

ENHANCING SOFTWARE PROJECT OUTCOMES:

USING MACHINE LEARNING AND OPEN SOURCE

DATA TO EMPLOY SOFTWARE PROJECT

PERFORMANCE DETERMINANTS

Title Page

Lalit N. Jagtiani

Under the Supervision of Dr. Christian Bach

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN TECHNOLOGY MANAGEMENT

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

November 27th, 2017

ii

ENHANCING SOFTWARE PROJECT OUTCOMES:

USING MACHINE LEARNING AND OPEN SOURCE

DATA TO EMPLOY SOFTWARE PROJECT

PERFORMANCE DETERMINANTS

Approvals

iii

ENHANCING SOFTWARE PROJECT OUTCOMES:

USING MACHINE LEARNING AND OPEN SOURCE

DATA TO EMPLOY SOFTWARE PROJECT

PERFORMANCE DETERMINANTS

 © Copyright by Lalit N. Jagtiani 2017

All Rights Reserved

Copyright Statement

iv

ENHANCING SOFTWARE PROJECT OUTCOMES:

USING MACHINE LEARNING AND OPEN SOURCE

DATA TO EMPLOY SOFTWARE PROJECT

PERFORMANCE DETERMINANTS

Abstract

Many factors can influence the ongoing management and execution of

technology projects. Some of these elements are known a priori during the project

planning phase. Others require real-time data gathering and analysis throughout the

lifetime of a project. These real-time project data elements are often neglected,

misclassified, or otherwise misinterpreted during the project execution phase resulting

in increased risk of delays, quality issues, and missed business opportunities.

The overarching motivation for this research endeavor is to offer reliable

improvements in software technology management and delivery. The primary purpose

is to discover and analyze the impact, role, and level of influence of various project

related data on the ongoing management of technology projects. The study leverages

open source data regarding software performance attributes. The goal is to temper the

subjectivity currently used by project managers (PMs) with quantifiable measures when

assessing project execution progress.

Modern-day PMs who manage software development projects are charged with

an arduous task. Often, they obtain their inputs from technical leads who tend to be

significantly more technical. When assessing software projects, PMs perform their role

subject to the limitations of their capabilities and competencies. PMs are required to

v

contend with the stresses of the business environment, the policies, and procedures

dictated by their organizations, and resource constraints.

The second purpose of this research study is to propose methods by which

conventional project assessment processes can be enhanced using quantitative methods

that utilize real-time project execution data. Transferability of academic research to

industry application is specifically addressed vis-à-vis a delivery framework to provide

meaningful data to industry practitioners.

vi

TABLE OF CONTENTS

Title Page ... i

Approvals .. ii

Copyright Statement .. iii

Abstract .. iv

TABLE OF CONTENTS .. vi

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: RESEARCH SCOPE .. 3

2.1. Motivation and Research Questions .. 3

2.2. Software Life Cycle and Performance Measures ... 4

2.3. Research Goals and Potential Contribution ... 9

2.4. Limitations and Constraints ... 12

CHAPTER 3: LITERATURE REVIEW .. 14

3.1. Macro Analysis .. 16

3.2. Software Quality Attributes ... 25

3.3. Research Data Validity .. 31

3.4. Software Management and Predictive Modeling ... 41

CHAPTER 4: RESEARCH PROCESS ... 49

vii

CHAPTER 5: RESEARCH DATA .. 51

5.1. Data Plan and Expected Outcomes .. 51

5.2. Data Management .. 52

5.3. Data Extraction .. 54

5.4. Data for Analysis ... 55

5.5. Research Variables... 58

CHAPTER 6: RESULTS AND IMPLICATIONS ... 61

6.1. Software Quality Attributes ... 62

6.2. Descriptive Statistics – Research Variables ... 67

6.3. Multiple Regression Model – Research Variables... 68

6.3. Towards Building and Validating a Predictive Model .. 70

6.4. Research Transferability .. 72

6.5. Developing an Applied Research Framework (ARF) .. 76

CHAPTER 7: FUTURE RESEARCH OPPORTUNITIES 83

CHAPTER 8: CONCLUDING REMARKS ... 86

CHAPTER 9: GLOSSARY OF TERMS ... 88

CHAPTER 10: BIBLIOGRAPHY .. 94

APPENDIX A: THE SRDA ... 109

A.1. Data Entity Relationship Diagram—SourceForge.net .. 109

A.2. Data Entity Relationship Model – SRDA – Artifact.. 110

A.3. Data Entity Relationship Model – SRDA – Documents 111

viii

A.4. Data Entity Relationship Model – SRDA – Forums .. 112

A.5. Data Entity Relationship Model – SRDA – FRS ... 113

A.6. Data Entity Relationship Model – SRDA – Job .. 114

A.7. Data Entity Relationship Model – SRDA – Tasks ... 115

A.8. List of tables analyzed from OSS Research ... 115

A.9. Select SRDA Data Stored in Local MS Access Database 117

APPENDIX B: EXISTING RESEARCH – THE SRDA ... 120

B.1. Reference List by Research Focus .. 120

B.2. Yearly Cumulative Publications – SRDA ... 122

B.3. Publications by Publisher .. 123

APPENDIX C: DATA RESULTS ... 124

C.3. Weka 3.8.1 Machine Learning Algorithm – Results ... 124

C.3.1. Random Forest ... 124

C.3.2. Meta Bagging ... 125

C.3.3. J48 Decision Tree ... 126

C.3.4. Decision Table.. 127

C.3.5. K-Nearest Neighbor ... 128

C.3.6. Multi-Layer Perceptron .. 129

C.3.7. Iterative Classifier .. 130

C.3.8. Naïve-Bayes ... 131

ix

C.3.9. AdaBoost M1 ... 132

x

LIST OF TABLES

Table 1. Project Performance Statistics [9]... 17

Table 2. Comparison of Management and Technical Performance Levels 18

Table 3. Probability of Selected Outcomes [17] ... 20

Table 4. Average Software Schedules (in Calendar Months) ... 21

Table 5. Summary of Measures of Success, Indicators, and Potential Issues 26

Table 6. SPI Success Dimensions ... 29

Table 7. OSS by the Numbers [53] ... 33

Table 8. Gap Assessment – Learning Outcomes for Course Curricula [68] 42

Table 9. Gap Assessment – Software Quality Prediction Models in Research Studies ... 46

Table 10: Research Variables and Relevance ... 59

Table 11. Descriptive Statistics – Research Variables .. 67

Table 12. Research Variables – Data Quartiles .. 68

Table 13. Research Variables – Multiple Regression Results (95% C.I.) 69

Table 14. Relative Importance of Key Attributes in Predictive Modeling 70

Table 15. Classification Algorithm Performance Summary ... 71

xi

LIST OF FIGURES

Figure 1. Software Project Delivery Life Cycle Framework .. 5

Figure 2. Objectivity of Metrics and Research Scope .. 6

Figure 3. Sample Dashboards - Release Predictability and Defects 11

Figure 4. Sample Dashboards - Stakeholder Engagement and Work Effort 12

Figure 5. Areas of Literature Review ... 15

Figure 6. Automation in Key Software Project Management Activities 19

Figure 7. Planned Versus Actual Software Schedules [17] .. 21

Figure 8. DeLone and McLean’s Success Model [33] ... 26

Figure 9. Mining Software Research Spanning 5 Years – ... 31

Figure 10. Select Data Entities from SRDA ... 37

Figure 11. SRDA – Existing Research – 10 Year Period, 2007 to 2016 38

Figure 12. Review of 266 Research Papers Using OSS vs. PSS Artifacts 39

Figure 13. Influence of Top Software Management Practices on Software Quality 44

Figure 14. Process for Research Study Execution .. 49

Figure 15. Data plan - Key Activities and Preliminary Outcomes 51

Figure 16. Data analysis - Key Activities and Preliminary Outcomes 52

Figure 17. Research Data Management Plan .. 53

Figure 18. SRDA SourceForge Query Form .. 54

Figure 19. Key Data Relationships for Select Data from the SRDA 55

Figure 20. Key Steps to Derive Key Data Relationships from the SRDA 57

Figure 21. Research Variables and Classifications ... 59

xii

Figure 22. Sample 3D Data Plot –Sample Size of 18,019 Software Packages 63

Figure 23. Mean Time Between Software Release Dates and Defects Logged 64

Figure 24. Density Map – Group Rank and Number of Downloads 65

Figure 25. Relationship between Group Rank and Number of Downloads 66

Figure 26. MLP – Neural Network Diagram to Predict Software Rank 72

Figure 27. Root Cause Analysis - Select Review of Research Papers 73

Figure 28. Improving Software Management through Research Transferability 74

Figure 29. Pasteur’s Quadrant Model of Scientific Research ... 75

Figure 30: Applied Research Framework (ARF) for Research Transferability 78

Figure 31: ARF – An Illustrative Example of Using the SRDA 81

1

CHAPTER 1: INTRODUCTION

While the origins of computational methods and programming date back a few

centuries or more, the discipline of software engineering originated in 1968 [1]. The

ISO/IEC/IEEE Systems and Software Engineering Vocabulary (SEVOCAB) defines

software engineering as “the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the

application of engineering to software.”1 Software engineering is therefore far more than

computer programming; it is both the science and art of applying mathematical and

computational logic to create a defined technological capability within resource and time

constraints.

Numerous industrial and academic oriented studies have examined software

development performance and prediction models for more than fifty years [2].

Theoretical and practice-oriented experts recognize several reasons which contribute to

sub-optimal performance. While much of the failure can be attributed to industry,

business climate, and other external forces, further research is required to determine

methods that can improve aggregate results over time. Experience and research show that

current software project management practices use far more subjective methods than

objective data analysis to assess project progress [3].

The goal of this research study is to demonstrate concrete ways to increase objectivity

in the management of software engineering. The scope of research has been aligned to

address technology management issues specific to the software development process.

Research objectives are established at the onset of the study; they guide the study to focus

1[1] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body of Knowledge (SWEBOK (R)): Version 3.0: IEEE

Computer Society Press, 2014.

2

on examining software quality predictors, establishing objective metrics, and

recommending revised methods for improved software technology management. A

thorough literature review is conducted to examine macro factors impacting software

management, identify software quality attributes, establish research data validity, and

discover improved software management and predictive modeling opportunities.

Research study variables are established, classified, and analyzed using data extracted

from an open source data archive exclusively developed for software research purposes at

the University of Notre Dame. Quality prediction modeling opportunities are examined

using the research variables with select machine learning enabled models trained and

tested with archive data for optimal predictive performance. An applied research

framework is introduced to enable the transfer of research outcomes from academia to

industry. Finally, the framework is explored as a mechanism for employing predictive

models within the industry to sustainably improve software project outcomes.

3

CHAPTER 2: RESEARCH SCOPE

2.1. Motivation and Research Questions

Although software engineering as a discipline has been around for nearly half a

century, failure rates of large projects have remained high with no significant

improvements reported over time. While it is generally accepted that several external

factors have an influence on the management and execution of software technology

projects, there needs to be a thorough examination of internal software project data that

can be leveraged at appropriate times during the project life cycle. Moreover, many

organizations use overly subjective (i.e., qualitative) analysis to improve project

execution by relying heavily on the personal experiences of project managers. Biases

associated with personal experiences often result in continued performance and quality

variances and missed targets. Technological advances in software development now

allow for real-time data to be utilized for rapid analysis and infusion into project

management processes. This research aims to discover viable predictor(s) of software

project execution quality and their potential usefulness in improving processes. More

specifically, the research questions examined in this study include the following three

categories:

1. Predicting the quality of the software project execution process.

a. Is software defect data a good predictor of overall project quality during

the execution stage of the project?

b. What attributes of software are better predictors than others? Are there

other reliable predictors?

4

c. Can organizations predict software release dates based on these

predictors? Is it feasible to develop a learning-based, predictive model for

practical application by software management professionals?

2. Increasing the objectivity of software project management.

How can objective data from past experiences with software management

offer improvements to future projects using quantitative analysis?

3. Improving methods used by software project management processes.

How can project management tools and techniques be modified to

incorporate quantitative methods and predictive models for use software

technology management professionals?

2.2. Software Life Cycle and Performance Measures

The study of software project life cycles has interested academia and industry since

the advent of the software engineering discipline. Figure 1 depicts a project life cycle

framework that was developed by the primary researcher of this research study based on

collective industry experiences. The framework is also supported by the report IEEE

Standard for Developing a Software Project Life Cycle Process published by the IEEE

Computer Society in 2006 and follows the guidelines set forth [4].

5

Figure 1. Software Project Delivery Life Cycle Framework

While there are numerous metrics that can be measured during each stage of the

software project life cycle, the scope of this study is limited to the execution phase of

software projects. Several factors influence the management and execution of software

technology projects. Some of these elements are known a priori during the project

planning phase. Others may require real-time data gathering and analysis during project

execution [5]. These real-time project data elements are often neglected, misclassified, or

otherwise misinterpreted during the project execution phase. The results are higher risk of

delays, quality problems, and lost opportunities. The primary purpose of this research

study is to discover and analyze the impact, role, and level of influence of various project

related data on the execution and ongoing management of software technology projects.

This research study is focused on measuring and predicting project execution variables

6

which are typically subject to high levels of uncertainty. Measures that are highly

subjective or reflect the quality of the product instead of the quality of the process and

may be of interest to other researchers are not in the scope of this study. Figure 2 shows

the areas of focus within the project execution stage for measurement and predictability

related variables in the context of this research study.

Figure 2. Objectivity of Metrics and Research Scope

– Software Project Execution Phase

Sample metrics have been depicted for each stage of project execution. The level of

objectivity inherent in each of these metrics has been assessed accordingly. Metrics in the

early stages of execution are measured with a higher level of subjectivity, i.e., lower

relative objectivity, and are therefore considered less reliable and difficult to measure.

Early stage metrics are out of the scope of the study as they are typically useful in

7

determining the size, complexity, and features of the software product and not the quality

of the development process itself. Typically, project managers use these metrics to define

the project and baseline estimates against the triple constraint model of time, cost, and

product scope. During the early and formative stages of project execution, i.e., design and

build, the need for predictability is relatively low, the level of discovery is relatively high,

and consequently, project execution risk is relatively transparent and easier to assess in

these stages. In contrast, the metrics in the later stages of the project execution phase, i.e.,

test and deployment, can be more actionable by helping to identify and mitigate risk

otherwise not visible to PM’s. Also, it is important to note that while, for example, the

testing stage, is a widely accepted validation approach in industry, it is often ad-hoc,

expensive, and unpredictable [6]. Some earlier studies suggest that the testing phase by

itself could constitute 50 percent more of the total development cost [6, 7].

Metrics pertaining to the later stages of project execution demonstrate varying levels

of objectivity with respect to their measurement and predictability. Examples of metrics

that demonstrate lower levels of objectivity include the number of use cases, validity of

test scripts, test case accuracy, requirements traceability, deployment plans, resource

availability, and utilization. These metrics are product and organization defining, less

reflective of the software development process, and can, therefore, be difficult to

quantify. Such metrics are considered out of scope for this research study. However,

there are a group of key metrics that is relevant to the later stages of project execution

which provide greater objectivity and ease when measuring quality. They are also process

-indicative by their very nature. Sample metrics in this group and in the scope for this

research study include release dates, number/type/severity of defects, defect resolution

8

rates, developer and user engagement, software community rankings, and usage and

download rates.

This research study fully recognizes the overriding premises of software development

and management processes and in no way attempts to minimize the complexities and

interdependencies of the subjective and objective aspects of project management that are

required to produce quality software under the triple constraint model. The goal is to

increase the objectivity within the software project management process where possible,

making it more pragmatic and effective. While Figure 2 depicts sample metrics that are in

and out of scope and draws attention to the later stages of project execution, the analysis

also suggests interdependencies and the iterative nature of processes that transcend all the

stages of execution including the earlier stages of software product definition and build.

This research study leverages open source software (OSS) data available from the

public domain. Though sometimes difficult and complex, leveraging OSS data can

provide a viable platform for research if a fit-for-purpose database environment is created

that addresses specific measurement related requirements [3]. It is essential to create an

environment that provides a normalized dataset and one that can reduce the layers of

abstraction that would otherwise hinder research efforts. In this manner, certain insights

that are developed after the analysis of OSS data can be applied to privately and

commercially developed software projects.

In order to ensure feedback, there should be quantifiable improvement measures for

various system states over time. The goal of this research is to add a novel body of

knowledge to the technology management discipline by exploring one or more of the

modern-day predictive modeling techniques.

9

PM’s who manage software development projects have an increasingly arduous task.

Often managers receive their inputs from technical leads who are more technically

oriented. When assessing software projects, PM’s perform their duties according to the

limitations of their capabilities and competencies. PM’s have the need to contend with the

limitations of resources made available to them such as human capital and project

management tools. Furthermore, PM’s tend to follow common and industry-tested

practices within their organizations.

With this motivation in mind, the secondary purpose of this research is to examine

how conventional project assessment processes can be enhanced by using quantitative

methods utilizing real-time project execution data.

2.3. Research Goals and Potential Contribution

This study aims to make measurable and implementable contributions in the area of

software technology management. Specifically, the goals of this research study are to:

1. Discover and analyze the impact of various project related data on ongoing

software technology management projects.

2. Improve upon conventional project assessment processes by using quantitative

methods, which utilize real-time project execution data. In particular, the study

aims to:

a. Enhance the predictors of software project execution.

b. Improve the methods used by software project management processes.

c. Develop a framework to increase the objectivity of software project

management.

10

Based on previous work conducted using OSS data, this study aims to extend the

research so that findings may be leveraged by future software project management

professionals under appropriate conditions and parameters. By operationalizing these

findings, practitioners can reasonably expect to improve the predictability and reliability

of their software projects. For example, software project quality and predictability related

dashboards that could be created and used by software PM’s to assess more objectively

the quality and predictability of outcomes from the later stages of the software project

execution phase of active projects. Conceivably, real-time data could be leveraged from

projects and instantly benchmarked with historical data from similar projects to

determine quality and predictability attributes. Insights provided by these types of

dashboards could be valuable for mitigating project risk. PM’s who traditionally manage

their projects by overly relying on subjective project information, can use such data-

based insights as early warning indicators giving more time for corrective actions to be

performed before it is too late. Figure 3 and Figure 4 depict representative sets of sample

dashboards. In Figure 3, the Release Predictability dashboard shows predictability

attributes for software release while Defects dashboard shows defect information that

provides indicative information about the quality of the development process currently

underway on a project:

11

Figure 3. Sample Dashboards - Release Predictability and Defects

Figure 4 depicts another pair of sample dashboards representing stakeholder

engagement and work effort being expended during the current stage of the project. The

first dashboard shown in Figure 4 provides objective information regarding the level and

type of engagement signaling potential team concerns, interest concerns, and the quality

of testing underway. This can be of crucial importance to the unsuspecting PM

responsible for managing a project. The second dashboard shows how resource time is

utilized during the current stage of the project’s execution phase signaling potential risks

related to skill set gap, product development, productivity, and resource backlog:

12

Figure 4. Sample Dashboards - Stakeholder Engagement and Work Effort

2.4. Limitations and Constraints

While this research study strives to add an incremental and novel value to software

project management, by no means will this research study be terminal or decisive with all

possible attributes, parameters, or factors. For instance, as noted earlier, numerous

subjective factors influence project performance, such as organizational culture, team

dynamic, competitive environment, timing, and resources. These macro factors will not

be the subject of this research. In addition, there can be several other quantitative factors

that influence project performance in various ways that are out of the scope of this study

such as code performance, code complexity, code modularity, and hardware related

parameters. While these variables could have an impact on software product quality, this

13

study focuses solely on software process quality. Therefore, discovery efforts for this

study will be limited to process related attributes.

This research study is also bound by a few key constraints that are anticipated. Unless

grant funds are awarded, research efforts for this study are not expected to be funded

from external sources. When possible, university resources and the author’s personal

resources are relied upon exclusively to complete this research study. Ample opportunity

is expected for further research that extends beyond the scope of this study including the

identification of additional quality predictors, the development of industry-specific

quality predictive models, and the automation of methods to incorporate research data

into project management tools.

14

CHAPTER 3: LITERATURE REVIEW

While the review of existing research continues towards the advancement of this

research, the goals of this study were further explored with a thorough literature review.

Specifically, research goals for this study have stemmed from the following two areas of

literature review:

1. Past researchers have specifically acknowledged an opportunity for further

research in a specific area based on their own published research.

2. A gap within existing research has been observed (i.e., there was no evidence

found of significant progress made in the particular area of concern).

The following benefits from this research project were realized as a result of the

literature review:

1. Shape and refine this research study by increasing the added value and ensuring

that the research goals are novel and achievable. A thorough literature review

provides clarity, conviction, and a pragmatic approach provides continuing

guidance and validity to this research study.

2. Provide an interesting opportunity to review past academic research to identify

gaps and refine research goals that can maximize intellectual merit while

minimizing implementation complexity.

3. Provide substantive background, context, and motivation for this research study.

15

4. Develop and validate assumptions regarding required data and an appropriate

approach to research – the selection of right data is an important component for

this research study.

5. Validate data sources and discovery of criteria for data source selection – selected

data requirements will require the proper data sources that are easy to access,

supported by a credible research community and tested by academic researchers.

6. Provide insights on the selection of statistical and modeling methods to use when

analyzing the data to create the best prediction model within the scope of this

study.

