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Abstract 

 

Many factors can influence the ongoing management and execution of 

technology projects. Some of these elements are known a priori during the project 

planning phase. Others require real-time data gathering and analysis throughout the 

lifetime of a project. These real-time project data elements are often neglected, 

misclassified, or otherwise misinterpreted during the project execution phase resulting 

in increased risk of delays, quality issues, and missed business opportunities.  

The overarching motivation for this research endeavor is to offer reliable 

improvements in software technology management and delivery. The primary purpose 

is to discover and analyze the impact, role, and level of influence of various project 

related data on the ongoing management of technology projects. The study leverages 

open source data regarding software performance attributes. The goal is to temper the 

subjectivity currently used by project managers (PMs) with quantifiable measures when 

assessing project execution progress. 

Modern-day PMs who manage software development projects are charged with 

an arduous task. Often, they obtain their inputs from technical leads who tend to be 

significantly more technical. When assessing software projects, PMs perform their role 

subject to the limitations of their capabilities and competencies. PMs are required to 
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contend with the stresses of the business environment, the policies, and procedures 

dictated by their organizations, and resource constraints. 

The second purpose of this research study is to propose methods by which 

conventional project assessment processes can be enhanced using quantitative methods 

that utilize real-time project execution data. Transferability of academic research to 

industry application is specifically addressed vis-à-vis a delivery framework to provide 

meaningful data to industry practitioners.  
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CHAPTER 1: INTRODUCTION 

While the origins of computational methods and programming date back a few 

centuries or more, the discipline of software engineering originated in 1968 [1]. The 

ISO/IEC/IEEE Systems and Software Engineering Vocabulary (SEVOCAB) defines 

software engineering as “the application of a systematic, disciplined, quantifiable 

approach to the development, operation, and maintenance of software; that is, the 

application of engineering to software.”1 Software engineering is therefore far more than 

computer programming; it is both the science and art of applying mathematical and 

computational logic to create a defined technological capability within resource and time 

constraints. 

Numerous industrial and academic oriented studies have examined software 

development performance and prediction models for more than fifty years [2]. 

Theoretical and practice-oriented experts recognize several reasons which contribute to 

sub-optimal performance. While much of the failure can be attributed to industry, 

business climate, and other external forces, further research is required to determine 

methods that can improve aggregate results over time. Experience and research show that 

current software project management practices use far more subjective methods than 

objective data analysis to assess project progress [3].  

The goal of this research study is to demonstrate concrete ways to increase objectivity 

in the management of software engineering.  The scope of research has been aligned to 

address technology management issues specific to the software development process. 

Research objectives are established at the onset of the study; they guide the study to focus 

                                                 
1[1] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body of Knowledge (SWEBOK (R)): Version 3.0: IEEE 

Computer Society Press, 2014. 
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on examining software quality predictors, establishing objective metrics, and 

recommending revised methods for improved software technology management. A 

thorough literature review is conducted to examine macro factors impacting software 

management, identify software quality attributes, establish research data validity, and 

discover improved software management and predictive modeling opportunities. 

Research study variables are established, classified, and analyzed using data extracted 

from an open source data archive exclusively developed for software research purposes at 

the University of Notre Dame. Quality prediction modeling opportunities are examined 

using the research variables with select machine learning enabled models trained and 

tested with archive data for optimal predictive performance. An applied research 

framework is introduced to enable the transfer of research outcomes from academia to 

industry. Finally, the framework is explored as a mechanism for employing predictive 

models within the industry to sustainably improve software project outcomes.   
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CHAPTER 2:  RESEARCH SCOPE 

2.1. Motivation and Research Questions 

Although software engineering as a discipline has been around for nearly half a 

century, failure rates of large projects have remained high with no significant 

improvements reported over time. While it is generally accepted that several external 

factors have an influence on the management and execution of software technology 

projects, there needs to be a thorough examination of internal software project data that 

can be leveraged at appropriate times during the project life cycle. Moreover, many 

organizations use overly subjective (i.e., qualitative) analysis to improve project 

execution by relying heavily on the personal experiences of project managers. Biases 

associated with personal experiences often result in continued performance and quality 

variances and missed targets. Technological advances in software development now 

allow for real-time data to be utilized for rapid analysis and infusion into project 

management processes. This research aims to discover viable predictor(s) of software 

project execution quality and their potential usefulness in improving processes. More 

specifically, the research questions examined in this study include the following three 

categories: 

1. Predicting the quality of the software project execution process.  

a. Is software defect data a good predictor of overall project quality during 

the execution stage of the project? 

b. What attributes of software are better predictors than others? Are there 

other reliable predictors? 
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c. Can organizations predict software release dates based on these 

predictors? Is it feasible to develop a learning-based, predictive model for 

practical application by software management professionals? 

2. Increasing the objectivity of software project management. 

How can objective data from past experiences with software management 

offer improvements to future projects using quantitative analysis? 

3. Improving methods used by software project management processes. 

How can project management tools and techniques be modified to 

incorporate quantitative methods and predictive models for use software 

technology management professionals? 

2.2. Software Life Cycle and Performance Measures  

The study of software project life cycles has interested academia and industry since 

the advent of the software engineering discipline. Figure 1 depicts a project life cycle 

framework that was developed by the primary researcher of this research study based on 

collective industry experiences. The framework is also supported by the report IEEE 

Standard for Developing a Software Project Life Cycle Process published by the IEEE 

Computer Society in 2006 and follows the guidelines set forth [4]. 
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Figure 1. Software Project Delivery Life Cycle Framework 

While there are numerous metrics that can be measured during each stage of the 

software project life cycle, the scope of this study is limited to the execution phase of 

software projects. Several factors influence the management and execution of software 

technology projects. Some of these elements are known a priori during the project 

planning phase. Others may require real-time data gathering and analysis during project 

execution [5].  These real-time project data elements are often neglected, misclassified, or 

otherwise misinterpreted during the project execution phase. The results are higher risk of 

delays, quality problems, and lost opportunities. The primary purpose of this research 

study is to discover and analyze the impact, role, and level of influence of various project 

related data on the execution and ongoing management of software technology projects. 

This research study is focused on measuring and predicting project execution variables 
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which are typically subject to high levels of uncertainty. Measures that are highly 

subjective or reflect the quality of the product instead of the quality of the process and 

may be of interest to other researchers are not in the scope of this study. Figure 2 shows 

the areas of focus within the project execution stage for measurement and predictability 

related variables in the context of this research study.   

 

Figure 2. Objectivity of Metrics and Research Scope  

– Software Project Execution Phase 

 

Sample metrics have been depicted for each stage of project execution. The level of 

objectivity inherent in each of these metrics has been assessed accordingly. Metrics in the 

early stages of execution are measured with a higher level of subjectivity, i.e., lower 

relative objectivity, and are therefore considered less reliable and difficult to measure. 

Early stage metrics are out of the scope of the study as they are typically useful in 
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determining the size, complexity, and features of the software product and not the quality 

of the development process itself. Typically, project managers use these metrics to define 

the project and baseline estimates against the triple constraint model of time, cost, and 

product scope. During the early and formative stages of project execution, i.e., design and 

build, the need for predictability is relatively low, the level of discovery is relatively high, 

and consequently, project execution risk is relatively transparent and easier to assess in 

these stages. In contrast, the metrics in the later stages of the project execution phase, i.e., 

test and deployment, can be more actionable by helping to identify and mitigate risk 

otherwise not visible to PM’s. Also, it is important to note that while, for example, the 

testing stage, is a widely accepted validation approach in industry, it is often ad-hoc, 

expensive, and unpredictable [6]. Some earlier studies suggest that the testing phase by 

itself could constitute 50 percent more of the total development cost [6, 7]. 

Metrics pertaining to the later stages of project execution demonstrate varying levels 

of objectivity with respect to their measurement and predictability.  Examples of metrics 

that demonstrate lower levels of objectivity include the number of use cases, validity of 

test scripts, test case accuracy, requirements traceability, deployment plans, resource 

availability, and utilization. These metrics are product and organization defining, less 

reflective of the software development process, and can, therefore, be difficult to 

quantify. Such metrics are considered out of scope for this research study.  However, 

there are a group of key metrics that is relevant to the later stages of project execution 

which provide greater objectivity and ease when measuring quality. They are also process 

-indicative by their very nature. Sample metrics in this group and in the scope for this 

research study include release dates, number/type/severity of defects, defect resolution 
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rates, developer and user engagement, software community rankings, and usage and 

download rates.  

This research study fully recognizes the overriding premises of software development 

and management processes and in no way attempts to minimize the complexities and 

interdependencies of the subjective and objective aspects of project management that are 

required to produce quality software under the triple constraint model. The goal is to 

increase the objectivity within the software project management process where possible, 

making it more pragmatic and effective. While Figure 2 depicts sample metrics that are in 

and out of scope and draws attention to the later stages of project execution, the analysis 

also suggests interdependencies and the iterative nature of processes that transcend all the 

stages of execution including the earlier stages of software product definition and build.   

This research study leverages open source software (OSS) data available from the 

public domain. Though sometimes difficult and complex, leveraging OSS data can 

provide a viable platform for research if a fit-for-purpose database environment is created 

that addresses specific measurement related requirements [3]. It is essential to create an 

environment that provides a normalized dataset and one that can reduce the layers of 

abstraction that would otherwise hinder research efforts. In this manner, certain insights 

that are developed after the analysis of OSS data can be applied to privately and 

commercially developed software projects.  

In order to ensure feedback, there should be quantifiable improvement measures for 

various system states over time. The goal of this research is to add a novel body of 

knowledge to the technology management discipline by exploring one or more of the 

modern-day predictive modeling techniques. 



 

9 

PM’s who manage software development projects have an increasingly arduous task. 

Often managers receive their inputs from technical leads who are more technically 

oriented. When assessing software projects, PM’s perform their duties according to the 

limitations of their capabilities and competencies. PM’s have the need to contend with the 

limitations of resources made available to them such as human capital and project 

management tools. Furthermore, PM’s tend to follow common and industry-tested 

practices within their organizations.  

With this motivation in mind, the secondary purpose of this research is to examine 

how conventional project assessment processes can be enhanced by using quantitative 

methods utilizing real-time project execution data.  

2.3. Research Goals and Potential Contribution   

This study aims to make measurable and implementable contributions in the area of 

software technology management. Specifically, the goals of this research study are to: 

1. Discover and analyze the impact of various project related data on ongoing 

software technology management projects.  

2. Improve upon conventional project assessment processes by using quantitative 

methods, which utilize real-time project execution data. In particular, the study 

aims to: 

a. Enhance the predictors of software project execution. 

b. Improve the methods used by software project management processes. 

c. Develop a framework to increase the objectivity of software project 

management. 
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Based on previous work conducted using OSS data, this study aims to extend the 

research so that findings may be leveraged by future software project management 

professionals under appropriate conditions and parameters. By operationalizing these 

findings, practitioners can reasonably expect to improve the predictability and reliability 

of their software projects. For example, software project quality and predictability related 

dashboards that could be created and used by software PM’s to assess more objectively 

the quality and predictability of outcomes from the later stages of the software project 

execution phase of active projects. Conceivably, real-time data could be leveraged from 

projects and instantly benchmarked with historical data from similar projects to 

determine quality and predictability attributes. Insights provided by these types of 

dashboards could be valuable for mitigating project risk. PM’s who traditionally manage 

their projects by overly relying on subjective project information, can use such data-

based insights as early warning indicators giving more time for corrective actions to be 

performed before it is too late.  Figure 3 and Figure 4 depict representative sets of sample 

dashboards. In Figure 3, the Release Predictability dashboard shows predictability 

attributes for software release while Defects dashboard shows defect information that 

provides indicative information about the quality of the development process currently 

underway on a project: 
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Figure 3. Sample Dashboards - Release Predictability and Defects 

Figure 4 depicts another pair of sample dashboards representing stakeholder 

engagement and work effort being expended during the current stage of the project. The 

first dashboard shown in Figure 4 provides objective information regarding the level and 

type of engagement signaling potential team concerns, interest concerns, and the quality 

of testing underway. This can be of crucial importance to the unsuspecting PM 

responsible for managing a project. The second dashboard shows how resource time is 

utilized during the current stage of the project’s execution phase signaling potential risks 

related to skill set gap, product development, productivity, and resource backlog: 



 

12 

 
Figure 4. Sample Dashboards - Stakeholder Engagement and Work Effort 

2.4. Limitations and Constraints 

While this research study strives to add an incremental and novel value to software 

project management, by no means will this research study be terminal or decisive with all 

possible attributes, parameters, or factors. For instance, as noted earlier, numerous 

subjective factors influence project performance, such as organizational culture, team 

dynamic, competitive environment, timing, and resources. These macro factors will not 

be the subject of this research.  In addition, there can be several other quantitative factors 

that influence project performance in various ways that are out of the scope of this study 

such as code performance, code complexity, code modularity, and hardware related 

parameters.  While these variables could have an impact on software product quality, this 
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study focuses solely on software process quality.  Therefore, discovery efforts for this 

study will be limited to process related attributes. 

This research study is also bound by a few key constraints that are anticipated. Unless 

grant funds are awarded, research efforts for this study are not expected to be funded 

from external sources. When possible, university resources and the author’s personal 

resources are relied upon exclusively to complete this research study. Ample opportunity 

is expected for further research that extends beyond the scope of this study including the 

identification of additional quality predictors, the development of industry-specific 

quality predictive models, and the automation of methods to incorporate research data 

into project management tools.  
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CHAPTER 3:  LITERATURE REVIEW 

While the review of existing research continues towards the advancement of this 

research, the goals of this study were further explored with a thorough literature review. 

Specifically, research goals for this study have stemmed from the following two areas of 

literature review: 

1. Past researchers have specifically acknowledged an opportunity for further 

research in a specific area based on their own published research. 

2. A gap within existing research has been observed (i.e., there was no evidence 

found of significant progress made in the particular area of concern). 

The following benefits from this research project were realized as a result of the 

literature review: 

1. Shape and refine this research study by increasing the added value and ensuring 

that the research goals are novel and achievable. A thorough literature review 

provides clarity, conviction, and a pragmatic approach provides continuing 

guidance and validity to this research study.   

2. Provide an interesting opportunity to review past academic research to identify 

gaps and refine research goals that can maximize intellectual merit while 

minimizing implementation complexity. 

3. Provide substantive background, context, and motivation for this research study. 
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4. Develop and validate assumptions regarding required data and an appropriate 

approach to research – the selection of right data is an important component for 

this research study. 

5. Validate data sources and discovery of criteria for data source selection – selected 

data requirements will require the proper data sources that are easy to access, 

supported by a credible research community and tested by academic researchers. 

6. Provide insights on the selection of statistical and modeling methods to use when 

analyzing the data to create the best prediction model within the scope of this 

study.  

The research goals of this study are developed and refined based on a comprehensive 

review of literature in specific areas of software management. Numerous academic 

publications, authored by experts in their respective fields, are reviewed and categorized 

in the following areas as shown in Figure 5:  

 

Figure 5. Areas of Literature Review 

Macro Analysis 

Assess broader level issues affecting 
software industry and management 

challenges

Research Data Validity

Confirm validity of OSS business 
models and repositories in research 

Software Quality 

Attributes

Identify metrics and measurements of 
software success and quality

Software Management 

and Predictive Modeling

Review project management practices 
and predictive modeling opportunities

Research 
Objectives
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3.1. Macro Analysis 

While the global information technology industry has grown to over $3.5T dollars 

including a software segment that generates in excess of $310M revenues annually. In 

just over half a century, the practices of software technology management have been 

severely stressed [8]. As is the case with most disruptive technologies that experience 

high growth rates, the software industry has experienced extreme challenges that have 

resulted from the hyper the growth rate. Numerous studies, surveys, and assessments are 

routinely conducted by organizations and independent third parties to better understand 

and alleviate the challenges. This study starts by examining software project failure rates.  

In 2013, the CHAOS Report published by The Standish Group showed an alarming 

rate of 79% for projects that either failed or where challenged [9]. Failed projects were 

defined as projects that are canceled at some point during the development cycle. 

Challenged projects were defined as projects that are completed and operational but over-

budget, over the time estimate, and/or that offer fewer features and functions than 

originally specified. Successful projects were defined as projects that are completed on 

time and on budget with all features and functions as initially specified.  The Standish 

Group has been publishing the report for more than thirty years.  

