN training.
However, it is well-known that gradient descent leads to poor local minima for many
regularizers, e.g. Grid CRF, in shallow segmentation and many stronger algorithms were
proposed [30, 31, 124, 113]. Similarly, we show better optimization beyond GD. We propose
alternative direction method (ADM) for optimizing regularized losses. Interestingly, our
ADM optimization described in Sec. 4.4 makes connections between proposal-generation
heuristics and our regularized losses framework.
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(a) Weakly-supervised Segmentation (b) Semi-supervised Learning

Figure 4.1: We approach the problem of weakly-supervised segmentation (a) with scribbles
through principled techniques in semi-supervised learning (b).

Our regularized loss approach to weakly-supervised CNN segmentation is motivated
both by common regularization for weakly-supervised segmentation in Sec. 4.1.1 and
also regularization for semi-supervised learning in Sec. 4.1.2. The problems of weakly-
supervised segmentation and semi-supervised learning are highly related, see Fig. 4.1.

4.1.1 Regularization for Weakly-supervised Segmentation

Due to the importance of low-level regularizers for segmentation and computer vision in
general, there are many choices available in the literature [82, 42, 30, 211, 97, 163, 189,
132, 48, 222]. To further motivate our approach, we discuss one specific and basic example
of such regularizer.

Probably the simplest MRF regularization for segmentation is the pairwise regulariza-
tion [30] which can be combined with constraints over seeds p ∈ ΩL of its predefined labels
in the form of indicator vector Yp ∈ {0,1}K ,

min
S
∑
p∈ΩL
∑
k

−Skp ⋅ logY k
p + λ ∑

p,q∈N
wpq ⋅ [Sp ≠ Sq] (4.1)

where Skp ∈ {0,1} are now interpreted as class assignment indicators, [⋅] are Iverson brack-
ets, and N is a neighbood system. The first term enforces Sp to agree with Yp for p ∈ ΩL
otherwise the cost is infinite (− log 0). The regularization term penalizes disagreements be-
tween pairs of points and the weight wpq is contrast-sensitive. It prefers segmentation that
align with object boundaries and edges. There are many possible solutions that satisfy the
hard constraints w.r.t. the seeds, and such ambiguity is eliminated by the regularization
term. An example of seeds ΩL ⊂ Ω is in Fig. 4.1 (a).
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The neighborhood system N is typically defined on the image grid. For sparse non-
negative weights wpq for nearest neighbors p and q as in classical Ising or Potts models,
there is a geometric interpretation corresponding to the weighted length of the segmentation
boundary [28]. Another popular choice is fully connected CRF with Gaussian kernel, a.k.a.
dense CRF [130], the property of which as a regularization term is very different from that
of Grid CRF [231].

The regularization term in (4.1) is pairwise. Higher-order regularization such as P n

Potts [120], curvature [173], shape prior [57], and volume prior [90] have been proposed
in the literature. In general, regularization is widely used for segmentation and other
computer vision tasks.

4.1.2 Regularization for Semi-supervised Learning

Roughly speaking, there are three types of machine learning,namely supervised learning,
unsupervised learning, and semi-supervised learning. Semi-supervised learning [265, 241,
44] is the task of learning from labeled data and unlabeled data. Given M labeled data
(xi, yi) ∈ (X ,Y), i = 1, ...,M and U unlabeled data xi, i = M + 1, ...,M + U , we learn the
mapping function f(x) ∶ X → Y. Here, we consider semi-supervised classification, i.e.,
Y = {1, ...,K}.

Fig. 4.1 (b) gives a toy example of binary classification with both labeled data and
unlabeled data. The test point (?) is closer to negative samples. However, it looks “closer”
to positive class since the data points form clusters and it is natural to assume that the
decision boundary lies in region of low density. There are certain assumptions made for
semi-supervised learning to work [44], some of which are equivalent to each other.

• smoothness assumption: If two input points xi, xj in high-density region are close or
similar, their output prediction yi, yj should be similar;

• cluster assumption: Data points in the same cluster should have similar output
prediction;

• low density separation Decision boundary should lie in region of low density;

• manifold assumption The original data xi ∈ X is in some low-dimensional manifold.

There are many methods for semi-supervised learning, such as generative model [175],
transductive support vector machine, graph-based method [24, 264, 262, 15] etc. We are
motivated by graph-based method that typically minimizes the following joint objective,
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M

∑
i=1

`(f(xi), yi) + λ ∑
ij∈N

wij ⋅ [f(xi) ≠ f(xj)], (4.2)

where `(f(xi), yi) is any standard loss function between prediction f(xi) and the ground
truth label yi, N denotes edges on a graph, and wij is the similarity between xi and xj.
The first term is the standard loss for supervised learning. The second term encourages a
pair of points that are similar to have the same output prediction, which corresponds to
the smoothness assumption. It softly enforces output consistency among all points based
on predefined pairwise affinities W = [wij].

Formulations like (4.2) with graph-based regularization are studied in several seminal
work of semi-supervised learning [264, 15, 241]. These work differ in terms of transductive
learning or inductive learning, the choice of the mapping function f(x), and the corre-
sponding optimization. For example, Weston et al. [241] is the first to minimize a graph
regularized loss for neural networks. In other words, f(x) is a neural network and the
problem is to find network parameters that minimize (4.2)1. Typical regularized semi-
supervised loss function over the network output combines two terms

• Fidelity of network output to the labeled data

• Regularization of the entire network output

The purpose of the regularization term is to propagate the empirical losses over partially
labeled input to the entire training data including unlabeled points.

Note that, various forms of regularization are widely used in machine learning and neu-
ral networks in particular, see Sec.4.2.3 for an overview. This paper is focused specifically
on regularized losses for semi-supervised learning with partially labeled training data. In
this case regularization is directly applied to the network output [241, 20]2 rather than to
the network parameters.

Remark. Pairwise regularization appears both in (4.1) and (4.2) correspondingly for
weakly-supervised segmentation and semi-supervised learning. It gives boundary smooth-
ness for segmentation and low density separation for semi-supervised learning. Nowadays
standard pairwise regularization is independently developed in the computer vision and the
machine learning community.

1In [241], (4.2) is relaxed to be differentiable so as to be minimized by back-propagation.
2In general, semi-supervision losses may also regularize intermediate network layers [241, 20].
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4.1.3 Our Contributions

As discussed in Sec. 4.1.1 and Sec. 4.1.2, regularization is a standard principle for segmen-
tation and semi-supervised learning. Following the general idea of integrating (shallow)
regularizers into a semi-supervised loss for (deep) learning [44, 241, 20], we advocate this
principled approach in the context of weakly-supervised CNN segmentation. That is, we
propose semi-supervised training loss on CNN output to combine empirical risk (e.g. cross
entropy) over labeled pixels and a regularizer on all pixels. These regularization are stan-
dard in “shallow” segmentation or semi-supervised learning. A simple example is the
pairwise regularization in (4.1) and (4.2). Indeed, our regularized loss is similar to the
scheme in [241] regularizing network output. However, we are the first to utilize ideas in
such a principled framework for weakly-supervised CNN segmentation.

Our main contributions are:

• We propose regularized loss for weakly-supervised CNN segmentation. It combines
partial cross entropy loss on labeled pixels and regularization for unlabeled pixels.
Regularized loss is a principled method in semi-supervised learning in deep learning
[241, 20]. However, it is largely overlooked in weakly-supervised CNN segmentation
dominated by training from fake but full proposals.

• Our regularized loss framework is general, allowing different regularizers in shallow
segmentation as losses, for example, pairwise MRF energy [30], kernel clustering cri-
terion [211, 222], volume constraint, etc. We propose and evaluate several regularized
losses to demonstrate their effectiveness.

• We show that even without regularization, our partial cross entropy loss for scribbles
(loss sampling) works surprisingly well compared to cross entropy over “generated”
full masks that make the network over-fit to mistakes.

• Any differentiable regularized loss can be minimized by back-propagation. We give
an efficient implementation of graph-based regularization with a dense graph, such
as the popular Dense CRF [130].

• As an alternative to gradient descent (GD), we propose a splitting technique, alter-
nating direction method (ADM), for minimizing regularized losses during network
training. ADM can directly employ efficient regularization solvers, such as graph cut
[31], known in shallow segmentation.
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• Comprehensive experiments (Sec. 4.5) with our regularized losses show state-of-
the-art performance for weakly supervised CNN segmentation reaching near full-
supervision accuracy. While most of the experiments are about weak supervision
with scribbles, regularized loss also helps CNN segmentation with image-level tags
as we have shown. We also study regularized loss for fully supervised segmentation
and semi-supervised segmentation (a mix of full and weak annotation).