The research goals of this study are developed and refined based on a comprehensive

review of literature in specific areas of software management. Numerous academic

publications, authored by experts in their respective fields, are reviewed and categorized

in the following areas as shown in Figure 5:

Figure 5. Areas of Literature Review

Macro Analysis

Assess broader level issues affecting
software industry and management

challenges

Research Data Validity

Confirm validity of OSS business
models and repositories in research

Software Quality

Attributes

Identify metrics and measurements of
software success and quality

Software Management

and Predictive Modeling

Review project management practices
and predictive modeling opportunities

Research
Objectives

16

3.1. Macro Analysis

While the global information technology industry has grown to over $3.5T dollars

including a software segment that generates in excess of $310M revenues annually. In

just over half a century, the practices of software technology management have been

severely stressed [8]. As is the case with most disruptive technologies that experience

high growth rates, the software industry has experienced extreme challenges that have

resulted from the hyper the growth rate. Numerous studies, surveys, and assessments are

routinely conducted by organizations and independent third parties to better understand

and alleviate the challenges. This study starts by examining software project failure rates.

In 2013, the CHAOS Report published by The Standish Group showed an alarming

rate of 79% for projects that either failed or where challenged [9]. Failed projects were

defined as projects that are canceled at some point during the development cycle.

Challenged projects were defined as projects that are completed and operational but over-

budget, over the time estimate, and/or that offer fewer features and functions than

originally specified. Successful projects were defined as projects that are completed on

time and on budget with all features and functions as initially specified. The Standish

Group has been publishing the report for more than thirty years.

Analyses show high failure or challenged project rates with the root cause centered

squarely on lack of adequate planning, readiness, and assessment methods. Mandal and

Pal establish, with their research, that more than 50% of all Information Technology (IT)

projects become “runaway” projects [10]. These projects exceed budgets and schedules

while failing to deliver the expected outcomes [10-12]. Furthermore, project results based

on the triple constraint model of time, cost, and scope become even more concerning.

17

Table 1 depicts that most of the projects exceed on two of the most important constraints:

time and cost:

Table 1. Project Performance Statistics [9]

Year
Successful

(A)

Challenged

(B)

Failed

(C)

Unsuccessful

(B + C)

Time

Overrun

Cost

Overrun

Undelivered

Scope

1994 16% 53% 31% 84% N/A N/A N/A

1996 27% 33% 40% 73% N/A N/A N/A

1998 26% 46% 28% 74% N/A N/A N/A

2000 28% 49% 23% 72% N/A N/A N/A

2002 34% 51% 15% 66% N/A N/A N/A

2004 29% 53% 18% 71% 84% 56% 36%

2006 35% 46% 19% 65% 72% 47% 32%

2008 32% 44% 24% 68% 79% 54% 33%

2010 37% 42% 21% 63% 71% 46% 26%

2012 39% 43% 18% 61% 74% 59% 31%

For years 2004 to 2012, Table 1 shows no significant annual improvement when

examining software project performance for these two constraints (i.e., time and cost)

even while scope remains generally under delivered. Project success seems to be

arbitrarily achieved by the reduction of project scope rather than improving performance

using other drivers [5]. These findings should raise a significant concern for software

technology managers. The implications are sub-optimal aggregate productivity, increased

risk of missing project expectations, and a greater allocation of project resources than

planned. Software quality predictors have been studied by several researchers in the past.

In one such study, the analysis of an OSS repository, SourceForge, showed that software

quality indicators such as the number of downloads, rank, operating system, language,

and days-to-build can, in fact, be examined to predict outcomes [13].

Lee, Kim, and Gupta also point out abysmal statistics on OSS projects [14]. They

note that most of the success with large OSS projects can be attributed to backend servers

and internet-related software. The number of failed or dormant OSS projects is notable.

18

They base their findings on data extracted from SourceForge and confirm that most OSS

projects have ended in failure. An alarming 58% of the projects do not advance beyond

the alpha developmental stage, 22% remain in the planning phase, whereas the remaining

17% remain in the pre-alpha phase, and some become inactive. The authors point out

similar results which have been reported by the World Bank which cites an excess of

50% failure rates for OSS projects [15]. With such results and claims, additional research

on software process improvement and related investments appears justified.

A study conducted over one hundred assessments as part of a research project to

better understand software productivity [16]. The findings on the performance levels of

managers and technical staff are summarized in Table 2:

Table 2. Comparison of Management and Technical Performance Levels

Management

Activities
Sizing Fair

Estimating Poor

Planning Fair

Tracking Poor

Measuring Poor

Overall Poor

Technical

Activities
Analysis Fair

Design Fair

Coding Good

Reviews Poor

Testing Good

Overall Fair to Good

A comparison of projects using automation with those that do not use any

automation in their assessment processes is shown in Figure 6 below.

19

Figure 6. Automation in Key Software Project Management Activities

A correlation between the presence or absence of project management automation

and practical results on software projects has been observed. 40% of large software

projects having 2,000 function points or more miss their anticipated delivery dates by

more than six months and about 15% miss by more than 12 months. In addition, some

large projects are canceled and not delivered at all [16]. When either automated planning

or automated estimating methods are used, approximately 12% of software projects miss

their scheduled dates in excess of 6 months and about 5% were delayed by more than 1

year. When both methods are used, less than 5% of software projects miss their delivery

dates by more than 6 months, and only 1% were delayed by more than 1 year. A

secondary benefit is also observed. Since automated estimating and planning tools

provide a much stronger grounding, the use of these tools prevents arbitrary efforts to

compress schedules without rationale.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sizing

Cost estimating

Quality estimating

Planning

Tracking

Measuring productivity

Measuring quality

Assessing

Percent of Projects

M
an

ag
e

m
e

n
t

A
ct

iv
it

y

With Automation Support No Automation Support

20

Table 3 shows that larger software projects have a higher risk of cancelations or

major delays when compared to smaller projects:

Table 3. Probability of Selected Outcomes [17]

 Early On Time Delayed Canceled

1 FP 14.68% 83.16% 1.92% 0.25%

10 FP 11.08% 81.25% 5.67% 2.00%

100 FP 6.06% 74.77% 11.83% 7.33%

1000 FP 1.24% 60.76% 17.67% 20.33%

10000 FP 0.14% 28.03% 23.83% 48.00%

100000 FP 0.00% 13.67% 21.33% 65.00%

Average 5.53% 56.94% 13.71% 23.82%

In his paper, Jones further highlights the risk of client conflict, lost credibility, and

risk of litigation resulting in immense financial stress to organizations because of the

delays [18]. The author confirms that the most frequent complaint about software projects

from executives in the private and public sectors is that the larger the software system,

the greater the delays experienced with delivery schedules. Figure 7 depicts this problem

in terms of function points (FP) and delivery schedule delays:

21

Figure 7. Planned Versus Actual Software Schedules [17]

A study conducted in 2001 of 1,000 U.S. software projects further substantiates the

notion that on average, larger projects experience greater delays. Software development

schedules depicted in Table 4 are in calendar months (in decimal units) for 6 size ranges

and 6 categories of software projects: end-user development; management information

systems (MIS), outsource projects (OutS), commercial software (Comm), system

software, and military software [19]:

Table 4. Average Software Schedules (in Calendar Months)

 End-User MIS OutS Comm System Military Average

1FP 0.05 0.10 0.10 0.20 0.20 0.30 0.16

10FP 0.50 0.75 0.90 1.00 1.25 2.00 1.07

100FP 3.50 9.00 9.50 11.00 12.00 15.00 10.00

1000FP 0.00 24.00 22.00 24.00 28.00 40.00 27.60

10000FP 0.00 48.00 44.00 46.00 47.00 64.00 49.80

100000FP 0.00 72.00 68.00 66.00 78.00 85.00 73.80

22

Table 4 highlights some potential nuances among software variants in various yet

representative categories. As supported by the data, larger and more complex software is

deployed by military organizations, core systems, and those having their own intrinsic

commercial value in the market place. This is also highlighted by the longer delivery

schedules to allow for longer testing cycles for these categories of software. For example,

if these categories of software are contrasted with software that serves the end-user

community, the data show that end-user software is generally of lower complexity and

consequently shorter delivery timelines. It is also reasonable to assume that this is due to

simpler requirements and perhaps lower risk perceived by sponsoring organizations

catering to individual end-user needs than those catering to larger constituents with

expansive software utility and more at stake.

In a study that examined 250 large software projects over a 9 year period, software

management practices were examined to determine patterns inherent in project failures

and successes. The study confirmed a few patterns which are of particular relevance to

this research study and provides added impetus [20]:

1. The majority of schedule and cost overrun related failures occur in the testing

stage caused by poor project quality control, management of defect resolution,

and planning for the remaining stages of the project. These factors are not as

easily predictable in advance by the project management team. This naturally

substantiates premise of this research study which is to focus metrics that most

closely correspond to the later stages of the project execution phase – testing and

deployment.

23

2. Most project failures trace back to poor project planning while successful project

planning methods tend to be highly automated. This declaration further supports

the need to improve automation tools for the software PM in particular and is,

therefore, a focus area of this research study.

3. Successful projects have a higher defect resolution rate when compared to

unsuccessful projects. The study found that successful projects experience 4.0

defects per function point and remove about 95% before deployment.

Unsuccessful projects experience 7.0 defects per function point and remove only

about 80% before deployment.

4. Projects use one or more project management tools with varying degree of

proficiency and sophistication. However, most of these tools were built for other

applications aside from software engineering and do not offer any estimating

capabilities, quality control features, or measuring of efficiency issues (e.g. defect

removal efficiency).

It must be recognized that organizations work towards managing projects to

maximize business benefit while minimizing the risk of related financial losses. Since

delayed schedules can often result in increased cost, larger projects are of particular

concern to sponsoring organizations since they tend to have longer delivery schedules

and therefore an increased risk of experiencing substantial delays. By some measures

and reports, software project failure costs and its associated implications are staggering:

• A report by Roger Sessions in 2009 stipulated that cost of IT project failure as a

percent of GDP to be as follows: $6,180B (world), $1,225B (USA), $3.9B (New

Zealand), $200B (UK), and $110B [21]. The report further shares that IT project

24

failure costs have surmounted to over $500B per month and the problem is getting

worst. While these numbers represent IT aggregate numbers, the percent

attributed to software related failures is lower yet still staggering [21].

• 80% of technology projects actually cost more than they return [22].

• Up to 80% of budgets are consumed fixing self-inflicted problems [23].

 As discussed earlier, there continues to be a large need and associated benefit of

using greater data-based automation to manage software engineering projects. In fact, the

need and benefits of doing so are universal in engineering and have also been confirmed

for other types of projects showing that less-performing projects present significantly

lower system utilization levels than the other projects [24]. Another study by Raymond

established that the use of robust project management information systems is

advantageous to PM’s. The study confirmed improvements in effectiveness and

efficiency in conducting managerial tasks related to project planning, scheduling,

monitoring, and control. Improvements in productivity were also observed in terms of

timelier decision-making [25]. This study also acknowledged that benefits often extend

beyond the PM as an individual to the performance of the overall project. Such benefits

included improved budget control, meeting of deadlines, and addressing technical

complexity with greater ease than without having such systems in place [25].

Previous research substantiates the need for improved predictive modeling tools and

techniques to alleviate challenges that result in project delays such as quality, number of

defects, and complexity of software. This call for action is a key motivator for this

research study.

25

The study of the software industry and the associated management challenges would

not be complete without some important notes on factors that make projects in this

industry different from other industries such as construction, automotive, scientific

exploration, and medicine. Many of the techniques of general project management can be

applied but software projects have certain characteristics that make them different. Most

software is inherently invisible, generally complex, virtually changeable, and easily

conformable [26-31]. Software project management is a process of making visible that

which is invisible. Unlike a bridge being constructed, software progress is not

immediately visible. Software products are more complex when measured per unit of

currency, than other engineered artifacts. The ease with which software can be changed is

usually seen as one of its strengths. However, this means that where the software system

interfaces external systems, it is expected that software can be changed to accommodate

when necessary. Software systems are likely to be subject to a high degree of change.

This results in higher pressures on software project management practitioners resulting in

greater variability of outcomes. Software project managers need to trade-off

characteristics, preferences, and quantities while balancing requirements, expectations,

perceptions, opportunities, and risks [32]. Real-time decision-making frameworks and

techniques are crucially important as they can help alleviate these challenges.

3.2. Software Quality Attributes

As stated previously, many researchers have utilized a vast amount of OSS data

which is publicly accessible through various software repositories. These OSS

repositories can be used to gain insights into the software development process, its

management, and its effectiveness. In this research study, OSS data can be used to

26

understand and develop improved measures of success for software projects. Measuring

project success is useful for the effective and reliable assessment of ongoing projects.

Measuring success is also extremely useful when software is monetized in both the OSS

and PSS communities. Software project sponsors can only evaluate the return on

investment if success criteria can be identified and subsequently measured. Over the

years, software success has been measured in numerous ways and with varying levels of

sophistication. A commonly cited model for Information Systems (IS) success was

developed by DeLone and McLean [33] and is shown in Figure 8. This model suggests

six interrelated measures of success: system quality, information quality, use, user

satisfaction, individual impact, and organizational impact:

Figure 8. DeLone and McLean’s Success Model [33]

While the model above is considered reasonable and complete by many researchers,

the literature review also suggests several challenges when trying to measure results for

some of the variables referenced in the model. Crowston et al. describe each measure of

success and identify key indicators [34]. They also admit to potential issues for each

based on their research especially as it relates to OSS, the primary data source of interest

for this study. Table 5 below summarizes these findings and claims:

Table 5. Summary of Measures of Success, Indicators, and Potential Issues

Measure of Success Indicators Potential issues

System and Code quality (e.g. understandability, • Code quality is

27

Measure of Success Indicators Potential issues

Information

Quality

completeness, conciseness, portability,

consistency, maintainability,

testability, usability, reliability,

structure, efficiency),

Documentation quality.

generally good in OSS

so the measure may

prove to be of minimal

value – in software

engineering code

quality does not imply

software project

execution quality.

• Data related to code

quality in OSS

repositories may not

be adequate.

• Many of the quality

indicators are highly

subjective in nature

making it difficult for

researchers to code

accurately.

User Satisfaction User ratings,

Opinions on mailing lists,

User surveys.

• Surveys are the only

reasonable way of

ascertaining this

measure; surveys are

often subjective and

based on a non-

random sample (i.e.,

users who take the

time to volunteer a

rating within the OSS

community).

Use Use (e.g. Debian Popularity Contest),

Number of users,

Number of downloads,

Inclusion in package distributions,

Popularity or views of information

page,

Package dependencies,

Reuse of code.

• The best measure of

the four identified by

DeLone and McLean’s

Success Model.

• Used by many studies

as an indicator of

success.

• Especially relevant for

OSS.

• In research, must

adjust for the

phenomena that highly

successful (and stable)

software may not be

downloaded too often

28

Measure of Success Indicators Potential issues

as there would be no

need by users to do so.

Individual and

Organization

Impacts

Economic and other implications. • Impact measures are

difficult to define for

OSS and PSS projects;

they are even harder

for OSS due to the

difficulty in defining

the intended user base

and expected

outcomes.

Usage and user satisfaction related measures are easiest to measure with the least

amount of issues that can be anticipated as shown in Table 5 and therefore highlighted in

Figure 8. Based on these findings, many researchers have settled on relating software

success to the level of use of the software over periods of time [14, 34]. It has been

acknowledged that software measurement is required for practical software process

improvement (SPI) to ensure improvements are actually addressing the correct issues

[35]. SPI has been in the spotlight in industry and academia in recent years. Additional

bodies of research and publications have focused on practical SPI. Despite the increased

focus placed on SPI by researchers, change management professionals, quality assurance

managers, process owners, and researchers continue to be challenged in defining success

achieved in SPI [35-37]. After conducting an independent literature review, Abrahamsson

appropriately lays out SPI success dimensions and differentiates between “hard” and

“soft” measures with a relative estimate of difficulty in attainment in Table 6 below [38]:

29

Table 6. SPI Success Dimensions

Success Dimension

Types of Measurements

Relative Estimate

Difficulty

Project Efficiency Hard measures (e.g. work effort) Low

Impact on the Process User Soft measures (e.g. satisfaction,

ease of use; work morale; level of

excitement, teaming,

collaborative practices used)

High

Business Success Hard measures (e.g. productivity) Moderate

Direct Operational Success Hard measures (e.g. defect ratio) Moderate

Process Improvement Both (experience database) High

As with software metrics, one can reasonably assume that SPI related soft measures

such as satisfaction levels, morale, and level of excitement are more difficult to measure

with sufficient objectivity than hard measures such as level of productivity and defect

ratios. Soft measures present the greatest challenges when measuring their direct impact

on SPI. Such measures have increased subjectivity and may not be easily attributable to a

specific SPI related variable (e.g. individual morale can be influenced by many

variables).

Equally important to using proven predictors is the notion of establishing metrics that

can be tied to processes being addressed programmatically as part of the software

engineering process. Catal suggests that metrics based models are so important that they

must be frequently revised (i.e., real-time) while the project is underway – perhaps even

rebuilt from scratch each time the process or the organization experiences a change [39].

Other researchers have also suggested that evaluation and prediction are two separate

learning schemes using historical defect data to predict defects for new data [40]. Song,

Shepperd, and Liu note considerable variations in the performances of predictors across

30

data sets suggesting that a simple search for the “best” predictor may prove to be

pointless unless the research is targeted towards answering a very specific question [40].

At this time, there is an important and final point to be made regarding the dangers of

measurement and software metrics in general. While DeMarco classically reminds us that

in order to be able to control a process or a product, measurements are a definite

prerequisite, he equally reminds us that it can be very expensive to collect “good” metrics

and even more expensive if “bad” ones are inadvertently collected and used [41].

However, the author goes on to support his claim that software metrics are worth it in the

end as they can help the organization improve processes and focus management attention

on the real drivers to course correct when necessary. Dekkers and McQuaid submit that

measurements can enhance or misguide software projects [42]. The authors explicitly

state that it behooves software project management spend the required time on the people

and cultural issues that ultimately can provide lasting remedies. These findings support

the motivation and premise for this research study and guide the efforts accordingly. This

research will focus on hard measurements (i.e., easier to measure, more objective, and

more quantifiable measures) in favor of subsequent management action required to

course-correct projects by adjusting the levers in softer aspects (i.e., culture, environment,

and change management aspects) that impact projects. The social science aspect of timely

management decisions in these softer areas of software project management has been

amply studied and conjectured by academia and industry practitioners. However, a gap

appears to be in the use of the hard measures in real-time while project activities are

underway to drive timely management intervention to achieve course-correction before

failure occurs. This represents a real opportunity for this research study.

31

3.3. Research Data Validity

One of the greatest challenges experienced when researching the quality of software

management is the reluctance of organizations to share unbiased data related to their own

software management practices. In their research study, Tripathi et al. reviewed 187

research studies that span over a period of 5 years (2010 to 2014) and found that 91.9%

of them rely solely on OSS datasets and only 14.4% involve university-industry

collaboration [43]:

Figure 9. Mining Software Research Spanning 5 Years –

Study of 187 research papers, 2010 – 2014

 Subsequently, Sureka et al. reported that more than 50% of the researchers which

they surveyed had reported difficulties in obtaining industry data on software and

indicated that this was a major impediment to greater university-industry [44]. OSS

communities have helped to address this research data gap to some extent [13, 44-48].

Many researchers and practitioners have acknowledged that there is an abundance of OSS

data available and some of these are proven and tested as reliable inputs for conducting

unbiased research in related areas. Large OSS communities of actively engaged

contributors have documented the features of numerous software products and various

32

other key process related attributes that help researchers understand the quality of

software development and management practices. Proper due diligence to appropriately

consume OSS data can be facilitated to determine track record, performance, and

maintenance aspects of software [49].

The validity of software engineering research and supporting sources of data

continues to be investigated by researchers. By recognizing the benefits and biases of

various data sources, researchers can better improve research quality and address the

issues of validity given the differences between proprietary and open source software

development. Mathieu et al. [50] establish a key connection between OSS creators and

entrepreneurs by examining OSS creator motivations across 3 entrepreneurial

dimensions: the opportunity, the organization, and the business models. They find

similarities as both constituents exclusively aim for value creation. With regards to OSS-

based business models specifically, the authors find that they fall into one of 5 categories:

donations or gifts from users, enhancements of preexisting products, software sold for

commercial interest, services-based offerings, and services-based partnerships. This

finding supports modern day market place realities of OSS and explains how globally

based open entrepreneurs have self-organized themselves initially and virtually to

ultimately create enhanced, mega-sized commercial software adaptations leveraging the

open source movement. Open source software (OSS) and related communities provide

product offerings that compete head-to-head with proprietarily source software (PSS)

across most emerging software categories, including cloud-based operating systems (e.g.

Linux) web server technology (e.g. Apache HTTP Server), database engines (e.g.

MySQL Database), Web 2.0+ development environments (e.g. PHP), and widely adopted

33

internet browsers (e.g. Firefox) [50-52]. In fact, OSS provides ample opportunity for

generating revenue and reducing certain costs and is therefore heavily leveraged by most

enterprises on a global basis. Table 7 shows relevant statistics and summarized results of

a recent OSS survey (2016) by BlackDuck Software Enterprises, an independent

authority on OSS and has been surveying the market annually for the past 10 years:

Table 7. OSS by the Numbers [53]

 Statistic

Percent of enterprises globally run on OSS 78%

Percent of enterprises that do not rely on OSS 3%

Estimated number of active OSS projects 180,000+

Percent of enterprises contributing to OSS 65%

Percent increased use of OSS within the enterprise 65%

Top reasons cited for using OSS Increased efficiency, improved

interoperability, and greater

innovation

Emerging technologies leveraging OSS Cloud computing components,

big data, content management,

databases, operating systems,

development tools, and mobile

technologies

Notable examples of such OSS-based collaborative efforts include LINUX, Apache,

MySQL, and the Java programming language.