Analyses show high failure or challenged project rates with the root cause centered 

squarely on lack of adequate planning, readiness, and assessment methods. Mandal and 

Pal establish, with their research, that more than 50% of all Information Technology (IT) 

projects become “runaway” projects [10].  These projects exceed budgets and schedules 

while failing to deliver the expected outcomes [10-12]. Furthermore, project results based 

on the triple constraint model of time, cost, and scope become even more concerning. 
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Table 1 depicts that most of the projects exceed on two of the most important constraints: 

time and cost: 

Table 1. Project Performance Statistics [9] 

Year 
Successful 

(A) 

Challenged 

(B) 

Failed 

(C) 

Unsuccessful 

(B + C) 

Time 

Overrun 

Cost 

Overrun 

Undelivered 

Scope 

1994 16% 53% 31% 84% N/A N/A N/A 

1996 27% 33% 40% 73% N/A N/A N/A 

1998 26% 46% 28% 74% N/A N/A N/A 

2000 28% 49% 23% 72% N/A N/A N/A 

2002 34% 51% 15% 66% N/A N/A N/A 

2004 29% 53% 18% 71% 84% 56% 36% 

2006 35% 46% 19% 65% 72% 47% 32% 

2008 32% 44% 24% 68% 79% 54% 33% 

2010 37% 42% 21% 63% 71% 46% 26% 

2012 39% 43% 18% 61% 74% 59% 31% 

 

For years 2004 to 2012, Table 1 shows no significant annual improvement when 

examining software project performance for these two constraints (i.e., time and cost) 

even while scope remains generally under delivered. Project success seems to be 

arbitrarily achieved by the reduction of project scope rather than improving performance 

using other drivers [5]. These findings should raise a significant concern for software 

technology managers. The implications are sub-optimal aggregate productivity, increased 

risk of missing project expectations, and a greater allocation of project resources than 

planned. Software quality predictors have been studied by several researchers in the past. 

In one such study, the analysis of an OSS repository, SourceForge, showed that software 

quality indicators such as the number of downloads, rank, operating system, language, 

and days-to-build can, in fact, be examined to predict outcomes [13].  

Lee, Kim, and Gupta also point out abysmal statistics on OSS projects [14].  They 

note that most of the success with large OSS projects can be attributed to backend servers 

and internet-related software. The number of failed or dormant OSS projects is notable. 
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They base their findings on data extracted from SourceForge and confirm that most OSS 

projects have ended in failure. An alarming 58% of the projects do not advance beyond 

the alpha developmental stage, 22% remain in the planning phase, whereas the remaining 

17% remain in the pre-alpha phase, and some become inactive. The authors point out 

similar results which have been reported by the World Bank which cites an excess of 

50% failure rates for OSS projects [15].  With such results and claims, additional research 

on software process improvement and related investments appears justified. 

A study conducted over one hundred assessments as part of a research project to 

better understand software productivity [16]. The findings on the performance levels of 

managers and technical staff are summarized in Table 2:   

Table 2. Comparison of Management and Technical Performance Levels 

Management 

Activities 
Sizing Fair 

Estimating Poor 

Planning Fair 

Tracking Poor 

Measuring Poor 

Overall Poor 
 

Technical 

Activities 
Analysis Fair 

Design Fair 

Coding Good 

Reviews Poor 

Testing Good 

Overall Fair to Good 
 

 

A comparison of projects using automation with those that do not use any 

automation in their assessment processes is shown in Figure 6 below. 
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Figure 6. Automation in Key Software Project Management Activities 

A correlation between the presence or absence of project management automation 

and practical results on software projects has been observed. 40% of large software 

projects having 2,000 function points or more miss their anticipated delivery dates by 

more than six months and about 15% miss by more than 12 months. In addition, some 

large projects are canceled and not delivered at all [16]. When either automated planning 

or automated estimating methods are used, approximately 12% of software projects miss 

their scheduled dates in excess of 6 months and about 5% were delayed by more than 1 

year. When both methods are used, less than 5% of software projects miss their delivery 

dates by more than 6 months, and only 1% were delayed by more than 1 year. A 

secondary benefit is also observed. Since automated estimating and planning tools 

provide a much stronger grounding, the use of these tools prevents arbitrary efforts to 

compress schedules without rationale.  
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Table 3 shows that larger software projects have a higher risk of cancelations or 

major delays when compared to smaller projects: 

Table 3. Probability of Selected Outcomes [17] 

 Early On Time Delayed Canceled 

1 FP 14.68% 83.16% 1.92% 0.25% 

10 FP 11.08% 81.25% 5.67% 2.00% 

100 FP 6.06% 74.77% 11.83% 7.33% 

1000 FP 1.24% 60.76% 17.67% 20.33% 

10000 FP 0.14% 28.03% 23.83% 48.00% 

100000 FP 0.00% 13.67% 21.33% 65.00% 

     

Average 5.53% 56.94% 13.71% 23.82% 

 

In his paper, Jones further highlights the risk of client conflict, lost credibility, and 

risk of litigation resulting in immense financial stress to organizations because of the 

delays [18]. The author confirms that the most frequent complaint about software projects 

from executives in the private and public sectors is that the larger the software system, 

the greater the delays experienced with delivery schedules.  Figure 7 depicts this problem 

in terms of function points (FP) and delivery schedule delays: 
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Figure 7. Planned Versus Actual Software Schedules [17] 

A study conducted in 2001 of 1,000 U.S. software projects further substantiates the 

notion that on average, larger projects experience greater delays. Software development 

schedules depicted in Table 4 are in calendar months (in decimal units) for 6 size ranges 

and 6 categories of software projects: end-user development; management information 

systems (MIS), outsource projects (OutS), commercial software (Comm), system 

software, and military software [19]: 

Table 4. Average Software Schedules (in Calendar Months) 

 End-User MIS OutS Comm System Military Average 

1FP 0.05 0.10 0.10 0.20 0.20 0.30 0.16 

10FP 0.50 0.75 0.90 1.00 1.25 2.00 1.07 

100FP 3.50 9.00 9.50 11.00 12.00 15.00 10.00 

1000FP 0.00 24.00 22.00 24.00 28.00 40.00 27.60 

10000FP 0.00 48.00 44.00 46.00 47.00 64.00 49.80 

100000FP 0.00 72.00 68.00 66.00 78.00 85.00 73.80 
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Table 4 highlights some potential nuances among software variants in various yet 

representative categories. As supported by the data, larger and more complex software is 

deployed by military organizations, core systems, and those having their own intrinsic 

commercial value in the market place. This is also highlighted by the longer delivery 

schedules to allow for longer testing cycles for these categories of software. For example, 

if these categories of software are contrasted with software that serves the end-user 

community, the data show that end-user software is generally of lower complexity and 

consequently shorter delivery timelines. It is also reasonable to assume that this is due to 

simpler requirements and perhaps lower risk perceived by sponsoring organizations 

catering to individual end-user needs than those catering to larger constituents with 

expansive software utility and more at stake. 

In a study that examined 250 large software projects over a 9 year period, software 

management practices were examined to determine patterns inherent in project failures 

and successes. The study confirmed a few patterns which are of particular relevance to 

this research study and provides added impetus [20]: 

1. The majority of schedule and cost overrun related failures occur in the testing 

stage caused by poor project quality control, management of defect resolution, 

and planning for the remaining stages of the project. These factors are not as 

easily predictable in advance by the project management team. This naturally 

substantiates premise of this research study which is to focus metrics that most 

closely correspond to the later stages of the project execution phase – testing and 

deployment. 
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2. Most project failures trace back to poor project planning while successful project 

planning methods tend to be highly automated. This declaration further supports 

the need to improve automation tools for the software PM in particular and is, 

therefore, a focus area of this research study.  

3. Successful projects have a higher defect resolution rate when compared to 

unsuccessful projects. The study found that successful projects experience 4.0 

defects per function point and remove about 95% before deployment. 

Unsuccessful projects experience 7.0 defects per function point and remove only 

about 80% before deployment. 

4. Projects use one or more project management tools with varying degree of 

proficiency and sophistication. However, most of these tools were built for other 

applications aside from software engineering and do not offer any estimating 

capabilities, quality control features, or measuring of efficiency issues (e.g. defect 

removal efficiency). 

It must be recognized that organizations work towards managing projects to 

maximize business benefit while minimizing the risk of related financial losses. Since 

delayed schedules can often result in increased cost, larger projects are of particular 

concern to sponsoring organizations since they tend to have longer delivery schedules 

and therefore an increased risk of experiencing substantial delays.  By some measures 

and reports, software project failure costs and its associated implications are staggering: 

• A report by Roger Sessions in 2009 stipulated that cost of IT project failure as a 

percent of GDP to be as follows: $6,180B (world), $1,225B (USA), $3.9B (New 

Zealand), $200B (UK), and $110B  [21]. The report further shares that IT project 
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failure costs have surmounted to over $500B per month and the problem is getting 

worst. While these numbers represent IT aggregate numbers, the percent 

attributed to software related failures is lower yet still staggering [21].  

• 80% of technology projects actually cost more than they return [22]. 

• Up to 80% of budgets are consumed fixing self-inflicted problems [23]. 

 As discussed earlier, there continues to be a large need and associated benefit of 

using greater data-based automation to manage software engineering projects. In fact, the 

need and benefits of doing so are universal in engineering and have also been confirmed 

for other types of projects showing that less-performing projects present significantly 

lower system utilization levels than the other projects [24]. Another study by Raymond 

established that the use of robust project management information systems is 

advantageous to PM’s. The study confirmed improvements in effectiveness and 

efficiency in conducting managerial tasks related to project planning, scheduling, 

monitoring, and control. Improvements in productivity were also observed in terms of 

timelier decision-making [25]. This study also acknowledged that benefits often extend 

beyond the PM as an individual to the performance of the overall project. Such benefits 

included improved budget control, meeting of deadlines, and addressing technical 

complexity with greater ease than without having such systems in place [25].  

Previous research substantiates the need for improved predictive modeling tools and 

techniques to alleviate challenges that result in project delays such as quality, number of 

defects, and complexity of software. This call for action is a key motivator for this 

research study.  
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The study of the software industry and the associated management challenges would 

not be complete without some important notes on factors that make projects in this 

industry different from other industries such as construction, automotive, scientific 

exploration, and medicine. Many of the techniques of general project management can be 

applied but software projects have certain characteristics that make them different. Most 

software is inherently invisible, generally complex, virtually changeable, and easily 

conformable [26-31]. Software project management is a process of making visible that 

which is invisible. Unlike a bridge being constructed, software progress is not 

immediately visible. Software products are more complex when measured per unit of 

currency, than other engineered artifacts. The ease with which software can be changed is 

usually seen as one of its strengths. However, this means that where the software system 

interfaces external systems, it is expected that software can be changed to accommodate 

when necessary. Software systems are likely to be subject to a high degree of change. 

This results in higher pressures on software project management practitioners resulting in 

greater variability of outcomes. Software project managers need to trade-off 

characteristics, preferences, and quantities while balancing requirements, expectations, 

perceptions, opportunities, and risks [32]. Real-time decision-making frameworks and 

techniques are crucially important as they can help alleviate these challenges.  

3.2. Software Quality Attributes 

As stated previously, many researchers have utilized a vast amount of OSS data 

which is publicly accessible through various software repositories.  These OSS 

repositories can be used to gain insights into the software development process, its 

management, and its effectiveness. In this research study, OSS data can be used to 
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understand and develop improved measures of success for software projects.  Measuring 

project success is useful for the effective and reliable assessment of ongoing projects.  

Measuring success is also extremely useful when software is monetized in both the OSS 

and PSS communities. Software project sponsors can only evaluate the return on 

investment if success criteria can be identified and subsequently measured. Over the 

years, software success has been measured in numerous ways and with varying levels of 

sophistication. A commonly cited model for Information Systems (IS) success was 

developed by DeLone and McLean [33] and is shown in Figure 8. This model suggests 

six interrelated measures of success: system quality, information quality, use, user 

satisfaction, individual impact, and organizational impact: 

 

Figure 8. DeLone and McLean’s Success Model [33] 

While the model above is considered reasonable and complete by many researchers, 

the literature review also suggests several challenges when trying to measure results for 

some of the variables referenced in the model. Crowston et al. describe each measure of 

success and identify key indicators [34]. They also admit to potential issues for each 

based on their research especially as it relates to OSS, the primary data source of interest 

for this study. Table 5 below summarizes these findings and claims: 

Table 5. Summary of Measures of Success, Indicators, and Potential Issues 

Measure of Success Indicators Potential issues 

System and Code quality (e.g. understandability, • Code quality is 
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Measure of Success Indicators Potential issues 

Information 

Quality 

completeness, conciseness, portability, 

consistency, maintainability, 

testability, usability, reliability, 

structure, efficiency),  

Documentation quality. 

 

generally good in OSS 

so the measure may 

prove to be of minimal 

value – in software 

engineering code 

quality does not imply 

software project 

execution quality. 

• Data related to code 

quality in OSS 

repositories may not 

be adequate. 

• Many of the quality 

indicators are highly 

subjective in nature 

making it difficult for 

researchers to code 

accurately. 

User Satisfaction User ratings, 

Opinions on mailing lists, 

User surveys. 

 

• Surveys are the only 

reasonable way of 

ascertaining this 

measure; surveys are 

often subjective and 

based on a non-

random sample (i.e., 

users who take the 

time to volunteer a 

rating within the OSS 

community). 

Use Use (e.g. Debian Popularity Contest), 

Number of users, 

Number of downloads, 

Inclusion in package distributions, 

Popularity or views of information 

page, 

Package dependencies, 

Reuse of code. 

 

• The best measure of 

the four identified by 

DeLone and McLean’s 

Success Model.  

• Used by many studies 

as an indicator of 

success. 

• Especially relevant for 

OSS. 

• In research, must 

adjust for the 

phenomena that highly 

successful (and stable) 

software may not be 

downloaded too often 
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Measure of Success Indicators Potential issues 

as there would be no 

need by users to do so. 

Individual and 

Organization 

Impacts 

Economic and other implications. • Impact measures are 

difficult to define for 

OSS and PSS projects; 

they are even harder 

for OSS due to the 

difficulty in defining 

the intended user base 

and expected 

outcomes.  

 

Usage and user satisfaction related measures are easiest to measure with the least 

amount of issues that can be anticipated as shown in Table 5 and therefore highlighted in 

Figure 8. Based on these findings, many researchers have settled on relating software 

success to the level of use of the software over periods of time [14, 34]. It has been 

acknowledged that software measurement is required for practical software process 

improvement (SPI)  to ensure improvements are actually addressing the correct issues 

[35].  SPI has been in the spotlight in industry and academia in recent years. Additional 

bodies of research and publications have focused on practical SPI. Despite the increased 

focus placed on SPI by researchers, change management professionals, quality assurance 

managers, process owners, and researchers continue to be challenged in defining success 

achieved in SPI [35-37]. After conducting an independent literature review, Abrahamsson 

appropriately lays out SPI success dimensions and differentiates between “hard” and 

“soft” measures with a relative estimate of difficulty in attainment in Table 6 below [38]: 
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Table 6. SPI Success Dimensions 

 

Success Dimension 

 

Types of Measurements 

Relative Estimate 

Difficulty 

Project Efficiency  Hard measures (e.g. work effort)  Low 

Impact on the Process User  Soft measures (e.g. satisfaction, 

ease of use; work morale; level of 

excitement, teaming, 

collaborative practices used)  

High 

Business Success Hard measures (e.g. productivity)  Moderate 

Direct Operational Success  Hard measures (e.g. defect ratio) Moderate 

Process Improvement Both (experience database)  High 

 

As with software metrics, one can reasonably assume that SPI related soft measures 

such as satisfaction levels, morale, and level of excitement are more difficult to measure 

with sufficient objectivity than hard measures such as level of productivity and defect 

ratios.  Soft measures present the greatest challenges when measuring their direct impact 

on SPI. Such measures have increased subjectivity and may not be easily attributable to a 

specific SPI related variable (e.g. individual morale can be influenced by many 

variables). 

Equally important to using proven predictors is the notion of establishing metrics that 

can be tied to processes being addressed programmatically as part of the software 

engineering process. Catal suggests that metrics based models are so important that they 

must be frequently revised (i.e., real-time) while the project is underway – perhaps even 

rebuilt from scratch each time the process or the organization experiences a change  [39].  

