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Graphical abstract 
 
HIGHLIGHTS 

 The potential carcinogenic disinfection by-product DCA is removed by photocatalysis 

 DCA degradation was achieved using TiO2/Pt 0.5 wt% photocatalyst 

 Role of O2
·-, ·OHads, ·OHfree and h+

VB radicals is determined in DCA abatement 

 DCA decomposition is conducted mainly by ·OHfree radicals using TiO2 as catalyst 

 ·OHfree radicals from O2
·- play a key role in DCA removal using TiO2/NM catalysts 

 
Abstract 

 
Modified TiO2 catalysts are of interest in environmental water remediation since they can 

lead to efficient electron-hole separation and greatly enhance the photocatalytic properties 

of TiO2. Reactive oxygen species (ROS), such as the superoxide radical (O2
·-), hydroxyl 

radical (·OH), and positive valence band holes (h+
VB), have been reported as the main 

oxidative species involved in photocatalytic degradation processes. In this work, the role 

of these species using TiO2, TiO2/Pt 0.5 wt%, and TiO2/Ag 10 wt% has been examined 

in order to clarify the oxidation pathways. For this purpose, the contribution of the main 

oxidative species was analyzed in the photocatalytic degradation of dichloroacetic acid 

(DCA) solutions using specific scavengers (benzoquinone, tert-butyl alcohol, and formic 

acid). Moreover, the hydroxyl radicals were quantitatively determined in order better 

understand the results. Regardless of the catalyst used, it is concluded that ·OH radicals 

are the major reactive species responsible for DCA degradation and no significant 

degradation is due to O2
·- radicals. Nevertheless, different ·OH generation pathways were 

found, depending on the nature of the catalysts. Degradation using TiO2 was conducted 

mainly via ·OH radicals generated in the positive holes, while noble metal-doped TiO2 

catalysts generated ·OH radicals through the transformation of O2
·- radicals. 
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Introduction 
 

Nowadays, water pollution is a worldwide issue for researchers and the global 

environmental safety community. Therefore, ensuring adequate water resources has 

become a very important challenge [1]. In this context, haloacetic acids (HAAs) represent 

the second most important disinfection by-product (DBPs) found in chlorinated drinking 

waters, after trihalomethanes [2-4]. DBPs are formed during chlorination of water sources 

due to the reaction between the chlorine and natural organic matter. Several health 

problems related to DBPs such as growth retardation, spontaneous abortion, cancer and 

congenital cardiac defects have been widely reported. [5]. Among these HAAs, 

dichloroacetic acid (DCA) has been classified by the US EPA as a probable human 

carcinogen (group B2), and has a higher concentration in drinking water than other HAAs 

[6,7]. Although in Europe the Drinking Water Directive 98/83/EC (DWD) does not 

currently propose any guideline values for HAAs in drinking water, US EPA drinking 

water regulations set a maximum contaminant level of 60 µg L-1 for five HAAs 

(trichloroacetic acid (TCAA), dichloroacetic acid (DCA), monochloroacetic acid 

(MCAA), monobromoacetic acid (MBAA), and dibromoacetic acid (DBAA)) (US EPA, 

1998). In addition, Japan’s drinking water standards for MCAA, DCA, and TCAA are 

20, 40, and 200 µg L-1, respectively [8], while in Australia and New Zealand, the regulated 

limits for drinking water are: MCAA 150; DCAA 100; and TCAA 100 µg L-1 [5]. 

 

New approaches incorporating the principles of sustainability have motivated the search 

for technological solutions to provide society with ample water sources while protecting 

existing resources. Heterogeneous photocatalysis is an advanced oxidation process (AOP) 

that is expected to play an important role in securing adequate water resources. Its most 

attractive features are the utilization of solar light as an energy source and the generation 

of highly reactive oxygen species (ROS) that allow the degradation of a wide range of 

organic pollutants with no secondary pollution [9]. ROS are relatively short-lived 

molecules that contain oxygen atoms and unpaired electrons that endow them with higher 

reactivity [10]. 
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Compared to other semiconducting photocatalysts, titanium dioxide (TiO2) is, so far, 

considered the most promising material because it is inexpensive, non-toxic, chemically 

and thermally stable, abundant, and environmentally friendly [11-14]. The photocatalytic 

mechanism of TiO2 under UV light involves absorbing a photon with energy equal or 

greater to its band gap (3.2 eV) and exciting an electron from the valence band (h+
VB) to 

the empty conduction band (e-
CB) in femtoseconds, thus creating the electron-hole pair. 