In the category of large distributed projects, proprietary software systems (PSS) and

OSS is very similar in nature. However, PSS teams generally operate with a greater

degree of privacy, resulting in weaker datasets that are a barrier for research. This is

especially true of software fault prediction and related data that has been experienced by

researchers in the past [54]. OSS data, on the other hand, can provide a richer data set full

of insights that are transferable when trying to understand PSS management processes.

Many organizations leverage the possibilities of increased globalization to widely

34

distributed teams in an effort to maximize PSS team productivity. Such software

development practices mirror those of the open source [55].

A separate body of research has theorized extensively on organizational learning in

the context of software development. Organizational learning is a prerequisite for long-

term, continued adoption of software quality predictive models. In order for predictive

models to be effective and sustaining, sponsoring organizations must be willing to learn

and they must have a robust knowledge management process already in place. Classic

research studies such Raymond’s Cathedral and Bazar [56] explain that OSS and PSS

communities have vastly different cultures in the way in which they release software and

their fear threshold for rejection by their peers. The author claims that, by nature, OSS is

served by iterative communities who strive for small incremental wins whereas, in

contrast, commercial vendors (considered as part of the PSS community) are expected to

strive for increased perfection than the frequency of release, defect resolution, and

predefined software quality goals. The implication is that it is the commercial aspect

which drives PSS delivery, not the individuality and free spirit which drives OSS

community members. More generally, the authors seem to imply that intrinsic motivators

behind the actions taken by key actors are perceived as being different for the two

communities being compared. Israeli and Feitelson [57] highlight the dominating

indicators of software success as being market share in the case of PSS and the number of

downloads in the case of OSS. However, the findings of this body of existing research

need to be tempered appropriately by recognizing that the main purpose being strived for

is singular in either case; it is to develop good quality software products which command

high rates of adoption by the target set(s) of users. A second argument can be made that

35

organizational learning happens within both OSS and PSS communities as long as the

appropriate tools are made available to capture the right data, organize the information,

and engage community members adequately. Third, from a practical perspective, OSS

and PSS communities increasingly co-mingle and work in cooperation with each other

since many of their members also benefit from having joint membership of both

communities.

Huntley, while elaborating on the same topic, credits Raymond’s contrast of the two

communities [58]. The author provides a strong argument and a perspective – while the

individual OSS developer operates under minimal supervision and is not confined by lack

of rigor and process, collectively these individuals are highly effective and are able to

perform and create quality products over periods of time. The OSS communities achieve

this by employing rigorous learning processes using specialized tools at each stage of the

process (e.g. use of formalized bug tracking and version management processes). Some

of these tools can be used to learn more about software quality processes which can have

implications that are transferrable to both OSS and PSS projects.

Most primary research projects are bounded by the quality, availability, and

accessibility of relevant data. This study is no different. SourceForge provides a large and

adequate set of accessible data on OSS development projects. This has made the world’s

largest repository a highly valuable data source for research [59]. Even still there have

been concerns expressed about the accuracy and validity of data available in

SourceForge. One of the key concerns that have been raised is the quality of the data that

is generally available as some of it is self-reported by project owners and administrators

[59]. Lerner and Tirole [60] provide a reasonable explanation that alleviates this concern.

36

The authors explain that project leaders use the data to recruit new developers, attract

new users, and solicit donations for their projects. As such, any deliberate entry of

inaccurate data regarding projects will be naturally avoided by those who are involved

with OSS development on SourceForge. Software evolution researchers have found it

acceptable to use OSS data repositories for certain types of research [44]. Notably, select

Lehman’s laws [61] of software evolution specifically pertaining to measuring continuing

software change and growth, also established measures of software quality in the PSS

domain, were deemed to be applicable to OSS [62].

The SourceForge repository was selected as the primary source of research data for

this study. The criteria used for selection include relevancy, accessibility, reliability,

sufficiency, validity, and longevity. SourceForge originated in 1999 and was the first

provider of free and open source software (FLOSS). Over the years, the independent

company was owned by many other larger ventures such as VA Software, Dice, and

BizX LLC. SourceForge remains the industry default OSS repository and boasts having

industry-leading tools, a collection of 430K+ projects, 3.7M+ registered users, 41.8M+

customers of software, and 4.8M downloads per day [63]. Earlier in the research effort,

there were concerns that the repository’s vastness may prove to be its limitation. After

further research, a solution was discovered. Exclusively for research purposes, the

SourceForge Research Data Archive (SRDA), located on the University of Notre Dame

data servers was created in 2003 after a group of researchers received several grants from

the National Science Foundation (CISE IIS-Digital Society & Technology program under

Grant ISS-0222829 and by the CISE Computing Research Infrastructure program under

Grant CNS-0751120) [64].

https://sourceforge.net/directory/

37

The SRDA assimilates and normalizes a collection of OSS data directly from

SourceForge on a monthly basis [46]. This practice has continued until September 2014

after which the data was frozen and has been made available for use for further research.

Selected data feeds from 2003 to 2014 are licensed and provided by SourceForge to

SRDA developers for research consumption. Over 100 researchers worldwide have used

this data archive for research purposes because of its accessibility, ease of use, and

reliability [64]. The data is made available in a relational database format which can be

queried using standard SQL procedures. It is anticipated that the following data entities

from SRDA will be used in support of this research study. Detailed data relationship

diagrams are supplemented in Appendix A section of this report. The key data entities are

shown in Figure 10 below:

Figure 10. Select Data Entities from SRDA

The SRDA has served as an established and reasonably reliable source of data used

by software researchers in the past. As part of this research effort, 91 research

• Contains bugs (defects logged) for all projects on the SRDA

1. Artifact-Bugs

• Contains relationships between groups and packages

2. FRS Package

• Contains activity related to releasing software

3. FRS Release

• Contains information regarding software groups

4. Groups

• Contains select aggregate data about projects

5. Stats Project All

• Contains categories of software

6. Trove Category

• Containes relationships between groups and categories

7. Trove Group Link

38

publications that were readily accessible have been analyzed to determine the knowledge

contributions made by the studies. The analysis has been summarized in Figure 11:

Figure 11. SRDA – Existing Research – 10 Year Period, 2007 to 2016

During the past 10 years, most of the focus of existing SRDA based research has (i.e.,

82%) has been placed on better understanding OSS processes and the study of human

networks and collaboration mechanisms within OSS communities. While such research

provides valuable insights and support to this research study, there remains ample

39

research opportunity to leverage SRDA data for direct benefit to software project

management and industry practitioners. It is also evident from our comprehensive review

that existing research outcomes, while interesting and quite possibly applicable to the

software management industry, remain in academia; there have been no frameworks,

blueprints, or methods offered to aid in institutionalizing the research to help firms realize

the potential organization benefits of the research. Cumulative year-wise analysis of

SRDA based publications, publisher analysis and a detailed cross-reference table

supporting the analyses presented in this section has been included in Appendices B.1,

B.2 and B.3 respectively.

With further regard to the validity of OSS data in academic research efforts, Wright et

al. investigated 266 empirical studies and found that 49% used OSS artifacts exclusively

while only 23% used PSS artifacts for research [55]. The remainder used a custom (e.g.

derived) or a combination approach as shown in Figure 12:

Figure 12. Review of 266 Research Papers Using OSS vs. PSS Artifacts

40

Another similar claim was provided by Sureka et al. based on a survey conducted in

2015 where the authors reported that 54% of research studies used OSS data exclusively

and 9% used PSS related data solely to conduct their research [44]. The remainder of the

population surveyed used a mixed approach. The authors also found that over 77% of the

research studies surveyed reported either exclusive use of OSS data or mostly OSS data

to conduct their research.

OSS networks rely heavily on newcomers that can actively participate in the

development of software over longer periods of time. Steinmacher et al. highlight several

barriers that threaten newcomer entry [65]. In their literature review, the authors report

that the barriers to entry were largely centered on lack of social interaction with project

members, receiving timeliness of response, and good project documentation. While still

geographically dispersed and individually motivated to participate, OSS community

members must still value that they are a small part of a larger team organization that

works on a software project over a period of time. Faraj et al. [66] in their research and

Sahin [67] in his respective research work uniformly establish that teams are a primary

mechanism for accomplishing organizational work, especially on software projects. Team

building, team size, and cooperation amongst a team are critical factors in developing a

quality software project. Interestingly, these findings which suggest the importance of

quality documentation, timeliness of data, and the importance of teaming are highly

appealing to researchers contemplating the use of OSS data to study software and process

quality measures.

The literature review suggests that careful use of OSS data repositories to understand

software engineering processes can be effective, more manageable, and more reliable in

41

some cases when compared to PSS data. Research shows that there remains a unique

opportunity provided by OSS to advance the study of the software development process

and its associated quality attributes. This research study intends to utilize this

opportunity.

3.4. Software Management and Predictive Modeling

The final area of focus by the literature review has been on reviewing current

practices of software project management and predictive modeling opportunities

conducive for further research. Since this research study confirms that objective planning,

measurement, and benchmarking are largely missing in PM practices, it is important to

determine the root cause. Software management practices start at the onset of the

education process for most technical developers and are subsequently adopted by

experienced PM’s. Given this working philosophy, it is important to shift the focus from

a review of industry practices into a brief review of current academic course work related

to software engineering. Current software engineering curricula at the undergraduate

level were primarily examined. The findings were consistent and possibly a consequence

of current industry practices – there is insufficient focus being placed on up-front

planning, benchmarking, and metrics in the software education curricula. As a result,

important changes must be made to these training methods to teach future matriculated

students how to utilize experienced-based knowledge to better predict software project

outcomes. Jagtiani and Lewis [68] reported that a greater focus is required on planning

and ongoing metrics validation at our universities than evident with current practices.

Their research was based on the gaps which they identified between the learning

outcomes provided by the authoritative IEEE Software Engineering 2004 Curriculum

42

Guidelines [69] and a review of standard software engineering course content shared by

the same report. Their research summarizes the gaps in Table 8:

Table 8. Gap Assessment – Learning Outcomes for Course Curricula [68]

Summary of Intended Learning Outcomes –

Software Engineering Undergraduate Curricula

Gap Assessment:

Course Topics Coverage

1. Gaining knowledge of software engineering and issues. Planning, Metrics Required

2. Learning to work individually and in teams. Topics Adequately Cover

3. Resolving conflicts between cost, time, knowledge,

existing systems, and organization.

Planning Required

4. Designing appropriate solutions that satisfy and

integrate ethical, social, legal, and economic concerns.

Planning, Metrics Required

5. Learning to apply theories, models, and techniques to

identify problems, implement solutions and verify

results.

Planning, Metrics Required

6. Understanding the importance of negotiation, effective

work habits, leadership, and good communication.

Topics Adequately Cover

7. Learning emerging models, techniques, and

technologies as they emerge and the importance of

doing so for ongoing efforts.

Unable To Determine

Undergraduate level training on software engineering is generally in need of revision

and requires an increase in focus on theory application, models, and techniques to

improve planning, metrics, measurements, and overall predictability of software

development efforts. While defining solutions and evaluating recommendations

potentially useful to software engineering education and related processes is not directly

in scope of this research study, it is important to note the gap to a) substantiate the need

for PM training and methods in this area which is important to this study and b) identify

future opportunity for research and impact.

Since software predictive modeling is a clear objective of this study, accuracy, and

cost and schedule estimation aspects of software project management were been studied.

Estimation implies risk which is the result of recognizing uncertainties and balancing it

with benefits and utilization of organization resources. DeMarco and Lister [70] state it

43

appropriately in their book, Waltzing with Bears, when they convincingly conjecture by

stating that the only projects that are worth doing are those that come with risk and that

without any risk we may no longer expect returns. The authors remind us that while risks

are a reality, poorly developed cost and schedule estimates definitively and adversely

affect project success. 41 years ago, in 1975, Frederick Brooks [71] stated that the biggest

reason for projects to go off track is due to schedule compared to all other reasons

combined. Optimistic estimation continues to be one of the two most common reasons

for out-of-control projects [72], and cost and time-related faults are the biggest reason for

software failures in day-to-day practice [73]. Boehm also affirms the same by including

overly optimistic schedules and budgets in his list of top ten risks faced by software

projects [74]. Given the reported and repeat project failure rates reviewed earlier coupled

with previous research findings on the challenges related to estimation, it appears that

project management practices require more sustainable improvements in this area.

John et al. conducted an extensive review spanning 117 publications of past research

focused on software quality management practices [75]. The results of the review were

published in June 2016 and show the relative influence of various software management

practices over software quality. Figure 13 summarizes the results and provides

overwhelming support for the use of predictive models to drive quality:

44

Figure 13. Influence of Top Software Management Practices on Software Quality

In addition, the above research presented several key findings of particular

importance to this study:

• Project management practices that employed increased Total Quality

Management (TQM) and Capability Maturity Model (CMM) processes and

associated implementations also demonstrate increased software quality.

• Regarding the selection of software quality prediction models, multiple models

have been developed in the last several years and there is no single approach that

is applicable for all software projects.

45

• Regarding the use of software quality prediction models, most models use static

attributes such as code complexity which are not routinely measured or influenced

by the PM’s.

• Regarding the design of software quality prediction models, while process

performance-based models use quantitative management techniques to manage

the software process, such models are mostly based on regression analysis and

simulation techniques. Different algorithms, in particular, of the AI or machine

learning type, are a recognized opportunity for future research. While there are

examples of past research which have successfully incorporated machine

algorithms to predict project success in other industries (e.g., Wang et al., (2012)

use of neural networks in the construction industry [76]), greater opportunities to

extend research remain in the software industry.

• Performance characteristics of software projects continue to be largely qualitative.

• A positive correlation exists between software quality, productivity, cycle time,

and development effort. Future predictive models should use quantitative methods

to manage multiple performance characteristics.

• Because of the above two findings, the authors affirm that models for

simultaneously monitoring of quantitative and qualitative performance

characteristics are a substantive future research opportunity.

Since the development of a valuable and novel predictive model is of importance to

this research study, the research findings shared specifically by John et al. regarding the

generally limited use of machine learning in the development of such models were

further examined [75]. This research study further examined the results of the authors’

46

identification of quality prediction model based research depicted as 60% penetration in

Figure 13 by contrasting it with a list of widely accepted machine learning algorithms as

summarized by Chao [77]. Table 9 shows the gap in research with regards to the use of

machine learning models. This research study is particularly interested in examining

supervised learning and parametric based learning models (e.g., Naïve Bayesian) given

the nature of software quality attributes inherent in the research hypotheses:

Table 9. Gap Assessment – Software Quality Prediction Models in Research Studies

Type

Category

Representative

Methods

Research

Gap

Coverage

(No. of

Studies)

References

Supervised

Learning

Linear model Perceptron

Multi-layer

perceptron

Support vector

machine

Support vector

regression

Linear regression

Rigid regression

Logistic regression

Yes

Yes

No

No

No

No

2 [78], [79]

Supervised

Learning

Non-parametric

model

K-nearest

neighbors

Kernel density

estimation

Kernel regression

Local regression

No

No

No

No

6 [80], [81] ,[82], [83],
[84], [85]

Supervised

Learning

Non-metric

model

Classification,

regression tree

Decision tree-based

systems

No

No

13 [86], [87], [88], [89],
[90], [91], [92], [93],
[94], [95], [96], [97], [98]

Supervised

Learning

Parametric

model

Naïve Bayes

Gaussian

discriminant analysis

Probabilistic

graphical models

Bayesian Networks

Neural Networks

Yes

No

No

No

No

No

23 [99], [100], [101], [102],
[103], [104], [105],
[106], [107], [108],
[109], [110], [111],
[112], [113], [114],
[115], [116], [117],
[118], [119], [120],
[121], [122], [123]

Supervised

Learning

Mixed method Bagging (bootstrap

+ aggregation)

Adaboost

Random forest

Yes

Yes

Yes

3 [124], [125], [126]

Unsupervised

Learning

Clustering K-means clustering

Spectral clustering

Association rule

mining

No

No

No

3 [127], [128], [129]

47

Type

Category

Representative

Methods

Research

Gap

Coverage

(No. of

Studies)

References

Unsupervised

Learning

Density

Estimation

Gaussian mixture

model

Graphical models

Yes

Yes

0 N/A

Unsupervised

Learning

Dimensionality

reduction

Principal component

analysis

Factor analysis

No

No

1 [130]

Naïve-Bayes is widely used, simple to set up, and robust with is accompanied

with demonstrated examples in various applications such as pattern recognition [131],

medical diagnosis [132], and defect prediction [102, 133-135]. Defect prediction models

using Naïve Bayesian classifiers deliver the best prediction accuracy on public datasets

compared with models with other classifiers [102]. A key reason for the success of the

Naïve Bayesian classifier over other methods is that it combines inputs from multiple

sources in a given process. The Naïve Bayesian-based learning method is not impacted

by minor changes associated with the training data samples. The algorithm recognizes

such changes and prevents unnecessary variations in the predictive results since it polls

numerous Gaussian approximations to the numeric distributions [102]. Therefore, minor

correlations between attributes or samples in the training set within the field of software

defect prediction do not confuse Naïve Bayesian classifiers. For these reasons, Misirli et

al. successfully used Naïve Bayesian techniques as the sole algorithm to develop a

software defect prediction model and calibrated the model based on locally available and

public data [133].

More recently, in 2016 a study which evaluated different families of prediction

methods for estimating software project outcomes found that four classifiers had

relatively high performance – Random Forest, Support Vector Machines, Multilayer

Perceptron (a class of neural networks), and Naive Bayes [136]. These findings provide

48

further support and direction to this research project. However, the scope of the study was

limited as it did not provide methods by which the said prediction models can be used by

practitioners for project management decision-making.

49

CHAPTER 4: RESEARCH PROCESS

This research study has been work-in-progress since January 2014. Figure 14 shows

an overview of the process being followed to conduct this research study and to achieve

its goals:

Figure 14. Process for Research Study Execution

 The prospectus defense focused on defining the research problem, identifying

research gaps, setting research goals, creating a data plan, conducting preliminary data

analysis, and demonstrating initial results. For completing the dissertation thesis and

preparing for final defense, feedback from the prospectus defense has been addressed. In

addition, a thorough review of software PM practices was conducted and new changes to

existing methods and processes have been addressed and supporting research goals were

50

revised accordingly. Additionally, as part of completing the dissertation thesis, data

analysis was completed, results were reviewed, predictive models were developed and

validated, and implications were discussed vis-à-vis an application framework as a

suggested method for implementation of the research outcome.

51

CHAPTER 5: RESEARCH DATA

5.1. Data Plan and Expected Outcomes

This study requires careful consideration of the data and analysis to ensure the

progress towards achievement of the research goals. Figure 15 shows challenge areas,

key activities, and research outcomes for the data planning process which has been

followed:

Figure 15. Data plan - Key Activities and Preliminary Outcomes

52

Similarly, Figure 16 shows key activities and research outcomes for the data analysis

process which was followed:

Figure 16. Data analysis - Key Activities and Preliminary Outcomes

5.2. Data Management

Selection, storage, and management of research data is a crucial prerequisite for this

research study. While access to the SRDA servers was granted specifically for this

research study, integrity and availability of the data relied upon specifically by this

research study must be ensured. Furthermore, it is expected that the data archive, which

cumulatively spans 11-year period (i.e., January 2003 through September 2014), will

sufficiently serve the objectives set forth by this study as findings are expected to be

thematic and aimed at improving software quality and predictability over periods of time.

53

As the web-service provided by SRDA has the following several limitations, they must

be duly addressed to allow for research flexibility and completeness:

1. Long-running queries time out after 60 seconds.

2. The query interface does not allow for complex query definitions. Complex and

nested queries involving multiple joins and unions are not possible using the

interface.

3. Full downloads of the database are not permissible by the licensing agreement with

SourceForge.

4. Long term availability of required SRDA data is unclear.

To address the limitations listed above and to address the requirements of this

research study, the following mitigating steps were taken shown in Figure 17:

Figure 17. Research Data Management Plan

54

5.3. Data Extraction

As specified by the data management plan for this research study, the SRDA data

warehouse was reviewed for potential software and process attributes. SQL queries were

coded to extract fields that could be likely candidates for research and analysis as part of

the project. A short sample of a SQL query used for selection of data is shown below:

SELECT release_id,package_id,status_id, preformatted, release_date, released_by

FROM sf0914.frs_release r

WHERE r.release_id > 200000 and r.release_id <= 500000

Once developed, such queries are entered into the supplied query form tool as shown

in Figure 18 [64]:

Figure 18. SRDA SourceForge Query Form

55

Multiple queries were run to select the required data in small groupings to

compensate for timeouts experienced by the SRDA Web Server. To alleviate query

performance issues and to prevent web server timeout issues, a local MS Access database

has been created to serve as a holding container for the data. Appendix B lists the tables

and fields queried from and stored in the local database for further analysis. Over 9.5M

records of data were leveraged for this research study before building out the data

relationships that use inner joins that result in substantially increased the record counts in

resultant tables. Specific field mappings were selected as they are suitable candidates for

the data analyses required to test the research hypotheses. Figure 19 below shows the key

relationships between the tables which are leveraged by the research study. These

relationships are important and allow for accurate querying of the data and for building

secondary relationships:

Figure 19. Key Data Relationships for Select Data from the SRDA

5.4. Data for Analysis

After conducting a thorough qualitative and quantitative analysis of the data from

SRDA, relevant observations are being shared in this research paper. Specifically, the

study set out to discover predictors which can offer enhanced levels of assessment for

software quality and project execution. At this stage of the research, the project has

56

focused on identifying early candidates for software attributes that can be good predictors

of success with respect to quality measures based on the data collected. Defect attributes

can also be in scope for future research and can be based on the data set used for this

research study. There is enough evidence based on past research literature review and

analysis of viable OSS data archives to demonstrate that OSS can provide valuable

historical information about software projects to benefit software project management

and improve project quality.