Other researchers have also suggested that evaluation and prediction are two separate 

learning schemes using historical defect data to predict defects for new data [40]. Song, 

Shepperd, and Liu note considerable variations in the performances of predictors across 
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data sets suggesting that a simple search for the “best” predictor may prove to be 

pointless unless the research is targeted towards answering a very specific question [40]. 

At this time, there is an important and final point to be made regarding the dangers of 

measurement and software metrics in general. While DeMarco classically reminds us that 

in order to be able to control a process or a product, measurements are a definite 

prerequisite, he equally reminds us that it can be very expensive to collect “good” metrics 

and even more expensive if “bad” ones are inadvertently collected and used [41].  

However, the author goes on to support his claim that software metrics are worth it in the 

end as they can help the organization improve processes and focus management attention 

on the real drivers to course correct when necessary. Dekkers and McQuaid submit that 

measurements can enhance or misguide software projects  [42]. The authors explicitly 

state that it behooves software project management spend the required time on the people 

and cultural issues that ultimately can provide lasting remedies. These findings support 

the motivation and premise for this research study and guide the efforts accordingly. This 

research will focus on hard measurements (i.e., easier to measure, more objective, and 

more quantifiable measures) in favor of subsequent management action required to 

course-correct projects by adjusting the levers in softer aspects (i.e., culture, environment, 

and change management aspects) that impact projects. The social science aspect of timely 

management decisions in these softer areas of software project management has been 

amply studied and conjectured by academia and industry practitioners. However, a gap 

appears to be in the use of the hard measures in real-time while project activities are 

underway to drive timely management intervention to achieve course-correction before 

failure occurs. This represents a real opportunity for this research study. 
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3.3. Research Data Validity 

One of the greatest challenges experienced when researching the quality of software 

management is the reluctance of organizations to share unbiased data related to their own 

software management practices. In their research study, Tripathi et al. reviewed 187 

research studies that span over a period of 5 years (2010 to 2014) and found that 91.9% 

of them rely solely on OSS datasets and only 14.4% involve university-industry 

collaboration [43]:   

 

Figure 9. Mining Software Research Spanning 5 Years –  

Study of 187 research papers, 2010 – 2014 

 

 Subsequently, Sureka et al. reported that more than 50% of the researchers which 

they surveyed had reported difficulties in obtaining industry data on software and 

indicated that this was a major impediment to greater university-industry [44]. OSS 

communities have helped to address this research data gap to some extent [13, 44-48]. 

Many researchers and practitioners have acknowledged that there is an abundance of OSS 

data available and some of these are proven and tested as reliable inputs for conducting 

unbiased research in related areas. Large OSS communities of actively engaged 

contributors have documented the features of numerous software products and various 
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other key process related attributes that help researchers understand the quality of 

software development and management practices.  Proper due diligence to appropriately 

consume OSS data can be facilitated to determine track record, performance, and 

maintenance aspects of software [49].  

The validity of software engineering research and supporting sources of data 

continues to be investigated by researchers. By recognizing the benefits and biases of 

various data sources, researchers can better improve research quality and address the 

issues of validity given the differences between proprietary and open source software 

development.  Mathieu et al. [50] establish a key connection between OSS creators and 

entrepreneurs by examining OSS creator motivations across 3 entrepreneurial 

dimensions: the opportunity, the organization, and the business models. They find 

similarities as both constituents exclusively aim for value creation. With regards to OSS-

based business models specifically, the authors find that they fall into one of 5 categories: 

donations or gifts from users, enhancements of preexisting products, software sold for 

commercial interest, services-based offerings, and services-based partnerships.  This 

finding supports modern day market place realities of OSS and explains how globally 

based open entrepreneurs have self-organized themselves initially and virtually to 

ultimately create enhanced, mega-sized commercial software adaptations leveraging the 

open source movement. Open source software (OSS) and related communities provide 

product offerings that compete head-to-head with proprietarily source software (PSS) 

across most emerging software categories, including cloud-based operating systems (e.g. 

Linux) web server technology (e.g. Apache HTTP Server), database engines (e.g. 

MySQL Database), Web 2.0+ development environments (e.g. PHP), and widely adopted 
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internet browsers (e.g. Firefox) [50-52]. In fact, OSS provides ample opportunity for 

generating revenue and reducing certain costs and is therefore heavily leveraged by most 

enterprises on a global basis. Table 7 shows relevant statistics and summarized results of 

a recent OSS survey (2016) by BlackDuck Software Enterprises, an independent 

authority on OSS and has been surveying the market annually for the past 10 years:  

Table 7. OSS by the Numbers [53] 

 Statistic 

Percent of enterprises globally run on OSS  78%  

Percent of enterprises that do not rely on OSS 3% 

Estimated number of active OSS projects  180,000+ 

Percent of enterprises contributing to OSS 65% 

Percent increased use of OSS within the enterprise 65% 

Top reasons cited for using OSS  Increased efficiency, improved 

interoperability, and greater 

innovation 

Emerging technologies leveraging OSS Cloud computing components, 

big data, content management, 

databases, operating systems, 

development tools, and mobile 

technologies 

 

Notable examples of such OSS-based collaborative efforts include LINUX, Apache, 

MySQL, and the Java programming language. 

In the category of large distributed projects, proprietary software systems (PSS) and 

OSS is very similar in nature. However, PSS teams generally operate with a greater 

degree of privacy, resulting in weaker datasets that are a barrier for research. This is 

especially true of software fault prediction and related data that has been experienced by 

researchers in the past [54]. OSS data, on the other hand, can provide a richer data set full 

of insights that are transferable when trying to understand PSS management processes. 

Many organizations leverage the possibilities of increased globalization to widely 
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distributed teams in an effort to maximize PSS team productivity. Such software 

development practices mirror those of the open source [55]. 

A separate body of research has theorized extensively on organizational learning in 

the context of software development.  Organizational learning is a prerequisite for long-

term, continued adoption of software quality predictive models. In order for predictive 

models to be effective and sustaining, sponsoring organizations must be willing to learn 

and they must have a robust knowledge management process already in place. Classic 

research studies such Raymond’s Cathedral and Bazar [56] explain that OSS and PSS 

communities have vastly different cultures in the way in which they release software and 

their fear threshold for rejection by their peers. The author claims that, by nature, OSS is 

served by iterative communities who strive for small incremental wins whereas, in 

contrast, commercial vendors (considered as part of the PSS community) are expected to 

strive for increased perfection than the frequency of release, defect resolution, and 

predefined software quality goals. The implication is that it is the commercial aspect 

which drives PSS delivery, not the individuality and free spirit which drives OSS 

community members. More generally, the authors seem to imply that intrinsic motivators 

behind the actions taken by key actors are perceived as being different for the two 

communities being compared. Israeli and Feitelson [57] highlight the dominating 

indicators of software success as being market share in the case of PSS and the number of 

downloads in the case of OSS. However, the findings of this body of existing research 

need to be tempered appropriately by recognizing that the main purpose being strived for 

is singular in either case; it is to develop good quality software products which command 

high rates of adoption by the target set(s) of users. A second argument can be made that 
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organizational learning happens within both OSS and PSS communities as long as the 

appropriate tools are made available to capture the right data, organize the information, 

and engage community members adequately. Third, from a practical perspective, OSS 

and PSS communities increasingly co-mingle and work in cooperation with each other 

since many of their members also benefit from having joint membership of both 

communities.  

Huntley, while elaborating on the same topic, credits Raymond’s contrast of the two 

communities [58]. The author provides a strong argument and a perspective – while the 

individual OSS developer operates under minimal supervision and is not confined by lack 

of rigor and process, collectively these individuals are highly effective and are able to 

perform and create quality products over periods of time. The OSS communities achieve 

this by employing rigorous learning processes using specialized tools at each stage of the 

process (e.g. use of formalized bug tracking and version management processes). Some 

of these tools can be used to learn more about software quality processes which can have 

implications that are transferrable to both OSS and PSS projects. 

Most primary research projects are bounded by the quality, availability, and 

accessibility of relevant data. This study is no different. SourceForge provides a large and 

adequate set of accessible data on OSS development projects. This has made the world’s 

largest repository a highly valuable data source for research [59]. Even still there have 

been concerns expressed about the accuracy and validity of data available in 

SourceForge. One of the key concerns that have been raised is the quality of the data that 

is generally available as some of it is self-reported by project owners and administrators 

[59]. Lerner and Tirole [60] provide a reasonable explanation that alleviates this concern. 
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The authors explain that project leaders use the data to recruit new developers, attract 

new users, and solicit donations for their projects. As such, any deliberate entry of 

inaccurate data regarding projects will be naturally avoided by those who are involved 

with OSS development on SourceForge. Software evolution researchers have found it 

acceptable to use OSS data repositories for certain types of research  [44]. Notably, select 

Lehman’s laws [61] of software evolution specifically pertaining to measuring continuing 

software change and growth, also established measures of software quality in the PSS 

domain, were deemed to be applicable to OSS [62]. 

The SourceForge repository was selected as the primary source of research data for 

this study. The criteria used for selection include relevancy, accessibility, reliability, 

sufficiency, validity, and longevity. SourceForge originated in 1999 and was the first 

provider of free and open source software (FLOSS). Over the years, the independent 

company was owned by many other larger ventures such as VA Software, Dice, and 

BizX LLC. SourceForge remains the industry default OSS repository and boasts having 

industry-leading tools, a collection of 430K+ projects, 3.7M+ registered users, 41.8M+ 

customers of software, and 4.8M downloads per day [63].  Earlier in the research effort, 

there were concerns that the repository’s vastness may prove to be its limitation. After 

further research, a solution was discovered. Exclusively for research purposes, the 

SourceForge Research Data Archive (SRDA), located on the University of Notre Dame 

data servers was created in 2003 after a group of researchers received several grants from 

the National Science Foundation (CISE IIS-Digital Society & Technology program under 

Grant ISS-0222829 and by the CISE Computing Research Infrastructure program under 

Grant CNS-0751120) [64].  

https://sourceforge.net/directory/
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The SRDA assimilates and normalizes a collection of OSS data directly from 

SourceForge on a monthly basis [46]. This practice has continued until September 2014 

after which the data was frozen and has been made available for use for further research. 

Selected data feeds from 2003 to 2014 are licensed and provided by SourceForge to 

SRDA developers for research consumption. Over 100 researchers worldwide have used 

this data archive for research purposes because of its accessibility, ease of use, and 

reliability [64]. The data is made available in a relational database format which can be 

queried using standard SQL procedures. It is anticipated that the following data entities 

from SRDA will be used in support of this research study. Detailed data relationship 

diagrams are supplemented in Appendix A section of this report. The key data entities are 

shown in Figure 10 below: 

 

Figure 10. Select Data Entities from SRDA 

The SRDA has served as an established and reasonably reliable source of data used 

by software researchers in the past. As part of this research effort, 91 research 

• Contains bugs (defects logged) for all projects on the SRDA

1. Artifact-Bugs

• Contains relationships between groups and packages

2. FRS Package

• Contains activity related to releasing software

3. FRS Release

• Contains information regarding software groups

4. Groups

• Contains select aggregate data about projects 

5. Stats Project All

• Contains categories of software 

6. Trove Category

• Containes relationships between groups and categories

7. Trove Group Link
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publications that were readily accessible have been analyzed to determine the knowledge 

contributions made by the studies. The analysis has been summarized in Figure 11: 

 

 
Figure 11. SRDA – Existing Research – 10 Year Period, 2007 to 2016 

 

During the past 10 years, most of the focus of existing SRDA based research has (i.e., 

82%) has been placed on better understanding OSS processes and the study of human 

networks and collaboration mechanisms within OSS communities. While such research 

provides valuable insights and support to this research study, there remains ample 
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research opportunity to leverage SRDA data for direct benefit to software project 

management and industry practitioners. It is also evident from our comprehensive review 

that existing research outcomes, while interesting and quite possibly applicable to the 

software management industry, remain in academia; there have been no frameworks, 

blueprints, or methods offered to aid in institutionalizing the research to help firms realize 

the potential organization benefits of the research. Cumulative year-wise analysis of 

SRDA based publications, publisher analysis and a detailed cross-reference table 

supporting the analyses presented in this section has been included in Appendices B.1, 

B.2 and B.3 respectively. 

With further regard to the validity of OSS data in academic research efforts, Wright et 

al. investigated 266 empirical studies and found that 49% used OSS artifacts exclusively 

while only 23% used PSS artifacts for research [55]. The remainder used a custom (e.g. 

derived) or a combination approach as shown in Figure 12:   

 

Figure 12. Review of 266 Research Papers Using OSS vs. PSS Artifacts 
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Another similar claim was provided by Sureka et al. based on a survey conducted in 

2015 where the authors reported that 54% of research studies used OSS data exclusively 

and 9% used PSS related data solely to conduct their research [44]. The remainder of the 

population surveyed used a mixed approach. The authors also found that over 77% of the 

research studies surveyed reported either exclusive use of OSS data or mostly OSS data 

to conduct their research.   

OSS networks rely heavily on newcomers that can actively participate in the 

development of software over longer periods of time. Steinmacher et al. highlight several 

barriers that threaten newcomer entry [65]. In their literature review, the authors report 

that the barriers to entry were largely centered on lack of social interaction with project 

members, receiving timeliness of response, and good project documentation.  While still 

geographically dispersed and individually motivated to participate, OSS community 

members must still value that they are a small part of a larger team organization that 

works on a software project over a period of time. Faraj et al. [66] in their research and 

Sahin [67] in his respective research work uniformly establish that teams are a primary 

mechanism for accomplishing organizational work, especially on software projects. Team 

building, team size, and cooperation amongst a team are critical factors in developing a 

quality software project. Interestingly, these findings which suggest the importance of 

quality documentation, timeliness of data, and the importance of teaming are highly 

appealing to researchers contemplating the use of OSS data to study software and process 

quality measures. 

The literature review suggests that careful use of OSS data repositories to understand 

software engineering processes can be effective, more manageable, and more reliable in 
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some cases when compared to PSS data. Research shows that there remains a unique 

opportunity provided by OSS to advance the study of the software development process 

and its associated quality attributes. This research study intends to utilize this 

opportunity. 

3.4. Software Management and Predictive Modeling 

The final area of focus by the literature review has been on reviewing current 

practices of software project management and predictive modeling opportunities 

conducive for further research. Since this research study confirms that objective planning, 

measurement, and benchmarking are largely missing in PM practices, it is important to 

determine the root cause. Software management practices start at the onset of the 

education process for most technical developers and are subsequently adopted by 

experienced PM’s. Given this working philosophy, it is important to shift the focus from 

a review of industry practices into a brief review of current academic course work related 

to software engineering. Current software engineering curricula at the undergraduate 

level were primarily examined. The findings were consistent and possibly a consequence 

of current industry practices – there is insufficient focus being placed on up-front 

planning, benchmarking, and metrics in the software education curricula. As a result, 

important changes must be made to these training methods to teach future matriculated 

students how to utilize experienced-based knowledge to better predict software project 

outcomes. Jagtiani and Lewis [68] reported that a greater focus is required on planning 

and ongoing metrics validation at our universities than evident with current practices. 

Their research was based on the gaps which they identified between the learning 

outcomes provided by the authoritative IEEE Software Engineering 2004 Curriculum 
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Guidelines [69] and a review of standard software engineering course content shared by 

the same report. Their research summarizes the gaps in Table 8: 

Table 8. Gap Assessment – Learning Outcomes for Course Curricula [68] 

 

Summary of Intended Learning Outcomes –  

Software Engineering Undergraduate Curricula 

Gap Assessment:  

Course Topics Coverage 

1. Gaining knowledge of software engineering and issues. Planning, Metrics Required 

2. Learning to work individually and in teams. Topics Adequately Cover 

3. Resolving conflicts between cost, time, knowledge, 

existing systems, and organization. 

Planning Required 

4. Designing appropriate solutions that satisfy and 

integrate ethical, social, legal, and economic concerns. 

Planning, Metrics Required 

5. Learning to apply theories, models, and techniques to 

identify problems, implement solutions and verify 

results. 

Planning, Metrics Required 

6. Understanding the importance of negotiation, effective 

work habits, leadership, and good communication. 

Topics Adequately Cover 

7. Learning emerging models, techniques, and 

technologies as they emerge and the importance of 

doing so for ongoing efforts. 