These charge carriers, with sufficient reductive/oxidative power, can react with the 

surrounding oxygen-containing species, such as dissolved oxygen or H2O (OH-), to 

produce ROS (1-7) [13-18]. 

  

Photoexcitation: TiOଶ + 	hυ	 → 	eେ୆ି + 	h୚୆ା      (1) 

Charge− carrier	trapping	of	eି:	eେ୆ି 	→ 		e୘ୖି      (2) 

Charge− carrier	trapping	of	hା:	h୚୆ା 	→ 	h୘ୖା      (3) 

Electron− hole	recombination:	e୘ୖି + 	h୚୆ା (h୘ୖା ) 	→ 	heat   (4) 

Photoexcited	eି	scavenging:		eେ୆ି + 	Oଶ 	→ 	Oଶ
·ି     (5) 

Oxidation	of	hydroxyls:		h୚୆ା + 	OHୟୢୱ
ି 	→	· OHୟୢୱ     (6) 

Oxidation	of	water:		h୚୆ା + 	HଶO	 →	· OH୤୰ୣୣ     (7) 

 

Superoxide radicals (O2
·-), hydroxyl radicals (·OHfree and ·OHads), and valence band holes 

(h+
VB) are the main reactive species involved in organic pollutant degradation. However, 

the mechanistic implication of these species in photocatalytic processes is still under 

discussion. 

 

Photocatalytic reactions over TiO2 are strongly dependent on its surface and interfacial 

properties with recombination, trapping, and interfacial transfer of charge carriers being 

very fast processes. However, the rate of interfacial charge transfer to surrounding 

oxygenated species is much slower (nanoseconds to microseconds) than the rate of charge 

recombination in the bulk (nanoseconds), and on the surface (picoseconds) of the catalyst. 

Therefore, enhancing the interfacial charge transfer could minimize the recombination of 

photogenerated charges. Taking into account this fact, photocatalytic activity of TiO2 can 

be improved by employing strategies, that prevent bulk and surface charge recombination 

and enhance charge transport to the surface sites of TiO2, such as loading a co-catalyst or 

constructing nanostructured photocatalysts [19,20]. 
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Noble metal-doped TiO2 reports improved photocatalytic activity over TiO2 catalysts due 

to the Shottky-barrier formation when semiconductor and noble metals are in contact. 

Noble metal nanoparticles act as electron trap, minimizing the electron-hole pair 

recombination. Moreover, localized surface plasmon resonance (LSPR) effect associated 

with noble metal nanoparticles leads to increased electron-hole formation in the 

semiconductor [21-24]. 

 

Previous work has focused on understanding the generation mechanism for ROS and their 

involvement in the degradation pathways of organic pollutants using selected chemical 

scavengers [17,25-32]. Research efforts have been aimed at the mechanistic study of the 

generation of ROS on TiO2; however, varying results have been reported. Wang and co-

workers (2010) [27] indicated that valence band holes were the main active species in the 

TiO2 photocatalyst (P25), which could oxidize the adsorbed methylene blue under UV 

light. However, Raja and co-workers (2005) [28] concluded that superoxide radicals play 

an important role during the ring opening of a lignin model compound using a TiO2-P25 

semiconductor and UV-Vis light. On the other hand, Chen and co-workers (2005) [29] 

reported that the photocatalytic degradation mechanism under UV light consisted of the 

strong absorption of azo dye acid orange 7 molecules on the TiO2 surface, and then the 

degradation reaction was mostly initiated by direct electron transfer between a positive 

hole and an organic molecule. When TiO2-P25 was tested in recent work developed by 

Cavalcante and co-workers (2016) [17], a coupled influence of hydroxyl radicals (84%) 

and valence band holes (10%) was observed during the photocatalytic degradation of 

metoprolol employing a solar simulator as the light source. The improvement of TiO2 

activity, employing dopants, and constructing heterojunctions, is currently being studied. 