Key relationships amongst the relevant data entities in the SRDA have been identified

and established. Figure 20 shows the steps required to build these relationships are

important to calculate important software project attributes and to determine

interdependencies such as the average time between software release dates and the

number defects logged, group ranking, and the number of downloads:

57

Figure 20. Key Steps to Derive Key Data Relationships from the SRDA

Confirmed by the literature review, it is reasonable to define software success by the

two key attributes as researchers have concluded in the past:

1. Software ranking is given by the community and for the community it serves.

2. Software usage which best identified in OSS communities as the total number of

downloads.

In addition, we define a third calculated attribute:

3. Average days of defects logged relative to the release date. This derived attribute

is being introduced specifically by this research study to address a gap. In order to

develop a software quality predictive model usable in real-time, static quality

58

attributes such as the first two attributes above are not enough as they only

account for a posteriori result.

By introducing a third aspect focused on measuring release date accuracy,

a learning model can be envisioned to better predict the accuracy of an upcoming

software release date established by software management organizations by

leveraging additional information. Software management can improve the

accuracy of estimated release dates by examining the rate of software defects

logged just before an upcoming release date or shortly after a premature software

release.

5.5. Research Variables

Based on the analysis done thus far, we determine that it is feasible to develop a data

store by leveraging OSS data archives to facilitate research towards improving software

process quality and to develop predictive models. Key relationships can be established

amongst relevant SRDA data to calculate the mean time between software release dates

and number defects logged, group rank, and number of downloads. This can be of crucial

importance to software managers looking for more empirical data to support decision

making and time frame estimation efforts during project execution.

Figure 21 shows the research variables that are directly or indirectly relevant to this

study:

59

Figure 21. Research Variables and Classifications

Table 10 below provides a detailed explanation for the research variables and

their relevance to this study:

Table 10: Research Variables and Relevance

Variable Classification Type Research Relevance

Message

Posts

Independent Whole

Number

Represents the total number of messages generated by individuals

within the communities. This number indicates message forum

penetration by measuring the level of activity evidenced on the

community forum(s) related to the software package. This variable

shows the level of community engagement regarding the software.

A higher number is more favorable and demonstrates greater

engagement.

Page views Independent Whole

Number

Represents the total number of individual hits on the web page that

serves the software and its related information to the community.

This variable shows the level of interest in the software. Similar to

message posts, a higher number of page views is more favorable

and shows greater engagement.

Defects,

patches,

and support

requests

Independent Whole

Number

Represents an aggregate sum of three distinct request types: defects,

patches, and support requests. Such types of requests indicate issues

having occurred during the development process. Although it is

preferred that a higher number of issues are identified and resolved

before the release of software, a higher number also indicates

process quality issues.

60

Variable Classification Type Research Relevance

New

requests

Independent Whole

Number

Represents the total number of changes or revisions to software that

have been identified during the test or execution stages and were

consequently not intended or specified during the requirements

gathering stage. A higher number indicates process quality issues

since, ideally, new changes should not be uncovered during the test

and execution stages of the project.

Average

days defects

logged

before

release date

Independent Rational

Number

Represents a calculated variable and indicates the arithmetic

average number of defects reported (i.e., defects logged) relative to

the release date. As release date accuracy is of paramount

importance to the anticipating user community, release date

accuracy has been highly regarded as a quality indicator of the

software development process. Release date prediction occurs with

a degree of uncertainty and is based on several quantitative and

qualitative factors. A viable quantitative factor which can be used to

predict the accuracy of release date is the average number of defects

logged for the software prior to the estimated release date.

Typically, software communities operate under a premise that

software will be released as soon as it is estimated to be ready or

usable (i.e., with the average number of defects logged being as

close to zero as possible). Therefore, from a historical data

perspective, we can use the measure of “the average number of days

during which defects are logged before the release date” to assess

the accuracy of the release date itself. The average number of

defects logged can be a positive number indicating that, on average,

more defects were logged before the release date of the software. A

negative number indicates that, on average, more defects were

logged after the software release date. The closer the number is to

zero (i.e., minimal skew towards a positive or negative number), the

higher the accuracy of the release date.

Number of

downloads

Dependent Whole

Number

Represents a variable which has been traditionally considered as an

overall indicator of OSS usability and usefulness. A higher number

of downloads is always more favorable.

Release

date

Dependent Date

Value

Represents the date on which the software is made generally

available (GA).

Group rank Dependent Whole

Number

Represents the rank ordering which the SourceForge library

calculates for every software package in its repository. The library

uses sophisticated algorithms to calculate the rank which is

generally regarded as a measure of software success within the

community [137, 138]. A lower rank is more favorable.

61

CHAPTER 6: RESULTS AND IMPLICATIONS

Software development is comprised of a series of knowledge-based activities

involving discovery, coding, and usage of knowledge that then translates into viable

systems solutions. Based on the acceptance of this reasonable premise, a strong

connection between knowledge-management processes and software development

processes in organizations can be established. As such, Meso et al. examined if software

engineering methodologies actually impact the knowledge management processes in

organizations and the quality of systems design from a cognitive-theory perspective

[139]. The authors confirmed that information systems development is a knowledge-

intensive activity and therefore is influenced by the quality of the knowledge

management processes employed in support of the activity. This shows that that effective

knowledge management processes yield high-quality software solutions and that

learning-oriented organizations can indeed benefit from new knowledge which then can

lead to better outcomes from future software projects. Therefore, it is rightfully expected

that the implications from this research study including any predictive models developed

and shared can be of paramount importance to such organizations.

After a predictive model is developed, tested, and finalized, the resulting implications

will be shared. Specifically, it is expected that several implications will be highlighted by

the final research report:

• The external validity of the predictive model will be examined. Once each of the

predicting variables has been identified, each of them will be tested against OSS

and PSS drivers for relevance, applicability, and reliability. The predictive model

62

will be tested for performance against 3 distinct OSS software case studies (i.e.,

specific software examples) that can demonstrate reliable data within the

SoureForge based SRDA.

• The context of usefulness and applicability of the model will be examined. The

model should be easy to understand and use. The model must incorporate

quantifiable methods of assessment.

• The expected benefits of the model must be explained clearly in the report.

• Any constraints and limitations of the model must be acknowledged clearly and

completely in the report. Practitioners must be able to easily personalize the

constraints and limitations shared by the report in the context of their own or other

software projects.

In this section of the report, we discuss the results of the data analysis and research

implications.

6.1. Software Quality Attributes

The progress made towards achieving the goals of this research project is

encouraging. While further analysis towards testing attribute relationships continues and

the development of an improved software quality predictive model is being further

developed, preliminary results of the analysis of 3 key attributes are being shared in this

paper. Specifically, we examine relationships between group rank, number of downloads,

and number of defects relative to release dates (i.e., release date accuracy). A random

sample of 18,019 software package releases from the SRDA was selected for the

analysis. A 3D plot depicted in Figure 22 provides a visual representation of the data

which also supports the findings shared below:

63

Figure 22. Sample 3D Data Plot –Sample Size of 18,019 Software Packages

The 3 axes shown in Figure 22 demonstrate the relationship between 3 variables:

“group rank”, “number of downloads”, and “average days defects logged before release

date”. The trend line visually depicts the correlation and the clustering of project data

points around the axes. A few important observations and associated implications are

being shared below:

1. The accuracy of software release dates is related to how well the software is

ranked by the OSS community and is, therefore, an indicator of software development

process quality. We first examine the axis in Figure 22 labeled, “average days between

64

release dates and defects logged”. The relevance of this research variable has been

described in Table 10 in the previous section of this paper. As discussed, we expect the

value of this variable to be closer to zero for software that exhibits higher accuracy of

release dates. A graphical representation of this phenomenon is represented in Figure 23

for the sample dataset. Overall, the results meet expectations:

Figure 23. Mean Time Between Software Release Dates and Defects Logged

Furthermore, we can presume release date accuracy to be a predictor of software

engineering management success. We expect projects with higher accuracy of release

dates to be more favorably ranked by the communities which they serve (i.e., they exhibit

lower group rank values which are more favorable than higher values). For this regard,

the results shown in Figure 22 are consistent with our expectations. Communities react

more favorably towards software that demonstrates greater accuracy of release dates.

Release date accuracy can be considered as a viable indicator of software project

execution quality based on our random data sample.

65

2. Community engagement and user perception are important predictors of

software interest software adoption. Figure 22 demonstrates that software group rank

and number of downloads are inversely correlated. A density plot and a scatter plot

diagram represented by Figure 24 and Figure 25 visually contrasts the data points related

to the two axes to further confirm the correlation:

Figure 24. Density Map – Group Rank and Number of Downloads

66

Figure 25. Relationship between Group Rank and Number of Downloads

Analysis of the sample data shows well-ranked software experiences high usage

download rates. Since ranking is derived based on OSS community engagement and is a

measure of the quality of software development, this research finding will be of special

interest to software management and practitioners. This finding is highly encouraging,

provides further impetus for research, and provides additional motivation for predictive

modeling.

3. Software that is more favorably ranked and is properly timed for release

experiences higher usage rates. Figure 22 shows evidence of a larger cluster of data

points (i.e., correlation) with favorable group ranking, accuracy of release dates, and

number of downloads. Users seem to rank software more favorably and download it more

times presumably for intended use when the accuracy of software release is high. Users

perceive software that has been timed for release properly as a measure of software

67

readiness. Software which is ready for release is also generally free of issues and

unanticipated changes.

6.2. Descriptive Statistics – Research Variables

Variables shown in Figure 21 were determined to be high contenders for software

process quality prediction and therefore have been selected for this research study. Table

11 provides a statistical summary of the selected research variables:

Table 11. Descriptive Statistics – Research Variables

OSS metadata, whether user input or calculated, is global in nature and therefore

high variance has been expected and observed. The large data ranges for each variable

are in line with expectations as software is generally either highly regarded or otherwise

discarded in its own category. For these reasons, each variable has been further

normalized by attributing the associated data into quartiles. We use the resulting data

quartiles shown in Table 12 as a basis for the predictive modeling aspects of this research

study:

Descriptive

Statistics

Group

Ranking

Total number

of downloads

Average Time of

Defects (bugs)

Relative to

Release Date

to_rel_date

Number of

Page Views

Number of

Messages

Posted

Total

Defects

Patches

Support

Requests

Total

New

Requests

Mean 5088.64 186403.84 614.51 699719.33 179.95 116.79 153.25

Standard Error 26.26 4907.06 4.52 18722.62 9.38 3.33 4.12

Median 4869.00 3884.00 434.19 26892.00 5.00 7.00 11.00

Mode 225.00 0.00 1162.08 6084854.00 3.00 0.00 0.00

Standard Deviation 3524.91 658698.16 606.98 2513227.88 1259.30 446.87 552.43

Sample Variance 1.2E+07 4.3E+11 3.7E+05 6.3E+12 1.6E+06 2.0E+05 3.1E+05

Kurtosis -0.95 16.67 4.61 88.58 442.49 48.12 42.24

Skewness 0.34 4.19 1.77 8.18 19.22 6.55 6.13

Range 14619 3932779 5432 33604019 31905 4346 5313

Minimum 0 0 0 0 0 0 0

Maximum 14619 3932779 5432 33604019 31905 4346 5313

Count 18019 18019 18019 18019 18019 18019 18019

68

Table 12. Research Variables – Data Quartiles

The group ranking variable represents a viable indicator and reflects the perception of

the software communities. Since group ranking demonstrates the most favorable Kurtosis

and Skewness than the other two candidates identified as dependent variables for this

study (i.e., downloads and avg_of_timing_of_bugs_relative_to_rel_date). This variable is

selected for predictive modeling to serve as an illustrative example.

6.3. Multiple Regression Model – Research Variables

As there are several predictor variables, the group ranking variable is used again as

the dependent variable to conduct a multiple regression analysis. The results are shared in

Table 13:

1 Very Low - 1,768 - 673 - 164

2 Low 1,769 4,869 674 3,884 165 434

3 High 4,870 7,852 3,885 31,040 435 893

4 Very High 7,853 14,619 31,041 3,932,779 894 5,432

1 Very Low - 3,390 - 3

2 Low 3,391 26,892 4 5

3 High 26,893 192,791 6 35

4 Very High 192,792 33,604,019 36 31,905

1 Very Low - 1 - 2

2 Low 2 7 3 11

3 High 8 39 12 55

4 Very High 40 4,346 56 5,313

Data

Quartile

 Total New

Requests

Rank Downloads

AvgOfTimingOf

BugRelDateTime

Page Views Msgs Posted

 TotalDefectsPatches

SupportRequests

69

Table 13. Research Variables – Multiple Regression Results (95% C.I.)

A multiple correlation coefficient (R) of 0.83 demonstrates that the six predictor

variables combined are highly correlated to the group ranking assigned by the software

communities. The coefficient of determination (R2) demonstrates that the six predictor

variables, when combined, can explain 70% of the variance in group ranking. The F-test

and Significance F (p-value) of the overall model shows statistically significant results

using a 95% confidence level for ANOVA. From the results of the multiple regression

analysis shown in Table 13, the regression equation to demonstrate prediction can be

represented as follows:

𝒈𝒓 = 𝟒. 𝟖𝟓 − 𝟎. 𝟔𝟒 (𝒅𝒍)– 𝟎. 𝟎𝟓(𝒂𝒗𝒈𝒕𝒊𝒎𝒆)– 𝟎. 𝟎𝟑 (𝒑)– 𝟎. 𝟎𝟖(𝒎) + 𝟎. 𝟎𝟒(𝒕_𝒅𝒑𝒔) – 𝟎. 𝟏𝟖 (𝒕_𝒏𝒓)

The regression equation highlights that group ranking is indeed negatively correlated

to the six predictor variables by varying degrees. The total number of software downloads

has the maximum impact to how the group ranks the software followed by total new

requests for changes prior to release, the level of engagement as evidenced by the number

Regression Statistics

Multiple R 0.83

R Square 0.70

Adjusted R Square 0.70

Standard Error 0.62

Observations 18019

ANOVA

df SS MS F Significance F

Regression 6 15591.62 2598.60 6868.19 0

Residual 18012 6814.90 0.38

Total 18018 22406.53

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 4.85 0.02 3.11E+02 0.00E+00 4.82E+00 4.88E+00 4.82E+00 4.88E+00

Download-quartile -0.64 0.01 -9.17E+01 0.00E+00 -6.55E-01 -6.27E-01 -6.55E-01 -6.27E-01

AvgTime-Quartile -0.05 0.00 -1.29E+01 3.92E-38 -6.20E-02 -4.57E-02 -6.20E-02 -4.57E-02

page_views-Quartile -0.03 0.01 -4.80E+00 1.62E-06 -4.59E-02 -1.93E-02 -4.59E-02 -1.93E-02

msg_posted-Quartile -0.08 0.00 -1.76E+01 7.24E-69 -8.87E-02 -7.10E-02 -8.87E-02 -7.10E-02

Total_D_P_S-Quartile 0.04 0.01 3.10E+00 1.95E-03 1.35E-02 6.01E-02 1.35E-02 6.01E-02

Total_Nreq-Quartile -0.18 0.01 -1.57E+01 3.23E-55 -2.04E-01 -1.59E-01 -2.04E-01 -1.59E-01

70

of message posts and page views for the software. The average time of defects logged

relative to release date and total number of defects logged have some impact on how

software is ranked albeit less than the other predictor variables considered by this study.

 Results of multiple regression analysis and ANOVA analysis at 95% confidence

interval shows the relative importance of the various metrics in predictive modeling for

group rank and downloads as follows:

Table 14. Relative Importance of Key Attributes in Predictive Modeling

6.3. Towards Building and Validating a Predictive Model

This study explores the use of Artificial Intelligence (AI) technology involving select

machine-learning algorithms to develop a simple, easy to understand, and easy to use

predictive model. The Waikato Environment for Knowledge Analysis (Weka) software

(version 3.8.1) was leveraged for this study. Weka is a suite of machine learning software

written in Java and was developed in 1993 with university collaboration. It is a fully

supported, research-based, graphical, and widely adopted open source platform.

Developers have actively continued to enhance the software with new algorithms and

improved user interfaces since its inception [140].

Nine established machine learning algorithms were selected and implemented using

the Weka software with the sample data from the SRDA data source. The selection was

71

guided by the literature review and the analysis summarized vis-a-vis Table 9. Detailed

results of the model build and training data validation are provided in Appendix C.3.

Weka 3.8.1 Machine Learning Algorithm – Results. Summary of performance has been

provided in Table 15:

Table 15. Classification Algorithm Performance Summary

The following noteworthy observations are being shared after examination of the

model results:

1. The sample of 18,019 projects was randomly split with 66% or 11,893 projects

used for model development and the remainder of the data or 6,126 projects were used

for model validation.

2. Actual model fit and reliability was observed to be moderate to good based on the

selection criteria used in this study. Random forest, meta-bagging, and J48 decision tree

were among the best-performing algorithms. Classification accuracy (i.e., correctly

classified instances), a chance-corrected measure of prediction versus actual class (i.e.,

Kappa statistic), receiver operating characteristic (i.e., ROC), precision, and root mean

squared error (i.e., RMSE) were the key factors determining performance. While

Weka ML Algorthm Results

Sample 18,019 Projects

66% Model / Test

Random

Forest

Meta

Bagging

J48

Decision

Tree

Decision

Table

K-Nearest

Neighbor

Multi-Layer

Perceptron

Iterative

Classifier

Naïve-

Bayes

AdaBoost

M1

Correctly Classified Instances 78.65% 78.57% 78.42% 77.51% 76.97% 73.08% 67.42% 63.50% 45.82%

Incorrectly Classified Instances 21.35% 21.43% 21.58% 22.49% 23.03% 26.92% 32.58% 36.50% 54.18%

Kappa statistic 0.7154 0.7143 0.7123 0.7001 0.693 0.6412 0.5656 0.5135 0.2757

Receiver operating characteristic 0.95 0.946 0.936 0.94 0.938 0.617 0.881 0.859 0.692

Precision 0.79 0.791 0.788 0.781 0.778 0.063 0.672 0.626 0.292

Mean absolute error 0.1376 0.1484 0.1493 0.1858 0.1909 0.1802 0.2243 0.202 0.2974

Root mean squared error 0.2653 0.2696 0.2764 0.2833 0.2897 0.3074 0.3297 0.3567 0.3856

Relative absolute error 36.69% 39.56% 39.81% 49.54% 50.92% 48.04% 59.82% 53.86% 79.30%

Root relative squared error 61.27% 62.26% 63.84% 65.43% 66.89% 70.99% 76.15% 82.38% 89.05%

Total Number of Instances 6126 6126 6126 6126 6126 6126 6126 6126 6126

Model build time (secs) 2.13 1.52 0.37 0.94 0.01 793.71 6.18 0.07 0.14

Model test time (secs) 1.37 0.38 0.06 0.19 128.18 0.07 0.08 0.38 0.02

72

important for real-time and industrial application, the time to build and the validation of

the model against training data were treated as secondary factors.

3. Simpler algorithms such as Naïve-Bayes as well as the more complex deep

learning, neural network based multi-layer perceptron (MLP) experienced suboptimal

performance on a relative basis. Figure 26 shows the neuron complexity depicted by

the run-time, graphical output from Weka based, on the MLP model build and test

parameters executed:

 Figure 26. MLP – Neural Network Diagram to Predict Software Rank

6.4. Research Transferability

Current state industry practices highlighted by project failure rates and supporting

academic literature demonstrate poor transferability of research outcomes. Furthermore,

minimal automation has been leveraged by sponsors of project assessment related

73

processes within the industry. This is especially true of quality, productivity, and

estimation related processes [19, 24, 25, 141]. To better understand the current state, a

further review of past research work was conducted. Twelve representative studies from

the past were further analyzed. The studies spanned across related disciplines including

information systems, knowledge management, and software management. Collectively,

these papers utilized varying research methods and considered a total of 1,877 research

studies, cases studies, IT organizations, and open source projects [142-153]. A root cause

analysis has been conducted and the results have been mapped and shown in Figure 27:

Figure 27. Root Cause Analysis - Select Review of Research Papers

Figure 27 shows that while relevant research is conducted in academia,

transferability, and consumption of research is limited. Furthermore, tools and methods

lack sufficient training and automation, which, if addressed, can enable practitioners to

utilize research outcomes.

74

Industry practitioners can only benefit if research outcomes can be translated easily to

their own respective environments. As acknowledged earlier in this work, research

transferability has been challenged in the software engineering management field.

Improved methods and tools must be explicitly developed which utilize proposed models

to improve software project management practices. Figure 28 shows a framework that

systematically incorporates research outcomes such as those discussed in this paper to

real-time, scalable, and practical application:

Figure 28. Improving Software Management through Research Transferability

To improve software project execution results, academic research without clear

methods to adapt and apply the outcomes in a straightforward and sustainable manner is

of minimal value to practitioners. As affirmed earlier, for any study related to technology

sustainability, the practical application of methods is required. Due diligence must be

done with respect to the managerial and behavioral aspect which helps to confirm

research validity and necessitates action for subsequent follow-up [142]. Consequently,

every research must translate into application in a straight forward and practical manner.