Unable To Determine 

 

Undergraduate level training on software engineering is generally in need of revision 

and requires an increase in focus on theory application, models, and techniques to 

improve planning, metrics, measurements, and overall predictability of software 

development efforts. While defining solutions and evaluating recommendations 

potentially useful to software engineering education and related processes is not directly 

in scope of this research study, it is important to note the gap to a) substantiate the need 

for PM training and methods in this area which is important to this study and b) identify 

future opportunity for research and impact. 

Since software predictive modeling is a clear objective of this study, accuracy, and 

cost and schedule estimation aspects of software project management were been studied. 

Estimation implies risk which is the result of recognizing uncertainties and balancing it 

with benefits and utilization of organization resources. DeMarco and Lister [70] state it 
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appropriately in their book, Waltzing with Bears, when they convincingly conjecture by 

stating that the only projects that are worth doing are those that come with risk and that 

without any risk we may no longer expect returns. The authors remind us that while risks 

are a reality, poorly developed cost and schedule estimates definitively and adversely 

affect project success. 41 years ago, in 1975, Frederick Brooks [71] stated that the biggest 

reason for projects to go off track is due to schedule compared to all other reasons 

combined.  Optimistic estimation continues to be one of the two most common reasons 

for out-of-control projects [72], and cost and time-related faults are the biggest reason for 

software failures in day-to-day practice [73]. Boehm also affirms the same by including 

overly optimistic schedules and budgets in his list of top ten risks faced by software 

projects [74]. Given the reported and repeat project failure rates reviewed earlier coupled 

with previous research findings on the challenges related to estimation, it appears that 

project management practices require more sustainable improvements in this area.  

John et al. conducted an extensive review spanning 117 publications of past research 

focused on software quality management practices [75]. The results of the review were 

published in June 2016 and show the relative influence of various software management 

practices over software quality. Figure 13 summarizes the results and provides 

overwhelming support for the use of predictive models to drive quality: 
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Figure 13. Influence of Top Software Management Practices on Software Quality 

 

In addition, the above research presented several key findings of particular 

importance to this study: 

• Project management practices that employed increased Total Quality 

Management (TQM) and Capability Maturity Model (CMM) processes and 

associated implementations also demonstrate increased software quality. 

• Regarding the selection of software quality prediction models, multiple models 

have been developed in the last several years and there is no single approach that 

is applicable for all software projects.  
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• Regarding the use of software quality prediction models, most models use static 

attributes such as code complexity which are not routinely measured or influenced 

by the PM’s. 

• Regarding the design of software quality prediction models, while process 

performance-based models use quantitative management techniques to manage 

the software process, such models are mostly based on regression analysis and 

simulation techniques. Different algorithms, in particular, of the AI or machine 

learning type, are a recognized opportunity for future research. While there are 

examples of past research which have successfully incorporated machine 

algorithms to predict project success in other industries (e.g., Wang et al., (2012) 

use of neural networks in the construction industry [76]), greater opportunities to 

extend research remain in the software industry. 

• Performance characteristics of software projects continue to be largely qualitative.  

• A positive correlation exists between software quality, productivity, cycle time, 

and development effort. Future predictive models should use quantitative methods 

to manage multiple performance characteristics.  

• Because of the above two findings, the authors affirm that models for 

simultaneously monitoring of quantitative and qualitative performance 

characteristics are a substantive future research opportunity. 

Since the development of a valuable and novel predictive model is of importance to 

this research study, the research findings shared specifically by John et al. regarding the 

generally limited use of machine learning in the development of such models were 

further examined [75]. This research study further examined the results of the authors’ 
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identification of quality prediction model based research depicted as 60% penetration in 

Figure 13 by contrasting it with a list of widely accepted machine learning algorithms as 

summarized by Chao [77]. Table 9 shows the gap in research with regards to the use of 

machine learning models. This research study is particularly interested in examining 

supervised learning and parametric based learning models (e.g., Naïve Bayesian) given 

the nature of software quality attributes inherent in the research hypotheses: 

Table 9. Gap Assessment – Software Quality Prediction Models in Research Studies 
 

 

Type 

 

 

Category 

 

Representative  

Methods 

 

Research 

Gap 

Coverage 

(No. of 

Studies) 

 

 

References 

Supervised 

Learning 

Linear model Perceptron 

Multi-layer 

perceptron 

Support vector 

machine 

Support vector 

regression 

Linear regression 

Rigid regression 

Logistic regression  

Yes 

Yes 

 

No 

No 

No 

No 

2 [78], [79] 

Supervised 

Learning 

Non-parametric 

model 

K-nearest 

neighbors 

Kernel density 

estimation 

Kernel regression 

Local regression 

No 

No 

No 

No 

6 [80], [81] ,[82], [83], 
[84], [85] 
 

Supervised 

Learning 

Non-metric 

model 

Classification, 

regression tree 

Decision tree-based 

systems 

No 

No  

 

13 [86], [87], [88], [89], 
[90], [91], [92], [93], 
[94], [95], [96], [97], [98] 

Supervised 

Learning 

Parametric 

model 

Naïve Bayes 

Gaussian 

discriminant analysis 

Probabilistic 

graphical models 

Bayesian Networks 

Neural Networks 

Yes 

No 

 

No 

No 

No 

No 

23 [99], [100], [101], [102], 
[103], [104], [105], 
[106], [107], [108], 
[109], [110], [111], 
[112], [113], [114], 
[115], [116], [117], 
[118], [119], [120], 
[121], [122], [123] 

Supervised 

Learning 

Mixed method Bagging (bootstrap 

+ aggregation) 

Adaboost 

Random forest 

Yes 

 

Yes 

Yes 

3 [124], [125], [126] 
 

Unsupervised 

Learning 

Clustering K-means clustering 

Spectral clustering 

Association rule 

mining 

No 

No 

No 

3 [127], [128], [129] 
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Type 

 

 

Category 

 

Representative  

Methods 

 

Research 

Gap 

Coverage 

(No. of 

Studies) 

 

 

References 

Unsupervised 

Learning 

Density 

Estimation 

Gaussian mixture 

model 

Graphical models 

Yes 

Yes 

0 N/A 

Unsupervised 

Learning 

Dimensionality 

reduction 

Principal component 

analysis 

Factor analysis 

No 

No 

1 [130] 
 

 

Naïve-Bayes is widely used, simple to set up, and robust with is accompanied 

with demonstrated examples in various applications such as pattern recognition [131], 

medical diagnosis [132], and defect prediction [102, 133-135]. Defect prediction models 

using Naïve Bayesian classifiers deliver the best prediction accuracy on public datasets 

compared with models with other classifiers [102]. A key reason for the success of the 

Naïve Bayesian classifier over other methods is that it combines inputs from multiple 

sources in a given process. The Naïve Bayesian-based learning method is not impacted 

by minor changes associated with the training data samples. The algorithm recognizes 

such changes and prevents unnecessary variations in the predictive results since it polls 

numerous Gaussian approximations to the numeric distributions [102]. Therefore, minor 

correlations between attributes or samples in the training set within the field of software 

defect prediction do not confuse Naïve Bayesian classifiers. For these reasons, Misirli et 

al. successfully used Naïve Bayesian techniques as the sole algorithm to develop a 

software defect prediction model and calibrated the model based on locally available and 

public data [133].  

More recently, in 2016 a study which evaluated different families of prediction 

methods for estimating software project outcomes found that four classifiers had 

relatively high performance – Random Forest, Support Vector Machines, Multilayer 

Perceptron (a class of neural networks), and Naive Bayes [136].  These findings provide 
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further support and direction to this research project. However, the scope of the study was 

limited as it did not provide methods by which the said prediction models can be used by 

practitioners for project management decision-making.  

  



 

49 

CHAPTER 4:  RESEARCH PROCESS 

This research study has been work-in-progress since January 2014. Figure 14 shows 

an overview of the process being followed to conduct this research study and to achieve 

its goals: 

 

Figure 14. Process for Research Study Execution 

 

   The prospectus defense focused on defining the research problem, identifying 

research gaps, setting research goals, creating a data plan, conducting preliminary data 

analysis, and demonstrating initial results. For completing the dissertation thesis and 

preparing for final defense, feedback from the prospectus defense has been addressed. In 

addition, a thorough review of software PM practices was conducted and new changes to 

existing methods and processes have been addressed and supporting research goals were 
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revised accordingly. Additionally, as part of completing the dissertation thesis, data 

analysis was completed, results were reviewed, predictive models were developed and 

validated, and implications were discussed vis-à-vis an application framework as a 

suggested method for implementation of the research outcome.  
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CHAPTER 5:  RESEARCH DATA 

5.1. Data Plan and Expected Outcomes 

This study requires careful consideration of the data and analysis to ensure the 

progress towards achievement of the research goals.  Figure 15 shows challenge areas, 

key activities, and research outcomes for the data planning process which has been 

followed: 

 

Figure 15. Data plan - Key Activities and Preliminary Outcomes 
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Similarly, Figure 16 shows key activities and research outcomes for the data analysis 

process which was followed: 

 

Figure 16. Data analysis - Key Activities and Preliminary Outcomes 

 

5.2. Data Management  

Selection, storage, and management of research data is a crucial prerequisite for this 

research study. While access to the SRDA servers was granted specifically for this 

research study, integrity and availability of the data relied upon specifically by this 

research study must be ensured.  Furthermore, it is expected that the data archive, which 

cumulatively spans 11-year period (i.e., January 2003 through September 2014), will 

sufficiently serve the objectives set forth by this study as findings are expected to be 

thematic and aimed at improving software quality and predictability over periods of time. 
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As the web-service provided by SRDA has the following several limitations, they must 

be duly addressed to allow for research flexibility and completeness:  

1. Long-running queries time out after 60 seconds. 

2. The query interface does not allow for complex query definitions. Complex and 

nested queries involving multiple joins and unions are not possible using the 

interface. 

3. Full downloads of the database are not permissible by the licensing agreement with 

SourceForge. 

4. Long term availability of required SRDA data is unclear.  

 

To address the limitations listed above and to address the requirements of this 

research study, the following mitigating steps were taken shown in Figure 17: 

 
 

Figure 17. Research Data Management Plan 
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5.3. Data Extraction 

As specified by the data management plan for this research study, the SRDA data 

warehouse was reviewed for potential software and process attributes. SQL queries were 

coded to extract fields that could be likely candidates for research and analysis as part of 

the project.  A short sample of a SQL query used for selection of data is shown below: 

SELECT release_id,package_id,status_id, preformatted, release_date, released_by  

FROM sf0914.frs_release r  

WHERE r.release_id > 200000 and r.release_id <= 500000  
 

Once developed, such queries are entered into the supplied query form tool as shown 

in Figure 18 [64]: 

 

Figure 18. SRDA SourceForge Query Form 
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Multiple queries were run to select the required data in small groupings to 

compensate for timeouts experienced by the SRDA Web Server.  To alleviate query 

performance issues and to prevent web server timeout issues, a local MS Access database 

has been created to serve as a holding container for the data. Appendix B lists the tables 

and fields queried from and stored in the local database for further analysis. Over 9.5M 

records of data were leveraged for this research study before building out the data 

relationships that use inner joins that result in substantially increased the record counts in 

resultant tables.  Specific field mappings were selected as they are suitable candidates for 

the data analyses required to test the research hypotheses. Figure 19 below shows the key 

relationships between the tables which are leveraged by the research study. These 

relationships are important and allow for accurate querying of the data and for building 

secondary relationships: 

 

 
 

Figure 19. Key Data Relationships for Select Data from the SRDA 

5.4. Data for Analysis 

After conducting a thorough qualitative and quantitative analysis of the data from 

SRDA, relevant observations are being shared in this research paper. Specifically, the 

study set out to discover predictors which can offer enhanced levels of assessment for 

software quality and project execution. At this stage of the research, the project has 
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focused on identifying early candidates for software attributes that can be good predictors 

of success with respect to quality measures based on the data collected. Defect attributes 

can also be in scope for future research and can be based on the data set used for this 

research study.  There is enough evidence based on past research literature review and 

analysis of viable OSS data archives to demonstrate that OSS can provide valuable 

historical information about software projects to benefit software project management 

and improve project quality. 

Key relationships amongst the relevant data entities in the SRDA have been identified 

and established. Figure 20 shows the steps required to build these relationships are 

important to calculate important software project attributes and to determine 

interdependencies such as the average time between software release dates and the 

number defects logged, group ranking, and the number of downloads: 
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Figure 20. Key Steps to Derive Key Data Relationships from the SRDA 

Confirmed by the literature review, it is reasonable to define software success by the 

two key attributes as researchers have concluded in the past: 

1. Software ranking is given by the community and for the community it serves. 

2. Software usage which best identified in OSS communities as the total number of 

downloads. 

In addition, we define a third calculated attribute: 

3. Average days of defects logged relative to the  release date.  This derived attribute 

is being introduced specifically by this research study to address a gap. In order to 

develop a software quality predictive model usable in real-time, static quality 
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attributes such as the first two attributes above are not enough as they only 

account for a posteriori result.   

By introducing a third aspect focused on measuring release date accuracy, 

a learning model can be envisioned to better predict the accuracy of an upcoming 

software release date established by software management organizations by 

leveraging additional information. Software management can improve the 

accuracy of estimated release dates by examining the rate of software defects 

logged just before an upcoming release date or shortly after a premature software 

release.  

5.5. Research Variables 

Based on the analysis done thus far, we determine that it is feasible to develop a data 

store by leveraging OSS data archives to facilitate research towards improving software 

process quality and to develop predictive models. Key relationships can be established 

amongst relevant SRDA data to calculate the mean time between software release dates 

and number defects logged, group rank, and number of downloads. This can be of crucial 

importance to software managers looking for more empirical data to support decision 

making and time frame estimation efforts during project execution. 

Figure 21 shows the research variables that are directly or indirectly relevant to this 

study: 
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Figure 21. Research Variables and Classifications 

 

Table 10 below provides a detailed explanation for the research variables and 

their relevance to this study: 

Table 10: Research Variables and Relevance 

Variable Classification Type Research Relevance  

Message 

Posts 

Independent Whole 

Number 

Represents the total number of messages generated by individuals 

within the communities. This number indicates message forum 

penetration by measuring the level of activity evidenced on the 

community forum(s) related to the software package. This variable 

shows the level of community engagement regarding the software. 

A higher number is more favorable and demonstrates greater 

engagement. 

Page views Independent Whole 

Number 

Represents the total number of individual hits on the web page that 

serves the software and its related information to the community. 

This variable shows the level of interest in the software. Similar to 

message posts, a higher number of page views is more favorable 

and shows greater engagement. 

Defects, 

patches, 

and support 

requests 

Independent Whole 

Number 

Represents an aggregate sum of three distinct request types: defects, 

patches, and support requests. Such types of requests indicate issues 

having occurred during the development process. Although it is 

preferred that a higher number of issues are identified and resolved 

before the release of software, a higher number also indicates 

process quality issues. 
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Variable Classification Type Research Relevance  

New 

requests 

Independent Whole 

Number 

Represents the total number of changes or revisions to software that 

have been identified during the test or execution stages and were 

consequently not intended or specified during the requirements 

gathering stage. A higher number indicates process quality issues 

since, ideally, new changes should not be uncovered during the test 

and execution stages of the project. 

Average 

days defects 

logged 

before 

release date 

Independent Rational 

Number  

Represents a calculated variable and indicates the arithmetic 

average number of defects reported (i.e., defects logged) relative to 

the release date. As release date accuracy is of paramount 

importance to the anticipating user community, release date 

accuracy has been highly regarded as a quality indicator of the 

software development process. Release date prediction occurs with 

a degree of uncertainty and is based on several quantitative and 

qualitative factors. A viable quantitative factor which can be used to 

predict the accuracy of release date is the average number of defects 

logged for the software prior to the estimated release date. 

Typically, software communities operate under a premise that 

software will be released as soon as it is estimated to be ready or 

usable (i.e., with the average number of defects logged being as 

close to zero as possible). Therefore, from a historical data 

perspective, we can use the measure of “the average number of days 

during which defects are logged before the release date” to assess 

the accuracy of the release date itself. The average number of 

defects logged can be a positive number indicating that, on average, 

more defects were logged before the release date of the software. A 

negative number indicates that, on average, more defects were 

logged after the software release date. The closer the number is to 

zero (i.e., minimal skew towards a positive or negative number), the 

higher the accuracy of the release date.  