This Chapter is structured as follows. In Sec. 4.2, we discuss the background and
related work. Sec. 4.3 presents our regularized loss framework. We propose different ex-
amples of regularization originally developed in shallow segmentation or semi-supervised
learning literature. In Sec. 4.4, we show an Alternative Direction Method (ADM) for the
optimization of regularized losses. It can utilize effective solver for segmentation problems
and works much better than gradient descent, the default optimization method for a neural
network. As shown in Sec. 4.5, thorough experiments of various setting show that our reg-
ularized loss approach achieved state-of-the-art in weakly supervised CNN segmentation.

4.2 Related Work

4.2.1 CNN for Semantic Segmentation

For semantic segmentation, all leading methods in PASCAL VOC 2012 [74] train some
fully convolutional networks (FCN) based on given ground-truth segmentations. FCN is a
particular type of CNN for dense prediction problems like segmentation. Long et al. [150]
got rid of the fully connected layers from the CNN for classification and upsampled feature
maps to the original spatial resolution to enable dense semantic segmentation. Upsampling
was achieved by deconvolution layer [150] and skip-connections were added to fuse low-level
features and high-level features.

Strided convolution gives down-sized feature maps. Dilated convolution [250](or atrous
convolution in the terminology of [45]) gives feature maps of the same size as input to the
layer, yet it’s receptive field grows exponentially when stacking dilated convolution layers.
However, dilated convolution may give checkerboard artifact due to the dilated kernel.

Low level features represent edge, texture and other fine details while high level features
represent semantics and context. It is important to combine low level and high level features
for segmentation. Typically segmentation networks are of encoder-decoder type structure
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with skip-connection between low resolution and high resolution features. The state-of-
the-art networks are build using modules like pyramid pooling [46, 259], inception [216],
residual network [102], gated multi-scale aggregation [66], and context encoding [257].

Regularization techniques for CNN segmentation include post-processing (e.g. dense
CRF [130]) and appended trainable layers (e.g. CRF-as-RNN [260], Bilateral Solver [11]).
For instance, DeepLab [45] popularized dense CRF as a post-processing step. In fully
supervised setting, integrating the unary scores of a CNN classifier and the pairwise po-
tentials of dense CRF achieve competitive performances [7]. This is facilitated by fast
mean-field inference techniques for dense CRF based on high-dimensional filtering [3].

We study regularized losses including for example (relaxations of) standard CRF poten-
tials. Though common as shallow regularizers [31, 30, 200, 130] or jointly trained in CNN
[260, 207, 148, 7], CRF were never used directly as losses in segmentation. Our regularized
loss is very different from post-processing or trainable regularization layers.

Note that optimization of CNN loss is different from that of shallow segmentation. For
CNN, we minimize pixel-wise cross entropy loss using back-propagation, and the variables
are network parameters. In MRF or clustering approach, we typically optimize over seg-
mentation variables using, e.g. graph cut [31] or spectral method [211]. An interesting
topic is how to leverage these optimization methods for CNN segmentation, as is explored
in Sec. 4.4.

(a) boxes (b) scribbles (c) clicks

(d) polygons (e) image level tags

Figure 4.2: Different forms of weak annotations for training semantic segmentation.
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4.2.2 Weakly-supervised CNN Segmentation

Training CNN segmentation with weak annotations has caught much interest recently.
There are various interfaces of weak supervision including bounding boxes [116, 58, 244,
180], scribbles [147, 244, 232], clicks [13], polygons [38] or image-level tags [244, 180, 121],
see example annotations in Fig. 4.2. Weak annotations are much faster to obtain compared
to full labeling.

Weakly supervised semantic segmentation is commonly addressed by mimicking full
supervision via synthesizing fully-labeled training masks (proposals) from the available
partial inputs [192, 180, 147] or other weak annotations. For instance, we can first run
GrabCut to obtain full labeling and then train a CNN with such proposals, see example
proposals in Fig. 4.3.

(a) scribbles (b) ground truth (c) GrabCut [200] (d) Normalized Cut (e) Kernel Cut [222]

Figure 4.3: Proposals from interactive segmentation algorithms with seeds.

Why not train with segmentation proposal? It is true that many off-line inter-
active segmentation algorithms exist [200, 146, 191]. However, segmentation proposals
have significant limitations. In practice, “shallow” segmentation proposals are likely to be
erroneous, see Fig. 4.3. Most interactive segmentation methods don’t consider semantic
cue. As such the proposals are misleading for training. Instead of generating unreliable
proposals and train models to fit errors, our method is more direct, incorporating standard
segmentation regularizer as a loss. Also heuristic pre-processing is not favored in semi-
supervised learning. Modern semi-supervised learning approaches minimize a regularized
loss with e.g. SVM or neural networks [15, 241], as discussed in Sec. 4.1.2.

The proposals can be generated as pre-processing or get updated during training. Prior
work is typically two staged and may iterate between the two stages. One stage is pro-
posal generation via regularization-based shallow interactive segmentation, e.g. graph cut
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[147] or dense CRF mean-field inference [192, 180]. Another stage is training CNN with
generated proposals. For example, Dai et al. [58] combine automatic segmentation pro-
posals with bounding box annotation. The method iterates between proposal generation
and network training. ScribbleSup [58] iteratively generate proposals/masks via graph
cuts, while Kolesnikov et al. [121] used additional CRF inference layers to produce them.
Papandreou et al. [180] proposed an Expectation-Maximization algorithm to handle weak
supervision setups. Given box annotation, Khoreva et al. [116] utilized objectness cues
and box-based GrabCut to obtain partial labeling as training data. To further simplify
annotation, a recent method [13] addresses point based supervision: annotators only point
to an object if it exists. In this case, additional losses are proposed, using generic object-
ness measure. Pathak et al. [184] considered cardinality constraints to generate explicit
full proposals/masks.

In contrast to these two staged approaches, our method is in one stage and avoids
explicit inference steps by integrating shallow regularizers directly into the loss functions.
Also, iterative refinement of proposals along with network training [147, 121] is presented
merely as a heuristics in prior work. We show connections between proposal generation
and our regularized loss framework in Sec. 4.4.

Xu et al. [244] formulated all types of weak supervision as linear constraints in max-
margin clustering. This framework is somewhat flexible and principled. However, we take
advantage of deep CNN rather than SVM used in [244].

Among different forms of annotations, the most challenging is with image level tags. In
this case, localization cues can be extracted from a classification network, i.e., class activi-
ation mapping (CAM) [261]. For example, Kolesnikov et al. [121] trained segmentation
network from partial labeling that comes from thresholded CAM.

4.2.3 Regularization for Neural Networks

Regularizations have also been widely used in neural networks to avoid over-fitting or
encourage sparsity, e.g. Norm regularization [89], Dropout [213] and ReLU [85]. Norm
regularization penalizes parameters’ magnitude to limit model complexity. Dropout [213]
regularizes the activations through random masking, which implicitly realize model en-
semble. ReLU [85] is a sparsity-inducing regularization, see [89] for more regularization
examples.

Our regularized loss differs from these regularization. Ours is a semi-supervised loss for
regularizing network output for unlabeled data. Such regularization is well coupled with
partial fidelity loss, allowing implicit label propagation during training.
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4.3 Our Regularized Losses

This section introduces our regularized losses for weakly-supervised segmentation. In gen-
eral, the use of regularized losses is a well-established approach in semi-supervised deep
learning [241, 89]. We advocate this principle for semantic CNN segmentation, propose
specific shallow regularizers for such losses, and discuss their properties.

Assuming image I and its partial ground truth labeling or mask Y , let fθ(I) be the
output of a segmentation network parameterized by θ. In general, CNN training with our
joint regularized loss corresponds to optimization problem of the following form

min
θ
`(fθ(I), Y ) + λ ⋅R(fθ(I)) (4.3)

where `(S,Y ) is a ground truth loss and R(S) is a regularization term or regularization loss.
Both losses have argument S = fθ(I) ∈ [0,1]∣Ω∣×K , which is K-way softmax segmentation
generated by a network. Using cross entropy over partial labeling as the ground truth loss,
we have the following joint regularized semi-supervised loss

∑
p∈ΩL

H(Yp, Sp) + λ ⋅R(S) (4.4)

where ΩL ⊂ Ω is the set of labeled pixels and H(Yp, Sp) = −∑k Y
k
p logSkp is the cross entropy

between network predicted segmentation Sp ∈ [0,1]K (a row of matrix S corresponding to
point p) and ground truth labeling Yp ∈ {0,1}K .