Nevertheless, how the TiO2 modifications introduced influence ROS generation is still 

unclear. Moreover, when TiO2 was coupled to different dopants, different ROS were 

involved in organic pollutant degradation pathways. Cruz-Ortiz and co-workers (2017) 

[30] studied the influence of the light source on ROS generation using TiO2/rGO 

catalysts. They reported that superoxide radicals were the main species involved in 

Escherichia coli disinfection under visible light; however, hydroxyl radicals, hydrogen 

peroxide, and singlet oxygen (1O2) conducted the degradation process when UV-Vis light 

was used. Cavalcante and co-workers (2016) [17] examined the contribution of the main 
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active species to the photocatalytic degradation of metoprolol using a solar simulator and 

TiO2/Boron 5% as the photocatalyst, indicating that ·OH radicals are the dominant 

reactive species, contributing around 80%, with O2
·- radicals and holes contributing to a 

lesser extent. Nevertheless, the study developed by Yang and co-workers (2015) [31] 

showed that active photoinduced holes and O2
·- radicals, rather than ·OH radicals, were 

the dominant species responsible for rhodamine B (RhB) degradation when 

P25/Ag3PO4/graphene oxide was used as the photocatalyst under visible light. For 

nitrogen and fluorine doped TiO2 (NF-TiO2), studies on the role of ROS suggested that 

O2
·- and ·OH were involved in cyanotoxin degradation in visible and UV-Vis light, 

respectively [32]. Therefore, although some researchers have looked at the ROS 

generated in photocatalytic processes, the role of the reactive oxygen species still remains 

controversial due to the dependence on the nature of the photocatalyst, light source, and 

organic pollutant treated. In this context, the mechanisms and photocatalytic degradation 

pathways using noble metal-doped TiO2 remain undefined. 

 

The design of novel materials and an in-depth analysis of reaction mechanisms are among 

the scientific challenges that should be addressed before the full deployment of DCA 

photocatalytic degradation. This work therefore explores the formation of ROS under 

UV-Vis light activated TiO2 catalysts doped with platinum (TiO2/Pt) and silver (TiO2/Ag) 

using selected chemical scavengers with the aim of gaining insight into the degradation 

pathways attributed to different properties of photocatalysts. 

 

Experimental 

 
Materials 

Dichloroacetic acid (DCA), benzoquinone (BQ), and tert-butyl alcohol (t-BuOH) were 

purchased from Sigma-Aldrich. Titanium dioxide (P25, 20% rutile and 80% anatase) was 

supplied by Evonik Degussa. Formic acid 37-38% w/w (FA), and copper (II) sulfate 5-

hydrate were purchased from Panreac. 

 

Preparation and characterization of TiO2/Pt and TiO2/Ag 

TiO2/Pt 0.5 wt% and TiO2/Ag 10 wt% binary catalysts were prepared using the polyol 

method; the selected noble metal loads were based on a previous work [23]. The novel 
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catalysts were characterized via several techniques reported in a previous work [23]. 

Moreover, X-ray photoelectron spectroscopy (XPS) measurements were performed using 

a SPECS Phoibos 100 MCD5 system with Mg Kα radiation (ɦʋ= 1253.6 eV). The 

extinction coefficient was determined following the methodology proposed by Cabrera 

and co-workers (1996) [33] using an UV-1800 spectrophotometer (Shimadzu). The 

measurements were carried out using a sample cell (optical length, 1 mm) placed far from 

the detector position and introducing a narrow slit detector to minimize collected out-

scattered radiation. Measurements were performed on sonicated suspensions at different 

catalyst loadings. 

 

Photocatalytic activity 

Photocatalytic experiments were carried out in a 1 l Heraeus Laboratory UV Reactor 

using a 150 W medium-pressure mercury lamp (Heraeus TQ-150, 200-600 nm) placed 

inside a quartz sleeve provided with a cooling tube to maintain a constant temperature of 

20ºC. An aqueous solution of copper sulfate (0.05 mol L-1) was circulated to prevent 

overheating of the suspension and cut off the radiation below 300 nm. The irradiation on 

the reactor wall was measured with a PHD2102.11 radiometer (Delta OHM), with values 

of 229.2 W m-2, 258.9 W m-2, 27.54 W m-2 and 961.3 W m-2 for UV-A, UV-B, UV-C and 

visible light, respectively, being obtained.  

 

The experimental methodology and analytical procedure of the photocatalytic DCA 

degradation have been already described in a previous work [23]. Moreover, this work 

explores the role of ROS during the photocatalytic process and with this aim, BQ, t-

BuOH, or FA were added to 1000 mg L-1 DCA solution containing the synthesized 

catalysts (0.3 g L-1). The study was conducted with a suitable amount of each scavenger 

compound: 1 g L-1 of BQ; 46.5 g L-1 of t-BuOH; and 4 g L-1 of FA.  