Number of 

downloads 

Dependent Whole 

Number 

Represents a variable which has been traditionally considered as an 

overall indicator of OSS usability and usefulness. A higher number 

of downloads is always more favorable. 

Release 

date 

Dependent Date 

Value 

Represents the date on which the software is made generally 

available (GA).  

Group rank Dependent Whole 

Number 

Represents the rank ordering which the SourceForge library 

calculates for every software package in its repository. The library 

uses sophisticated algorithms to calculate the rank which is 

generally regarded as a measure of software success within the 

community [137, 138].  A lower rank is more favorable. 
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CHAPTER 6:  RESULTS AND IMPLICATIONS 

Software development is comprised of a series of knowledge-based activities 

involving discovery, coding, and usage of knowledge that then translates into viable 

systems solutions. Based on the acceptance of this reasonable premise, a strong 

connection between knowledge-management processes and software development 

processes in organizations can be established.  As such, Meso et al. examined if software 

engineering methodologies actually impact the knowledge management processes in 

organizations and the quality of systems design from a cognitive-theory perspective 

[139]. The authors confirmed that information systems development is a knowledge-

intensive activity and therefore is influenced by the quality of the knowledge 

management processes employed in support of the activity.  This shows that that effective 

knowledge management processes yield high-quality software solutions and that 

learning-oriented organizations can indeed benefit from new knowledge which then can 

lead to better outcomes from future software projects.  Therefore, it is rightfully expected 

that the implications from this research study including any predictive models developed 

and shared can be of paramount importance to such organizations.   

After a predictive model is developed, tested, and finalized, the resulting implications 

will be shared. Specifically, it is expected that several implications will be highlighted by 

the final research report: 

• The external validity of the predictive model will be examined. Once each of the 

predicting variables has been identified, each of them will be tested against OSS 

and PSS drivers for relevance, applicability, and reliability. The predictive model 
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will be tested for performance against 3 distinct OSS software case studies (i.e., 

specific software examples) that can demonstrate reliable data within the 

SoureForge based SRDA. 

• The context of usefulness and applicability of the model will be examined. The 

model should be easy to understand and use. The model must incorporate 

quantifiable methods of assessment. 

• The expected benefits of the model must be explained clearly in the report.  

• Any constraints and limitations of the model must be acknowledged clearly and 

completely in the report. Practitioners must be able to easily personalize the 

constraints and limitations shared by the report in the context of their own or other 

software projects.  

In this section of the report, we discuss the results of the data analysis and research 

implications.  

6.1. Software Quality Attributes 

The progress made towards achieving the goals of this research project is 

encouraging. While further analysis towards testing attribute relationships continues and 

the development of an improved software quality predictive model is being further 

developed, preliminary results of the analysis of 3 key attributes are being shared in this 

paper. Specifically, we examine relationships between group rank, number of downloads, 

and number of defects relative to release dates (i.e., release date accuracy). A random 

sample of 18,019 software package releases from the SRDA was selected for the 

analysis. A 3D plot depicted in Figure 22 provides a visual representation of the data 

which also supports the findings shared below: 
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Figure 22. Sample 3D Data Plot –Sample Size of 18,019 Software Packages 

 

The 3 axes shown in Figure 22 demonstrate the relationship between 3 variables: 

“group rank”, “number of downloads”, and “average days defects logged before release 

date”. The trend line visually depicts the correlation and the clustering of project data 

points around the axes. A few important observations and associated implications are 

being shared below: 

1. The accuracy of software release dates is related to how well the software is 

ranked by the OSS community and is, therefore, an indicator of software development 

process quality. We first examine the axis in Figure 22 labeled, “average days between 
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release dates and defects logged”. The relevance of this research variable has been 

described in Table 10 in the previous section of this paper. As discussed, we expect the 

value of this variable to be closer to zero for software that exhibits higher accuracy of 

release dates. A graphical representation of this phenomenon is represented in Figure 23 

for the sample dataset. Overall, the results meet expectations: 

 
 

Figure 23. Mean Time Between Software Release Dates and Defects Logged 

 

Furthermore, we can presume release date accuracy to be a predictor of software 

engineering management success. We expect projects with higher accuracy of release 

dates to be more favorably ranked by the communities which they serve (i.e., they exhibit 

lower group rank values which are more favorable than higher values). For this regard, 

the results shown in Figure 22 are consistent with our expectations. Communities react 

more favorably towards software that demonstrates greater accuracy of release dates. 

Release date accuracy can be considered as a viable indicator of software project 

execution quality based on our random data sample. 
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2. Community engagement and user perception are important predictors of 

software interest software adoption. Figure 22 demonstrates that software group rank 

and number of downloads are inversely correlated. A density plot and a scatter plot 

diagram represented by Figure 24 and Figure 25 visually contrasts the data points related 

to the two axes to further confirm the correlation: 

 

 
Figure 24. Density Map – Group Rank and Number of Downloads 
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Figure 25. Relationship between Group Rank and Number of Downloads 

Analysis of the sample data shows well-ranked software experiences high usage 

download rates. Since ranking is derived based on OSS community engagement and is a 

measure of the quality of software development, this research finding will be of special 

interest to software management and practitioners. This finding is highly encouraging, 

provides further impetus for research, and provides additional motivation for predictive 

modeling. 

3. Software that is more favorably ranked and is properly timed for release 

experiences higher usage rates. Figure 22 shows evidence of a larger cluster of data 

points (i.e., correlation) with favorable group ranking, accuracy of release dates, and 

number of downloads. Users seem to rank software more favorably and download it more 

times presumably for intended use when the accuracy of software release is high. Users 

perceive software that has been timed for release properly as a measure of software 
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readiness. Software which is ready for release is also generally free of issues and 

unanticipated changes.  

6.2. Descriptive Statistics – Research Variables 

Variables shown in Figure 21 were determined to be high contenders for software 

process quality prediction and therefore have been selected for this research study. Table 

11 provides a statistical summary of the selected research variables: 

Table 11. Descriptive Statistics – Research Variables 

 

OSS metadata, whether user input or calculated, is global in nature and therefore 

high variance has been expected and observed. The large data ranges for each variable 

are in line with expectations as software is generally either highly regarded or otherwise 

discarded in its own category. For these reasons, each variable has been further 

normalized by attributing the associated data into quartiles. We use the resulting data 

quartiles shown in Table 12 as a basis for the predictive modeling aspects of this research 

study:  

 

 

 

 

Descriptive

Statistics

Group

Ranking

Total number 

of downloads

Average Time of

Defects (bugs) 

Relative to 

Release Date

to_rel_date

Number of

Page Views

Number of

Messages 

Posted

Total 

Defects

Patches

Support 

Requests

Total

New

Requests

Mean 5088.64 186403.84 614.51 699719.33 179.95 116.79 153.25

Standard Error 26.26 4907.06 4.52 18722.62 9.38 3.33 4.12

Median 4869.00 3884.00 434.19 26892.00 5.00 7.00 11.00

Mode 225.00 0.00 1162.08 6084854.00 3.00 0.00 0.00

Standard Deviation 3524.91 658698.16 606.98 2513227.88 1259.30 446.87 552.43

Sample Variance 1.2E+07 4.3E+11 3.7E+05 6.3E+12 1.6E+06 2.0E+05 3.1E+05

Kurtosis -0.95 16.67 4.61 88.58 442.49 48.12 42.24

Skewness 0.34 4.19 1.77 8.18 19.22 6.55 6.13

Range 14619 3932779 5432 33604019 31905 4346 5313

Minimum 0 0 0 0 0 0 0

Maximum 14619 3932779 5432 33604019 31905 4346 5313

Count 18019 18019 18019 18019 18019 18019 18019
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Table 12. Research Variables – Data Quartiles 

 

The group ranking variable represents a viable indicator and reflects the perception of 

the software communities. Since group ranking demonstrates the most favorable Kurtosis 

and Skewness than the other two candidates identified as dependent variables for this 

study (i.e., downloads and avg_of_timing_of_bugs_relative_to_rel_date). This variable is 

selected for predictive modeling to serve as an illustrative example. 

6.3. Multiple Regression Model – Research Variables 

As there are several predictor variables, the group ranking variable is used again as 

the dependent variable to conduct a multiple regression analysis. The results are shared in  

Table 13: 

 

 

 

 

 

1 Very Low -            1,768             -                673                    -           164        

2 Low 1,769        4,869             674               3,884                 165          434        

3 High 4,870        7,852             3,885            31,040               435          893        

4 Very High 7,853        14,619           31,041          3,932,779          894          5,432     

1 Very Low -            3,390             -                3                        

2 Low 3,391        26,892           4                   5                        

3 High 26,893      192,791         6                   35                      

4 Very High 192,792    33,604,019    36                 31,905               

1 Very Low -            1                    -                2                        

2 Low 2               7                    3                   11                      

3 High 8               39                  12                 55                      

4 Very High 40             4,346             56                 5,313                 

Data

Quartile

 Total New

Requests 

Rank Downloads

AvgOfTimingOf

BugRelDateTime

Page Views Msgs Posted

 TotalDefectsPatches

SupportRequests 
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Table 13. Research Variables – Multiple Regression Results (95% C.I.) 

 

 

 

A multiple correlation coefficient (R) of 0.83 demonstrates that the six predictor 

variables combined are highly correlated to the group ranking assigned by the software 

communities. The coefficient of determination (R2) demonstrates that the six predictor 

variables, when combined, can explain 70% of the variance in group ranking. The F-test 

and Significance F (p-value) of the overall model shows statistically significant results 

using a 95% confidence level for ANOVA. From the results of the multiple regression 

analysis shown in Table 13, the regression equation to demonstrate prediction can be 

represented as follows: 

𝒈𝒓 = 𝟒. 𝟖𝟓 −  𝟎. 𝟔𝟒 (𝒅𝒍)–  𝟎. 𝟎𝟓(𝒂𝒗𝒈𝒕𝒊𝒎𝒆)–  𝟎. 𝟎𝟑 (𝒑)–  𝟎. 𝟎𝟖(𝒎) +  𝟎. 𝟎𝟒(𝒕_𝒅𝒑𝒔) –  𝟎. 𝟏𝟖 (𝒕_𝒏𝒓)   

The regression equation highlights that group ranking is indeed negatively correlated 

to the six predictor variables by varying degrees. The total number of software downloads 

has the maximum impact to how the group ranks the software followed by total new 

requests for changes prior to release, the level of engagement as evidenced by the number 

Regression Statistics

Multiple R 0.83

R Square 0.70

Adjusted R Square 0.70

Standard Error 0.62

Observations 18019

ANOVA

df SS MS F Significance F

Regression 6 15591.62 2598.60 6868.19 0

Residual 18012 6814.90 0.38

Total 18018 22406.53

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 4.85 0.02 3.11E+02 0.00E+00 4.82E+00 4.88E+00 4.82E+00 4.88E+00

Download-quartile -0.64 0.01 -9.17E+01 0.00E+00 -6.55E-01 -6.27E-01 -6.55E-01 -6.27E-01

AvgTime-Quartile -0.05 0.00 -1.29E+01 3.92E-38 -6.20E-02 -4.57E-02 -6.20E-02 -4.57E-02

page_views-Quartile -0.03 0.01 -4.80E+00 1.62E-06 -4.59E-02 -1.93E-02 -4.59E-02 -1.93E-02

msg_posted-Quartile -0.08 0.00 -1.76E+01 7.24E-69 -8.87E-02 -7.10E-02 -8.87E-02 -7.10E-02

Total_D_P_S-Quartile 0.04 0.01 3.10E+00 1.95E-03 1.35E-02 6.01E-02 1.35E-02 6.01E-02

Total_Nreq-Quartile -0.18 0.01 -1.57E+01 3.23E-55 -2.04E-01 -1.59E-01 -2.04E-01 -1.59E-01
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of message posts and page views for the software. The average time of defects logged 

relative to release date and total number of defects logged have some impact on how 

software is ranked albeit less than the other predictor variables considered by this study. 

 Results of multiple regression analysis and ANOVA analysis at 95% confidence 

interval shows the relative importance of the various metrics in predictive modeling for 

group rank and downloads as follows:  

Table 14. Relative Importance of Key Attributes in Predictive Modeling 

 

6.3. Towards Building and Validating a Predictive Model 

This study explores the use of Artificial Intelligence (AI) technology involving select 

machine-learning algorithms to develop a simple, easy to understand, and easy to use 

predictive model. The Waikato Environment for Knowledge Analysis (Weka) software 

(version 3.8.1) was leveraged for this study. Weka is a suite of machine learning software 

written in Java and was developed in 1993 with university collaboration. It is a fully 

supported, research-based, graphical, and widely adopted open source platform. 

Developers have actively continued to enhance the software with new algorithms and 

improved user interfaces since its inception [140].  

Nine established machine learning algorithms were selected and implemented using 

the Weka software with the sample data from the SRDA data source.  The selection was 
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guided by the literature review and the analysis summarized vis-a-vis Table 9. Detailed 

results of the model build and training data validation are provided in Appendix C.3. 

Weka 3.8.1 Machine Learning Algorithm – Results.  Summary of performance has been 

provided in Table 15: 

Table 15. Classification Algorithm Performance Summary 

 

The following noteworthy observations are being shared after examination of the 

model results: 

1. The sample of 18,019 projects was randomly split with 66% or 11,893 projects 

used for model development and the remainder of the data or 6,126 projects were used 

for model validation. 

2. Actual model fit and reliability was observed to be moderate to good based on the 

selection criteria used in this study. Random forest, meta-bagging, and J48 decision tree 

were among the best-performing algorithms. Classification accuracy (i.e., correctly 

classified instances), a chance-corrected measure of prediction versus actual class (i.e., 

Kappa statistic), receiver operating characteristic (i.e., ROC), precision, and root mean 

squared error (i.e., RMSE) were the key factors determining performance. While 

Weka ML Algorthm Results

Sample 18,019 Projects

66% Model / Test

Random 

Forest

Meta

Bagging

J48

Decision

Tree

Decision 

Table

K-Nearest

Neighbor

Multi-Layer

Perceptron

Iterative 

Classifier

Naïve-

Bayes

AdaBoost

M1

Correctly Classified Instances 78.65% 78.57% 78.42% 77.51% 76.97% 73.08% 67.42% 63.50% 45.82%

Incorrectly Classified Instances 21.35% 21.43% 21.58% 22.49% 23.03% 26.92% 32.58% 36.50% 54.18%

Kappa statistic 0.7154 0.7143 0.7123 0.7001 0.693 0.6412 0.5656 0.5135 0.2757

Receiver operating characteristic 0.95 0.946 0.936 0.94 0.938 0.617 0.881 0.859 0.692

Precision 0.79 0.791 0.788 0.781 0.778 0.063 0.672 0.626 0.292

Mean absolute error 0.1376 0.1484 0.1493 0.1858 0.1909 0.1802 0.2243 0.202 0.2974

Root mean squared error 0.2653 0.2696 0.2764 0.2833 0.2897 0.3074 0.3297 0.3567 0.3856

Relative absolute error 36.69% 39.56% 39.81% 49.54% 50.92% 48.04% 59.82% 53.86% 79.30%

Root relative squared error 61.27% 62.26% 63.84% 65.43% 66.89% 70.99% 76.15% 82.38% 89.05%

Total Number of Instances 6126 6126 6126 6126 6126 6126 6126 6126 6126

Model build time (secs) 2.13 1.52 0.37 0.94 0.01 793.71 6.18 0.07 0.14

Model test time (secs) 1.37 0.38 0.06 0.19 128.18 0.07 0.08 0.38 0.02
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important for real-time and industrial application, the time to build and the validation of 

the model against training data were treated as secondary factors.  