In principle, any function R(S) can be used as a loss given its gradient or sub-gradient.
This paper studies (relaxations of) regularizers from shallow segmentation as loss functions.
Section 4.3.1 details our MRF/CRF loss and its implementation. In Section 4.3.2, we
propose kernel cut loss combining CRF with kernel clustering criterion and justify this
combination. Sec. 4.3.3 shows a simple loss for incoporating linear constraint.

Remark. The partial cross entropy loss only considers the cross entropy loss for labeled
pixels p ∈ ΩL which effectively ignores other regions. We are not the first to ignore regions
in weakly-supervised segmentation in general, as there are examples for boxes [116] and for
clicks [13]. However, this partial loss can be seen as a sampling of the loss. In practice, we
found that training only with this simple loss works surprisingly well, achieving more than
85% of the accuracy compared to using the full labeling. In fact, using this loss is even
better than training from GrabCut proposals as we show in our experiments in Sec. 4.5 but
this trick has been overlooked in previous work [147]. This supports our argument in Sec.
4.2.2 that segmentation proposals may be very misleading.
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4.3.1 MRF Energy as Loss

Assuming that segmentation variables Sp are restricted to binary class indicators Sp ∈

{0,1}K , the standard Potts/CRF model [31] could be represented via Iverson brackets [⋅],
as on the left hand side below

∑
p,q∈Ω

wpq [Sp ≠ Sq] = ∑
p,q∈Ω

wpq ∥Sp − Sq∥
2, (4.5)

where W = [wpq] is a matrix of pairwise discontinuity costs or an affinity matrix. The right
hand side above is a particularly straightforward quadratic relaxation of the Potts model
that works for relaxed Sp ∈ [0,1]K corresponding to a typical soft-max output of CNNs. In
fact, this quadratic function is very common in the general context of regularized weakly
supervised losses in deep learning [241].

As discussed in the introduction, this relaxation is not unique, e.g. TV-based [40]
and convex formulations [43, 189], Lp relaxations [54], LP and other relaxations [63, 226].
Evaluation of different relaxations in the context of regularized weak supervision losses is
left for future work. We use slightly different quadratic relaxation of the Potts model

RCRF (S) =∑
k

Sk
′
W (1 − Sk) (4.6)

expressed in terms of support vectors for each label k, i.e. columns of the segmentation
matrix Sk ∈ [0,1]∣Ω∣. For discrete segment indicators (4.6) gives the cost of a cut between
segments, same as the Potts model on the left hand side of (4.5), but it differs from the
relaxation of the right hand side of (4.5).

The affinity matrix W can be sparse or dense. Sparse W commonly appears in the
context of boundary regularization and edge alignment in shallow segmentation [30]. With
dense Gaussian kernel Wpq (4.6) is a relaxation of DenseCRF [130].

To implement RCRF (S) (4.6) as a loss, we need to compute its gradient w.r.t. Sk,

∂RCRF (S)

∂Sk
= −2WSk. (4.7)

For sparse W , (4.7) is fast to compute. For DenseCRF where W is fully connected
Gaussian, computing the gradient (4.7) becomes a standard Bilateral filtering problem, for
which many fast methods were proposed [3, 182]. We implement our loss layers using fast
Gaussian filtering [3], which is also utilized in the inference of DenseCRF [130, 260, 207].
Note that our CRF loss layer is much faster than CRF inference layer [121, 260] since
iterative mean-field is not needed.
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(a) 1D image (b) grid CRF [30] (c) dense CRF [130]

Figure 4.4: Synthetic segmentation example for grid and dense CRF (Potts) models: (a)
intensities I(x) on 1D image. The cost of segments St = {x ∣ x < t} with different disconti-
nuity points t according to (b) nearest-neighbor (grid) Potts and (c) larger-neighborhood
(dense) Potts. The latter gives smoother cost function, but its flatter minimum may com-
plicate discontinuity localization.

Grid CRF vs Dense CRF The affinities wpq can be on sparse grid or densely connected,
leading to Grid CRF or Dense CRF. The nearest-neighbor version over k-connected grid
Nk, as well as its popular variational analogues, e.g. geodesic active contours [37], convex
relaxations [189, 41], or continuous max-flow [254], are particularly well-researched. It is
common to use contrast-weighted discontinuity penalties [31, 30] between the neighboring
points, as emphasized by the condition {pq} ∈ Nk below

wpq = exp
−∣∣Ip − Iq ∣∣2

2σ2
⋅ [{pq} ∈ Nk]. (4.8)

Nearest neighbor Potts models minimize the contrast-weighted length of the segmentation
boundary preferring shorter perimeter aligned with image edges, e.g. see Fig. 4.5(b). The
popularity of this model can be explained by generality, robustness, well-established foun-
dations in geometry, and a large number of efficient discrete or continuous solvers that
guarantee global optimum in binary problems [30] or some quality bound in multi-label
settings, e.g. α-expansion [31].

Dense CRF [130] is a Potts model where pairwise interactions are active over signifi-
cantly bigger neighborhoods defined by a Gaussian kernel with a relatively large bandwidth
∆ over pixel locations

wpq = exp
−∣∣Ip − Iq ∣∣2

σ2
⋅ exp

−∥p − q∥2

∆2
. (4.9)

Its use in shallow vision is limited as it often produces noisy boundaries [130], see also
Fig. 4.5(c). Also, global optimization methods mentioned above do not scale to dense
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(a) image + seeds (b) grid CRF [30] (c) dense CRF [130]

Figure 4.5: Real ”shallow” segmentation example for sparse (b) and dense (c) CRF (Potts)
models for image with seeds (a). Sparse Potts gives smoother segment boundary with
better edge alignment, while dense CRF inference often gives noisy boundary.

neighborhoods. Yet, dense CRF model is popular in the context of CNNs where it can be
used as a differentiable regularization layer [260, 207]. Larger bandwidth yields smoother
objective (3.2), see Fig. 4.4(c), amenable to gradient descent or other local linearization
methods like mean-field inference that are easy to parallelize. Note that existing efficient
inference methods for dense CRF require bilateral filtering [130], which is restricted to
Gaussian weights as in (4.9). This is in contrast to global Potts solvers, e.g. α-expansion,
that can use arbitrary weights, but become inefficient for dense neighborhoods.

Noisier dense CRF results, e.g. in Fig. 4.5(c), imply weaker regularization. Indeed,
as discussed in [231], for larger neighborhoods the Potts model gets closer to cardinality
potentials. Bandwidth ∆ in (4.9) is a resolution scale at which the model sees the segmen-
tation boundary. Weaker regularization in dense CRF may preserve some thin structures
smoothed out by fine-resolution boundary regularizers, e.g. nearest-neighbor Potts. How-
ever, this is essentially the same “noise preservation” effect shown in Fig. 4.5(c). For
consistency, the rest of the paper refers to the nearest-neighbor Potts model as grid CRF,
and large-neighborhood Potts as dense CRF.

4.3.2 Clustering Criterion as Loss [219]

Besides the CRF loss (4.6), we also propose its combination with clustering criterion,
for example normalized cut for image segmentation [211]. Normalized Cut is a popular
graph clustering algorithm originally proposed for image segmentation [211]. It is the sum
of ratios between the cuts and the volumes. We relax to continuous vector Sk and our
normalized cut loss [219] is as follows,

RNC(S) =∑
k

Sk
′
Ŵ (1 − Sk)

d′Sk
c
= ∑

k

−
Sk

′
ŴSk

d′Sk
. (4.10)
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where d = Ŵ1 are node degrees. Its gradient w.r.t. Sk is,

∂RNC(S)

∂Sk
=
Sk

′
ŴSkd

(d′Sk)2
−

2ŴSk

d′Sk
. (4.11)

Combining CRF and NC Loss

The combined kernel cut loss is simply a linear combination of (4.6) and (4.10)

RKC(S) =∑
k

Sk
′
W (1 − Sk) + γ∑

k

Sk
′
Ŵ (1 − Sk)

d′Sk
(4.12)

which is motivated by kernel cut shallow segmentation [222] with complementary benefits of
balanced normalized cut clustering and object boundary regularization or edge alignment
as in Potts model. Accordingly, the gradient of (4.12) is the linear combination of (4.7)
and (4.11).