 

·OH and H2O2 quantification 

The method employed in this work to determine accumulated ·OHfree radicals in the 

reaction medium was initially proposed by Tai and co-workers (2004) [34], and it has 

been already described in a previous work [9]. H2O2 measurements were carried out with 

hydrogen peroxide analytical test kit (photometric method 0.015 - 6.00 mg L-1 H₂O₂ 

Spectroquant) provided by Merck KGaA. In the presence of a phenanthroline derivative 
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hydrogen peroxide reduces copper (II) ions to copper (I) ions. In the process an orange-

colored complex is formed and it is determined photometrically. 

 

Results and discussion 

 
Catalyst characterization 

The characterization of the materials has been already discussed in a previous work [23]. 

Additionally, the surface compositions and elemental chemical states of TiO2, TiO2/Pt 

and TiO2/Ag were characterized using XPS. Figure 1A shows two XPS peaks of Ti 2p3/2 

and Ti 2p1/2 of Ti at 458.9 eV and 464.5 eV, respectively, in accordance with the binding 

energy of Ti4+ in TiO2. Apart from the two peaks corresponding to Ti4+, the TiO2/Pt 

photocatalyst presented two peaks of Pt 4f7/2 and Pt 4f5/2 at 70.5 and 73.8 eV, respectively, 

with a splitting energy of 3.3 eV (Figure 1B), related to the existence of metallic Pt [35]. 

Moreover, two additional peaks were observed at 72.1 and 75.4 eV attributed to Pt 4f7/2 

and Pt 4f5/2 related to Pt2+ states. According to Hsieh and co-workers [36] ,this fact might 

be attributed to the formation of Pt-O bond on the TiO2 surface, or metallic Pt atoms 

thermally diffusing into TiO2 crystal lattice and oxidized to Pt2+ to substitute for Ti4+ or 

form the interstitial ions. XPS spectrum of TiO2/Ag (Figure 1C) exhibits Ag 3d states in 

the catalyst surface. Specifically, peaks located at 364.65 eV and 370.29 eV correspond 

to the binding energy of Ag 3d5/2 and Ag 3d3/2, respectively. This typical deviation (6 eV) 

of the binding energy between Ag 3d5/2 and 3d3/2 is the characteristic of silver [37]. 

However, these values are lower than the binding energies of metallic Ag (367.9 and 

373.9 eV for Ag 3d5/2 and Ag 3d3/2, respectively) and thus, they can be attributed to Ag+.  

 

Photocatalytic ROS generation and ·OHfree quantification 

The influence of the O2
·-, ·OHads, ·OHfree, and h+

VB radicals in the photocatalytic process 

using noble metal-doped TiO2 catalysts was investigated through DCA degradation under 

UV-Vis light employing different scavengers. The excitation of the semiconductor 

provokes the generation of an empty unfilled valence band (h+
VB) and photogenerated 

electrons in the conduction band (1). In the valence band, the h+
VB can react directly with 

the adsorbed hydroxide ion (OH-) producing the ·OHads radical (6), or with water 

molecules to form the ·OHfree radical (7). Moreover, the h+
VB can act directly as an active 

degradation species. Finally, the photogenerated electrons of the conduction band result 
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in O2
·- radical formation through the reduction of oxygen molecules by electron transfer 

(5).  

 

BQ was used as a scavenger to test the role of O2
·- radicals on photocatalytic degradation 

because it acts as a more efficient electron scavenger than molecular oxygen owing to its 

rather high inherent electron affinity. Therefore, BQ readily scavenges electrons at the 

surface of TiO2 to form hydroquinone (HQ) [38], avoiding the formation of O2
·- radicals 

according to the following equation (8). 

 

O = C(CସHସ)C = O + 2eେ୆ି + 2Hା → HOC(CସHସ)COH    (8)  

 

In order to evaluate the role of ·OHfree in the photocatalytic process, t-BuOH was used as 

it is very good at trapping ·OHfree radicals due to the fact it generates inert intermediates; 

equation (9) [17]. 

 

(CHଷ)ଷCOH +· OH୤୰ୣୣ → (CHଶC(CHଷ)ଶOH) + HଶO    (9) 

 

Finally, FA was employed to assess the participation of the ·OHads, ·OHfree and h+
VB 

radicals due to its large capacity to be adsorbed onto the surface of the catalyst under 

acidic conditions and suppress the ·OHfree radical process [17]. 