To understand this better, we briefly start by reviewing the classic work of Louis Pasteur

which helps bridge the gap between basic research and applied research. Pasteur's

quadrant shown in Figure 29 is a classification of scientific research projects that seek

75

fundamental understanding of scientific problems, while also having an immediate use

for society [154]:

EBP = evidence-based practice, PBE = practice-based evidence.

Figure 29. Pasteur’s Quadrant Model of Scientific Research

We presume that software practitioners remain interested in applying research to

achieve improved execution results. Often is the case when academic research deals with

the problems without an adequate conduit to the industry it aims to serve. Pasteur’s

Quadrant analysis suggests that research for knowledge’s sake is contrasted with

invention – purely towards creating something new whereas engineering research must

combine utility and knowledge simultaneously.

Sustainable application of research is only possible if the limitations of past research

efforts are adequately addressed and a clear mechanism for implementation is provided to

the practitioners. Business leaders do not have time to conduct quality research; they rely

76

on academic and research professionals who can neutrally develop insights based on

using scientific methods coupled with a synthesis of real-world data. The question to

ponder is who takes the responsibility to develop a clear mechanism for implementation

to build real-world tools and techniques that are adaptable, flexible, and fully exploit the

research outcomes? The answer to this question depends on another question which is

largely philosophical – which stakeholder needs it the most, the researcher or the

practitioner?

6.5. Developing an Applied Research Framework (ARF)

There are many ways to achieve the goal of adapting traditional research methods to

ensure greater industry application as it relates to improving software project execution

quality. In this section of the paper, we share an illustrative example which utilizes OSS,

the SRDA research data archive, and predictive modeling opportunities suggested earlier

in the paper.

 A closer examination of the proposed rationale behind the reasons that inhibit

sustainable application of research reviewed earlier and shown in Figure 27 reveals the

following:

1. Organizational learning is required in order to transfer research knowledge into

action.

2. Key metrics must be defined and tracked with the sponsorship and engagement

from leadership.

3. Specific tools and techniques to facilitate the use of research outcomes are

required to accompany outcomes for firms to realize their benefits.

4. Consistency and scalability must be maintained across the entire process

77

5. A business process must be adapted, on-site, to leverage the tools and techniques

as designed to maximize their effectiveness.

Most research conducted is based on a specific need in industry or academia or a gap

in existing research. The research process traditionally includes the selection of a

research method, data collection, and related tools, qualitative or quantitative analysis,

and the formulation of specific research outcomes. For successful application, the issues

highlighted in Figure 27 must be addressed. Notwithstanding one exception, our literature

review did not find adequate support towards methods that can aid the transfer of

research outcomes to actionable steps which organizations can embrace out-of-the-box

for information systems development. The noteworthy exception was a 1987 research

study which loosely described how measurement of information systems can be achieved

using the financial services sector as a case study. The report concluded that information

systems research should follow five sequential steps: performance assessment and

consistent measurement approach, performance and importance ratings using factors,

correlation of performance to ratings, action plans with prioritization in line with

findings, and finally, adjusting the process based on on-going reviews. While the

research study marked a clear step in the right direction towards improving research

transferability, the study does not address specific tools, framework, or examples on how

to achieve results and the authors note future opportunities to extend the research further

[155].

Based on our findings, we have proposed a revised research model in Figure 30

referred to as the Applied Research Framework (ARF) which focuses on ensuring

sustainable application of research in industry:

78

Figure 30: Applied Research Framework (ARF) for Research Transferability

The framework has been conceptualized for adoption within the software

management industry although it can adapt for external use. The framework introduces

three crucial additions to the traditional research model. The suggested revisions are

required for long term sustainable adoption of research by practitioners:

1. Creating Industry Alignment. It is imperative that all research aimed towards

adding value and remaining transferrable to industry commence with a full understanding

of key business needs, performance outcomes, and business drivers. This is particularly

important to the software industry where success and outcomes are not always defined

consistently as discussed earlier in this paper. Metrics are rarely used in component-based

software engineering efforts [156]. This lack of metrics orientation inherent to the

79

industry can make matters more challenging when introducing the concept of measurable

research outcomes. Nevertheless, researchers must align their methods, data, and results

to the specific needs of the industry which they aim to serve or at a minimum for a subset

of the industry (e.g. one or more organizations in the industry). Explicit alignment is

required between the organization conducting the research and organization(s) owning

the industrial use case towards which the research is aimed. The best way to achieve this

is through the development of key performance measures which are aligned between the

two parties. Very often this is recognized but not practiced. Past research has found that

many times when firms engage with researching universities more formally, they do so

with varying agendas, to gain early access to innovative techniques without a realistic

way to quantify the benefits. Hence the motivation for creating a business case with

specific metrics is deemed unrealistic and often neglected [157]. These challenges must

be overcome at the onset. Researchers must be involved directly at some capacity with

external stakeholders to help develop the value proposition for the research efforts. At the

onset of any study, metrics are necessary as they can serve as guideposts for all research

efforts. In an earlier section of this paper, Figure 2 serves as an illustrative example of

how metrics-based research can be aligned with business requirements to support

research efforts. From a practical standpoint, the scope and influence of research should

be agreed to by business and research stakeholders a priori. This has not been common

practice in the area of software engineering management.

2. Institutionalizing Research Outcomes. Creating mechanisms for the specific

application of research is perhaps the most meaningful of the revision areas proposed by

the framework. Research outcomes must come with a set of tools, techniques, or specific

80

instructions for practitioners to be able to put into use and for organizations to embrace

the net contributions of the research. Only then can they be successfully institutionalized.

Often this will include a set of tools, techniques, and sometimes business processes (or

recommended practices). Also, since learning and knowledge management can be

difficult for organizations to embrace consistently given changing business dynamics

[149], any automation or learning mechanisms for implementing the research outcomes

that can be suggested by researches can only improve the probability of successful

transferability of research into the desired industry segment(s).

 In an earlier section of this paper, we discussed past research that leveraged the

SRDA as a key data source. Specifically, we discussed the value and the limitations

related to the application and institutionalization of such research by software

management as an example. We now extend the SRDA example by applying the ARF to

develop a revised research method that includes several key components that can

substantially increase the chances of business adoption. The illustration in Figure 31

shows the modified method which was developed:

81

Figure 31: ARF – An Illustrative Example of Using the SRDA

3. Conducting Industry Follow-Up. Once organizations can institutionalize

research outcomes, researchers should be encouraged to conduct regular follow-ups to get

feedback and provide support by suggesting revised methods to address change

management related challenges. Furthermore, industry follow-ups can provide new data

that can enable future research opportunities.

In continuation of the software metrics illustrative example shown in Figure 2 and

after steps 1 through 3 shown in Figure 31 are completed in the process, each in-scope

82

metric can be measured based on data collected by the firm. Results can be analyzed and

new data can enable additional research until the process is refined and material benefits

are realized. Only then can a particular phase of research be deemed complete.

Admittedly, there is a strong caveat to our revised model; researchers must have

the required resources including funding in order to conduct the new steps that have been

introduced by the model. Without the required resources, many research efforts fall short

and are never completed. Sustainable research is iterative, long-term, and incremental by

its very nature. As long as research interest remains and access to required resources is

possible, all research aimed at improving industry methods must be approached

holistically as depicted by the framework.

83

CHAPTER 7: FUTURE RESEARCH OPPORTUNITIES

The further proliferation of Big Data in virtually every industry segment is expected

to be of natural consequence as data becomes further commoditized. Software

engineering management methods have lagged in leveraging data available in the open

source environment. This research study explored several tangible methods by which

open source data can be leveraged to build, validate, and implement predictive models

that are practitioner-friendly which management can leverage for decision-making.

Research presented in this paper can be extended in many ways:

1. Identification of additional software quality predictors. Five select and

independent variables related to software quality prediction were examined by this

research study in addition to three dependent variables. Some of these variables can be

further refined for future study. For instance, an aggregate number of message posts can

be further refined to examine the uniqueness of message subject threads and uniqueness

of authorship. Page views can be further delineated by viewer profile and activity.

Defects, patches, service requests, and change requests can be categorized by type and

severity. An average number of days when defects are logged before the release date can

be further segregated by software package, type, and segment. Average number of

software downloads can be analyzed by user and demographic related attributes.

Software release date and software rank predictability for initial releases versus

subsequent releases can be more closely examined. Finally, additional (new) variables

can be identified, tested, and included to enhance prediction models.

84

2. Development of new OSS metadata resources. The SRDA has served as an

example of a data archive that was built with metadata from the SourceForge OSS

repository. The successful data archive project was supported by grant funding and

sponsored a time-bound research effort. There remains ample opportunity to create other

resources similar to the SRDA that can offer greater extensibility. Additional repositories

could be designed, decoded, and mapped to create usable metadata that is timeless.

3. Development of industry-specific, application specific predictive models for

greater accuracy and relevancy. Predictive models are inherently prone to being

generic which can compromise their effectiveness in real-world application and

transferability. Predictive models are flexible and can be rendered more specific by the

inclusion of additional and specific data filters such as industry segment, types of

software package, complexity, team size, dispersion of users, and other criteria. Resultant

models can offer greater relevancy to decision-makers.

4. Selection of new machine learning algorithms. Regression and classification

models offer ample opportunities for additional study in this area. New machine learning

algorithms have been an important area of research growth. New and existing algorithms

can be further explored and optimized to further improve on the research results shared in

this paper.

5. Automation of project management tools. Industry practitioners require

leading-edge tools and techniques that offer ease of use, flexibility, speed, and accuracy.

As confirmed by the literature review, automation has been lacking in the project

management space. Seamless integration of predictive models with decision-enabling

85

dashboards, reporting, activity planning, risk planning, and other project management

tools will be of keen interest to software project managers.

Usefulness of academic research has been increasingly important to industry

practitioners. For this reason, each of the suggested areas of further research promise to

offer greater research transferability to software engineering and management processes.

86

CHAPTER 8: CONCLUDING REMARKS

All technology projects assume a certain level of execution risk during their lifecycle.

The overarching goal for technology management is to maximize risk-adjusted returns

from their technology investments. The premise of this research study recognizes the

same to be the case for software technology project management. Estimation of software

quality is of primary concern and the impetus for this research study. Over the last fifty

years, software project performance levels have consistently demonstrated lackluster

performance and therefore the need for improvement is warranted. Organizational

turnover rate, practitioner skillset, selective memory, alternative motives, and short-term

business pressures are representative of factors that contribute to poor project

performance.

Research and experience show that project assessment and evaluation techniques used

by PM’s remain largely subjective. This research presents novel methods that can be

infused in traditional software project management practices. This research is the direct

outcome of the compelling change required and one that has highlighted by the author

and supported by the abysmal status of software project execution performance within the

industry. This research also addresses the gaps evident in existing research efforts that

have been often discussed explicitly by researchers.

The goal of this research study is to suggest easy implement predictive methods

based-on real-time data which is gathered both a priori and a posteriori of project

execution. The research insights shed light on how PM’s can increase the use of

quantitative yet practical methods to assess project execution status and related estimates.

87

A few such methods based on the validation of select machine learning algorithms were

developed and extended vis-à-vis this research study. A framework for research

transferability (ARF) was introduced and explored for general use by practitioners.

As a final point and to address the inherent challenges associated with obtaining

quality and performance related data from corporate and commercially-based software,

the vast realm of OSS has been pragmatically leveraged. The insights drawn from the

data is done so with OSS and PSS applicability wherever reasonably possible.

88

CHAPTER 9: GLOSSARY OF TERMS

• Artificial Intelligence (AI) – This term refers to intelligence seemingly exhibited

by computing machines. An "intelligent" machine is a flexible rational agent that

perceives its environment and takes actions that maximize its chance of success at

some goal. The term "artificial intelligence" is applied when a machine mimics

"cognitive" functions that humans associate with other human minds, such as

"learning" and "problem-solving”.

• Business as Usual (BAU) – This term often refers to a set of activities that are of

normal course of business outside the context of the project. Typically, after a

project has been completed, business operations are revised to leverage the

outcomes of the project. Planning for BAU activity is generally required during

the project to ensure a success full transition after the completion of the project.

• Capability Maturity Model (CMM) – The Capability Maturity Model (CMM) is

a development model created after study of data collected from organizations that

contracted with the U.S. Department of Defense, who sponsored the research. The

term "maturity" relates to the degree of formality and optimization of processes,

from ad hoc practices, to formally defined steps, to managed result metrics, to

active optimization of the processes. The model's aim is to improve existing

software development processes, but it can also be applied to other processes.

Watts Humphrey began developing his process maturity concepts during the later

stages of his 27-year career at IBM. Active development of the model by the US

Department of Defense Software Engineering Institute (SEI) began in 1986 when

Humphrey joined the Software Engineering Institute located at Carnegie Mellon

89

University in Pittsburgh, Pennsylvania after retiring from IBM. At the request of

the U.S. Air Force, he began formalizing his Process Maturity Framework to aid

the U.S. Department of Defense in evaluating the capability of software

contractors as part of awarding contracts.

• Free / Libre of Open Source Software (FLOSS) – software distributed under an

open source license that permits modification and redistribution of the source

code. The "L" for "libre" is sometimes included to supplement the word "free"

and emphasize that it is referring to freedom of action, not free as in "no cost". In

fact, many companies sell open source software, such as Red Hat and Novell.

However, the end user is permitted to acquire the source code of their products,

modify it, and redistribute it. Products such as CentOS are created this way.

• Function Point (FP) – A function point is a "unit of measurement" to express the

amount of business functionality an information system (as a product) provides to

a user. Function points are used to compute a functional size measurement (FSM)

of software. Function points were defined in 1979 in Measuring Application

Development Productivity by Allan Albrecht at IBM.

• Hidden Markov Model (HMM) – A hidden Markov model (HMM) is a

statistical Markov model in which the system being modeled is assumed to be a

Markov process with unobserved (hidden) states. An HMM can be presented as

the simplest dynamic Bayesian network. n simpler Markov models (like a Markov

chain), the state is directly visible to the observer, and therefore the state

transition probabilities are the only parameters. In a hidden Markov model, the

state is not directly visible, but the output, dependent on the state, is visible. Each

90

state has a probability distribution over the possible output tokens. Therefore, the

sequence of tokens generated by an HMM gives some information about the

sequence of states. The adjective 'hidden' refers to the state sequence through

which the model passes, not to the parameters of the model; the model is still

referred to as a 'hidden' Markov model even if these parameters are known

exactly. Hidden Markov models are especially known for their application in

temporal pattern recognition such as speech, handwriting, gesture recognition,

part-of-speech tagging, musical score following,[8] partial discharges and

bioinformatics.

• Machine Learning – Machine learning, in the context of this research study,

refers to a collection of methods that can be used to devise complex models and

algorithms that facilitate predictions. This is often referred to as predictive

analytics. These analytical methods allow researchers, data scientists, engineers,

and analysts to produce reliable, repeatable decisions and results and uncover

hidden insights through learning from historical relationships and trends evident

in the data.

• Management Information System (MIS) – A management information system

(MIS) focuses on the management of information systems to provide efficiency

and effectiveness of strategic decision making. The concept may include systems

termed transaction processing system, decision support system, expert system, or

executive information system. The term is often used in the academic study of

businesses and has connections with other areas, such as information systems,

91

information technology, informatics, e-commerce, and computer science; as a

result, the term is used interchangeably with some of these areas.

• Microsoft (MS) – Microsoft (MS) is an American multinational technology

company headquartered in Redmond, Washington and develops, manufactures,

licenses, supports and sells computer software, consumer electronics, and

personal computers and services. Its best-known software products are the

Microsoft Windows line of operating systems, Microsoft Office suite, and Internet

Explorer and Edge web browsers. Its flagship hardware products are the Xbox

video game consoles and the Microsoft Surface tablet lineup. Microsoft is one of

the largest software companies in the world.

• Naïve Bayesian Classifiers – In machine learning, Naïve Bayesian classifiers are

a family of simple probabilistic classifiers based on applying Bayes' theorem with

strong (naive) independence assumptions between the features. These classifiers

are highly scalable, requiring a number of parameters linear in the number of

variables (features/predictors) in a learning problem. Maximum-likelihood

training can be done by evaluating a closed-form expression which takes linear

time rather than by expensive iterative approximation as used for many other

types of classifiers.

• Open Source Software (OSS) – Open-source software (OSS) is computer

software with its source code made available with a license in which the copyright

holder provides the rights to study, change, and distribute the software to anyone

and for any purpose.[1] Open-source software may be developed in a

92

collaborative public manner. According to scientists who studied it, open-source

software is a prominent example of open collaboration.

• Project Manager (PM) – A project manager (PM) is a professional in the field of

project management. Project managers have the responsibility of the planning,

procurement, and execution of a project, in any domain of engineering. Project

managers are the first point of contact for any issues or discrepancies arising from

within the leads of various departments in an organization before the problems

escalate to higher authorities. Project management is the responsibility of a

project manager. This individual seldom participates directly in the activities that

produce the end result, but rather strives to maintain the progress, mutual

interaction and tasks of various parties in such a way that reduces the risk of

overall failure, maximizes benefits and minimizes costs.

• Proprietary Software System – A proprietary software system (PSS) is

computer software with its source code which is copyrighted, trademarked,

patented, or otherwise unavailable to the general end-user. Software execution

rights are required to be purchased or licensed by the owner of the individual or

company that owns the rights to the software code.

• SourceForge – SourceForge is a web-based service that offers software

developers a centralized online location to control and manage free and open-

source software projects. It provides a source code repository, bug tracking,

mirroring of downloads for load balancing, a wiki for documentation, developer

and user mailing lists, user-support forums, user-written reviews and ratings, a

news bulletin micro-blog for publishing project updates, and other features.

93

• Software Process Improvement (SPI) – Software process improvement (SPI)

often refers to specifics methods that can serve as an integrated collection of

procedures, tools, and training for the purpose of increasing software product

quality or development team productivity, or reducing development time.

Software process improvement upgrades an immature organization to a mature

organization. An immature organization cannot generate a good quality product.

A software process improvement model is an approach or method or both by

which process improves and give better result rather than a normal process. By

software process improvement a better and high-quality product can be found

within budget and time.

• SourceForge Repository Data Archive (SRDA) – The SourceForge Research

Data Archive (SRDA) is a collection of OSS data and resources developed by

researchers at the University of Notre Dame from 2003 to 2014 with the sole

purpose of advancing software research. It is based on data from the SourceForge

repository and has been utilized by over 100 research studies to date.

• Total Quality Management (TQM) – A core definition of total quality

management (TQM) describes a management approach to long–term success

through customer satisfaction. In a TQM effort, all members of an organization

participate in improving processes, products, services, and the culture in which

they work.

94

 CHAPTER 10: BIBLIOGRAPHY

[1] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body of

Knowledge (SWEBOK (R)): Version 3.0: IEEE Computer Society Press, 2014.

[2] M. Shepperd, M. Cartwright, and G. Kadoda, "On Building Prediction Systems

for Software Engineers," Empirical Software Engineering, vol. 5, pp. 175-182,

2000.

[3] L. Qifeng and L. Bing, "Mining Open Source Software data using regular

expressions," in Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE

International Conference on, 2011, pp. 550-554.

[4] IEEE Standard for Developing a Software Project Life Cycle Process (1074-

2006). Piscataway, USA: IEEE, 2006.

[5] L. J. Jagtiani and N. Lewis, "The Impact of Big Data on the Management of

Business Software Technology Projects," in Faculty Research Conference,

Bridgeport, CT, 2015.

[6] A. Bertolino, "Software Testing Research: Achievements, Challenges, Dreams,"

ed, 2007, pp. 85-103.

[7] B. Beizer, Software Testing Techniques: Dreamtech Press, 2003.

[8] (2016). Gartner Says Worldwide IT Spending is Forecast to Grow 0.6 Percent in

2016. Available: http://www.gartner.com/newsroom/id/3186517

[9] "The CHAOS Manifesto, 2013: Think Big, Act Small," The Standish Report

International2013.

[10] A. Mandal and S. Pal, "Identifying the Reasons for Software Project Failure and

Some of their Proposed Remedial through BRIDGE Process Models," 2015.

[11] W. Al-Ahmad, K. Al-Fagih, K. Khanfar, K. Alsamara, S. Abuleil, and H. Abu-

Salem, "A taxonomy of an IT project failure: Root Causes," International

Management Review, vol. 5, p. 93, 2009.

[12] M. Fabriek, M. van den Brand, S. Brinkkemper, F. Harmsen, and R. Helms,

"Reasons for Success and Failure in Offshore Software Development Projects," in

ECIS, 2008, pp. 446-457.

[13] G. Tsatsaronis, M. Halkidi, and E. A. Giakoumakis, "Quality Classifiers for Open

Source Software Repositories," arXiv preprint arXiv:0904.4708, 2009.

[14] S.-Y. T. Lee, H.-W. Kim, and S. Gupta, "Measuring open source software

success," Omega, vol. 37, pp. 426-438, 2009.

[15] P. Dravis, "Open source software: perspectives for development," 2003.

[16] C. Jones, "Software management," Computer, vol. 27, pp. 10-11, 1994.

[17] C. Jones, Patterns of software system failure and success: Itp New Media, 1996.

[18] C. Jones, "Conflict and litigation between software clients and developers," IEEE

Engineering Management Review, vol. 26, pp. 46-54, 1998.

[19] J. Capers, "Applied software measurement," ed: McGraw-Hill, 1996.

[20] C. Jones, "Software project management practices: Failure versus success,"

CrossTalk: The Journal of Defense Software Engineering, vol. 17, pp. 5-9, 2004.

[21] R. Sessions, "The IT complexity crisis: Danger and opportunity," White paper,

November, 2009.

http://www.gartner.com/newsroom/id/3186517

95

[22] R. Scheier. (2001, May) Stabilizing Your Risk - Quoted from Firoz Dosani,

Mercer Consulting. Computer Word. 5-7.