Remark. As objectives or regularization for ”shallow” segmentation techniques, both nor-
malized cut and Potts/CRF are very popular. It is not hard to see that CRF loss (4.6)
is the cut for discrete labeling. Normalized cut differs from pairwise CRF by having ex-
tra normalization. Such normalization was originally motivated for balanced unsupervised
segmentation [211]. Though CRF and normalized cut only differ by having normalization
or not, we argue that their clustering / regularization effect is different. Normalized cut is
known to be equivalent to kernel K-means [64] that encourages balanced non-linear color
clustering, while CRF was primarily motivated for edge alignment in segmentation. Com-
bining pairwise CRF and high-order normalized cut as losses, possibly with different affinity
matrix W and Ŵ , gives extra degree of freedom during training. In our experiments, the
best weakly supervised segmentation is achieved with kernel cut loss.

Note that standard normalized cut and CRF objectives in shallow segmentation require
fairly different optimization techniques (e.g. spectral relaxation or graph cuts), but the
standard gradient descent approach for optimizing losses during CNN training allows sig-
nificant flexibility in including different regularization terms, as long as there is a reasonable
relaxation.

4.3.3 Linear Constraint as Loss

Often, we have inequality constraint for segmentation. An example is the volume con-
straint. We may know the lower bound ak and the upper bound bk of the size of particular
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segment Sk, which is quite common for medical images [172, 91]. Also, in the case of
weakly-supervised segmentation with image tags [184, 121], the existing class should have
positive size, i.e., ∣Sk∣ ≥ 1. This means we need to solve a constrained optimization problem
with volume constraint.

min
θ

`(fθ(I), Y )

s.t. ak ≤ ∣Sk∣ ≤ bk, ∀k.
(4.13)

Though the constraint is linear (and convex), the loss is highly nonconvex w.r.t. network
parameters. Standard Lagrange dual based approach is intractable for the problem above
with linear constraint. We need to optimize the whole CNN for all training images in each
step of dual descent. We propose to add a penalty term directly to the loss if the constraint
is not satisfied.

R(Sk) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(∣Sk∣ − ak)
2, if ∣Sk∣ < ak

(∣Sk∣ − bk)
2, if ∣Sk∣ > bk

0, otherwise.

(4.14)

Such a simple loss would be zero if the size of the segment ∣Sk∣ is in the range of
[ak, bk], and the gradient computation is trivial. Despite its simplicity, we find our volume
loss (4.13) works well in practice for training CNN segmentation with weak supervision.
Indeed, it outperforms the previous method [184] which is much more complicated. Pathak
et al. [184] introduced latent variables and minimized a cross entropy loss between latent
segmentation (proposals) and network output segmentation, while the proposals are sought
with linear constraint. Our regularized loss method is more straightforward and efficient
for incorporating such linear constraint.

4.4 Beyond Gradient Descent for Regularized Losses

The simplicity of gradient descent (GD) made it the default method for training ever-
deeper and complex neural networks. Both loss functions and architectures are often
explicitly tuned to be amenable to this basic local optimization. In the context of weakly-
supervised CNN segmentation, we demonstrate a well-motivated loss function where an
alternative optimizer (ADM) achieves the state-of-the-art while GD performs poorly. In-
terestingly, GD obtains its best result for a “smoother” tuning of the loss function. The
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results are consistent across different network architectures. Our loss is motivated by well-
understood MRF/CRF regularization models in “shallow” segmentation and their known
global solvers. Our work suggests that network design/training should pay more attention
to optimization methods.

4.4.1 Alternative Direction Method (ADM)

As an alternative to gradient descent (GD), we propose a splitting technique, alternat-
ing direction method (ADM)3, for minimizing regularized losses during network training.
ADM can directly employ efficient regularization solvers known in shallow segmentation.
Compared to GD, our ADM approach with α-expansion solver significantly improves opti-
mization quality for the grid CRF (nearest-neighbor Potts) loss in weakly supervised CNN
segmentation.

We present a general alternating direction method (ADM) to optimize regularized losses
(4.4), which is equivalent to the following problem,

min
θ

∑
p∈ΩL

H(Yp, Sp) + λ ⋅R(X)

s.t. X = S
(4.15)

where X = {Xp ∈ {0,1}k} are introduced hidden variables. To solve the constrained
optimization problem (4.15), we further introduce divergence measure D, e.g. the Kullback-
Leibler divergence between X and Sθ. R(X) can now be a standard discrete MRF regu-
larization, e.g. (3.2). Now, we solve the following dual problem augmented with D(X ∣S),
which is unconstrained.

max
γ

min
θ,X

∑
p∈ΩL

H(Yp, Sp) + λR(X) + γ ∑
p∈ΩU

D(Xp∣Sp) (4.16)

We alternate optimization over X and θ in (4.16). The dual update, i.e. maximization
over γ increases its value at every update resulting in a variant of simulated annealing.
We have experimented with variable multiplier γ but found no advantage compared to
fixed γ. So, we fix γ and do not optimize for it. In summary, instead of optimizing the
regularization term with gradient descent, our approach splits regularized-loss problem

3Standard ADMM [26] casts a problem minx f(x) + g(x) into minx,y maxλ f(x) + g(y) + λT(x − y) +
ρ∥x−y∥2 and alternates updates over x, y and λ optimizing f and g in parallel. Our ADM uses a different
form of splitting and can be seen as a penalty method.
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(4.4) into two sub-problems. We replace the softmax outputs Sp,θ in the regularization
term by latent discrete variables Xp and ensure consistency between both variables (i.e. ,
Sθ and X) by minimizing divergence D.

This is similar conceptually to the general principles of ADMM [26]. Our ADM split-
ting accommodates the use of powerful and well-established discrete solvers for the regu-
larization loss. As we show in Sec. 4.5, the popular α-expansion solver [31] significantly
improves optimization of grid CRF losses yielding state-of-the-art training quality. Such
efficient solvers guarantee global optimum in binary problems [30] or a quality bound in
multi-label case [31].

Our discrete-continuous ADM method alternates two steps, each decreasing (4.16), until
convergence. Given fixed discrete latent variables Xp computed at the previous iteration,
the first step learns the network parameters θ by minimizing the following loss via standard
back-propagation and a variant of stochastic gradient descent (SGD):

min
θ
∑
p∈ΩL

H(Yp, Sp) + γ ∑
p∈ΩU

D(Xp∣Sp) (4.17)

The second step fixes the network output Sθ and finds the next latent binary variables
X by minimizing the following objective over X via any suitable discrete solver:

min
X∈{0,1}∣Ω∣×K

λR(X) + γ ∑
p∈ΩU

D(Xp∣Sp)

s.t. Xp = Yp ∀p ∈ ΩL.
(4.18)

Because Xp is a discrete variable with only K possible values, the second term in (4.18) is a
basic unary term. Similarly, the equality constraints could be implemented as unary terms
using prohibitive values of unary potentials. Unary terms are simplest possible energy
potentials that can be handled by any general discrete solver. On the other hand, the
regularization term R(X) usually involves interactions of two or more variables introducing
new properties of solution together with optimization complexity. In case of grid CRF as
R(⋅), one can use graph cut [30], α-expansion [31], QPBO [198], TRWS [124] etc.

In summary, our approach alternates the two steps described above. For each minibatch
we compute network prediction, then compute hidden variables X optimizing (4.18), then
compute gradients of loss (4.17) and update the parameters of the network using a variant
of SGD.
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4.5 Experiments

Our main contribution is regularized loss for weakly-supervised CNN segmentation. In
Sec. 4.5.1, we show visualization of gradients of these losses, which drives the network
to learn. Sec. 4.5.2 is the main experimental result of this paper. We minimize different
regularized losses with gradient descent and compare quantitatively and qualitatively the
segmentation obtained. For weakly-supervised segmentation with scribbles [147], we train
using different regularized losses including our proposed CRF loss, high-order normalized
cut loss, and kernel cut loss, as discussed in Sec. 4.3. We show that combining CRF (4.6)
with normalized cut (4.10) a la KernelCut [222] yields the best performance. Our method
achieved the state-of-the-art for weakly supervised segmentation with scribbles. We also
train with shortened scribbles to see how much each method degrades.

CRF regularization has been combined with CNN segmentation in the form of post-
processing, trainable layers, or proposal generation in training. In Sec. 4.5.3, we com-
pare these schemes with our regularized loss approach in the context of weakly-supervised
segmentation. Besides for scribbles, we also utilize our regularized loss framework for
image-level labels based supervision and compare to SEC [121], a recent method based on
proposal generation.