 

HCOOି + 2h୚୆ା →	COଶ + Hା       (10) 

HCOOି +· OH୤୰ୣୣ →	COଶ
ି + HଶO       (11) 

 

Dark adsorption experiments of DCA onto the catalysts surface were carried out without 

significant adsorption being recorded after 24 hours of contact. Therefore, direct 

degradation due to h+
VB was ruled out for all catalysts.  

 

Figure 2A shows the results of the addition of BQ, t-BuOH and FA to the photocatalytic 

degradation medium of DCA using bare TiO2 as the catalyst. DCA degradation of 71.4% 

was reached after 480 minutes of irradiation time. No inhibition was observed when O2
·- 

radicals were removed by BQ, indicating that these species do not participate in the 

photocatalytic degradation process. However, when t-BuOH or FA were added to the 

DCA solution, total inhibition was observed. Since the role of h+
VB was not remarkable 

ACCEPTED M
ANUSCRIP

T



due to its low adsorptive ability, together with the fact that the same inhibition was 

observed when either ·OHfree or both ·OHfree and ·OHads were extracted, it was concluded 

that the ·OHfree radicals play the most important role in DCA degradation when TiO2 is 

used as the catalyst. In order to substantiate these results, Figure 2B shows the influence 

of scavenger molecules addition in the generation of ·OHfree radicals. No decrease in the 

generation of ·OHfree radicals was observed when BQ was added, but when FA was added 

the concentration of ·OHfree was almost negligible.  

 

After 420 minutes of irradiation, complete DCA degradation was achieved using TiO2/Pt 

as the catalyst, corresponding to an enhancement of photocatalytic activity of about 

34.6% compared to bare TiO2. In order to investigate the improved performance of 

TiO2/Pt, Figure 3A shows the effects of BQ, t-BuOH and FA addition to the DCA 

degradation medium. A remarkable inhibition of the photocatalytic activity was seen 

when O2
·- radicals were removed, contrary to the behavior observed with TiO2 under the 

same conditions. A similar trend for DCA degradation was observed adding t-BuOH to 

trap ·OHfree radicals. Moreover, the photocatalytic activity was suppressed when FA 

consumed ·OHads, ·OHfree and h+
VB radicals.  

 

On the basis of the data obtained with TiO2/Pt, the results seem to indicate that O2
·- 

radicals are critical in the degradation process through disproportionation to H2O2 and the 

formation of ·OHfree (12-16) [39-42]. According to previous studies, reaction (15) is the 

main contributor to the production of ·OHfree radicals from H2O2 [39]. 

 

Oଶ
·ି + 	Hା →	HOଶ

·          (12) 

HOଶ
· + HOଶ

· →	Oଶ + HଶOଶ        (13) 

HOଶ
· + Hା + eି → HଶOଶ        (14)  

HଶOଶ + ݁஼஻ି →· OH୤୰ୣୣ + HOି       (15) 

HଶOଶ + Oଶ
·ି →· OH୤୰ୣୣ + HOି + Oଶ       (16) 

 

The difference between the inhibition observed with the addition of t-BuOH and that of 

FA, results in the direct contribution of the ·OHads radicals since the involvement of h+
VB 

was ruled out. Therefore, the degradation pathway using TiO2/Pt was conducted mainly 

by free ·OHfree radicals and, to a lesser extent, by ·OHads radicals. In order to better 

understand these results, ·OHfree radicals were quantified using TiO2/Pt as the catalyst 

ACCEPTED M
ANUSCRIP

T



together with the scavenger molecules (Figure 3B). When BQ was introduced into the 

DCA solution as an analysis tool for trapping O2
·- radicals, there was a significant 

decrease in the photocatalytic generation of ·OHfree, supporting the assumption that the 

O2
·- radicals were being transformed into ·OHfree radicals (15-16) leaving, therefore, few 

·OHfree radicals in solution when the O2
·- radicals were removed. A similar number of 

·OHfree radicals was detected when incorporating FA into the medium, meaning that 

·OHfree radicals were not photocatalytically generated when introducing BQ or FA. 

Finally, it should be noted that TiO2/Pt generated 60.6% more ·OHfree radicals than bare 

TiO2 after 480 min. This can be attributed to the conversion of O2
·- radicals to ·OHfree 

radicals because platinum acts as an electron trap, making more electrons available for 

the photocatalytic process than with bare TiO2, leading to a decrease in the recombination 

rate of e--h+ (4). 