[23] "IT Projects: Experience Certainty. Independent Market Research Report," in

Dynamic Markets Limited, ed.

[24] R. Pellerin, N. Perrier, X. Guillot, and P.-M. Léger, "Project Management

Software Utilization and Project Performance," Procedia Technology, vol. 9, pp.

857-866, 2013.

[25] L. Raymond and F. Bergeron, "Project management information systems: An

empirical study of their impact on project managers and project success,"

International Journal of Project Management, vol. 26, pp. 213-220, 2008.

[26] L. Sarigiannidis and P. D. Chatzoglou, "Quality vs risk: An investigation of their

relationship in software development projects," International Journal of Project

Management, vol. 32, pp. 1073-1082, 2014/08/01/ 2014.

[27] M. Jørgensen, "Software quality measurement," Advances in Engineering

Software, vol. 30, pp. 907-912, 1999/12/01/ 1999.

[28] P. Savolainen, J. J. Ahonen, and I. Richardson, "Software development project

success and failure from the supplier's perspective: A systematic literature

review," International Journal of Project Management, vol. 30, pp. 458-469,

2012/05/01/ 2012.

[29] G. H. Subramanian, J. J. Jiang, and G. Klein, "Software quality and IS project

performance improvements from software development process maturity and IS

implementation strategies," Journal of Systems and Software, vol. 80, pp. 616-

627, 2007/04/01/ 2007.

[30] B. Boehm, "Some future trends and implications for systems and software

engineering processes," Systems Engineering, vol. 9, pp. 1-19, 2006.

[31] Brooks, "No Silver Bullet Essence and Accidents of Software Engineering,"

Computer, vol. 20, pp. 10-19, 1987.

[32] J. A. O. G. Cunha, H. P. Moura, and F. J. S. Vasconcellos, "Decision-making in

Software Project Management: A Systematic Literature Review," Procedia

Computer Science, vol. 100, pp. 947-954, 2016/01/01/ 2016.

[33] W. H. DeLone and E. R. McLean, "Information Systems Success: The Quest for

the Dependent Variable," Information Systems Research, vol. 3, pp. 60-95, 1992.

[34] K. Crowston, J. Howison, and H. Annabi, "Information systems success in free

and open source software development: Theory and measures," Software Process:

Improvement and Practice, vol. 11, pp. 123-148, 2006.

[35] S. Zahran, Software process improvement: Addison-wesley, 1998.

[36] R. B. Grady, Successful software process improvement: Prentice-Hall, Inc., 1997.

[37] W. S. Humphrey, Managing the software process: Addison-Wesley Longman

Publishing Co., Inc., 1989.

[38] P. Abrahamsson, "Measuring the Success of Software Process Improvement: The

Dimensions," 2013.

[39] C. Catal, "Software fault prediction: A literature review and current trends,"

Expert systems with applications, vol. 38, pp. 4626-4636, 2011.

[40] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, "A General Software Defect-

Proneness Prediction Framework," IEEE Transactions on Software Engineering,

vol. 37, pp. 356-370, May/Jun 2011 2011.

96

[41] T. DeMarco, Why does software cost so much?: and other puzzles of the

information age: Dorset House Publishing Co., Inc., 1995.

[42] C. A. Dekkers and P. A. McQuaid, "The dangers of using software metrics to

(mis)manage," IT Professional, vol. 4, pp. 24-30, 2002.

[43] A. Tripathi, S. Dabral, and A. Sureka, "University-industry collaboration and

open source software (oss) dataset in mining software repositories (msr)

research," in Software Analytics (SWAN), 2015 IEEE 1st International Workshop

on, 2015, pp. 39-40.

[44] A. Sureka, A. Tripathi, and S. Dabral, "Survey Results on Threats To External

Validity, Generalizability Concerns, Data Sharing and University-Industry

Collaboration in Mining Software Repository (MSR) Research," 2015.

[45] R. Sen, S. S. Singh, and S. Borle, "Open source software success: Measures and

analysis," Decision Support Systems, vol. 52, pp. 364-372, 2012.

[46] Y. Gao, M. V. Antwerp, S. Christley, and G. Madey, "A Research Collaboratory

for Open Source Software Research," in Emerging Trends in FLOSS Research

and Development, 2007. FLOSS '07. First International Workshop on, 2007, pp.

4-4.

[47] N. Arul Kumar and S. Chandra Kumar Mangalam, "Release process on quality

improvement in open source software project management," Journal of Computer

Science, vol. 8, pp. 1008-1011, 2012.

[48] B. Rossi, B. Russo, and G. Succi, "Download patterns and releases in open source

software projects: A perfect symbiosis?," in IFIP International Conference on

Open Source Systems, 2010, pp. 252-267.

[49] P. Dowling and K. McGrath, "Using Free and Open Source Tools to Manage

Software Quality," Queue, vol. 13, pp. 20-27, 2015.

[50] R. G. Mathieu, J. L. May, and H. L. Reif, "Investigating open source software

creators through the lens of an entrepreneur," International Journal of Innovation

and Learning, vol. 21, 2017.

[51] Z. Yetis-Larsson, R. Teigland, and O. Dovbysh, "Networked Entrepreneurs: How

Entrepreneurs Leverage Open Source Software Communities," The American

Behavioral Scientist, vol. 59, p. 475, 2015.

[52] Z. Iskoujina and J. Roberts, "Knowledge sharing in open source software

communities: motivations and management," Journal of Knowledge Management,

vol. 19, pp. 791-813, 2015.

[53] 2016, The Future of Open Source [Annual Survey Report]. Available:

https://www.blackducksoftware.com/2016-future-of-open-source

[54] B. Twala, "Predicting Software Faults in Large Space Systems using Machine

Learning Techniques," Defence Science Journal, vol. 61, pp. 306-316, 2011.

[55] H. K. Wright, M. Kim, and D. E. Perry, "Validity concerns in software

engineering research," in Proceedings of the FSE/SDP workshop on Future of

software engineering research, 2010, pp. 411-414.

[56] E. S. Raymond, "The Cathedral & The Bazaar," ed: O'Reilly. , 1999.

[57] A. Israeli and D. G. Feitelson, "Success of open source projects: Patterns of

downloads and releases with time," in Software-Science, Technology &

Engineering, 2007. SwSTE 2007. IEEE International Conference on, 2007, pp.

87-94.

http://www.blackducksoftware.com/2016-future-of-open-source

97

[58] C. L. Huntley, "Organizational learning in open-source software projects: an

analysis of debugging data," IEEE Transactions on Engineering Management,

vol. 50, pp. 485-493, 2003.

[59] J. Howison and K. Crowston, "The perils and pitfalls of mining SourceForge," in

Proceedings of the International Workshop on Mining Software Repositories

(MSR 2004), 2004, pp. 7-11.

[60] J. Lerner and J. Tirole, "The scope of open source licensing," Journal of Law,

Economics, and Organization, vol. 21, pp. 20-56, 2005.

[61] L. A. Belady and M. M. Lehman, "A model of large program development," IBM

Systems journal, vol. 15, pp. 225-252, 1976.

[62] I. Neamtiu, G. Xie, and J. Chen, "Towards a better understanding of software

evolution: an empirical study on open‐source software," Journal of Software:

Evolution and Process, vol. 25, pp. 193-218, 2013.

[63] (2016, 10/16/2016). About Page [Web Page]. Available: https://sourceforge.net/

[64] M. Van Antwerp and G. Madey, "Advances in the sourceforge research data

archive," in Workshop on Public Data about Software Development (WoPDaSD)

at The 4th International Conference on Open Source Systems, Milan, Italy, 2008.

[65] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, "A systematic

literature review on the barriers faced by newcomers to open source software

projects," Information and Software Technology, vol. 59, p. 67, 2015.

[66] S. Faraj and L. Sproull, "Coordinating Expertise in Software Development

Teams," Management Science, vol. 46, pp. 1554-1568, 2000.

[67] Y. G. Sahin, "A team building model for software engineering courses term

projects," Computers & Education, vol. 56, pp. 916-922, 2011.

[68] L. Jagtiani and N. Lewis, "Enhancing Software Engineering Curricula By

Incorporating Open, Data-Driven Planning Methods," in 2016 ASEE National

Conference, New Orleans, LA, 2016.

[69] A. f. C. M. The Joint Task Force on Computing Curricula -- IEEE Computer

Society, "Software Engineering 2004 Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering -- A Volume of the Computing

Curricula Series," 2004.

[70] T. DeMarco and T. Lister, "Waltzing with Bears: Managing Risk Software on

Software Projects Dorset House Publishing," New York, USA, 2003.

[71] F. P. Brooks, "Jr. The Mythical Man-Month," Essays on Software Engineering.

Addison-Wesley Publishing Company, 1975.

[72] R. L. Glass, "Frequently forgotten fundamental facts about software engineering,"

IEEE Software, vol. 18, pp. 112-111, 2001.

[73] R. L. Glass, "Error-free software remains extremely elusive," IEEE Software, vol.

20, pp. 104-103, 2003.

[74] B. W. Boehm, "Software risk management: principles and practices," IEEE

Software, vol. 8, pp. 32-41, 1991.

[75] B. John, R. Kadadevaramath, and E. A. Immanuel, "Recent Advances in Software

Quality Management: A," 2016.

[76] Y.-R. Wang, C.-Y. Yu, and H.-H. Chan, "Predicting construction cost and

schedule success using artificial neural networks ensemble and support vector

98

machines classification models," International Journal of Project Management,

vol. 30, pp. 470-478, 2012/05/01/ 2012.

[77] W.-L. Chao, "Machine Learning Tutorial," DISP Lab, Graduate Institute of

Communication Engineering, National Taiwan University, 2011.

[78] K. O. Elish and M. O. Elish, "Predicting defect-prone software modules using

support vector machines," Journal of Systems and Software, vol. 81, pp. 649-660,

2008.

[79] H. Joshi, C. Zhang, S. Ramaswamy, and C. Bayrak, "Local and global recency

weighting approach to bug prediction," in Proceedings of the Fourth International

Workshop on Mining Software Repositories, 2007, p. 33.

[80] K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen, "Case-based software quality

prediction," International Journal of Software Engineering and Knowledge

Engineering, vol. 10, pp. 139-152, 2000.

[81] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, "Comparing case-based

reasoning classifiers for predicting high risk software components," Journal of

Systems and Software, vol. 55, pp. 301-320, 2001.

[82] T. M. Khoshgoftaar and N. Seliya, "Analogy-based practical classification rules

for software quality estimation," Empirical Software Engineering, vol. 8, pp. 325-

350, 2003.

[83] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, "An empirical study of

predicting software faults with case-based reasoning," Software Quality Journal,

vol. 14, pp. 85-111, 2006.

[84] V. U. Challagulla, F. B. Bastani, and I.-L. Yen, "A unified framework for defect

data analysis using the mbr technique," in 2006 18th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI'06), 2006, pp. 39-46.

[85] D. Zhu and Z. Wu, "The Application of Gray-Prediction Theory in the Software

Defects Management," in Computational Intelligence and Software Engineering,

2009. CiSE 2009. International Conference on, 2009, pp. 1-5.

[86] A. A. Porter and R. W. Selby, "Evaluating techniques for generating metric-based

classification trees," Journal of Systems and Software, vol. 12, pp. 209-218, 1990.

[87] T. M. Khoshgoftaar and E. B. Allen, "Logistic regression modeling of software

quality," International Journal of Reliability, Quality and Safety Engineering, vol.

6, pp. 303-317, 1999.

[88] A. G. Koru and H. Liu, "Building effective defect-prediction models in practice,"

IEEE Software, vol. 22, pp. 23-29, 2005.

[89] T. Menzies, J. S. Di Stefano, and M. Chapman, "Learning early lifecycle IV & V

quality indicators," in Software Metrics Symposium, 2003. Proceedings. Ninth

International, 2003, pp. 88-96.

[90] T. M. Khoshgoftaar and N. Seliya, "Software quality classification modeling

using the SPRINT decision tree algorithm," International Journal on Artificial

Intelligence Tools, vol. 12, pp. 207-225, 2003.

[91] T. M. Khoshgoftaar and N. Seliya, "Tree-based software quality estimation

models for fault prediction," in Software Metrics, 2002. Proceedings. Eighth

IEEE Symposium on, 2002, pp. 203-214.

99

[92] P. Knab, M. Pinzger, and A. Bernstein, "Predicting defect densities in source code

files with decision tree learners," in Proceedings of the 2006 international

workshop on Mining software repositories, 2006, pp. 119-125.

[93] E. Ceylan, F. O. Kutlubay, and A. B. Bener, "Software defect identification using

machine learning techniques," in 32nd EUROMICRO Conference on Software

Engineering and Advanced Applications (EUROMICRO'06), 2006, pp. 240-247.

[94] W. Afzal and R. Torkar, "A comparative evaluation of using genetic

programming for predicting fault count data," in Software Engineering Advances,

2008. ICSEA'08. The Third International Conference on, 2008, pp. 407-414.

[95] W. Afzal, R. Torkar, and R. Feldt, "Prediction of fault count data using genetic

programming," in Multitopic Conference, 2008. INMIC 2008. IEEE International,

2008, pp. 349-356.

[96] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz, "Predicting fault proneness

of classes trough a multiobjective particle swarm optimization algorithm," in 2008

20th IEEE International Conference on Tools with Artificial Intelligence, 2008,

pp. 387-394.

[97] C. Jin, E.-M. Dong, and L.-N. Qin, "Software fault prediction model based on

adaptive dynamical and median particle swarm optimization," in Multimedia and

Information Technology (MMIT), 2010 Second International Conference on,

2010, pp. 44-47.

[98] A. B. De Carvalho, A. Pozo, and S. R. Vergilio, "A symbolic fault-prediction

model based on multiobjective particle swarm optimization," Journal of Systems

and Software, vol. 83, pp. 868-882, 2010.

[99] N. E. Fenton and M. Neil, "A critique of software defect prediction models,"

IEEE Transactions on Software Engineering, vol. 25, pp. 675-689, 1999.

[100] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, "A bayesian belief network

for assessing the likelihood of fault content," in Software Reliability Engineering,

2003. ISSRE 2003. 14th International Symposium on, 2003, pp. 215-226.

[101] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and R. Mishra,

"Predicting software defects in varying development lifecycles using Bayesian

nets," Information and Software Technology, vol. 49, pp. 32-43, 2007.

[102] T. Menzies, J. Greenwald, and A. Frank, "Data Mining Static Code Attributes to

Learn Defect Predictors," Software Engineering, IEEE Transactions on, vol. 33,

2007.

[103] G. J. Pai and J. B. Dugan, "Empirical analysis of software fault content and fault

proneness using Bayesian methods," IEEE Transactions on Software

Engineering, vol. 33, pp. 675-686, 2007.

[104] B. Turhan and A. Bener, "A multivariate analysis of static code attributes for

defect prediction," in Seventh International Conference on Quality Software

(QSIC 2007), 2007, pp. 231-237.

[105] B. John, "Modeling the Defect Density of Embedded System Software Using

Bayesian Belief Networks: A Case Study," Software Quality Professional, vol.

14, 2012.

[106] L. Guo, B. Cukic, and H. Singh, "Predicting fault prone modules by the dempster-

shafer belief networks," in Automated Software Engineering, 2003. Proceedings.

18th IEEE International Conference on, 2003, pp. 249-252.

100

[107] Z. Xu, T. M. Khoshgoftaar, and E. B. Allen, "Prediction of software faults using

fuzzy nonlinear regression modeling," in High Assurance Systems Engineering,

2000, Fifth IEEE International Symposim on. HASE 2000, 2000, pp. 281-290.

[108] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, "An application of

fuzzy clustering to software quality prediction," in Application-Specific Systems

and Software Engineering Technology, 2000. Proceedings. 3rd IEEE Symposium

on, 2000, pp. 85-90.

[109] M. Reformat, "A fuzzy-based meta-model for reasoning about the number of

software defects," in International Fuzzy Systems Association World Congress,

2003, pp. 644-651.

[110] B. Yang, L. Yao, and H.-Z. Huang, "Early software quality prediction based on a

fuzzy neural network model," in Third International Conference on Natural

Computation (ICNC 2007), 2007, pp. 760-764.

[111] L. Hribar and D. Duka, "Software component quality prediction using KNN and

Fuzzy logic," in MIPRO, 2010 Proceedings of the 33rd International Convention,

2010, pp. 402-408.

[112] M. Reformat, W. Pedrycz, and N. J. Pizzi, "Software quality analysis with the use

of computational intelligence," Information and Software Technology, vol. 45, pp.

405-417, 2003.

[113] A. Mahaweerawat, P. Sophatsathit, and C. Lursinsap, "Adaptive self-organizing

map clustering for software fault prediction," in Fourth International Joint

Conference on Computer Science and Software Engineering, KhonKaen,

Thailand, 2007, pp. 35-41.

[114] T. M. Khoshgoftaar, A. S. Pandya, and D. L. Lanning, "Application of neural

networks for predicting program faults," Annals of Software Engineering, vol. 1,

pp. 141-154, 1995.

[115] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud, "Application of

neural networks to software quality modeling of a very large telecommunications

system," IEEE Transactions on neural networks, vol. 8, pp. 902-909, 1997.

[116] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd, and S.

Webster, "An investigation of machine learning based prediction systems,"

Journal of Systems and Software, vol. 53, pp. 23-29, 2000.

[117] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai, "Object

oriented software quality prediction using general regression neural networks,"

ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 1-6, 2004.

[118] F. Padberg, T. Ragg, and R. Schoknecht, "Using machine learning for estimating

the defect content after an inspection," IEEE Transactions on Software

Engineering, vol. 30, pp. 17-28, 2004.

[119] M. M. T. Thwin and T.-S. Quah, "Application of neural networks for software

quality prediction using object-oriented metrics," Journal of Systems and

Software, vol. 76, pp. 147-156, 2005.

[120] M. E. Bezerra, A. L. Oliveira, and S. R. Meira, "A constructive rbf neural network

for estimating the probability of defects in software modules," in 2007

International Joint Conference on Neural Networks, 2007, pp. 2869-2874.

101

[121] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai,

"Object-oriented software fault prediction using neural networks," Information

and Software Technology, vol. 49, pp. 483-492, 2007.

[122] Y. Singh, A. Kaur, and R. Malhotra, "Predicting software fault proneness model

using neural network," in International Conference on Product Focused Software

Process Improvement, 2008, pp. 204-214.

[123] T. Wang and W.-h. Li, "Naive bayes software defect prediction model," in

Computational Intelligence and Software Engineering (CiSE), 2010 International

Conference on, 2010, pp. 1-4.

[124] L. Guo, Y. Ma, B. Cukic, and H. Singh, "Robust prediction of fault-proneness by

random forests," in Software Reliability Engineering, 2004. ISSRE 2004. 15th

International Symposium on, 2004, pp. 417-428.

[125] A. Kaur and R. Malhotra, "Application of random forest in predicting fault-prone

classes," in 2008 International Conference on Advanced Computer Theory and

Engineering, 2008, pp. 37-43.

[126] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno, "Spam filter based approach for

finding fault-prone software modules," in Proceedings of the Fourth International

Workshop on Mining Software Repositories, 2007, p. 4.

[127] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, "Software defect association

mining and defect correction effort prediction," IEEE Transactions on Software

Engineering, vol. 32, pp. 69-82, 2006.

[128] S. Morasca and G. Ruhe, "A comparative study of two techniques for analyzing

software measurement data," in Proceedings of Annual Meeting, ISERN, 1996.

[129] W. Yang and L. Li, "A rough set model for software defect prediction," in

Intelligent Computation Technology and Automation (ICICTA), 2008

International Conference on, 2008, pp. 747-751.

[130] N. K. Nagwani and S. Verma, "Predictive data mining model for software bug

estimation using average weighted similarity," in Advance Computing Conference

(IACC), 2010 IEEE 2nd International, 2010, pp. 373-378.

[131] L. I. Kuncheva, "On the optimality of NaA[macron]ve Bayes with dependent

binary features," Pattern Recognition Letters, vol. 27, p. 830, 2006.

[132] A. Uyar, A. Bener, H. N. Ciray, and M. Bahceci, "ROC based evaluation and

comparison of classifiers for IVF implantation prediction," in International

Conference on Electronic Healthcare, 2009, pp. 108-111.

[133] A. T. Misirli, A. Bener, and R. Kale, "AI-based software defect predictors:

applications and benefits in a case study.(IAAI Articles)(Case study)," AI

Magazine, vol. 32, p. 57, 2011.

[134] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction," ed, 2008, pp. 181-

190.

[135] A. Tosun, A. Bener, B. Turhan, and T. Menzies, "Practical considerations in

deploying statistical methods for defect prediction: A case study within the

Turkish telecommunications industry," Information and Software Technology,

vol. 52, pp. 1242-1257, 2010.

102

[136] N. Cerpa, M. Bardeen, C. Astudillo, and J. Verner, "Evaluating different families

of prediction methods for estimating software project outcomes," The Journal of

Systems and Software, vol. 112, p. 48, 2016.

[137] P. Buxmann and T. Hess, The software industry: economic principles, strategies,

perspectives: Springer Science & Business Media, 2012.

[138] B. Wang and M. Shi, "Mining and analyzing the characteristic of projects

collaborative relationship in open source software," in 2012 IEEE 2nd

International Conference on Cloud Computing and Intelligence Systems, 2012,

pp. 1277-1280.

[139] P. Meso, G. Madey, M. D. Troutt, and J. Liegle, "The knowledge management

efficacy of matching information systems development methodologies with

application characteristics—an experimental study," Journal of Systems and

Software, vol. 79, pp. 15-28, 2006.