Regularized loss can be optimized by stochastic gradient descent (GD) or alternative
direction method (ADM), as discussed in Sec. 4.4. In Sec. 4.5.4, we compare three training
schemes, namely dense CRF with GD, grid CRF with GD and grid CRF with ADM for
weakly supervised CNN segmentation. We also investigate regularization loss for fully or
semi-supervised segmentation (with labeled and unlabeled images), see Sec. 4.5.5.

Dataset: Most experiments are on the PASCAL VOC12 segmentation dataset. For
all method, we train with the augmented dataset of 10,582 images. The scribble annota-
tions are from [147]. Following standard protocol, mean intersection-over-union (mIoU) is
evaluated on the val set that contains 1,449 images. For image-level label supervision, our
experiment setup is the same as in [121].

Implementation details: Our implementation is based on DeepLab v2 [45]. We
follow the learning rate strategy in DeepLab v2 4 for the baseline with full supervision.
For our method of regularized loss, we first train with partial cross entropy loss only. Then
we fine-tune with extra regularized losses of different types. Our CRF and normalized cut
regularization losses are defined at full image resolution. If the network outputs shrinked
labeling, which is typical, the labeling is interpolated to original size before feeding into
the loss layer.

4https://bitbucket.org/aquariusjay/deeplab-public-ver2
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image network output NC grad. CRF grad. KC grad.

Figure 4.6: Visualization of the gradient for different losses. The negative (positive) gra-
dients are coded in red (yellow). For example, negative gradients on the dog drives the
network to predict “dog” for these pixels. Also, the dog pops out in the gradient map.

4.5.1 Visualization of Gradients

To get some intuition about these losses and their regularization effect, we visualize their
gradient w.r.t. segmentation ∂R(S)

∂S in Fig. 4.6. Note that the sign of gradients indicates
whether to encourage or discourage certain labeling. The color coded gradients clearly
show evidence toward better color clustering and edge alignment for normalized cut and
CRF. The gradients of different losses are slightly different and complement each other.
Since kernel cut is the combination of normalized cut with CRF, then its gradient is the
sum of that of each.

4.5.2 Comparison of Regularized Losses

Our regularized loss framework is general and allows integration with multiple regular-
izations. We are interested in the effect of each term in our joint loss, including partial
cross entropy, normalized cut, and CRF regularization. We conducted ablation study and
trained the networks with different combinations of the losses.

Tab. 4.5 summaries the results with different regularized losses. Here we report both
result on various networks. The baselines are with cross entropy losses of full labeled masks
or partial seeds ignoring unlabeled region. We choose the weight of the regularization
term to achieve the best validation accuracy. Consistently over different networks, using
the proposed CRF loss outperforms that with the normalized cut loss. Our best result is
obtained when combining both normalized cut loss and DenseCRF loss. Clearly, utilization
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Weak
Full

CE only w/ NC w/ Dense CRF w/ KernelCut
DeepLab-MSc-largeFOV 56.0 (8.1) 60.5 (3.6) 63.1 (1.0) 63.5 (0.6) 64.1
DeepLab-VGG16 60.4 (8.4) 62.4 (6.4) 64.4 (4.4) 64.8 (4.0) 68.8
DeepLab-ResNet101 69.5 (6.1) 72.8 (2.8) 72.9 (2.7) 73.0 (2.6) 75.6

Table 4.1: mIOU on PASCAL VOC2012 val set. Our flexible framework allows various
types of regularization losses for weakly supervised segmentation, e.g. normalized cut, CRF
or their combinations (KernelCut [222]) as joint loss. We achieved the state-of-the-art with
scribbles. In () shows the offset to the result with full masks.

of CRF loss and KernelCut loss reduce the gap toward the full supervision baseline. With
DeepLab-MSc-largeFOV, using KernelCut regularized loss achieved mIOU of 63.5%, while
previous best is 60.5% with normalized cut loss [219]. Our result with scribbles approaches
63.5/64.1=99.0% of the quality of that with full supervision, yet only 3% of all pixels
are scribbled. This work pushes the limit of weakly supervised segmentation.

Fig. 4.7 shows some qualitative examples with different losses. Our Kernel Cut loss
combines the benefit of both regional color clustering (normalized cut) and pairwise reg-
ularization (DenseCRF). By combining both we can achieve better segmentation regular-
ization.

image CE loss only w/ NC loss w/ Dense CRF loss KernelCut loss ground truth

Figure 4.7: Examples on PASCAL VOC val set. Kernel cut as regularization loss gives
qualitatively better result than that with normalized cut loss. We found kernel cut results
to have better edge alignment.
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length 100% length 50%

length 30% length 0%(click)

Figure 4.8: Similar to [147], we shorten the scribbles. With length zero (clicks) is the most
challenging case. Right plot shows mIOUs when train with shorter scribbles.

Train with shortened scribbles

To see the limit of our algorithm with scribble supervision, we train with shortened scribbles
visualized in Fig. 4.8. Note that with length zero, there is only one click for each object.
For different length ratios from zero to 100%, our regularized loss method achieved much
better segmentation than ScribbleSup [147]. The improvement over ScribbleSup [147] is
more significant for shorter scribbles, in which case ScribbleSup gives low quality proposals.

4.5.3 CRF as Loss, Post-processing or Trainable Layers

We are the first to propose CRF loss though it’s popular to have CRF as post-processing
[45] or jointly trained with the network [260, 207]. For example, CRF-as-RNN [260] is
proposed for fully supervised segmentation. Here for weakly-supervised segmentation with
scribbles, we train CRF-as-RNN but only minimizing partial cross entropy loss on scribbles.
Table 4.2 compares the effects of CRF as loss, post-processing or trainable layers. End-
to-end training of CRF helps a little bit (64.8% vs 64.3%), but the best is achieved with
our CRF loss, which is also much more efficient without any recurrent inference. Note
that the plain network trained with extra CRF loss is even better than a network trained
without such loss but followed by CRF post-processing, see the fourth and second row in
Table 4.2 (64.4% vs 64.3%). This shows the effectiveness of our CRF loss for training CNN
segmentation.
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training testing mIOU (%)

partial cross entropy loss plain network 60.4
partial cross entropy loss disjoint network and CRF 64.3
partial cross entropy loss

jointly trained network and CRF 64.8
end-to-end CRF

partial cross entropy loss
plain network 64.4

and our CRF loss
partial cross entropy loss

disjoint network and CRF 66.4
and our CRF loss

Table 4.2: Ablation study of CRF as loss, post-processing [45] or trainable layers [260] for
weakly supervised segmentation with scribbles for DeepLab-VGG16.

We compare our DenseCRF loss to the constrain-to-boundary loss in SEC [121]. In
the forward pass, SEC generates segmentation proposals by running iterative mean-field
inference of DenseCRF for which the unaries are network output. Then in the backward
pass, the proposals are regarded as fake ground-truth and the cross entropy loss w.r.t.
full proposals is minimized. We show that such iterative scheme of DenseCRF inference
and network learning is redundant. Our DenseCRF loss serves the purpose of regularizing
network output during training.

include this loss?

Losses

Seeding loss [121]
Expansion loss [121]
Constrain-to-boundary loss [121] ⋆

Our CRF loss
mIOU (%) 38.4 43.7 43.8 43.9

Overall training time in s/batch 0.86 1.19 (0.33) 1.19 (0.33) 0.98 (0.12)

Table 4.3: Tag-based weak supervision. We train with different combinations of the losses
in SEC [121] and our CRF loss. Replacing the constrain-to-boundary loss in SEC [121]
by CRF loss gives minor improvement in accuracy, but training with regularized loss with
gradient descent is faster since no iterative CRF inference is needed. We also compare to
a variant (⋆) of SEC without back-propagation of the CRF inference layer. Parenthesis (⋅)

show the time for the constrain-to-boundary loss layer or our direct loss layer.

As mentioned earlier, SEC [121] was originally focused on tag-based supervision. Table
4.3 reports some tests for that form of weak supervision. We compare SEC with its
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image SEC [121] w/ DenseCRF loss ground truth

Figure 4.9: Examples for supervision with image-level labels (tags). We train using the
seeding loss, expansion loss in SEC [121] and our CRF loss. Similar segmentation is
obtained yet we avoid any iterative mean-field inference for dense CRF.

simplification replacing their constrain-to-boundary loss by our regularized loss. We train
using different combinations of losses for supervision based on image-level labels/tags. Our
CRF loss helps to improve training to 43.9% compared to 38.4% without it. There is only
small improvement in mIOU when replacing constrain-to-boundary loss by CRF loss.