3. Simpler algorithms such as Naïve-Bayes as well as the more complex deep 

learning, neural network based multi-layer perceptron (MLP) experienced suboptimal 

performance on a relative basis.  Figure 26 shows the neuron complexity depicted by 

the run-time, graphical output from Weka based, on the MLP model build and test 

parameters executed: 

 

 
 Figure 26. MLP – Neural Network Diagram to Predict Software Rank 

 

6.4. Research Transferability 

Current state industry practices highlighted by project failure rates and supporting 

academic literature demonstrate poor transferability of research outcomes. Furthermore, 

minimal automation has been leveraged by sponsors of project assessment related 
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processes within the industry. This is especially true of quality, productivity, and 

estimation related processes [19, 24, 25, 141]. To better understand the current state, a 

further review of past research work was conducted. Twelve representative studies from 

the past were further analyzed. The studies spanned across related disciplines including 

information systems, knowledge management, and software management. Collectively, 

these papers utilized varying research methods and considered a total of 1,877 research 

studies, cases studies, IT organizations, and open source projects [142-153].  A root cause 

analysis has been conducted and the results have been mapped and shown in Figure 27: 

 

Figure 27. Root Cause Analysis - Select Review of Research Papers 

Figure 27 shows that while relevant research is conducted in academia, 

transferability, and consumption of research is limited. Furthermore, tools and methods 

lack sufficient training and automation, which, if addressed, can enable practitioners to 

utilize research outcomes. 
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Industry practitioners can only benefit if research outcomes can be translated easily to 

their own respective environments. As acknowledged earlier in this work, research 

transferability has been challenged in the software engineering management field. 

Improved methods and tools must be explicitly developed which utilize proposed models 

to improve software project management practices. Figure 28 shows a framework that 

systematically incorporates research outcomes such as those discussed in this paper to 

real-time, scalable, and practical application: 

 

Figure 28. Improving Software Management through Research Transferability  

 

To improve software project execution results, academic research without clear 

methods to adapt and apply the outcomes in a straightforward and sustainable manner is 

of minimal value to practitioners. As affirmed earlier, for any study related to technology 

sustainability, the practical application of methods is required. Due diligence must be 

done with respect to the managerial and behavioral aspect which helps to confirm 

research validity and necessitates action for subsequent follow-up [142]. Consequently, 

every research must translate into application in a straight forward and practical manner. 

To understand this better, we briefly start by reviewing the classic work of Louis Pasteur 

which helps bridge the gap between basic research and applied research. Pasteur's 

quadrant shown in Figure 29 is a classification of scientific research projects that seek 
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fundamental understanding of scientific problems, while also having an immediate use 

for society [154]: 

 

EBP = evidence-based practice, PBE = practice-based evidence. 

Figure 29. Pasteur’s Quadrant Model of Scientific Research 

We presume that software practitioners remain interested in applying research to 

achieve improved execution results.  Often is the case when academic research deals with 

the problems without an adequate conduit to the industry it aims to serve. Pasteur’s 

Quadrant analysis suggests that research for knowledge’s sake is contrasted with 

invention – purely towards creating something new whereas engineering research must 

combine utility and knowledge simultaneously. 

Sustainable application of research is only possible if the limitations of past research 

efforts are adequately addressed and a clear mechanism for implementation is provided to 

the practitioners. Business leaders do not have time to conduct quality research; they rely 
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on academic and research professionals who can neutrally develop insights based on 

using scientific methods coupled with a synthesis of real-world data. The question to 

ponder is who takes the responsibility to develop a clear mechanism for implementation 

to build real-world tools and techniques that are adaptable, flexible, and fully exploit the 

research outcomes? The answer to this question depends on another question which is 

largely philosophical – which stakeholder needs it the most, the researcher or the 

practitioner?  

6.5. Developing an Applied Research Framework (ARF)  

There are many ways to achieve the goal of adapting traditional research methods to 

ensure greater industry application as it relates to improving software project execution 

quality. In this section of the paper, we share an illustrative example which utilizes OSS, 

the SRDA research data archive, and predictive modeling opportunities suggested earlier 

in the paper. 

 A closer examination of the proposed rationale behind the reasons that inhibit 

sustainable application of research reviewed earlier and shown in Figure 27 reveals the 

following: 

1. Organizational learning is required in order to transfer research knowledge into 

action. 

2. Key metrics must be defined and tracked with the sponsorship and engagement 

from leadership. 

3. Specific tools and techniques to facilitate the use of research outcomes are 

required to accompany outcomes for firms to realize their benefits. 

4. Consistency and scalability must be maintained across the entire process 
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5. A business process must be adapted, on-site, to leverage the tools and techniques 

as designed to maximize their effectiveness. 

Most research conducted is based on a specific need in industry or academia or a gap 

in existing research. The research process traditionally includes the selection of a 

research method, data collection, and related tools, qualitative or quantitative analysis, 

and the formulation of specific research outcomes. For successful application, the issues 

highlighted in Figure 27 must be addressed. Notwithstanding one exception, our literature 

review did not find adequate support towards methods that can aid the transfer of 

research outcomes to actionable steps which organizations can embrace out-of-the-box 

for information systems development.  The noteworthy exception was a 1987 research 

study which loosely described how measurement of information systems can be achieved 

using the financial services sector as a case study.  The report concluded that information 

systems research should follow five sequential steps: performance assessment and 

consistent measurement approach, performance and importance ratings using factors, 

correlation of performance to ratings, action plans with prioritization in line with 

findings, and finally, adjusting the process based on on-going reviews. While the 

research study marked a clear step in the right direction towards improving research 

transferability, the study does not address specific tools, framework, or examples on how 

to achieve results and the authors note future opportunities to extend the research further 

[155].   

Based on our findings, we have proposed a revised research model in Figure 30 

referred to as the Applied Research Framework (ARF) which focuses on ensuring 

sustainable application of research in industry: 
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Figure 30: Applied Research Framework (ARF) for Research Transferability  

 

The framework has been conceptualized for adoption within the software 

management industry although it can adapt for external use. The framework introduces 

three crucial additions to the traditional research model. The suggested revisions are 

required for long term sustainable adoption of research by practitioners: 

1. Creating Industry Alignment. It is imperative that all research aimed towards 

adding value and remaining transferrable to industry commence with a full understanding 

of key business needs, performance outcomes, and business drivers. This is particularly 

important to the software industry where success and outcomes are not always defined 

consistently as discussed earlier in this paper. Metrics are rarely used in component-based 

software engineering efforts [156]. This lack of metrics orientation inherent to the 
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industry can make matters more challenging when introducing the concept of measurable 

research outcomes. Nevertheless, researchers must align their methods, data, and results 

to the specific needs of the industry which they aim to serve or at a minimum for a subset 

of the industry (e.g. one or more organizations in the industry). Explicit alignment is 

required between the organization conducting the research and organization(s) owning 

the industrial use case towards which the research is aimed.  The best way to achieve this 

is through the development of key performance measures which are aligned between the 

two parties. Very often this is recognized but not practiced. Past research has found that 

many times when firms engage with researching universities more formally, they do so 

with varying agendas, to gain early access to innovative techniques without a realistic 

way to quantify the benefits. Hence the motivation for creating a business case with 

specific metrics is deemed unrealistic and often neglected [157]. These challenges must 

be overcome at the onset. Researchers must be involved directly at some capacity with 

external stakeholders to help develop the value proposition for the research efforts. At the 

onset of any study, metrics are necessary as they can serve as guideposts for all research 

efforts. In an earlier section of this paper, Figure 2 serves as an illustrative example of 

how metrics-based research can be aligned with business requirements to support 

research efforts. From a practical standpoint, the scope and influence of research should 

be agreed to by business and research stakeholders a priori. This has not been common 

practice in the area of software engineering management. 

2. Institutionalizing Research Outcomes. Creating mechanisms for the specific 

application of research is perhaps the most meaningful of the revision areas proposed by 

the framework. Research outcomes must come with a set of tools, techniques, or specific 
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instructions for practitioners to be able to put into use and for organizations to embrace 

the net contributions of the research. Only then can they be successfully institutionalized. 

Often this will include a set of tools, techniques, and sometimes business processes (or 

recommended practices). Also, since learning and knowledge management can be 

difficult for organizations to embrace consistently given changing business dynamics 

[149], any automation or learning mechanisms for implementing the research outcomes 

that can be suggested by researches can only improve the probability of successful 

transferability of research into the desired industry segment(s).  

 In an earlier section of this paper, we discussed past research that leveraged the 

SRDA as a key data source. Specifically, we discussed the value and the limitations 

related to the application and institutionalization of such research by software 

management as an example. We now extend the SRDA example by applying the ARF to 

develop a revised research method that includes several key components that can 

substantially increase the chances of business adoption. The illustration in Figure 31 

shows the modified method which was developed: 
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Figure 31: ARF – An Illustrative Example of Using the SRDA 

 

 

3. Conducting Industry Follow-Up. Once organizations can institutionalize 

research outcomes, researchers should be encouraged to conduct regular follow-ups to get 

feedback and provide support by suggesting revised methods to address change 

management related challenges. Furthermore, industry follow-ups can provide new data 

that can enable future research opportunities.  

In continuation of the software metrics illustrative example shown in Figure 2 and 

after steps 1 through 3 shown in Figure 31 are completed in the process, each in-scope 
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metric can be measured based on data collected by the firm. Results can be analyzed and 

new data can enable additional research until the process is refined and material benefits 

are realized. Only then can a particular phase of research be deemed complete.  

Admittedly, there is a strong caveat to our revised model; researchers must have 

the required resources including funding in order to conduct the new steps that have been 

introduced by the model. Without the required resources, many research efforts fall short 

and are never completed. Sustainable research is iterative, long-term, and incremental by 

its very nature. As long as research interest remains and access to required resources is 

possible, all research aimed at improving industry methods must be approached 

holistically as depicted by the framework. 
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CHAPTER 7:  FUTURE RESEARCH OPPORTUNITIES 

The further proliferation of Big Data in virtually every industry segment is expected 

to be of natural consequence as data becomes further commoditized. Software 

engineering management methods have lagged in leveraging data available in the open 

source environment. This research study explored several tangible methods by which 

open source data can be leveraged to build, validate, and implement predictive models 

that are practitioner-friendly which management can leverage for decision-making. 

Research presented in this paper can be extended in many ways: 

1. Identification of additional software quality predictors. Five select and 

independent variables related to software quality prediction were examined by this 

research study in addition to three dependent variables. Some of these variables can be 

further refined for future study. For instance, an aggregate number of message posts can 

be further refined to examine the uniqueness of message subject threads and uniqueness 

of authorship. Page views can be further delineated by viewer profile and activity. 

Defects, patches, service requests, and change requests can be categorized by type and 

severity. An average number of days when defects are logged before the release date can 

be further segregated by software package, type, and segment. Average number of 

software downloads can be analyzed by user and demographic related attributes. 

Software release date and software rank predictability for initial releases versus 

subsequent releases can be more closely examined. Finally, additional (new) variables 

can be identified, tested, and included to enhance prediction models.  
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2.  Development of new OSS metadata resources. The SRDA has served as an 

example of a data archive that was built with metadata from the SourceForge OSS 

repository. The successful data archive project was supported by grant funding and 

sponsored a time-bound research effort. There remains ample opportunity to create other 

resources similar to the SRDA that can offer greater extensibility. Additional repositories 

could be designed, decoded, and mapped to create usable metadata that is timeless. 

3. Development of industry-specific, application specific predictive models for 

greater accuracy and relevancy. Predictive models are inherently prone to being 

generic which can compromise their effectiveness in real-world application and 

transferability. Predictive models are flexible and can be rendered more specific by the 

inclusion of additional and specific data filters such as industry segment, types of 

software package, complexity, team size, dispersion of users, and other criteria. Resultant 

models can offer greater relevancy to decision-makers. 

4. Selection of new machine learning algorithms. Regression and classification 

models offer ample opportunities for additional study in this area. New machine learning 

algorithms have been an important area of research growth. New and existing algorithms 

can be further explored and optimized to further improve on the research results shared in 

this paper. 

5. Automation of project management tools. Industry practitioners require 

leading-edge tools and techniques that offer ease of use, flexibility, speed, and accuracy. 

As confirmed by the literature review, automation has been lacking in the project 

management space. Seamless integration of predictive models with decision-enabling 
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dashboards, reporting, activity planning, risk planning, and other project management 

tools will be of keen interest to software project managers. 

Usefulness of academic research has been increasingly important to industry 

practitioners. For this reason, each of the suggested areas of further research promise to 

offer greater research transferability to software engineering and management processes. 
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CHAPTER 8:  CONCLUDING REMARKS 

All technology projects assume a certain level of execution risk during their lifecycle. 

The overarching goal for technology management is to maximize risk-adjusted returns 

from their technology investments. The premise of this research study recognizes the 

same to be the case for software technology project management. Estimation of software 

quality is of primary concern and the impetus for this research study. Over the last fifty 

years, software project performance levels have consistently demonstrated lackluster 

performance and therefore the need for improvement is warranted. Organizational 

turnover rate, practitioner skillset, selective memory, alternative motives, and short-term 

business pressures are representative of factors that contribute to poor project 

performance.   

Research and experience show that project assessment and evaluation techniques used 

by PM’s remain largely subjective. This research presents novel methods that can be 

infused in traditional software project management practices. This research is the direct 

outcome of the compelling change required and one that has highlighted by the author 

and supported by the abysmal status of software project execution performance within the 

industry. This research also addresses the gaps evident in existing research efforts that 

have been often discussed explicitly by researchers. 

The goal of this research study is to suggest easy implement predictive methods 

based-on real-time data which is gathered both a priori and a posteriori of project 

execution. The research insights shed light on how PM’s can increase the use of 

quantitative yet practical methods to assess project execution status and related estimates.  
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A few such methods based on the validation of select machine learning algorithms were 

developed and extended vis-à-vis this research study. A framework for research 

transferability (ARF) was introduced and explored for general use by practitioners.  

As a final point and to address the inherent challenges associated with obtaining 

quality and performance related data from corporate and commercially-based software, 

the vast realm of OSS has been pragmatically leveraged. The insights drawn from the 

data is done so with OSS and PSS applicability wherever reasonably possible.  
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CHAPTER 9:  GLOSSARY OF TERMS 

• Artificial Intelligence (AI) – This term refers to intelligence seemingly exhibited 

by computing machines. An "intelligent" machine is a flexible rational agent that 

perceives its environment and takes actions that maximize its chance of success at 

some goal. The term "artificial intelligence" is applied when a machine mimics 

"cognitive" functions that humans associate with other human minds, such as 

"learning" and "problem-solving”. 

• Business as Usual (BAU) – This term often refers to a set of activities that are of 

normal course of business outside the context of the project. Typically, after a 

project has been completed, business operations are revised to leverage the 

outcomes of the project. Planning for BAU activity is generally required during 

the project to ensure a success full transition after the completion of the project.  

• Capability Maturity Model (CMM) – The Capability Maturity Model (CMM) is 

a development model created after study of data collected from organizations that 

contracted with the U.S. Department of Defense, who sponsored the research. The 

term "maturity" relates to the degree of formality and optimization of processes, 

from ad hoc practices, to formally defined steps, to managed result metrics, to 

active optimization of the processes. The model's aim is to improve existing 

software development processes, but it can also be applied to other processes. 

Watts Humphrey began developing his process maturity concepts during the later 

stages of his 27-year career at IBM. Active development of the model by the US 

Department of Defense Software Engineering Institute (SEI) began in 1986 when 

Humphrey joined the Software Engineering Institute located at Carnegie Mellon 
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University in Pittsburgh, Pennsylvania after retiring from IBM. At the request of 

the U.S. Air Force, he began formalizing his Process Maturity Framework to aid 

the U.S. Department of Defense in evaluating the capability of software 

contractors as part of awarding contracts. 

• Free / Libre of Open Source Software (FLOSS) – software distributed under an 

open source license that permits modification and redistribution of the source 

code. The "L" for "libre" is sometimes included to supplement the word "free" 

and emphasize that it is referring to freedom of action, not free as in "no cost". In 

fact, many companies sell open source software, such as Red Hat and Novell. 

However, the end user is permitted to acquire the source code of their products, 

modify it, and redistribute it. Products such as CentOS are created this way. 

• Function Point (FP) – A function point is a "unit of measurement" to express the 

amount of business functionality an information system (as a product) provides to 

a user. Function points are used to compute a functional size measurement (FSM) 

of software. Function points were defined in 1979 in Measuring Application 

Development Productivity by Allan Albrecht at IBM. 