[140] I. Russell and Z. Markov, "An Introduction to the Weka Data Mining System," in

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education, 2017, pp. 742-742.

[141] C. Jones, Assessment and control of software risks: Yourdon Press, 1994.

[142] C. Bai and J. Sarkis, "Green information technology strategic justification and

evaluation," Information Systems Frontiers, pp. 1-17, 2013.

[143] B. C. Stahl, "Teaching ethical reflexivity in information systems: How to equip

students to deal with moral and ethical issues of emerging information and

communication technologies," Journal of Information Systems Education, vol. 22,

p. 253, 2011.

[144] P. Haried and H. Dai, "The Evolution of Information Systems Offshoring

Research: A Past, Present and Future Meta Analysis Review," Journal of

International Technology and Information Management, vol. 20, pp. 83-102,

2011.

[145] S. Aral, Y. Bakos, and E. Brynjolfsson, "How Trust, Incentives and IT Shape

Global Supplier Networks: Theory and Evidence from IT Services Procurement,"

Social Science Electronic Publishing, Inc, 2010.

[146] Y. Li, C.-H. Tan, and H.-H. Teo, "Leadership characteristics and developers’

motivation in open source software development," Information & Management,

vol. 49, pp. 257-267, 2012.

[147] S. A. Slaughter, L. Levine, B. Ramesh, J. Pries-Heje, and R. Baskerville,

"Aligning Software Processes with Strategy," MIS Quarterly, vol. 30, pp. 891-

918, 2006.

[148] S. Petter, W. Delone, and E. R. McLean, "The past, present, and future of "IS

success"," Journal of the Association of Information Systems, vol. 13, pp. 341-

362, 2012.

[149] B. Strong, T. H. Davenport, and L. Prusak, "Organizational governance of

knowledge and learning," Knowledge and Process Management, vol. 15, pp. 150-

157, 2008.

[150] H. F. Juergens, "Attributes of Information System Development," MIS Quarterly,

vol. 1, pp. 31-41, 1977.

103

[151] R. Vaezi, A. Mills, W. Chin, and H. Zafar, "User Satisfaction Research in

Information Systems: Historical Roots and Approaches," Communications of the

Association for Information Systems, vol. 38, pp. 501-532, 2016.

[152] M. Wade and J. Hulland, "Review: The Resource-Based View and Information

Systems Research: Review, Extension, and Suggestions for Future Research,"

MIS Quarterly, vol. 28, pp. 107-142, 2004.

[153] I. Nonaka, A. Hirose, and Y. Takeda, "‘Meso’‐Foundations of Dynamic

Capabilities: Team‐Level Synthesis and Distributed Leadership as the Source of

Dynamic Creativity," Global Strategy Journal, vol. 6, pp. 168-182, 2016.

[154] D. E. Stokes, Pasteur's quadrant: Basic science and technological innovation:

Brookings Institution Press, 2011.

[155] J. Miller and B. A. Doyle, "Measuring the Effectiveness of Computer-Based

Information Systems in the Financial Services Sector," MIS Quarterly, vol. 11,

pp. 107-124, 1987.

[156] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. d. M. Silveira Neto, Y. C.

Cavalcanti, and S. R. d. L. Meira, "Twenty-eight years of component-based

software engineering," Journal of Systems and Software, vol. 111, pp. 128-148,

2016.

[157] M. Perkmann and K. Walsh, "University–industry relationships and open

innovation: Towards a research agenda," International Journal of Management

Reviews, vol. 9, pp. 259-280, 2007.

[158] E. Georg von Krogh, C. R. Lamastra, E. Zurich, and S. Haefliger, "Phenomenon-

based research in management and organization science: Towards a research

strategy."

[159] G. von Krogh, C. Rossi-Lamastra, and S. Haefliger, "Phenomenon-based

Research in Management and Organisation Science: When is it Rigorous and

Does it Matter?," Long Range Planning, vol. 45, pp. 277-298, 2012.

[160] S. Tsugawa, H. Ohsaki, and M. Imase, "Inferring success of online development

communities: Application of graph entropy for quantifying leaders' involvement,"

in Information and Telecommunication Technologies (APSITT), 2010 8th Asia-

Pacific Symposium on, 2010, pp. 1-6.

[161] K. Crowston, A. Wiggins, and J. Howison, "Analyzing leadership dynamics in

distributed group communication," in System Sciences (HICSS), 2010 43rd

Hawaii International Conference on, 2010, pp. 1-10.

[162] S. Tsugawa, H. Ohsaki, and M. Imase, "Inferring leadership of online

development community using topological structure of its social network,"

Journal of the Infosocionomics Society, vol. 7, pp. 17-27, 2012.

[163] A. Gupta and R. Singla, "Quantitative and Qualitative Evaluation of F/OSS

Volunteer Participation in Defect Management," International Journal of

Software Engineering & Applications, vol. 3, p. 71, 2012.

[164] J. Howison, A. Wiggins, and K. Crowston, "Validity issues in the use of social

network analysis with digital trace data," Journal of the Association for

Information Systems, vol. 12, p. 767, 2011.

[165] Z. Leila and J. Davis, "Modeling Service Interaction Networks," 2012.

104

[166] R. Sen, M. L. Nelson, and C. Subramaniam, "Application of Survival Model to

Understand Open Source Software Release," Pacific Asia Journal of the

Association for Information Systems, vol. 7, 2015.

[167] J. Howison, "Alone Together: A socio-technical theory of motivation,

coordination and collaboration technologies in organizing for free and open

source software development," 2008.

[168] C. C. M. Campaign, "Daily Archives: April 18, 2014."

[169] B. Weikel, "FROM CODING TO COMMUNITY," Citeseer, 2009.

[170] M. Van Antwerp, "Temporal and Topological Analysis of Open Source Software

Networks," Citeseer, 2013.

[171] L. Yu, "The coevolution of mobile os user market and mobile application

developer community," Compusoft, vol. 2, p. 44, 2013.

[172] S. Von Engelhardt and A. Freytag, "Geographic allocation of oss contributions:

the role of institutions and culture," Jena economic research papers2009.

[173] S. v. Engelhardt and A. Freytag, "Institutions, culture, and open source," Journal

of Economic Behavior & Organization, vol. 95, pp. 90-110, 2013.

[174] F. Rullani and S. Haefliger, "The periphery on stage: The intra-organizational

dynamics in online communities of creation," Research Policy, vol. 42, pp. 941-

953, 2013.

[175] M. Van Antwerp and G. Madey, "Open source software developer and project

networks," in IFIP International Conference on Open Source Systems, 2010, pp.

407-412.

[176] L. Zamani and J. G. Davis, "Analyzing Service Interaction Network

Effectiveness," in SRII Global Conference (SRII), 2011 Annual, 2011, pp. 781-

789.

[177] K.-Y. Huang and N. Choi, "Relating and Clustering Free/Libre Open Source

Software Projects and Developers: A Social Network Perspective," in System

Sciences (HICSS), 2011 44th Hawaii International Conference on, 2011, pp. 1-

10.

[178] Q. Le and J. H. Panchal, "Building smaller sized surrogate models of complex

bipartite networks based on degree distributions," IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 42, pp. 1152-1166,

2012.

[179] S. Daniel, K. Stewart, and D. Darcy, "Patterns of evolution in open source

projects: A Categorization Schema and Implications," Patterns of Evolution in

Open Source Projects: A Categorization Schema and Implications, 2009.

[180] S. Daniel, R. Agarwal, and K. J. Stewart, "The effects of diversity in global,

distributed collectives: A study of open source project success," Information

Systems Research, vol. 24, pp. 312-333, 2013.

[181] P. Fly, J. Sims, and H. Kim, "A Study on Characteristics of Open Source

Software Development Projects in the Areas of Engineering and Games."

[182] S. von Engelhardt, A. Freytag, and C. Schulz, "On the geographic allocation of

open source software activities," Jena economic research papers2010.

[183] C. Zhang, "A network perspective on open source software development: Team

formation and community participation," Purdue University, 2008.

105

[184] M. Becker, F. Rullani, and F. Zirpoli, "Coordinating distributed innovation

processes: The case of the automative and open source software industries," in

Papier présenté à la conférence DRUID à Copenhague, 2009.

[185] D. Aksoy-yurdagul, F. Rullani, and C. Rossi-lamastra, "Organizing a Firm-

Community Collaboration for growth: How to benefit from open source projects

without hurting them."

[186] C. Lampe, "Behavioral Trace Data for Analyzing Online Communities," The

SAGE Handbook of Digital Technology Research, p. 236, 2013.

[187] A. Wiggins, J. Howison, and K. Crowston, "Heartbeat: measuring active user base

and potential user interest in FLOSS projects," in IFIP International Conference

on Open Source Systems, 2009, pp. 94-104.

[188] M. Van Antwerp and G. Madey, "The importance of social network structure in

the open source software developer community," in System Sciences (HICSS),

2010 43rd Hawaii International Conference on, 2010, pp. 1-10.

[189] G. Madey, "Open Source Software Developer and Project Networks," ed:

Springer, 2010.

[190] E. Anjos, J. Brasileiro, D. Silva, and M. Zenha-Rela, "Using Classification

Methods to Reinforce the Impact of Social Factors on Software Success," in

International Conference on Computational Science and Its Applications, 2016,

pp. 187-200.

[191] F. Bolici, J. Howison, and K. Crowston, "Coordination without discussion?

Socio-technical congruence and Stigmergy in Free and Open Source Software

projects," in Socio-Technical Congruence Workshop in conj Intl Conf on Software

Engineering, Vancouver, Canada, 2009.

[192] C. D. R. Smit, "The influence of social network structure on the chance of success

of Open Source software project communities."

[193] M. Van Antwerp, "Evolution of Open Source Software Networks."

[194] S. Lakka, T. Stamati, C. Michalakelis, and D. Anagnostopoulos, "Cross-national

analysis of the relation of eGovernment maturity and OSS growth," Technological

Forecasting and Social Change, vol. 99, pp. 132-147, 2015.

[195] B. Foushee, J. L. Krein, J. Wu, R. Buck, C. D. Knutson, L. J. Pratt, and A. C.

MacLean, "Reflexivity, raymond, and the success of open source software

development: A sourceforge empirical study," in Proceedings of the 17th

International Conference on Evaluation and Assessment in Software Engineering,

2013, pp. 246-251.

[196] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, "How do centralized and

distributed version control systems impact software changes?," in Proceedings of

the 36th International Conference on Software Engineering, 2014, pp. 322-333.

[197] W. Wen, C. Forman, and S. J. Graham, "The Impact of Intellectual Property

Enforcement on Open Source Software Adoption," in ICIS, 2010, p. 187.

[198] R. E. Vlas and C. Vlas, "A Requirements-Based Analysis of Success in Open-

Source Software Development Projects," in AMCIS, 2011.

[199] B. Hosack and G. Sagers, "Participation in oss projects: Does it support release

early release often?," 2011.

106

[200] D. P. S. Wagle, "SciBrowser: Exploration and Analysis of the Complexity,

Structure, and Activity Dynamics of Open Source Science Communities," Auburn

University, 2011.

[201] A. C. MacLean, "Commit Patterns and Threats to Validity in Analysis of Open

Source Software Repositories," Brigham Young University, 2012.

[202] L. J. Pratt, "Cliff Walls: Threats to Validity in Empirical Studies of Open Source

Forges," Brigham Young University, 2013.

[203] B. D. Foushee, "Prevalence of Reflexivity and Its Impact on Success in Open

Source Software Development: An Empirical Study," 2013.

[204] A. Gupta and R. Singla, "Defect Management Practices and Problems in

Free/Open Source Software Projects," International Journal of Software

Engineering (IJSE), p. 105.

[205] V. Garousi and J. Leitch, "IssuePlayer: An extensible framework for visual

assessment of issue management in software development projects," Journal of

Visual Languages & Computing, vol. 21, pp. 121-135, 2010.

[206] A. H. Ghapanchi, "Predicting software future sustainability: A longitudinal

perspective," Information Systems, vol. 49, pp. 40-51, 2015.

[207] S. Daniel and K. Stewart, "Open source project success: Resource access, flow,

and integration," The Journal of Strategic Information Systems, vol. 25, pp. 159-

176, 2016.

[208] P. Kanwal, A. Gupta, and R. K. Singla, "Sampling Process Model for

Coordination and Communication in Free/Open Source Software Projects,"

International Journal of Computer Applications, vol. 98, 2014.

[209] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, and M. Squire, "Repositories

with public data about software development," International Journal of Open

Source Software and Processes (IJOSSP), vol. 2, pp. 1-13, 2010.

[210] T. Abdou, "Towards Understanding Open Source Software Testing: An Empirical

Study," Social Media and Publicity, p. 3.

[211] E. C. Ramos, F. M. Santoro, and F. A. Baião, "A Method for Discovering the

Relevance of External Context Variables to Business Processes," in KMIS, 2011,

pp. 399-408.

[212] C. Schweik and R. English, "Preliminary steps toward a general theory of

internet-based collective-action in digital information commons: Findings from a

study of open source software projects," International Journal of the Commons,

vol. 7, 2013.

[213] T. Abdou, P. Grogono, and P. Kamthan, "Managing Corrective Actions to

Closure in Open Source Software Test Process," in SEKE, 2013, pp. 306-311.

[214] A. Lemnaru, "Open source framework usage: an investigation of the user's

intention to continue using a framework," Lethbridge, Alta.: University of

Lethbridge, Faculty of Management, 2013.

[215] A. Blekh, "Governance and organizational sponsorship as success factors in

free/libre and open source software development: An empirical investigation

using structural equation modeling," 2015.

[216] M. Codoban, "A Comparative Study on How SVN and Git Affect Software

Changes," 2015.

107

[217] C. Rossi-Lamastra, F. Rullani, and E. Piva, "Firmsâ€™ participation strategies

and performances of OSS projects: an empirical analysis."

[218] A. Vernet, M. Kilduff, and A. Salter, "Information, control, and small worlds:

studying returns to individual network positions under different global structures,"

in 35th DRUID Celebration Conference, 2013, pp. 17-19.

[219] L. ROZENBERG and M. KIERUZEL, "Using Markowitz's idea to the valuable

estimation of the IT projects risk."

[220] V. Garousi, "Investigating the success factors of open-source software projects

across their lifetime," Journal of Software Engineering Studies, vol. 4, pp. 1-15,

2009.

[221] V. Garousi, "Evidence-based insights about issue management processes: an

exploratory study," in International Conference on Software Process, 2009, pp.

112-123.

[222] A. Wiggins and K. Crowston, "Reclassifying success and tragedy in FLOSS

projects," in IFIP International Conference on Open Source Systems, 2010, pp.

294-307.

[223] M. Van Antwerp and G. Madey, "Warehousing and Studying Open Source

Versioning Metadata," in IFIP International Conference on Open Source Systems,

2010, pp. 413-418.

[224] E. C. Ramos, F. M. Santoro, and F. Baião, "Thinking out of the box: discovering

the relevance of external context to business processes," in International Joint

Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge

Management, 2011, pp. 455-470.

[225] C. Jensen and W. Scacchi, "Computer support for discovering OSS processes," in

Proceedings of the 3rd International Workshop on Public Data about Software

Development, Milan, Italy, 2008.

[226] K. Crowston, C. Østerlund, J. Howison, and F. Bolici, "Work as coordination and

coordination as work: A process perspective on FLOSS development projects," in

Third International Symposium on Process Organization Studies. Corfu, Greece,

2011.

[227] C. M. Schweik, R. English, Q. Paienjton, and S. Haire, "Success and

abandonment in open source commons: Selected findings from an empirical study

of sourceforge. net projects," in Proceedings of the Sixth International

Conference on Open Source Systems (OSS 2010) Workshops, 2010.

[228] Y. Gao, "Clustering Dependencies over Relational Tables," 2016.

[229] S. Syed, "A Z-score for Open Source Projects," 2013.

[230] F. Schweitzer, V. Nanumyan, C. J. Tessone, and X. Xia, "How do OSS projects

change in number and size? A large-scale analysis to test a model of project

growth," Advances in Complex Systems, vol. 17, p. 1550008, 2014.

[231] J. L. Krein, "Programming Language Fragmentation and Developer Productivity:

An Empirical Study," 2011.

[232] R. Vlas, "A Requirements-Based Exploration of Open-Source Software

Development Projects–Towards a Natural Language Processing Software

Analysis Framework," 2012.

[233] A. C. MacLean, L. J. Pratt, J. L. Krein, and C. D. Knutson, "Threats to validity in

analysis of language fragmentation on SourceForge data," in Proceedings of the

108

1st International Workshop on Replication in Empirical Software Engineering

Research, 2010.

[234] R. Vlas and W. N. Robinson, "A rule-based natural language technique for

requirements discovery and classification in open-source software development

projects," in System Sciences (HICSS), 2011 44th Hawaii International

Conference on, 2011, pp. 1-10.

[235] R. Vlas and W. N. Robinson, "Applying a Rule-Based Natural Language

Classifier to Open Source Requirements: a Demonstration of Theory

Exploration," in System Sciences (HICSS), 2013 46th Hawaii International

Conference on, 2013, pp. 3158-3167.

[236] R. E. Vlas and W. N. Robinson, "Two rule-based natural language strategies for

requirements discovery and classification in open source software development

projects," Journal of Management Information Systems, vol. 28, pp. 11-38, 2012.

109

APPENDIX A: THE SRDA

A.1. Data Entity Relationship Diagram—SourceForge.net

110

A.2. Data Entity Relationship Model – SRDA – Artifact

111

A.3. Data Entity Relationship Model – SRDA – Documents

112

A.4. Data Entity Relationship Model – SRDA – Forums

113

A.5. Data Entity Relationship Model – SRDA – FRS

114

A.6. Data Entity Relationship Model – SRDA – Job

115

A.7. Data Entity Relationship Model – SRDA – Tasks

A.8. List of tables analyzed from OSS Research

The following are the data tables which were analyzed for this research study:

activity_log

activity_log_old

activity_log_old_old

activity_log_regs

activity_log_regs_tmp

admin_annotations

artifact

artifact_canned_responses

artifact_category

moorman_massmail_20060224

moorman_massmail_20060511

moorman_massmail_20060523

b

ostg_contest

payment_option

people_job

people_skill

people_skill_inventory

moorman_massmail_20060630

moorman_massmail_20060630b

moorman_massmail_20060908

moorman_proj2

moorman_sdmaillist

moorman_sdmaillist2

mypstat

mysql_auth

news_bytes

116

artifact_counts_agg

artifact_file

artifact_ftispool

artifact_group

artifact_group_list

artifact_history

artifact_message

artifact_monitor

artifact_perm

artifact_resolution

artifact_status

audit_trail

audit_trail_data

audit_trail_group

audit_trail_group_data

audit_trail_user

autopurge_exempt

autopurge_projects

beta_members

beta_offerings

blocks

cache_store

canned_responses

category_management

charities

cloudscape_answers

cloudscape_contest

cronjob_history

db_images

doc_data

doc_groups

doc_states

dup_emails

entity_charity

external_tool_links

filemodule_monitor

finance_audit

foo

forum

forum_agg_msg_count

forumemail

forum_ftispool_new

forum_group_list

forum_monitored_forums

forum_saved_place

forum_threadinfo

people_skill_level

people_skill_year

pg72_bug

pg_autovac_skip

pg_stat_database_historical

pg_ts_cfg

pg_ts_cfgmap

pg_ts_dict

pg_ts_parser

prdb_dbs

prdb_states

prdb_types

project_assigned_to

project_counts_weekly_tmp

project_dependencies

project_group_list

project_history

project_metric

project_metric_tmp1

project_metric_weekly_tmp1

project_purge

project_status

project_sums_agg

project_task

project_weekly_metric

prweb_vhost

purge_history

purge_queue

ranking_tmp

rating

ref_timezones

reputation

scm_repo_trigger

scm_trigger

screenshots

search_data_groups

seller_profile_language

seller_profile_payment_option

service_contract

service_listing

service_listing_language

snippet_package

snippet_package_item

snippet_package_version

snippet_version

svn_migration_log

specialty

stats_agg_logo_by_day

stats_agg_logo_by_group

stats_agg_pages_by_day

stats_agg_site_by_group

stats_cvs_group

stats_cvs_user

stats_fileid_alltime_agg

stats_ftp_downloads

stats_groupid_alltime_agg

stats_group_rank

stats_group_rank_alltime

stats_group_rank_byday

stats_group_rank_byday_0528

stats_group_rank_byday_backup_0

50528

stats_group_rank_byday_backup_0

50529

stats_group_rank_bymonth

stats_http_downloads

stats_multi_rank_history_byday

stats_outage_log

stats_project

stats_project_all

stats_project_developers

stats_project_developers_last30

stats_project_last_30

stats_project_metric

stats_project_months

stats_rank_oldformula_byday

stats_sfweb_recent_hit

stats_site

stats_site_last_30

stats_site_months

stats_site_pages_by_day

stats_subd_pages

stats_toplist_week

stats_trove_topic_activity

subscriptions

supported_languages

survey_questions

survey_question_types

survey_rating_aggregate

survey_rating_response

survey_responses

surveys

117

foundry_data

foundry_news

foundry_preferred_projects

imported_projects

intel_agreement

invalid_name

kernel_traffic

lucene_searchspool

lucene_searchspool2

mail_group_list

massmail_queue

mllist_subscriber

mllist_subscriber_count

money_in

monitor_enable

monitor_project

moorman_defunct_unix_ui

ds

service_listing_payment_o

ption

service_order

session

sfce_api_mapping

snippet

people_job_category

people_job_inventory

people_job_status

svn_migration_queue

test1

theme_prefs

themes

tmp_stats_fileid_alltime_agg_1

118629848

tmp_stats_fileid_alltime_agg_1

140665539

tmp_stats_fileid_alltime_agg_1

142736917

tmp_stats_fileid_alltime_agg_1

145005244

tmp_stats_fileid_alltime_agg_1

147219524

tmp_stats_fileid_alltime_agg_1

151460886

tmp_stats_fileid_alltime_agg_1

155778896

tmp_stats_fileid_alltime_agg_1

156537400

tmp_stats_fileid_alltime_agg_1

158781396

tmp_stats_groupid_alltime_agg

_1117227330

tmp_stats_group_rank_byday_1

151598926

top_group

top_group_tmp

trove_agg

trove_agg_counts

trove_agg_minix

trove_agg_tmp

trove_cat

trove_cat_activity

trove_frontpage

trove_group_link

trove_monitor

trove_monitor_event_queue

trove_ref_translation_to_iso639

trove_treesums

tshirt_codes

user_auth_keys

user_bookmarks

user_diary

user_diary_monitor

user_group

user_ip_dl_auth

user_metric

user_metric0

user_metric_history

user_perms

user_preferences

user_ratings

user_role

users

users-bak_regs

users_lookup

users_registration

A.9. Select SRDA Data Stored in Local MS Access Database

Table: Artifact-Bugs – 4,731,734 Records

 Columns

 Name Type Size

 artifact_id Long Integer 4

 group_id Long Integer 4

 open_date Long Integer 4

 close_date Long Integer 4

 category_name Text 255

118

Table: frs_package – 1,883,112 Records

 Columns

 Name Type Size

 package_id Text 255

 group_id Text 255

 name Text 255

 status_id Text 255

Table: frs_release – 507,951 Records

 Columns

 Name Type Size

 release_id Long Integer 4

 package_id Long Integer 4

 status_id Long Integer 4

 preformatted Long Integer 4

 release_date Long Integer 4

 released_by Long Integer 4

Table: groups – 1,885,588 Records

 Columns

 Name Type Size

 group_id Text 255

 group_name Text 255

 status Text 255

 short_description Text 255

 license Text 255

 register_time Text 255

Table: stats_project_all – 63,785 Records

 Columns

 Name Type Size

 group_id Text 255

 developers Text 255

 group_ranking Text 255

 group_metric Text 255

 logo_showings Text 255

 downloads Text 255

 site_views Text 255

 subdomain_views Text 255

 page_views Text 255

 msg_posted Text 255

 msg_uniq_auth Text 255

 bugs_opened Text 255

 bugs_closed Text 255

 support_opened Text 255

 support_closed Text 255

119

 patches_opened Text 255

 patches_closed Text 255

 artifacts_opened Text 255

 artifacts_closed Text 255

 tasks_opened Text 255

 tasks_closed Text 255

 help_requests Text 255

 cvs_checkouts Text 255

 cvs_commits Text 255

 cvs_adds Text 255

 svn_checkouts Text 255

 svn_commits Text 255

 svn_adds Text 255

Table: trove_cat – 870 Records

 Columns

 Name Type Size

 trove_cat_id Text 255

 version Text 255

 parent Text 255

 root_parent Text 255

 shortname Text 255

 fullname Text 255

 description Text 255

 fullpath Text 255

 fullpath_ids Text 255

 parent_only Text 255

 people_skill Text 255

Table: trove_group_link – 2,135,315 Records

 Columns

 Name Type Size

 trove_group_id Long Integer 4

 trove_cat_id Long Integer 4

 trove_cat_version Long Integer 4

 group_id Long Integer 4

 trove_cat_root Long Integer 4

 entity_type Long Integer 4

120

APPENDIX B: EXISTING RESEARCH – THE SRDA

B.1. Reference List by Research Focus

Research

focus

Reference

Leadership

Georg von Krogh, ETH, Lamastra, Cristina Rossi, Zurich, ETH, Haefliger,

Stefan, 2009 [158]

Georg von Krogh, ETH, Lamastra, Cristina Rossi, Zurich, ETH, Haefliger,

Stefan, 2012 [159]

Tsugawa, Sho, Ohsaki, Hiroyuki, Imase, Makoto, 2010 [160]

Crowston, Kevin, Wiggins, Andrea, Howison, James, 2010 [161]

Tsugawa, S, Ohsaki, Hiroyuki, Imase, Makoto, 2012 [162]

Gupta, Anu, Singla, RK, 2012 [163]
Howison, James, Wiggins, Andrea, Crowston, Kevin, 2011 [164]
Leila, Zamani, Davis, Joseph, 2012 [165]
Sen, Ravi, Nelson, Matthew L, Subramaniam, Chandrasekar, 2015 [166]
Howison, James, 2008 [167]
Campaign, Cross Channel Marketing, 2014 [168]
Weikel, Brad, 2009 [169]
Van Antwerp, Matthew, 2013 [170]
Yu, Liguo, 2013 [171]
Engelhardt, Sebastian von, Freytag, Andreas, 2009 [172]
Engelhardt, Sebastian v, Freytag, Andreas, 2013 [173]
Rullani, Francesco, Haefliger, Stefan, 2013 [174]
Weikel, Bradley N, 2009 [169]
Van Antwerp, Matthew, Madey, Greg, 2010 [175]
Zamani, Leila, Davis, Joseph G, 2011 [176]
Huang, Kuang-Yuan, Choi, Namjoo, 2011 [177]
Le, Qize, Panchal, Jitesh H, 2012 [178]
Daniel, Sherae, Agarwal, Ritu, Stewart, Katherine, 2009 [179]
Daniel, Sherae, Agarwal, Ritu, Stewart, Katherine J, 2013 [180]
Fly, Pervis, Sims, James, Kim, Hyunju, 2012 [181]
Von Engelhardt, Sebastian, Freytag, Andreas, 2009 [172]
von Engelhardt, Sebastian, Freytag, Andreas, Schulz, Christoph, 2010 [182]
Zhang, Chen, 2008 [183]
Becker, Markus, Rullani, Francesco, Zirpoli, Francesco, 2009 [184]
Aksoy-yurdagul, Dilan, Rullani, Francesco, Rossi-lamastra, Cristina, 2014

[185]
Lampe, Cliff, 2013 [186]
Wiggins, Andrea, Howison, James, Crowston, Kevin, 2009 [187]
Van Antwerp, Matthew, Madey, Greg, 2010 [188]
Madey, Greg, 2010 [189]

121

Research

focus

Reference

Anjos, Eudisley, Brasileiro, Jansepetrus, Silva, Danielle, Zenha-Rela, Mário,

2016 [190]
Bolici, Francesco, Howison, James, Crowston, Kevin, 2009 [191]
Smit, Coach Drs R, 2009 [192]
Van Antwerp, Matthew, 2010 [193]
Skopik, Florian, Schall, Daniel, Dustdar, Schahram, 2012

OSS

Adoption

Lakka, Spyridoula, Stamati, Teta, Michalakelis, Christos, Anagnostopoulos,

Dimosthenis, 2015 [194]

OSS

Process

Foushee, Brandon, Krein, Jonathan L, Wu, Justin, Buck, Randy, Knutson,

Charles D, Pratt, Landon J, MacLean, Alexander C, 2013 [195]
Brindescu, Caius, Codoban, Mihai, Shmarkatiuk, Sergii, Dig, Danny, 2014

[196]
Wen, Wen, Forman, Chris, Graham, Stuart JH, 2010 [197]
Vlas, Radu E, Vlas, Cristina, 2011 [198]
Hosack, Bryan, Sagers, Glen, 2011 [199]
Wagle, Damodar P Shenvi, 2011 [200]
MacLean, Alexander C, 2012 [201]
Pratt, Landon J, 2013 [202]
Foushee, Brandon D, 2013 [203]
Daniel, Sherae, Stewart, Katherine, Darcy, David, 2009 [179]
Gupta, Anu, Singla, RK, 2014 [204]
Garousi, Vahid, Leitch, James, 2010 [205]
Sen, Ravi, Singh, Siddhartha S, Borle, Sharad, 2012 [45]
Ghapanchi, Amir Hossein, 2015 [206]
Daniel, Sherae, Stewart, Katherine, 2016 [207]
Kanwal, Preet, Gupta, Anu, Singla, Ravinder Kumar, 2014 [208]
Gonzalez-Barahona, Jesus M, Izquierdo-Cortazar, Daniel, Squire, Megan,

2010 [209]
Abdou, Tamer, 2014 [210]
Ramos, Eduardo Costa, Santoro, Flávia Maria, Baião, Fernanda Araujo, 2011

[211]
Schweik, Charles, English, Robert, 2013 [212]
Abdou, Tamer, Grogono, Peter, Kamthan, Pankaj, 2013 [213]
Lemnaru, Alexandru, 2013 [214]
Blekh, Aleksandr, 2015 [215]
Codoban, Mihai, 2015 [216]
Rossi-Lamastra, Cristina, Rullani, Francesco, Piva, Evila, 2011 [217]
Vernet, Antoine, Kilduff, Martin, Salter, Ammon, 2013 [218]
Rozenberg, Leonard, Kieruzel, Magdalena, 2016 [219]
Garousi, Vahid, 2009 [220]
Garousi, Vahid, 2009 [221]

122

Research

focus

Reference

Wiggins, Andrea, Crowston, Kevin, 2010 [222]
Van Antwerp, Matthew, Madey, Greg, 2010 [223]
Ramos, Eduardo Costa, Santoro, Flavia Maria, Baião, Fernanda, 2011 [224]
Jensen, Chris, Scacchi, Walt, 2008 [225]
Crowston, Kevin, Østerlund, Carsten, Howison, James, Bolici, Francesco,

2011 [226]
Schweik, Charles M, English, Robert, Paienjton, Qimti, Haire, Sandy, 2010

[227]
Gao, Yuchen, 2016 [228]
Van Antwerp, Matthew, Madey, Greg, 2008 [64]
Syed, SAS, 2013 [229]
Schweitzer, Frank, Nanumyan, Vahan, Tessone, Claudio J, Xia, Xi, 2014

[230]
Software

Languages

Krein, Jonathan L, 2011 [231]

Vlas, Radu, 2012 [232]

MacLean, Alexander C, Pratt, Landon J, Krein, Jonathan L, Knutson,

Charles D, 2010 [233]

Vlas, Radu, Robinson, William N, 2011 [234]

Vlas, Radu, Robinson, William N, 2013 [235]

Vlas, Radu E, Robinson, William N, 2012 [236]

B.2. Yearly Cumulative Publications – SRDA

123

B.3. Publications by Publisher

124

APPENDIX C: DATA RESULTS

C.3. Weka 3.8.1 Machine Learning Algorithm – Results

C.3.1. Random Forest

=== Run information ===

Scheme: weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V

0.001 -S 1

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 2.13 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 1.37 seconds

=== Summary ===

Correctly Classified Instances 4818 78.6484 %

Incorrectly Classified Instances 1308 21.3516 %

Kappa statistic 0.7154

Mean absolute error 0.1376

Root mean squared error 0.2653

Relative absolute error 36.6927 %

Root relative squared error 61.2685 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.836 0.131 0.680 0.836 0.750 0.661 0.937 0.820

Very High

 0.587 0.071 0.737 0.587 0.654 0.560 0.916 0.787

High

 0.798 0.058 0.821 0.798 0.809 0.748 0.955 0.890

Low

 0.928 0.025 0.924 0.928 0.926 0.902 0.992 0.975

Very Low

Weighted Avg. 0.786 0.071 0.790 0.786 0.784 0.717 0.950 0.868

=== Confusion Matrix ===

 a b c d <-- classified as

 1281 200 50 2 | a = Very High

 521 910 114 5 | b = High

 74 124 1213 109 | c = Low

 8 0 101 1414 | d = Very Low

125

C.3.2. Meta Bagging

=== Run information ===

Scheme: weka.classifiers.meta.Bagging -P 100 -S 1 -num-slots 1 -I 10 -W

weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 1.52 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.38 seconds

=== Summary ===

Correctly Classified Instances 4813 78.5668 %

Incorrectly Classified Instances 1313 21.4332 %

Kappa statistic 0.7143

Mean absolute error 0.1484

Root mean squared error 0.2696

Relative absolute error 39.5636 %

Root relative squared error 62.255 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.852 0.141 0.669 0.852 0.749 0.661 0.936 0.798

Very High

 0.559 0.061 0.757 0.559 0.643 0.556 0.912 0.778

High

 0.797 0.057 0.822 0.797 0.810 0.748 0.944 0.872

Low

 0.938 0.028 0.918 0.938 0.928 0.904 0.992 0.971

Very Low

Weighted Avg. 0.786 0.072 0.791 0.786 0.782 0.716 0.946 0.855

=== Confusion Matrix ===

 a b c d <-- classified as

 1306 176 49 2 | a = Very High

 554 866 127 3 | b = High

 84 102 1212 122 | c = Low

 8 0 86 1429 | d = Very Low

126

C.3.3. J48 Decision Tree

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

=== Classifier model (full training set) ===

Time taken to build model: 0.37 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.06 seconds

=== Summary ===

Correctly Classified Instances 4804 78.4198 %

Incorrectly Classified Instances 1322 21.5802 %

Kappa statistic 0.7123

Mean absolute error 0.1493

Root mean squared error 0.2764

Relative absolute error 39.8099 %

Root relative squared error 63.8351 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.832 0.136 0.672 0.832 0.743 0.652 0.926 0.755

Very High

 0.575 0.071 0.734 0.575 0.645 0.550 0.898 0.740

High

 0.785 0.051 0.835 0.785 0.809 0.749 0.934 0.859

Low

 0.948 0.030 0.912 0.948 0.930 0.906 0.989 0.947

Very Low

Weighted Avg. 0.784 0.072 0.788 0.784 0.781 0.714 0.936 0.825

=== Confusion Matrix ===

 a b c d <-- classified as

 1275 207 50 1 | a = Very High

 536 892 116 6 | b = High

 79 116 1193 132 | c = Low

 8 1 70 1444 | d = Very Low

127

C.3.4. Decision Table

=== Run information ===

Scheme: weka.classifiers.rules.DecisionTable -X 1 -S "weka.attributeSelection.BestFirst -D

1 -N 5"

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 0.94 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.19 seconds

=== Summary ===

Correctly Classified Instances 4748 77.5057 %

Incorrectly Classified Instances 1378 22.4943 %

Kappa statistic 0.7001

Mean absolute error 0.1858

Root mean squared error 0.2833

Relative absolute error 49.5433 %

Root relative squared error 65.4318 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.834 0.146 0.656 0.834 0.734 0.640 0.929 0.791

Very High

 0.575 0.080 0.708 0.575 0.635 0.533 0.903 0.748

High

 0.765 0.048 0.841 0.765 0.801 0.741 0.942 0.846

Low

 0.929 0.027 0.921 0.929 0.925 0.900 0.988 0.964

Very Low

Weighted Avg. 0.775 0.075 0.781 0.775 0.773 0.703 0.940 0.837

=== Confusion Matrix ===

 a b c d <-- classified as

 1278 212 36 7 | a = Very High

 554 892 102 2 | b = High

 95 149 1163 113 | c = Low

 20 6 82 1415 | d = Very Low

128

 C.3.5. K-Nearest Neighbor

=== Run information ===

Scheme: weka.classifiers.lazy.KStar -B 20 -M a

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 0.01 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 128.18 seconds

=== Summary ===

Correctly Classified Instances 4715 76.967 %

Incorrectly Classified Instances 1411 23.033 %

Kappa statistic 0.693

Mean absolute error 0.1909

Root mean squared error 0.2897

Relative absolute error 50.9178 %

Root relative squared error 66.8943 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.865 0.156 0.650 0.865 0.742 0.652 0.930 0.791

Very High

 0.515 0.056 0.757 0.515 0.613 0.529 0.903 0.752

High

 0.778 0.062 0.805 0.778 0.791 0.724 0.932 0.836

Low

 0.924 0.033 0.901 0.924 0.913 0.884 0.987 0.958

Very Low

Weighted Avg. 0.770 0.077 0.778 0.770 0.764 0.696 0.938 0.834

=== Confusion Matrix ===

 a b c d <-- classified as

 1326 165 41 1 | a = Very High

 582 799 161 8 | b = High

 105 88 1182 145 | c = Low

 28 3 84 1408 | d = Very Low

129

C.3.6. Multi-Layer Perceptron

=== Run information ===

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.3 -N 500 -V 0 -S 0 -E

20 -H 5 -G -R

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 88.14 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.28 seconds

=== Summary ===

Correctly Classified Instances 1533 25.0245 %

Incorrectly Classified Instances 4593 74.9755 %

Kappa statistic 0

Mean absolute error 0.375

Root mean squared error 0.433

Relative absolute error 99.9908 %

Root relative squared error 99.992 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 1.000 1.000 0.250 1.000 0.400 0.000 0.659 0.365

Very High

 0.000 0.000 0.000 0.000 0.000 0.000 0.574 0.276

High

 0.000 0.000 0.000 0.000 0.000 0.000 0.494 0.238

Low

 0.000 0.000 0.000 0.000 0.000 0.000 0.742 0.539

Very Low

Weighted Avg. 0.250 0.250 0.063 0.250 0.100 0.000 0.617 0.354

=== Confusion Matrix ===

 a b c d <-- classified as

 1533 0 0 0 | a = Very High

 1550 0 0 0 | b = High

 1520 0 0 0 | c = Low

 1523 0 0 0 | d = Very Low

130

C.3.7. Iterative Classifier

=== Run information ===

Scheme: weka.classifiers.meta.IterativeClassifierOptimizer -W

weka.classifiers.meta.LogitBoost -L 50 -P 1 -E 1 -I 1 -F 10 -R 1 -metric RMSE -S 1 -- -P 100 -L

-1.7976931348623157E308 -H 1.0 -Z 3.0 -O 1 -E 1 -S 1 -I 10 -W

weka.classifiers.trees.DecisionStump

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 6.18 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.08 seconds

=== Summary ===

Correctly Classified Instances 4130 67.4176 %

Incorrectly Classified Instances 1996 32.5824 %

Kappa statistic 0.5656

Mean absolute error 0.2243

Root mean squared error 0.3297

Relative absolute error 59.8224 %

Root relative squared error 76.1498 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.701 0.140 0.625 0.701 0.661 0.541 0.896 0.672

Very High

 0.481 0.140 0.537 0.481 0.508 0.354 0.804 0.532

High

 0.664 0.107 0.672 0.664 0.668 0.560 0.861 0.702

Low

 0.853 0.047 0.857 0.853 0.855 0.807 0.966 0.907

Very Low

Weighted Avg. 0.674 0.109 0.672 0.674 0.672 0.564 0.881 0.702

=== Confusion Matrix ===

 a b c d <-- classified as

 1075 433 25 0 | a = Very High

 501 746 295 8 | b = High

 96 206 1010 208 | c = Low

 48 3 173 1299 | d = Very Low

131

C.3.8. Naïve-Bayes

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 0.07 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.38 seconds

=== Summary ===

Correctly Classified Instances 3890 63.4998 %

Incorrectly Classified Instances 2236 36.5002 %

Kappa statistic 0.5135

Mean absolute error 0.202

Root mean squared error 0.3567

Relative absolute error 53.8642 %

Root relative squared error 82.3777 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.763 0.161 0.613 0.763 0.680 0.564 0.885 0.594

Very High

 0.347 0.129 0.476 0.347 0.401 0.244 0.764 0.465

High

 0.616 0.136 0.599 0.616 0.607 0.475 0.831 0.634

Low

 0.818 0.061 0.817 0.818 0.818 0.757 0.959 0.900

Very Low

Weighted Avg. 0.635 0.122 0.626 0.635 0.626 0.509 0.859 0.647

=== Confusion Matrix ===

 a b c d <-- classified as

 1170 318 45 0 | a = Very High

 623 538 347 42 | b = High

 94 253 936 237 | c = Low

 21 21 235 1246 | d = Very Low

132

C.3.9. AdaBoost M1

=== Run information ===

Scheme: weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10 -W

weka.classifiers.trees.DecisionStump

Relation: testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32

Instances: 18019

Attributes: 7

 Rank-quartile

 Download-quartile

 AvgTime-Quartile

 page_views-Quartile

 msg_posted-Quartile

 Total_D_P_S-Quartile

 Total_Nreq-Quartile

Test mode: split 66.0% train, remainder test

Time taken to build model: 0.14 seconds

=== Evaluation on test split ===

Time taken to test model on test split: 0.02 seconds

=== Summary ===

Correctly Classified Instances 2807 45.8211 %

Incorrectly Classified Instances 3319 54.1789 %

Kappa statistic 0.2757

Mean absolute error 0.2974

Root mean squared error 0.3856

Relative absolute error 79.2955 %

Root relative squared error 89.0498 %

Total Number of Instances 6126

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

Class

 0.000 0.000 0.000 0.000 0.000 0.000 0.664 0.332

Very High

 1.000 0.670 0.336 1.000 0.503 0.333 0.665 0.336

High

 0.000 0.000 0.000 0.000 0.000 0.000 0.554 0.270

Low

 0.825 0.055 0.834 0.825 0.829 0.773 0.885 0.731

Very Low

Weighted Avg. 0.458 0.183 0.292 0.458 0.333 0.276 0.692 0.417

=== Confusion Matrix ===

 a b c d <-- classified as

 0 1533 0 0 | a = Very High

 0 1550 0 0 | b = High

 0 1269 0 251 | c = Low

 0 266 0 1257 | d = Very Low