However, our CRF loss layer is several times faster than constrain-to-boundary layer
integrating explicit iterative inferences. The segmentation accuracy and overall training
speed are also reported in Tab. 4.3. (The results are for the DeepLab-largeFOV network.)
We also tested a variant of SEC without back-propagation of mean-field layer, which we
show is not helping in practice. Fig. 4.9 shows testing examples for our method and SEC
with image tags as supervision.
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network
training set† validation set

GD ADM GD ADM

Deeplab-LargeFOV 2.52 2.41 2.51 2.33

Deeplab-MSc-largeFOV 2.51 2.40 2.49 2.33

Deeplab-VGG16 2.37 2.10 2.42 2.14

Resnet-101 2.66 2.49 2.61 2.42

Table 4.4: ADM gives better grid CRF losses than gradient descend (GD). †We randomly
selected 1,000 training examples.

4.5.4 GD vs ADM for Grid CRF Loss

We test both the grid CRF and dense CRF as regularized losses. Such regularized loss can
be optimized by stochastic gradient descent (GD) or alternative direction method (ADM),
as discussed in Sec. 4.4. We compare three training schemes, namely dense CRF with GD
[224], grid CRF with GD and grid CRF with ADM.

Loss Minimization

Figure 4.10: Training progress of ADM and gradient descend (GD) on Deeplab-MSc-
largeFOV. Our ADM for the grid CRF loss with α-expansion significantly improves con-
vergence and achieves lower training loss. For example, first 1,000 iterations of ADM give
grid CRF loss lower than GD’s best result.

Here, we show that for grid CRF losses the ADM approach employing α-expansion [31],
a powerful discrete optimization method, outperforms common gradient descend methods
for regularized losses [219, 224] in terms of finding a lower minimum of regularization
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loss. Tab. 4.4 shows the grid CRF losses on both training and validation sets for different
network architectures.

Fig. 4.10(a) shows the evolution of the grid CRF loss over the number of iterations
of training. ADM requires fewer iterations to achieve the same CRF loss. The networks
trained using ADM scheme give lower CRF losses for both training and validation sets.
Thus, in the context of grid CRFs, the ADM approach coupled with α-expansion shows
drastic improvement in the optimization quality. In the next section, we further compare
ADM with GD to see which gives better segmentation.

Segmentation Quality

The quantitative measures for segmentation by different methods are summarized in
Tab. 4.5 and Tab. 4.6. The mIOU and segmentation accuracy on the val set of PAS-
CAL 2012 [74] are reported for various networks. The supervision is scribbles [147]. The
quality of weakly supervised segmentation is bounded by that with full supervision and we
are interested in the gap for different weakly supervised approaches.

The baseline approach is to train the network using proposals generated by GrabCut
style interactive segmentation with such scribbles. Besides the baseline (train w/ propos-
als), here we compare variants of regularized losses optimized by gradient descent or ADM.
The regularized loss is comprised of the partial cross entropy (pCE) w.r.t. scribbles and
grid/dense CRF. Other losses e.g. normalized cut [211, 219] may give better segmentation,
but the focus is to compare gradient descent vs ADM optimization for the grid CRF.

It is common to apply dense CRF post-processing [45] to the network’s output during
testing. However, for the sake of clear comparison, we show results without it.

As shown in Tab. 4.5, all regularized approaches work better than the non-regularized
approach that only minimizes the partial cross entropy. Also, the regularized loss ap-
proaches are much better than proposal generation based method since erroneous proposals
may mislead training.

Among regularized loss approaches, grid CRF with GD performs the worst due to the
fact that a first-order method like gradient descent leads to the poor local minimum for
the grid CRF in the context of energy minimization. Our ADM for the grid CRF gives
much better segmentation competitive with the dense CRF with GD. The alternative grid
CRF based method gives good quality segmentation approaching that for full supervision.
Tab. 4.6 shows accuracy of different methods for pixels close to the semantic boundaries.
Such measure tells the quality of segmentation in boundary regions. Fig. 4.11 shows a few
qualitative segmentation results.
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Weak supervision

Network Full sup. train w/

proposals

pCE
loss

+dense CRF loss +grid CRF loss

GD [224] GD ADM

Deeplab-largeFOV 63.0 54.8 55.8 62.2 60.4 61.7

Deeplab-MSc-largeFOV 64.1 55.5 56 63.1 61.2 62.9

Deeplab-VGG16 68.8 59.0 60.4 64.4 63.3 65.2

ResNet-101 75.6 64.0 69.5 72.9 71.7 72.8

Table 4.5: Weakly supervised segmentation results for different choices of network archi-
tecture, regularized losses and optimization via gradient descent or ADM. We show mIOU
on val set of PASCAL 2012. ADM consistently improves over GD for different networks
for grid CRF. Our grid CRF with ADM is competitive to previous state-of-the-art dense
CRF (with GD) [224].

Weak supervision

Network Full sup. train w/

proposals

pCE
loss

+Dense CRF loss +grid CRF loss

GD [224] GD ADM

al
l

p
ix

el
s Deeplab-MSc-largeFOV 90.9 86.4 86.5 90.6 89.9 90.5

Deeplab-VGG16 91.6 88.6 88.9 91.1 90.5 91.3

ResNet-101 94.5 90.2 92 93.1 92.9 93.4

tr
im

ap
16

p
ix

el
s Deeplab-MSc-largeFOV 80.1 73.9 66.7 77.8 74.8 76.7

Deeplab-VGG16 81.9 75.5 70.9 77.8 75.6 78.1

ResNet-101 85.7 78.4 77.7 82.0 80.6 82.2

tr
im

ap
8

p
ix

el
s Deeplab-MSc-largeFOV 75.0 69.5 60.3 72.5 68.4 71.4

Deeplab-VGG16 76.9 70.4 64.1 72.0 69.0 72.4

ResNet-101 81.5 73.8 71.2 76.7 74.6 77.0

Table 4.6: Pixel-wise accuracy on val set of PASCAL 2012. Top 3 rows: accuracy over all
pixels. Middle 3 rows: accuracy for pixels within 16 pixels away from semantic boundaries.
Bottom 3 rows: accuracy for pixels within 8 pixels aways from semantic boundaries. Pixels
closer to boundaries are more likely to be mislabeled. Our ADM scheme improves over
GD for grid CRF loss consistently for different networks. Note that weak supervision with
our approach is almost as good as full supervision.
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(a) input (b) Dense GD (c) Grid GD (d) Grid ADM (e) ground truth

Figure 4.11: Example segmentations (Deeplab-MSc-largeFOV) by variants of regularized
loss approaches. Gradient descent (GD) for grid CRF gives segmentation of poor boundary
alignment though grid CRF is part of the regularized loss. ADM for grid CRF significantly
improves edge alignment and compares favorably to dense CRF based method.
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NC loss weight mIOU cross entropy loss NC loss
0 89.85% 0.106 0.536

0.1 89.38% 0.110 0.517
0.2 89.39% 0.112 0.509
0.5 88.75% 0.125 0.485

Table 4.7: Negative effect of regularization loss for full supervision.

4.5.5 Fully Supervision and Semi-supervision

We’ve demonstrated the usefulness of regularized loss for weakly supervised segmentation.
Here we test if it also helps full supervision or semi-supervision.

Full supervision: We add NC loss on fully labeled images besides the cross entropy
loss. This experiment is on a simple saliency dataset [47] where color clustering is obvious
and likely to help. As shown in Tab. 4.7, when we increase the weight of RNC(S), we
indeed obtained segmentation that is more regularized. However, with extra regularization
loss during training, the cross entropy loss got worse and mIOU decreased. The conclusion
is that imposing regularized loss naively on labeled images doesn’t help. Empirical risk
minimization is in some sense optimal for fully labeled data. Extra regularization loss
steers the network in the wrong direction if the regularization doesn’t totally agree with
the ground truth.