 

The TiO2/Ag catalyst was evaluated in order to compare the different ROS involved in 

the DCA degradation depending on the noble metal used as the dopant. The TiO2/Ag 

photocatalyst resulted in 79.3% DCA abatement after 480 minutes, improving the 

degradation rate compared to bare TiO2. However, the results were worse than those 

obtained than with the TiO2/Pt catalyst. Figure 4A shows the influence on DCA 

degradation depending on the scavenger added. Incorporating BQ or t-BuOH causes 

significant inhibition of the photocatalytic activity. Therefore, for silver-doped TiO2 the 

major species involved in the degradation process are ·OHfree radicals resulting from O2
·- 

radical transformation. The TiO2/Ag junction provokes the formation of the Schottky 

barrier, capable of efficiently transferring electrons from TiO2 to Ag, providing electrons 

for the degradation. FA was used as a trapping molecule for ·OHads, ·OHfree and h+
VB 

radicals, as in previous studies, but anomalous behavior was noted in the DCA 

degradation. Chloroacetic acid was detected as a reaction intermediate using TiO2/Ag but 

not when using either TiO2 or TiO2/Pt. This intermediate appears through the 

hydrogenation reaction between FA and DCA catalyzed by Ag [43]. Therefore, since the 

addition of FA modifies the DCA degradation pathway, it cannot be employed as a 

scavenger when TiO2/Ag is used as the catalyst. The ·OHfree radicals detected employing 

TiO2/Ag (Figure 4B) presented an intermediate value between those measured with 

TiO2/Pt and TiO2. ·OHfree radicals were not photocatalytically generated when 

introducing BQ or FA into the reaction media, as was seen in the analysis carried out with 

TiO2/Pt. 
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H2O2 was quantified in order to verify the presence of this compound as an intermediate 

in the formation of ·OHfree radicals (Figure 5). It can be observed that negligible 

concentrations of H2O2 were detected when TiO2 was employed as photocatalyst; 

however, after two hours of irradiation time the presence of H2O2 was verified in the 

reaction medium containing TiO2/Pt and TiO2/Ag photocatalysts and its concentration 

increased with time. As it can be observed, higher amounts of H2O2 were formed using 

TiO2/Pt than using TiO2/Ag. This fact may be related to the higher ·OHfree radicals 

generation through H2O2 disproportionation using Pt-based photocatalyst compared to 

Ag-based photocatalyst. 

 

Since ROS formation could also depend on the rate of photon absorption by the catalyst 

in suspension, and different optical properties for noble metal-doped TiO2 photocatalysts 

could be anticipated, the specific extinction coefficient (βλ) has been calculated per unit 

of catalyst mass concentration applying a standard linear regression with forced intercept 

at the origin. Figure S1 depicts the extinction coefficient for each photocatalyst as a 

function of the wavelength. Lower values for the specific extinction coefficient were 

obtained for TiO2/Pt and TiO2/Ag compared to TiO2. However, using noble metal-based 

materials better photocatalytic activity and different degradation pathways compared to 

bare TiO2 were observed. 

 

According to Cassano & Alfano (2000) [44] the total extinction coefficient can be related 

to the absorption coefficient and the scattering coefficient through the following 

expression: 

 

ఒߚ = 	 ఒߢ +  ఒ          (13)ߪ	

 

where ߢఒ is the absorption coefficient and ߪఒ is the scattering coefficient. These optical 

parameters are related to the properties of the photocatalyst under irradiation and 

therefore, they are key to assess the photocatalytic activity of semiconductors regardless 

of the reactor set-up employed since they allow to understand the photon absorption rate 

of the semiconductor [45]. It can be concluded that from the optical point of view, TiO2/Pt 
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and TiO2/Ag show properties both qualitatively and quantitatively similar but, in addition, 

TiO2 has a quantitatively higher response over the studied wavelength range compared to 

noble metal-based photocatalysts. The lower values of the extinction coefficient found 

for TiO2/Pt and TiO2/Ag compared to bare TiO2 could be compensated by the higher 

absorption/scattering ratio provided by these catalysts compared to TiO2.  

 

Therefore, the enhancement of the photocatalytic activity due to electron-hole lifetime 

extension seems to be the main argument supported by the obtained results. 

