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Abstract.

Information extraction systems and techniques have been largely used to deal with
the increasing amount of unstructured data available nowadays. Time is amongst the
different kinds of information that may be extracted from such unstructured data
sources, including text documents. However, the inability to correctly identify and
extract temporal information from text makes it difficult to understand how the ex-
tracted events are organised in a chronological order. Furthermore, in many situations,
the meaning of temporal expressions (timexes) is imprecise, such as in “less than 2
years” and “several weeks”, and cannot be accurately normalised, leading to interpre-
tation errors. Although there are some approaches that enable representing imprecise
timexes, they are not designed to be applied to specific scenarios and are difficult to
generalise. This paper presents a novel methodology to analyse and normalise imprecise
temporal expressions by representing temporal imprecision in the form of membership
functions, based on human interpretation of time in two different languages (Portuguese
and English). Each resulting model is a generalisation of probability distributions in
the form of trapezoidal and hexagonal fuzzy membership functions. We use an adapted
F1-score to guide the choice of the best models for each kind of imprecise timex, and a
weighted F1-score (F13D) as a complementary metric in order to identify relevant differ-
ences when comparing two normalisation models. We apply the proposed methodology
for three distinct classes of imprecise timexes and the resulting models give distinct
insights in the way each kind of temporal expression is interpreted.
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1. Introduction

The extraction of temporal information from text is fundamental for language
understanding (Burman, Jayapal, Kannan, Kavilikatta, Alhelbawy, Derczynski
and Gaizauskas, 2011) and an important sub-task for several language process-
ing applications (UzZaman and Allen, 2010), such as text summarisation and
knowledge base population. Processing a temporal expression (timex) from text,
i.e. extracting and modelling the expression, includes tasks such as recognition
and representation of the temporal information (Kolomiyets, 2012). Solving chal-
lenging computational problems involving time has been a critical component in
the development of information extraction (IE) systems (Bartak, Morris and
Venable, 2013), e.g., understanding how such elements that describe temporal
concepts can be formally represented and what procedures should be performed
by an algorithm to deal with the set of operations that we as humans seem to
perform relatively easy (Caselli, 2009).

In many situations, however, extracted temporal expressions are not accu-
rately described in the text, i.e. the expressions denote an imprecise amount
or point in time, as in “about 3 months ago”, “less than a year”, “few days”,
and “recently”. More than 30% of temporal information in some text types, e.g.
clinical notes, can be imprecise, affecting for example the results of searches for
events related to such temporal data. In addition, an inaccurate interpretation
may yield different values for the same expression. For this reason, for a given
application, it is important to estimate standardised values for the existing im-
precise timexes, i.e., to normalise them.

TimeML (Pustejovsky, Castano, Ingria, Sauŕı, Gaizauskas, Setzer and Katz,
2003) is the major initiative for temporal information annotation being an ISO
standard since 2010. It is designed to connect the processes of temporal analysis
of a text with a representation and formal meaning of time, providing a model
and annotation scheme for temporal information in text, including the TIMEX3
scheme for representing temporal expressions. Although TimeML is capable of
describing imprecise timexes in terms of language structure, it does not provide
mechanisms to correctly normalising them. Therefore, the normalisation of im-
precise temporal data in terms of values can be ambiguous or incomplete, e.g.
it provides one mod attribute that allows the modification of expressions, but
only in a very constrained way (twelve preset non-disjoint modifiers). In order
to overcome this lack, existing approaches (Nagypál and Motik, 2003; Schock-
aert, 2005; Schockaert, Cock and Kerre, 2008; Filannino and Nenadic, 2014) use
fuzzy sets to represent individual timexes and relations. However, they describe
specific historical events or generic periods of time (e.g. holidays), relying on
external sources of data, such as the result of Internet search queries or image
timestamps collected from social media, and they do not provide a generic or
reusable methodology for the normalisation of imprecise timexes. In these situ-
ations, the normalisation is done based on the extracted time spans, which are
often focused in one kind of expression and with restricted interpretation of the
timexes, being difficult to be applied to broader domains.

This paper contributes with an analysis of a previously unstudied set of im-
precise temporal expressions, and presents a novel method for their normalisation
and representation. The main contributions are the following:

Imprecise timexes quantification and classification. The classification was
done based on the expressions extracted from clinical narratives. This classi-
fication is used as basis for the presented approach.
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Methodology for imprecise timex normalisation. We introduce a novel method-
ology for the normalisation of imprecise temporal expressions extracted from
text. Our methodology comprises a set of steps, starting from creating a set of
questionnaires used to capture how people interpret vague descriptions of time in
text. The questionnaires were designed from scratch, since there is not a dataset
or standard for evaluation of imprecise timexes. Answers were used as input
data, from which we created histograms and fuzzy membership functions (MSF)
during the pre-processing step. Then, we applied statistical regression and ma-
chine learning (ML) techniques in order to evaluate which would be the most
suitable model for each kind of temporal imprecision being evaluated. The result
is a grounded probability density function for the period over which the timex
was attained. We use F1-score to calculate how similar two membership func-
tions are, and to choose the most suitable representation model for each kind of
imprecise temporal expression.

Weighted F1-score. We presented a new weighted F1-score variation, called
F13D, that better identifies the relevant differences between two membership
function in terms of confidence, by checking whether the differences are more
concentrated in the top or in the bottom when comparing two membership func-
tion shapes or two normalisation models. We apply the presented methodology
for three kinds of imprecise timexes, and we compare the normalisation models
results in English and Portuguese. The results showed that the normalisation
models were able to capture the vagueness carried out by the imprecise timexes.