Semi supervision: For training with both labeled images and unlabeled

3K 5K 7K 11K
# of labeled images

57

58

59

60

61

62

63

64

m
IO

U
 (

%
)

w/ CRF loss
pCE loss

images, our joint losses include cross entropy on labeled im-
ages and regularization on unlabeled ones. We drop the la-
beling for some of the the 11K images in PASCAL VOC
2012. We train DeepLab-LargeFOV with different amount of
labeled & unlabeled images, see right plot. For the baseline
that can only utilize labeled images, the performance degrades
with less masks, as expected. For our framework, the labeled
and unlabeled images are mixed and randomly sampled in
each batch. We observed 0.7% 1.5% improvement with our
regularized loss. Note that this result is highly preliminary.
We also train with the 11K labeled images in VOC 2012 and
the 10K unlabeled in VOC 2017 and achieved boosted performance from 63.5% to 64.3%.
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Chapter 5

Conclusion and Future Work

This thesis presents the work I have done in image segmentation during my PhD, with par-
ticular focus on optimization. For segmentation with weak supervision or annotation, we
propose new formulations combining standard techniques including Markov Random Field
[23, 30, 200], Kernel Clustering [211, 235], and Convolutional Neural Networks [150, 45].
We also developed novel optimization method for the corresponding joint objectives or reg-
ularized losses. We conduct thorough experiments in lots of applications such as interactive
segmentation, motion segmentation, image clustering, and semantic segmentation.

To summarize, in Chapter 1, we reviewed related techniques including MRF, Kernel
Clustering, and CNN. We briefly discussed their pros and cons, which motivates combining
them. Through such combination, we take advantage of these deep and non-deep methods.
One of our observations is that many algorithms such as K-means [153] and GrabCut [200]
can be interpreted as bound optimization, which motivates novel optimization algorithms.

In Chapter 2, we propose a new general pseudo-bound optimization paradigm for ap-
proximate iterative minimization of high-order and non-submodular MRF energies. It
generalizes the standard majorize-minimize principle relaxing the bound constraint for an
auxiliary function. We propose to optimize a family of pseudo-bounds at each iteration
[217]. To guarantee the energy decreases, we include at least one bound in the family.
We propose parametric maxflow [125] to explore all global minima for the whole family in
low-order polynomial time.

In Chapter 3, we combine the two seemingly different methodologies for data cluster-
ing/partitioning: kernel clustering [211, 235, 64] and MRF regularization based segmen-
tation [30, 23]. They differ in terms of motivation, formulation, and optimization, e.g.
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spectral relaxation vs maxflow. We explain how to take advantage of the mutual ben-
efits of MRF regularization and kernel clustering. Our joint energy combines standard
regularization, e.g., MRF potentials, and kernel clustering criteria like normalized cut.
Complementarity of such terms is demonstrated in many applications using our bound
optimization Kernel Cut algorithm [223] for the joint energy.

In Chapter 4, we combine deep CNN with shallow non-deep techniques such as MRF
regularization and Kernel clustering. The combination is achieved simply by minimiz-
ing a regularized loss for weakly-supervised CNN segmentation [224]. Regularized semi-
supervised loss is a principled approach to semi-supervised deep learning, in general. We
propose and study various regularization as losses, including MRF energy, Clustering cri-
terion, or linear constraints for segmentation. In contrast to our regularized loss approach,
the mainstream in weakly supervised segmentation rely on generating ”fake” full masks
from partial input and train a network to match the proposals. For regularized loss, we
propose an optimization method beyond gradient descent [157]. Our alternating direc-
tion method (ADM) can utilize established solver for regularized segmentation, such as
graph cut. Indeed, heuristic proposal based methods are related to approximate alternat-
ing direction method (ADM) for the optimization of regularized loss. Our ADM based
analysis gives insights, and we show that for Grid CRF, ADM gives better optimization
and segmentation that that achieved by gradient descent. We achieve the state-of-the-art
in weakly supervised CNN segmentation, yielding almost the same accuracy with only a
fraction of labeling during training.

However, our work here has some limitations, and it will be interesting to extend in
the following ways.

• Better approximation: While our iterative bound optimization for MRF energies
and Normalized Cut in Chapter 2 and Chapter 3 guarantee the decrease of the
objective, the linear bound itself may not be tight enough as a good approximation.
For example, the kernel bound (3.52) for normalized cut is linear. Having second
order bound or even higher order bound will give better optimization. There is
trade-off between the complexity and the tightness of the bound.

• Better relaxation: As a loss to be minimized by backpropagation, segmentation reg-
ularization needs to be relaxed to continuous domain Sp ∈ [0,1]K . It is also impor-
tant how we relax discrete regularization to a continuous formulation, which affects
gradient and optimization. For example in Sec. 4.3.1, the discrete pairwise CRF

∑p,q∈Ωwpq [Sp ≠ Sq] is relaxed as ∑k S
k′W (1 − Sk). There are many alternatives, e.g.

TV-based [40] and convex formulations [43, 189], Lp relaxations [54], LP and other
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relaxations [63, 226]. These relaxations were proposed for MRF inference algorithms
that deal with relaxed variables. It is interesting to see the effect of different relax-
ations for training in this context. Note that gradient descent is efficient for grid
CRF since the potentials are sparse. For various ways of relaxations [63, 226], how
to efficiently compute gradient for dense CRF with a full Gaussian affinity matrix W
is not obvious. Besides for pairwise regularization, we will also investigate relaxation
for high-order regularization, e.g. normalized cut and P n Potts [120] model.

• Multi-tasks: In this thesis, we combine different segmentation techniques. Other
computer vision tasks, such as 3D reconstruction, tracking, and depth estimation,
are closely related to segmentation. The best way is to solve them jointly. For
example, optical flow can help distinguish a moving object from the background, and
segmentation can tell about discontinuity boundary of optical flow. Also, ground-
truth for optical flow is rare, while ground-truth for segmentation is fairly more
common. It is challenging to learn these perception tasks jointly across various
domains and utilize labeled data from different domains.

• Multi-objectives: The work here is all about a single joint objective. Our regularized
loss consists of empirical risk loss and various kinds of regularization loss. Essentially,
this is a multi-objective optimization problem. Suppose we have N regularization
terms R1(Sθ),R2(Sθ),...,RN(Sθ). Currently, we minimize a weighted sum of the losses
`(Sθ, Y ) + ∑

N
n=1 λn ⋅ Rn(Sθ). Then accordingly, the gradient of the regularized loss

w.r.t. Sθ is the weighted sum of gradients of each term. Despite its simplicity, this
approach has its limitations. Different tasks may not agree with each other. There is
likely trade-off between the tasks. We propose multi-objective optimization [50, 78,
77, 208] for regularized losses in deep learning. In multi-objective optimization, the
objective is a vector rather than a scalar: minθ(R0(Sθ), ... ,RN(Sθ))T . Note that,
here for notation convenience, we let R0(Sθ) = `(Sθ, Y ). The goal in multi-objective
optimization is to find a Pareto optimal solution. We are mostly interested in multi-
objective optimization for regularized loss with full-supervision, for which standard
single-objective optimization gives negative results.

• Irregular data: In this work, we studied image segmentation, for which CNN has
been a great success. However, CNN cannot be directly applied to point clouds or
graphs, which can be obtained from the nowadays ubiquitous depth sensors. We
are interested in segmentation of point clouds, graph, and mesh. The bulk of this
thesis is about graph regularization and graph algorithms. It would be interesting
to leverage the work here in graph clustering and regularized loss to graph neural
network [118, 93, 204] for weakly-supervised graph segmentation.
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Appendix A

Matlab Code for Kernel and Spectral
Bound 1

A.1 Kernel Bound (3.52)

function [ unaries ] = KernelBound( A, K, current_clustering, energy_type)

%KERNELBOUND derives linear upper bound w.r.t binary indicator variables

%for NC (Normalized Cut) or AA (Average Association)

%Inputs:

% A --- Affinity matrix (sparse or full) of N-by-N

% K --- Number of desired clusters, default is 2

% current_clustering --- N-by-1 vector of cluster indicator, value from 1

% to K, default is a random generated vector

% energy_type --- String ’NC’ or ’AA’, default is ’NC’

%Outputs:

% unaries --- N-by-K matrix where unaries(n,k) is the unary (linear) cost

% of assigning data n to cluster k

N = size(A,1); % number of data points

if nargin < 2; K = 2; end

if nargin < 3; current_labeling = randi([1, K], N, 1); end

if nargin < 4; energy_type = ’NC’; end

1Also in https://github.com/meng-tang/KernelCut/blob/master/matlab
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if ~strcmp(energy_type, ’NC’) && ~strcmp(energy_type, ’AA’)

error(’Energy type has to be NC (normalized cut) or AA (average association).’)

end

unaries = zeros(N, K, ’double’);

% degree vector

d = sum(A,2);

for i=1:K

% current binary indicators (N-by-1) for cluster i

S_t = double(current_clustering == i);

% compute gradient as unaries (see kernel bound proposition in the paper)

if strcmp(energy_type, ’NC’) % for normalized cut

unaries(:,i) = S_t’* A * S_t / (d’ * S_t)^2 * d - 2 * A * S_t / (d’ * S_t);

elseif strcmp(energy_type, ’AA’) % for average association

unaries(:,i) = S_t’* A * S_t / (ones(1,N) * S_t)^2 * ones(N,1) - 2 * A * S_t / (ones(1,N) * S_t);

end

end

end

A.2 Spectral Bound (3.66)

function [ unaries ] = SpectralBound( A, K, m, current_clustering, energy_type)

%KERNELBOUND derives linear upper bound w.r.t binary indicator variables

%for NC (Normalized Cut) or AA (Average Association). This function first

%finds spectral embedding (for once) and take distances to (weighted) mean

%on such embeddings as unaries.