 

Role of ROS depending of the nature of the photocatalyst 

 

Figure 6 shows the contribution of ROS to DCA degradation depending on the catalyst 

type. It can be observed that 100% of the DCA degradation was conducted by ·OHfree 

radicals generated from water molecules reacting with h+
VB when TiO2 was used as the 

catalyst (Figure 6A). With regard to TiO2/Pt, since Pt acts as an electron trap supplying a 

greater number of available electrons, approximately 78.2% of the degradation was 

conducted by ·OHfree radicals formed from photogenerated O2
·- radicals (Figure 6B). O2

·- 

radicals are created when dissolved O2 from the reaction medium accept a photogenerated 

electron (5). After that, H2O2 generation process is started through reaction (13) and 

reaction (14). Finally, the H2O2 can result in ·OHfree radicals, mainly via electron transfer 

(15), which are involve in the DCA decomposition as they are powerful oxidants. 

Therefore, H2O2 can serve as a source of ·OHfree radicals, playing a key role in the TiO2/Pt 

photocatalytic process. Similarly, but contributing 64.9%, the DCA degradation using 

TiO2/Ag was promoted by ·OHfree radicals generated from the transformation of O2
·- 

radicals. Moreover, the ·OHads radicals contributed with 35.1% to DCA oxidation in the 

study of the silver-doped catalyst (Figure 6B). These results are supported by the evidence 

of higher concentration of H2O2 using TiO2/Pt than using TiO2/Ag and the practically 

nonexistent generation when TiO2 was employed as photocatalyst (Figure 5). 

  

Conclusions 
 

DCA has been reported as a disinfection by-product present in many chlorinated drinking 

waters and has a potentially carcinogenic effect. In this work, TiO2/Pt 0.5 wt% and 
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TiO2/Ag 10 wt% composite photocatalysts have been successfully synthesized and their 

performance in DCA degradation assessed, achieving 100% and 79.3% DCA removal, 

respectively. Moreover, and in order to gain insight into the degradation mechanisms, the 

contribution of different ROS to the oxidation kinetics of DCA using TiO2 and noble 

metal-doped TiO2 catalysts has been studied. Direct degradation via h+
VB was ruled out 

for all the photocatalysts studied since there was no significant adsorption of DCA onto 

the solids. In the case of the TiO2 catalyst, ·OHfree radicals played the most important role 

in DCA degradation kinetics. The improved performance of noble metal-doped catalysts 

was seen in addition to the generation of ROS other than ·OHfree radicals compared to 

bare TiO2. DCA degradation in the presence of TiO2/Pt and TiO2/Ag was mainly due to 

the activity of ·OHfree radicals from the transformation of O2
·- and, to a lesser extent, 

·OHads radicals. The quantification of ·OHfree radicals when O2
·- radicals were removed 

from the reaction medium showed a significant decrease in the generation of ·OHfree 

radicals. It was therefore assumed that O2
·- radicals were critical in the formation of 

·OHfree radicals through disproportionation to H2O2. A higher contribution of these 

·OHfree radicals was seen with TiO2/Pt (78.2% ± 0.5) than with TiO2/Ag (64.9% ± 3.6). 

FA could not be used as a scavenger when TiO2/Ag was employed as the catalyst due to 

the reaction between FA and the DCA catalyzed by Ag. In conclusion, this work 

contributes to the technical assessment of photocatalytic DCA degradation by analyzing 

the performance of newly synthesized photocatalysts while also providing insight into the 

mechanisms responsible for the photocatalytic degradation through an analysis of the role 

of different ROS.  
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Figure 1. High-resolution XPS spectra of TiO2 (A), TiO2/Pt 0.5% (B) and TiO2/Ag 10% 

(C) photocatalysts 

 

Figure 2. Effect of BQ, t-BuOH and FA addition on the photocatalytic degradation of 

DCA (A) and ·OH generation (B) for bare TiO2 

 

Figure 3. Effect of BQ, t-BuOH and FA addition on the photocatalytic degradation of 

DCA (A) and ·OH generation (B) for TiO2/Pt 

 

Figure 4. Effect of BQ, t-BuOH and FA addition on the photocatalytic degradation of 

DCA (A) and ·OH generation (B) for TiO2/Ag 

 

Figure 5. H2O2 quantification using TiO2, TiO2/Pt and TiO2/Ag photocatalyst 

 

Figure 6. Proposed ROS mechanism in the photocatalytic degradation of DCA by TiO2 

(A), TiO2/Pt, and TiO2/Ag (B) 
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