• Hidden Markov Model (HMM) – A hidden Markov model (HMM) is a 

statistical Markov model in which the system being modeled is assumed to be a 

Markov process with unobserved (hidden) states. An HMM can be presented as 

the simplest dynamic Bayesian network. n simpler Markov models (like a Markov 

chain), the state is directly visible to the observer, and therefore the state 

transition probabilities are the only parameters. In a hidden Markov model, the 

state is not directly visible, but the output, dependent on the state, is visible. Each 
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state has a probability distribution over the possible output tokens. Therefore, the 

sequence of tokens generated by an HMM gives some information about the 

sequence of states. The adjective 'hidden' refers to the state sequence through 

which the model passes, not to the parameters of the model; the model is still 

referred to as a 'hidden' Markov model even if these parameters are known 

exactly. Hidden Markov models are especially known for their application in 

temporal pattern recognition such as speech, handwriting, gesture recognition, 

part-of-speech tagging, musical score following,[8] partial discharges and 

bioinformatics. 

• Machine Learning – Machine learning, in the context of this research study, 

refers to a collection of methods that can be used to devise complex models and 

algorithms that facilitate predictions. This is often referred to as predictive 

analytics. These analytical methods allow researchers, data scientists, engineers, 

and analysts to produce reliable, repeatable decisions and results and uncover 

hidden insights through learning from historical relationships and trends evident 

in the data. 

• Management Information System (MIS) – A management information system 

(MIS) focuses on the management of information systems to provide efficiency 

and effectiveness of strategic decision making. The concept may include systems 

termed transaction processing system, decision support system, expert system, or 

executive information system. The term is often used in the academic study of 

businesses and has connections with other areas, such as information systems, 
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information technology, informatics, e-commerce, and computer science; as a 

result, the term is used interchangeably with some of these areas. 

• Microsoft (MS) – Microsoft (MS) is an American multinational technology 

company headquartered in Redmond, Washington and develops, manufactures, 

licenses, supports and sells computer software, consumer electronics, and 

personal computers and services. Its best-known software products are the 

Microsoft Windows line of operating systems, Microsoft Office suite, and Internet 

Explorer and Edge web browsers. Its flagship hardware products are the Xbox 

video game consoles and the Microsoft Surface tablet lineup. Microsoft is one of 

the largest software companies in the world. 

• Naïve Bayesian Classifiers – In machine learning, Naïve Bayesian classifiers are 

a family of simple probabilistic classifiers based on applying Bayes' theorem with 

strong (naive) independence assumptions between the features. These classifiers 

are highly scalable, requiring a number of parameters linear in the number of 

variables (features/predictors) in a learning problem. Maximum-likelihood 

training can be done by evaluating a closed-form expression which takes linear 

time rather than by expensive iterative approximation as used for many other 

types of classifiers. 

• Open Source Software (OSS) – Open-source software (OSS) is computer 

software with its source code made available with a license in which the copyright 

holder provides the rights to study, change, and distribute the software to anyone 

and for any purpose.[1] Open-source software may be developed in a 
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collaborative public manner. According to scientists who studied it, open-source 

software is a prominent example of open collaboration. 

• Project Manager (PM) – A project manager (PM) is a professional in the field of 

project management. Project managers have the responsibility of the planning, 

procurement, and execution of a project, in any domain of engineering. Project 

managers are the first point of contact for any issues or discrepancies arising from 

within the leads of various departments in an organization before the problems 

escalate to higher authorities. Project management is the responsibility of a 

project manager. This individual seldom participates directly in the activities that 

produce the end result, but rather strives to maintain the progress, mutual 

interaction and tasks of various parties in such a way that reduces the risk of 

overall failure, maximizes benefits and minimizes costs. 

• Proprietary Software System – A proprietary software system (PSS) is 

computer software with its source code which is copyrighted, trademarked, 

patented, or otherwise unavailable to the general end-user. Software execution 

rights are required to be purchased or licensed by the owner of the individual or 

company that owns the rights to the software code. 

• SourceForge – SourceForge is a web-based service that offers software 

developers a centralized online location to control and manage free and open-

source software projects. It provides a source code repository, bug tracking, 

mirroring of downloads for load balancing, a wiki for documentation, developer 

and user mailing lists, user-support forums, user-written reviews and ratings, a 

news bulletin micro-blog for publishing project updates, and other features. 



 

93 

• Software Process Improvement (SPI) – Software process improvement (SPI) 

often refers to specifics methods that can serve as an integrated collection of 

procedures, tools, and training for the purpose of increasing software product 

quality or development team productivity, or reducing development time. 

Software process improvement upgrades an immature organization to a mature 

organization. An immature organization cannot generate a good quality product. 

A software process improvement model is an approach or method or both by 

which process improves and give better result rather than a normal process. By 

software process improvement a better and high-quality product can be found 

within budget and time.  

• SourceForge Repository Data Archive (SRDA) – The SourceForge Research 

Data Archive (SRDA) is a collection of OSS data and resources developed by 

researchers at the University of Notre Dame from 2003 to 2014 with the sole 

purpose of advancing software research. It is based on data from the SourceForge 

repository and has been utilized by over 100 research studies to date. 

• Total Quality Management (TQM) – A core definition of total quality 

management (TQM) describes a management approach to long–term success 

through customer satisfaction. In a TQM effort, all members of an organization 

participate in improving processes, products, services, and the culture in which 

they work. 
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APPENDIX A: THE SRDA 

A.1. Data Entity Relationship Diagram—SourceForge.net 
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A.2.  Data Entity Relationship Model – SRDA – Artifact 
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A.3.  Data Entity Relationship Model – SRDA – Documents 
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A.4.  Data Entity Relationship Model – SRDA – Forums 
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A.5.  Data Entity Relationship Model – SRDA – FRS 
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A.6.  Data Entity Relationship Model – SRDA – Job 
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A.7.  Data Entity Relationship Model – SRDA – Tasks 

 
 

A.8.  List of tables analyzed from OSS Research 

 

The following are the data tables which were analyzed for this research study: 

 

activity_log 

activity_log_old 

activity_log_old_old 

activity_log_regs 

activity_log_regs_tmp 

admin_annotations 

artifact 

artifact_canned_responses 

artifact_category 

moorman_massmail_20060224 

moorman_massmail_20060511 

moorman_massmail_20060523

b 

ostg_contest 

payment_option 

people_job 

people_skill 

people_skill_inventory 

moorman_massmail_20060630 

moorman_massmail_20060630b 

moorman_massmail_20060908 

moorman_proj2 

moorman_sdmaillist 

moorman_sdmaillist2 

mypstat 

mysql_auth 

news_bytes 
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artifact_counts_agg 

artifact_file 

artifact_ftispool 

artifact_group 

artifact_group_list 

artifact_history 

artifact_message 

artifact_monitor 

artifact_perm 

artifact_resolution 

artifact_status 

audit_trail 

audit_trail_data 

audit_trail_group 

audit_trail_group_data 

audit_trail_user 

autopurge_exempt 

autopurge_projects 

beta_members 

beta_offerings 

blocks 

cache_store 

canned_responses 

category_management 

charities 

cloudscape_answers 

cloudscape_contest 

cronjob_history 

db_images 

doc_data 

doc_groups 

doc_states 

dup_emails 

entity_charity 

external_tool_links 

filemodule_monitor 

finance_audit 

foo 

forum 

forum_agg_msg_count 

forumemail 

forum_ftispool_new 

forum_group_list 

forum_monitored_forums 

forum_saved_place 

forum_threadinfo 

people_skill_level 

people_skill_year 

pg72_bug 

pg_autovac_skip 

pg_stat_database_historical 

pg_ts_cfg 

pg_ts_cfgmap 

pg_ts_dict 

pg_ts_parser 

prdb_dbs 

prdb_states 

prdb_types 

project_assigned_to 

project_counts_weekly_tmp 

project_dependencies 

project_group_list 

project_history 

project_metric 

project_metric_tmp1 

project_metric_weekly_tmp1 

project_purge 

project_status 

project_sums_agg 

project_task 

project_weekly_metric 

prweb_vhost 

purge_history 

purge_queue 

ranking_tmp 

rating 

ref_timezones 

reputation 

scm_repo_trigger 

scm_trigger 

screenshots 

search_data_groups 

seller_profile_language 

seller_profile_payment_option 

service_contract 

service_listing 

service_listing_language 

snippet_package 

snippet_package_item 

snippet_package_version 

snippet_version 

svn_migration_log 

specialty 

stats_agg_logo_by_day 

stats_agg_logo_by_group 

stats_agg_pages_by_day 

stats_agg_site_by_group 

stats_cvs_group 

stats_cvs_user 

stats_fileid_alltime_agg 

stats_ftp_downloads 

stats_groupid_alltime_agg 

stats_group_rank 

stats_group_rank_alltime 

stats_group_rank_byday 

stats_group_rank_byday_0528 

stats_group_rank_byday_backup_0

50528 

stats_group_rank_byday_backup_0

50529 

stats_group_rank_bymonth 

stats_http_downloads 

stats_multi_rank_history_byday 

stats_outage_log 

stats_project 

stats_project_all 

stats_project_developers 

stats_project_developers_last30 

stats_project_last_30 

stats_project_metric 

stats_project_months 

stats_rank_oldformula_byday 

stats_sfweb_recent_hit 

stats_site 

stats_site_last_30 

stats_site_months 

stats_site_pages_by_day 

stats_subd_pages 

stats_toplist_week 

stats_trove_topic_activity 

subscriptions 

supported_languages 

survey_questions 

survey_question_types 

survey_rating_aggregate 

survey_rating_response 

survey_responses 

surveys 
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foundry_data 

foundry_news 

foundry_preferred_projects 

imported_projects 

intel_agreement 

invalid_name 

kernel_traffic 

lucene_searchspool 

lucene_searchspool2 

mail_group_list 

massmail_queue 

mllist_subscriber 

mllist_subscriber_count 

money_in 

monitor_enable 

monitor_project 

moorman_defunct_unix_ui

ds 

service_listing_payment_o

ption 

service_order 

session 

sfce_api_mapping 

snippet 

people_job_category 

people_job_inventory 

people_job_status 

 

svn_migration_queue 

test1 

theme_prefs 

themes 

tmp_stats_fileid_alltime_agg_1

118629848 

tmp_stats_fileid_alltime_agg_1

140665539 

tmp_stats_fileid_alltime_agg_1

142736917 

tmp_stats_fileid_alltime_agg_1

145005244 

tmp_stats_fileid_alltime_agg_1

147219524 

tmp_stats_fileid_alltime_agg_1

151460886 

tmp_stats_fileid_alltime_agg_1

155778896 

tmp_stats_fileid_alltime_agg_1

156537400 

tmp_stats_fileid_alltime_agg_1

158781396 

tmp_stats_groupid_alltime_agg

_1117227330 

tmp_stats_group_rank_byday_1

151598926 

top_group 

top_group_tmp 

 

trove_agg 

trove_agg_counts 

trove_agg_minix 

trove_agg_tmp 

trove_cat 

trove_cat_activity 

trove_frontpage 

trove_group_link 

trove_monitor 

trove_monitor_event_queue 

trove_ref_translation_to_iso639 

trove_treesums 

tshirt_codes 

user_auth_keys 

user_bookmarks 

user_diary 

user_diary_monitor 

user_group 

user_ip_dl_auth 

user_metric 

user_metric0 

user_metric_history 

user_perms 

user_preferences 

user_ratings 

user_role 

users 

users-bak_regs 

users_lookup 

users_registration 

 

 

 

A.9.  Select SRDA Data Stored in Local MS Access Database 

 

Table: Artifact-Bugs – 4,731,734 Records 

  Columns  

  Name      Type      Size 

 artifact_id Long Integer 4 

 group_id Long Integer 4 

 open_date Long Integer 4 

 close_date Long Integer 4 

 category_name Text 255 
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Table: frs_package – 1,883,112 Records  

  Columns 

 Name Type    Size 

 package_id Text 255 

 group_id Text 255 

 name Text 255 

 status_id Text 255 

 

Table: frs_release – 507,951 Records  

  Columns 

 Name Type    Size 

 release_id Long Integer 4 

 package_id Long Integer 4 

 status_id Long Integer 4 

 preformatted Long Integer 4 

 release_date Long Integer 4 

 released_by Long Integer 4 

 

Table: groups – 1,885,588 Records  

  Columns 

 Name Type    Size 

 group_id Text 255 

 group_name Text 255 

 status Text 255 

 short_description Text 255 

 license Text 255 

 register_time Text 255 

 

Table: stats_project_all – 63,785 Records 

  Columns 

 Name Type    Size 

 group_id Text 255 

 developers Text 255 

 group_ranking Text 255 

 group_metric Text 255 

 logo_showings Text 255 

 downloads Text 255 

 site_views Text 255 

 subdomain_views Text 255 

 page_views Text 255 

 msg_posted Text 255 

 msg_uniq_auth Text 255 

 bugs_opened Text 255 

 bugs_closed Text 255 

 support_opened Text 255 

 support_closed Text 255 
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 patches_opened Text 255 

 patches_closed Text 255 

 artifacts_opened Text 255 

 artifacts_closed Text 255 

 tasks_opened Text 255 

 tasks_closed Text 255 

 help_requests Text 255 

 cvs_checkouts Text 255 

 cvs_commits Text 255 

 cvs_adds Text 255 

 svn_checkouts Text 255 

 svn_commits Text 255 

 svn_adds Text 255 

 

Table: trove_cat – 870 Records  

  Columns 

 Name Type    Size 

 trove_cat_id Text 255 

 version Text 255 

 parent Text 255 

 root_parent Text 255 

 shortname Text 255 

 fullname Text 255 

 description Text 255 

 fullpath Text 255 

 fullpath_ids Text 255 

 parent_only Text 255 

 people_skill Text 255 

 

Table: trove_group_link – 2,135,315 Records  

  Columns 

 Name Type    Size 

 trove_group_id Long Integer 4 

 trove_cat_id Long Integer 4 

 trove_cat_version Long Integer 4 

 group_id Long Integer 4 

 trove_cat_root Long Integer 4 

 entity_type Long Integer 4 

 
 

  



 

120 

APPENDIX B: EXISTING RESEARCH – THE SRDA 

B.1. Reference List by Research Focus 

Research 

focus 

 

Reference 

Leadership 

 

Georg von Krogh, ETH, Lamastra, Cristina Rossi, Zurich, ETH, Haefliger, 

Stefan, 2009 [158] 

Georg von Krogh, ETH, Lamastra, Cristina Rossi, Zurich, ETH, Haefliger, 

Stefan, 2012 [159] 

Tsugawa, Sho, Ohsaki, Hiroyuki, Imase, Makoto, 2010 [160] 

Crowston, Kevin, Wiggins, Andrea, Howison, James, 2010 [161] 

Tsugawa, S, Ohsaki, Hiroyuki, Imase, Makoto, 2012 [162] 
 

  

 

Gupta, Anu, Singla, RK, 2012 [163] 
Howison, James, Wiggins, Andrea, Crowston, Kevin, 2011 [164] 
Leila, Zamani, Davis, Joseph, 2012 [165] 
Sen, Ravi, Nelson, Matthew L, Subramaniam, Chandrasekar, 2015 [166] 
Howison, James, 2008 [167] 
Campaign, Cross Channel Marketing, 2014 [168] 
Weikel, Brad, 2009 [169] 
Van Antwerp, Matthew, 2013 [170] 
Yu, Liguo, 2013 [171] 
Engelhardt, Sebastian von, Freytag, Andreas, 2009 [172] 
Engelhardt, Sebastian v, Freytag, Andreas, 2013 [173] 
Rullani, Francesco, Haefliger, Stefan, 2013 [174] 
Weikel, Bradley N, 2009 [169] 
Van Antwerp, Matthew, Madey, Greg, 2010 [175] 
Zamani, Leila, Davis, Joseph G, 2011 [176] 
Huang, Kuang-Yuan, Choi, Namjoo, 2011 [177] 
Le, Qize, Panchal, Jitesh H, 2012 [178] 
Daniel, Sherae, Agarwal, Ritu, Stewart, Katherine, 2009 [179] 
Daniel, Sherae, Agarwal, Ritu, Stewart, Katherine J, 2013 [180] 
Fly, Pervis, Sims, James, Kim, Hyunju, 2012 [181] 
Von Engelhardt, Sebastian, Freytag, Andreas, 2009 [172] 
von Engelhardt, Sebastian, Freytag, Andreas, Schulz, Christoph, 2010 [182] 
Zhang, Chen, 2008 [183] 
Becker, Markus, Rullani, Francesco, Zirpoli, Francesco, 2009 [184] 
Aksoy-yurdagul, Dilan, Rullani, Francesco, Rossi-lamastra, Cristina, 2014 