%Inputs:

% A --- Affinity matrix (sparse or full) of N-by-N

% K --- Number of desired clusters, default is 2

% m --- dimensionality of embedding, typically small

% current_clustering --- N-by-1 vector of cluster indicator, value from 1

% to K, default is a random generated vector

% energy_type --- String ’NC’ or ’AA’, default is ’NC’

%Outputs:

% unaries --- N-by-K matrix where unaries(n,k) is the unary (linear) cost

% of assigning data n to cluster k
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N = size(A,1); % number of data points

if nargin < 2; K = 2; end

if nargin < 3; current_clustering = randi([1, K], N, 1); end

if nargin < 4; energy_type = ’NC’; end

if ~strcmp(energy_type, ’NC’) && ~strcmp(energy_type, ’AA’)

error(’Energy type has to be NC (normalized cut) or AA (average association).’)

end

% for weighted k-means, only need to be computed ONCE.

persistent embedding weights

if isempty(embedding) || isempty(weights)

[ embedding, weights ] = SpectralEmbedding( A, m, energy_type);

end

% update cluster centers for (weighted k-means)

centers = zeros(K,m);

weightedembedding = embedding .* repmat(weights,1,m);

for j=1:K

centers(j,:) = sum( weightedembedding(current_clustering==j,:),1 ) ...

/ sum( weights(current_clustering==j));

end

% distances to centers

disttocenters = zeros(N,K);

for j=1:K

disttocenters(:,j) = sum( (embedding - repmat(centers(j,:),N,1) ).^2 , 2);

end

% unaries are just distances to centers

unaries = disttocenters;

end

function [ embedding, weights ] = SpectralEmbedding( A, m, energy_type)

%SPECTRALEMBEDDING embeds graph to m-dimension space such that (weighted)

%k-means on such embedding approximates NC (Normalized Cut) or AA (Average

%Association)

%Inputs:
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% A --- Affinity matrix (sparse or full) of N-by-N

% m --- dimensionality of embedding, typically small

% energy_type --- String ’NC’ or ’AA’, default is ’NC’

%Outputs:

% embedding --- N-by-m matrix n th row is the embedding for n th node

% weights --- N-by-1 vector denoting weights of each embedding

N = size(A,1); % number of data points

if nargin < 2; m = 2; end

if nargin < 3; energy_type = ’NC’; end

if ~strcmp(energy_type, ’NC’) && ~strcmp(energy_type, ’AA’)

error(’Energy type has to be NC (normalized cut) or AA (average association).’)

end

opts.issym=1;

opts.isreal = 1;

opts.disp=0;

if strcmp(energy_type, ’AA’) % for average association

tic

[EigVect, EVal] = eigs(A, m, ’lm’,opts);

embedding = EigVect * sqrt(EVal);

weights = ones(N,1);

toc

return;

elseif strcmp(energy_type, ’NC’) % for normalized cut

% degree vector

d = sum(A,2);

% degree matrix

D = sparse(1:N,1:N,d);

if ~issparse(A); D = full(D); end;

tic

[EigVect, EVal] = eigs(D^(-0.5)*A*D^(-0.5), m, ’lm’,opts);

toc

embedding = EigVect * sqrt(EVal)./repmat(sqrt(d),1,m);

weights = d;

return

end

end
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Appendix B

PyTorch Code for Regularized Loss 1

B.1 DenseCRF Loss

import torch
import torch . nn as nn
from torch . autograd import Function
from torch . autograd import Var iab le
import torch . nn . f u n c t i o n a l as F
import numpy as np
import sys
sys . path . append ( ” . . / wrapper/ b i l a t e r a l f i l t e r / bu i ld / l i b . l inux −x86 64 −3.6 ” )
from b i l a t e r a l f i l t e r import b i l a t e r a l f i l t e r , b i l a t e r a l f i l t e r b a t c h
from data l oade r s . custom trans forms import denormal ize image
import time
from mul t i p ro c e s s i ng import Pool
import mul t i p ro c e s s i ng
from i t e r t o o l s import r epeat
import p i c k l e

class DenseCRFLossFunction ( Function ) :

@staticmethod

1Also in https://github.com/meng-tang/rloss/tree/master/pytorch
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def forward ( ctx , images , segmentat ions , s igma rgb , sigma xy , ROIs ) :
ctx . save for backward ( segmentat ions )
ctx .N, ctx .K, ctx .H, ctx .W = segmentat ions . shape

ROIs = ROIs . unsqueeze ( 1 ) . r epeat (1 , ctx .K, 1 , 1 )
segmentat ions = torch . mul ( segmentat ions . cuda ( ) , ROIs . cuda ( ) )
ctx . ROIs = ROIs

d e n s e c r f l o s s = 0 .0
images = images . numpy ( ) . f l a t t e n ( )
segmentat ions = segmentat ions . cpu ( ) . numpy ( ) . f l a t t e n ( )
AS = np . z e r o s ( segmentat ions . shape , dtype=np . f l o a t 3 2 )
b i l a t e r a l f i l t e r b a t c h ( images , segmentat ions , AS,

ctx .N, ctx .K, ctx .H, ctx .W, sigma rgb , sigma xy )
d e n s e c r f l o s s −= np . dot ( segmentat ions , AS)

# averaged by the number o f images
d e n s e c r f l o s s /= ctx .N

ctx .AS = np . reshape (AS, ( ctx .N, ctx .K, ctx .H, ctx .W) )
return Var iab le ( torch . t en so r ( [ d e n s e c r f l o s s ] ) , r e q u i r e s g r a d=True )

@staticmethod
def backward ( ctx , grad output ) :

grad segmentat ion = −2∗ grad output ∗ torch . from numpy ( ctx .AS)/ ctx .N
grad segmentat ion=grad segmentat ion . cuda ( )
grad segmentat ion = torch . mul ( grad segmentat ion , ctx . ROIs . cuda ( ) )
return None , grad segmentat ion , None , None , None

class DenseCRFLoss (nn . Module ) :
def i n i t ( s e l f , weight , s igma rgb , sigma xy , s c a l e f a c t o r ) :

super ( DenseCRFLoss , s e l f ) . i n i t ( )
s e l f . weight = weight
s e l f . s igma rgb = sigma rgb
s e l f . s igma xy = sigma xy
s e l f . s c a l e f a c t o r = s c a l e f a c t o r
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def forward ( s e l f , imgs , segmentat ions , ROIs ) :
””” s c a l e imag by s c a l e f a c t o r ”””
s ca l ed image s = F. i n t e r p o l a t e ( imgs , s c a l e f a c t o r=s e l f . s c a l e f a c t o r )
s c a l e d s e g s = F. i n t e r p o l a t e ( segmentat ions ,

s c a l e f a c t o r=s e l f . s c a l e f a c t o r ,
mode=’ b i l i n e a r ’ ,
a l i g n c o r n e r s=False )

sca led ROIs = F. i n t e r p o l a t e (ROIs . unsqueeze ( 1 ) ,
s c a l e f a c t o r=s e l f . s c a l e f a c t o r )
. squeeze (1 )

return s e l f . weight ∗DenseCRFLossFunction . apply (
sca l ed images ,
s c a l e d s e g s ,
s e l f . s igma rgb ,
s e l f . s igma xy∗ s e l f . s c a l e f a c t o r ,
sca led ROIs )

def e x t r a r e p r ( s e l f ) :
return ’ s igma rgb ={} , s igma xy ={} , weight ={} , s c a l e f a c t o r ={} ’
. format ( s e l f . s igma rgb , s e l f . sigma xy ,

s e l f . weight , s e l f . s c a l e f a c t o r )
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