[185] 
Lampe, Cliff, 2013 [186] 
Wiggins, Andrea, Howison, James, Crowston, Kevin, 2009 [187] 
Van Antwerp, Matthew, Madey, Greg, 2010 [188] 
Madey, Greg, 2010 [189] 
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Research 

focus 

 

Reference 

Anjos, Eudisley, Brasileiro, Jansepetrus, Silva, Danielle, Zenha-Rela, Mário, 

2016 [190] 
Bolici, Francesco, Howison, James, Crowston, Kevin, 2009 [191] 
Smit, Coach Drs R, 2009 [192] 
Van Antwerp, Matthew, 2010 [193] 
Skopik, Florian, Schall, Daniel, Dustdar, Schahram, 2012 

OSS 

Adoption 

 

Lakka, Spyridoula, Stamati, Teta, Michalakelis, Christos, Anagnostopoulos, 

Dimosthenis, 2015 [194] 

OSS 

Process 

 

Foushee, Brandon, Krein, Jonathan L, Wu, Justin, Buck, Randy, Knutson, 

Charles D, Pratt, Landon J, MacLean, Alexander C, 2013 [195] 
Brindescu, Caius, Codoban, Mihai, Shmarkatiuk, Sergii, Dig, Danny, 2014 

[196] 
Wen, Wen, Forman, Chris, Graham, Stuart JH, 2010 [197] 
Vlas, Radu E, Vlas, Cristina, 2011 [198] 
Hosack, Bryan, Sagers, Glen, 2011 [199] 
Wagle, Damodar P Shenvi, 2011 [200] 
MacLean, Alexander C, 2012 [201] 
Pratt, Landon J, 2013 [202] 
Foushee, Brandon D, 2013 [203] 
Daniel, Sherae, Stewart, Katherine, Darcy, David, 2009 [179] 
Gupta, Anu, Singla, RK, 2014 [204] 
Garousi, Vahid, Leitch, James, 2010 [205] 
Sen, Ravi, Singh, Siddhartha S, Borle, Sharad, 2012 [45] 
Ghapanchi, Amir Hossein, 2015 [206] 
Daniel, Sherae, Stewart, Katherine, 2016 [207] 
Kanwal, Preet, Gupta, Anu, Singla, Ravinder Kumar, 2014 [208] 
Gonzalez-Barahona, Jesus M, Izquierdo-Cortazar, Daniel, Squire, Megan, 

2010 [209] 
Abdou, Tamer, 2014 [210] 
Ramos, Eduardo Costa, Santoro, Flávia Maria, Baião, Fernanda Araujo, 2011 

[211] 
Schweik, Charles, English, Robert, 2013 [212] 
Abdou, Tamer, Grogono, Peter, Kamthan, Pankaj, 2013 [213] 
Lemnaru, Alexandru, 2013 [214] 
Blekh, Aleksandr, 2015 [215] 
Codoban, Mihai, 2015 [216] 
Rossi-Lamastra, Cristina, Rullani, Francesco, Piva, Evila, 2011 [217] 
Vernet, Antoine, Kilduff, Martin, Salter, Ammon, 2013 [218] 
Rozenberg, Leonard, Kieruzel, Magdalena, 2016 [219] 
Garousi, Vahid, 2009 [220] 
Garousi, Vahid, 2009 [221] 
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Research 

focus 

 

Reference 

Wiggins, Andrea, Crowston, Kevin, 2010 [222] 
Van Antwerp, Matthew, Madey, Greg, 2010 [223] 
Ramos, Eduardo Costa, Santoro, Flavia Maria, Baião, Fernanda, 2011 [224] 
Jensen, Chris, Scacchi, Walt, 2008 [225] 
Crowston, Kevin, Østerlund, Carsten, Howison, James, Bolici, Francesco, 

2011 [226] 
Schweik, Charles M, English, Robert, Paienjton, Qimti, Haire, Sandy, 2010 

[227] 
Gao, Yuchen, 2016 [228] 
Van Antwerp, Matthew, Madey, Greg, 2008 [64] 
Syed, SAS, 2013 [229] 
Schweitzer, Frank, Nanumyan, Vahan, Tessone, Claudio J, Xia, Xi, 2014 

[230] 
Software 

Languages 

 

Krein, Jonathan L, 2011 [231] 

Vlas, Radu, 2012 [232] 

MacLean, Alexander C, Pratt, Landon J, Krein, Jonathan L, Knutson, 

Charles D, 2010 [233] 

Vlas, Radu, Robinson, William N, 2011 [234] 

Vlas, Radu, Robinson, William N, 2013 [235] 

Vlas, Radu E, Robinson, William N, 2012 [236] 
 

 

 

 

B.2. Yearly Cumulative Publications – SRDA 
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B.3. Publications by Publisher  
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APPENDIX C: DATA RESULTS 

C.3. Weka 3.8.1 Machine Learning Algorithm – Results 

C.3.1. Random Forest 

=== Run information === 

 

Scheme:       weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 

0.001 -S 1 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 2.13 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 1.37 seconds 

 

=== Summary === 

 

Correctly Classified Instances        4818               78.6484 % 

Incorrectly Classified Instances      1308               21.3516 % 

Kappa statistic                          0.7154 

Mean absolute error                      0.1376 

Root mean squared error                  0.2653 

Relative absolute error                 36.6927 % 

Root relative squared error             61.2685 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.836    0.131    0.680      0.836    0.750      0.661    0.937     0.820     

Very High 

                 0.587    0.071    0.737      0.587    0.654      0.560    0.916     0.787     

High 

                 0.798    0.058    0.821      0.798    0.809      0.748    0.955     0.890     

Low 

                 0.928    0.025    0.924      0.928    0.926      0.902    0.992     0.975     

Very Low 

Weighted Avg.    0.786    0.071    0.790      0.786    0.784      0.717    0.950     0.868      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1281  200   50    2 |    a = Very High 

  521  910  114    5 |    b = High 

   74  124 1213  109 |    c = Low 

    8    0  101 1414 |    d = Very Low 
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C.3.2. Meta Bagging 

=== Run information === 

 

Scheme:       weka.classifiers.meta.Bagging -P 100 -S 1 -num-slots 1 -I 10 -W 

weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 1.52 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.38 seconds 

 

=== Summary === 

 

Correctly Classified Instances        4813               78.5668 % 

Incorrectly Classified Instances      1313               21.4332 % 

Kappa statistic                          0.7143 

Mean absolute error                      0.1484 

Root mean squared error                  0.2696 

Relative absolute error                 39.5636 % 

Root relative squared error             62.255  % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.852    0.141    0.669      0.852    0.749      0.661    0.936     0.798     

Very High 

                 0.559    0.061    0.757      0.559    0.643      0.556    0.912     0.778     

High 

                 0.797    0.057    0.822      0.797    0.810      0.748    0.944     0.872     

Low 

                 0.938    0.028    0.918      0.938    0.928      0.904    0.992     0.971     

Very Low 

Weighted Avg.    0.786    0.072    0.791      0.786    0.782      0.716    0.946     0.855      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1306  176   49    2 |    a = Very High 

  554  866  127    3 |    b = High 

   84  102 1212  122 |    c = Low 

    8    0   86 1429 |    d = Very Low 
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C.3.3. J48 Decision Tree 

=== Run information === 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

=== Classifier model (full training set) === 

 

Time taken to build model: 0.37 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.06 seconds 

 

=== Summary === 

 

Correctly Classified Instances        4804               78.4198 % 

Incorrectly Classified Instances      1322               21.5802 % 

Kappa statistic                          0.7123 

Mean absolute error                      0.1493 

Root mean squared error                  0.2764 

Relative absolute error                 39.8099 % 

Root relative squared error             63.8351 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.832    0.136    0.672      0.832    0.743      0.652    0.926     0.755     

Very High 

                 0.575    0.071    0.734      0.575    0.645      0.550    0.898     0.740     

High 

                 0.785    0.051    0.835      0.785    0.809      0.749    0.934     0.859     

Low 

                 0.948    0.030    0.912      0.948    0.930      0.906    0.989     0.947     

Very Low 

Weighted Avg.    0.784    0.072    0.788      0.784    0.781      0.714    0.936     0.825      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1275  207   50    1 |    a = Very High 

  536  892  116    6 |    b = High 

   79  116 1193  132 |    c = Low 

    8    1   70 1444 |    d = Very Low 
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C.3.4. Decision Table 

=== Run information === 

 

Scheme:       weka.classifiers.rules.DecisionTable -X 1 -S "weka.attributeSelection.BestFirst -D 

1 -N 5" 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 0.94 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.19 seconds 

 

=== Summary === 

 

Correctly Classified Instances        4748               77.5057 % 

Incorrectly Classified Instances      1378               22.4943 % 

Kappa statistic                          0.7001 

Mean absolute error                      0.1858 

Root mean squared error                  0.2833 

Relative absolute error                 49.5433 % 

Root relative squared error             65.4318 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.834    0.146    0.656      0.834    0.734      0.640    0.929     0.791     

Very High 

                 0.575    0.080    0.708      0.575    0.635      0.533    0.903     0.748     

High 

                 0.765    0.048    0.841      0.765    0.801      0.741    0.942     0.846     

Low 

                 0.929    0.027    0.921      0.929    0.925      0.900    0.988     0.964     

Very Low 

Weighted Avg.    0.775    0.075    0.781      0.775    0.773      0.703    0.940     0.837      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1278  212   36    7 |    a = Very High 

  554  892  102    2 |    b = High 

   95  149 1163  113 |    c = Low 

   20    6   82 1415 |    d = Very Low 
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 C.3.5. K-Nearest Neighbor 

 
=== Run information === 

 

Scheme:       weka.classifiers.lazy.KStar -B 20 -M a 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 0.01 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 128.18 seconds 

 

=== Summary === 

 

Correctly Classified Instances        4715               76.967  % 

Incorrectly Classified Instances      1411               23.033  % 

Kappa statistic                          0.693  

Mean absolute error                      0.1909 

Root mean squared error                  0.2897 

Relative absolute error                 50.9178 % 

Root relative squared error             66.8943 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.865    0.156    0.650      0.865    0.742      0.652    0.930     0.791     

Very High 

                 0.515    0.056    0.757      0.515    0.613      0.529    0.903     0.752     

High 

                 0.778    0.062    0.805      0.778    0.791      0.724    0.932     0.836     

Low 

                 0.924    0.033    0.901      0.924    0.913      0.884    0.987     0.958     

Very Low 

Weighted Avg.    0.770    0.077    0.778      0.770    0.764      0.696    0.938     0.834      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1326  165   41    1 |    a = Very High 

  582  799  161    8 |    b = High 

  105   88 1182  145 |    c = Low 

   28    3   84 1408 |    d = Very Low 
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C.3.6. Multi-Layer Perceptron 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.3 -N 500 -V 0 -S 0 -E 

20 -H 5 -G -R 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 88.14 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.28 seconds 

 

=== Summary === 

 

Correctly Classified Instances        1533               25.0245 % 

Incorrectly Classified Instances      4593               74.9755 % 

Kappa statistic                          0      

Mean absolute error                      0.375  

Root mean squared error                  0.433  

Relative absolute error                 99.9908 % 

Root relative squared error             99.992  % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 1.000    1.000    0.250      1.000    0.400      0.000    0.659     0.365     

Very High 

                 0.000    0.000    0.000      0.000    0.000      0.000    0.574     0.276     

High 

                 0.000    0.000    0.000      0.000    0.000      0.000    0.494     0.238     

Low 

                 0.000    0.000    0.000      0.000    0.000      0.000    0.742     0.539     

Very Low 

Weighted Avg.    0.250    0.250    0.063      0.250    0.100      0.000    0.617     0.354      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1533    0    0    0 |    a = Very High 

 1550    0    0    0 |    b = High 

 1520    0    0    0 |    c = Low 

 1523    0    0    0 |    d = Very Low 
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C.3.7. Iterative Classifier 

=== Run information === 

 

Scheme:       weka.classifiers.meta.IterativeClassifierOptimizer -W 

weka.classifiers.meta.LogitBoost -L 50 -P 1 -E 1 -I 1 -F 10 -R 1 -metric RMSE -S 1 -- -P 100 -L 

-1.7976931348623157E308 -H 1.0 -Z 3.0 -O 1 -E 1 -S 1 -I 10 -W 

weka.classifiers.trees.DecisionStump 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 6.18 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.08 seconds 

 

=== Summary === 

 

Correctly Classified Instances        4130               67.4176 % 

Incorrectly Classified Instances      1996               32.5824 % 

Kappa statistic                          0.5656 

Mean absolute error                      0.2243 

Root mean squared error                  0.3297 

Relative absolute error                 59.8224 % 

Root relative squared error             76.1498 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.701    0.140    0.625      0.701    0.661      0.541    0.896     0.672     

Very High 

                 0.481    0.140    0.537      0.481    0.508      0.354    0.804     0.532     

High 

                 0.664    0.107    0.672      0.664    0.668      0.560    0.861     0.702     

Low 

                 0.853    0.047    0.857      0.853    0.855      0.807    0.966     0.907     

Very Low 

Weighted Avg.    0.674    0.109    0.672      0.674    0.672      0.564    0.881     0.702      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1075  433   25    0 |    a = Very High 

  501  746  295    8 |    b = High 

   96  206 1010  208 |    c = Low 

   48    3  173 1299 |    d = Very Low 
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C.3.8. Naïve-Bayes 

=== Run information === 

 

Scheme:       weka.classifiers.bayes.NaiveBayes  

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

  

Time taken to build model: 0.07 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.38 seconds 

 

=== Summary === 

 

Correctly Classified Instances        3890               63.4998 % 

Incorrectly Classified Instances      2236               36.5002 % 

Kappa statistic                          0.5135 

Mean absolute error                      0.202  

Root mean squared error                  0.3567 

Relative absolute error                 53.8642 % 

Root relative squared error             82.3777 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.763    0.161    0.613      0.763    0.680      0.564    0.885     0.594     

Very High 

                 0.347    0.129    0.476      0.347    0.401      0.244    0.764     0.465     

High 

                 0.616    0.136    0.599      0.616    0.607      0.475    0.831     0.634     

Low 

                 0.818    0.061    0.817      0.818    0.818      0.757    0.959     0.900     

Very Low 

Weighted Avg.    0.635    0.122    0.626      0.635    0.626      0.509    0.859     0.647      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

 1170  318   45    0 |    a = Very High 

  623  538  347   42 |    b = High 

   94  253  936  237 |    c = Low 

   21   21  235 1246 |    d = Very Low 
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C.3.9. AdaBoost M1 

=== Run information === 

 

Scheme:       weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10 -W 

weka.classifiers.trees.DecisionStump 

Relation:     testfile4b-weka.filters.unsupervised.attribute.Remove-R1-10,18-32 

Instances:    18019 

Attributes:   7 

              Rank-quartile 

              Download-quartile 

              AvgTime-Quartile 

              page_views-Quartile 

              msg_posted-Quartile 

              Total_D_P_S-Quartile 

              Total_Nreq-Quartile 

Test mode:    split 66.0% train, remainder test 

 

Time taken to build model: 0.14 seconds 

 

=== Evaluation on test split === 

 

Time taken to test model on test split: 0.02 seconds 

 

=== Summary === 

 

Correctly Classified Instances        2807               45.8211 % 

Incorrectly Classified Instances      3319               54.1789 % 

Kappa statistic                          0.2757 

Mean absolute error                      0.2974 

Root mean squared error                  0.3856 

Relative absolute error                 79.2955 % 

Root relative squared error             89.0498 % 

Total Number of Instances             6126      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  

Class 

                 0.000    0.000    0.000      0.000    0.000      0.000    0.664     0.332     

Very High 

                 1.000    0.670    0.336      1.000    0.503      0.333    0.665     0.336     

High 

                 0.000    0.000    0.000      0.000    0.000      0.000    0.554     0.270     

Low 

                 0.825    0.055    0.834      0.825    0.829      0.773    0.885     0.731     

Very Low 

Weighted Avg.    0.458    0.183    0.292      0.458    0.333      0.276    0.692     0.417      

 

=== Confusion Matrix === 

 

    a    b    c    d   <-- classified as 

    0 1533    0    0 |    a = Very High 

    0 1550    0    0 |    b = High 

    0 1269    0  251 |    c = Low 

    0  266    0 1257 |    d = Very Low 

 

 

 

 