This paper is organised as follows: Section 2 presents the background and
related work regarding to the temporal information extraction and the normal-
isation of imprecise timexes; Section 3 presents a quantification of imprecise
expressions comparing clinical and non-clinical domains, and proposes a classi-
fication for imprecise timexes; In Section 4, we propose a methodology for the
normalisation of imprecise temporal expressions; Section 5 depicts the normal-
isation models resulted for three types of imprecise expressions and compares
the normalisation models for two different languages (Portuguese and English);
lastly, in Section 6, we present the final conclusions and future work.

2. Background and Related Work

Time is a primary element that allows us to observe, describe and reason about
what surrounds us in the world, providing a substrate for the human manage-
ment of perception and action. As a cognitive and linguistic component for de-
scribing changes which happen through the occurrence of events, processes, and
actions, time provides a way to record, order, and measure the duration of such
occurrences (Bartak et al., 2013). As a pervasive element of human life, the ab-
sence of a correct identification of the temporal ordering may result in a bad
comprehension, leading to a misunderstanding (Caselli, 2009).

2.1. Temporal Information Extraction

The general process of reading and understanding a text includes the inference
about whether the presented situations stand in particular points in time (Caselli,
2009). Organising events in a chronological order is important to find the tem-
poral relations (e.g. before/after relations) amongst them. Temporal information
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extraction plays an important role in this respect. Temporal expressions are writ-
ten in natural language and can refer directly to time points or intervals (e.g. “6
years ago”), serving as anchors for linking concepts and events extracted from
the text to a timeline, providing the correct distribution of such extracted ele-
ments in time (Ahn, Adafre and Rijke, 2005). Nevertheless, this seemingly easy
task takes into account a set of complex information involving different linguistic
entities and sources of knowledge (Caselli, 2009).

The recognition (or annotation) of temporal expressions (timexes) in text is
the task of finding the corresponding labels (y1, ..., yn) to a given input string
of tokens (x1, ..., xn) so that the resulting labelling can be decoded into textual
spans that constitute the tokens and denote time in the input string (Kolomiyets,
2012). According to Fagerberg (2014), the temporal information extraction pro-
cess comprises: a) temporal expressions have to be recognised within some kind
of document and extracted from it; and b) extracted temporal expressions should
be categorised and normalised to a canonical form – normalisation is not just a
formatting problem, but a task in which the appropriate value of the extracted
expression has to be calculated.

TimeML1 (Pustejovsky, Castano, Ingria, Sauŕı, Gaizauskas, Setzer and Katz,
2003) became a ISO2 standard in 2010, as a language for temporal information
annotation, designed to connect the processes of temporal analysis of a text
with a representation and formal meaning of time. As a specification language
for event and temporal expressions in natural language text, TimeML is able to
capture distinct phenomena in temporal markup.

Temporal information extraction approaches are usually focused on recognis-
ing temporal expressions in text, and normalising those expressions by using a
function that transforms the matched expression into a normalised form based
on <TIMEX3> tags (Bethard, Martin and Klingenstein, 2007; Fagerberg, 2014).
In Llorens, Derczynski, Gaizauskas and Saquete (2012), authors use the argu-
ment that temporal expression normalisation can only be effectively performed
with a large knowledge base and set of rules.

The TempEval series in SemEval (International Workshop on Semantic Eval-
uation) have been exploring the task of extracting temporal expressions, events,
and temporal relations from text, with the purpose to advance research on tempo-
ral information processing. SemEval-2015 Task 6 Clinical TempEval3 (Bethard,
Derczynski, Pustejovsky and Verhagen, 2015) and SemEval-2016 Task 12 Clin-
ical TempEval (Bethard, Savova, Chen, Derczynski, Pustejovsky and Verha-
gen, 2016) were temporal information extraction tasks over the clinical do-
main, using clinical notes and pathology reports for cancer patients. Results
of TempEval-34 and Clinical TempEval (20155 and 20166) were given in terms of
Precision, Recall and F1-score (Davis and Goadrich, 2006) relevance measures.

In addition to SemEval TempEval series, the i2b2 Natural Language Process-
ing Challenge for Clinical Records (Sun, Rumshisky and Uzuner, 2013) focused
on the temporal relations in clinical narratives, attracting 18 participating teams

1 http://timeml.org/
2 https://www.iso.org/standard/37331.html
3 http://alt.qcri.org/semeval2015/task6/
4 https://www.cs.york.ac.uk/semeval-2013/task1
5 http://alt.qcri.org/semeval2015/task6/index.php?id=results
6 http://alt.qcri.org/semeval2016/task12/index.php?id=results



Normalization of Imprecise Temporal Expressions Extracted from Text 5

to analyse discharge summaries, annotating time expressions, events, and rela-
tions between them.

2.2. Normalisation of Temporal Expressions

Normalisation of temporal expressions (or Timex Normalisation) is the process of
tagging a timex, by setting attribute values that describe that expression in terms
of an amount of time or a point in time (Kolomiyets and Moens, 2010). The timex
normalisation task consists of obtaining the absolute value of a timex regardless
of the linguistic expression used (Llorens et al., 2012). After a timex is recognised,
its temporal value must be defined, which means finding the value attribute for
such temporal expression. The normalisation process is usually implemented as a
rule-based system to overcome some problems, including: a) the infinite number
of possible labels, and b) the large number of ways a calendar value can be
expressed in natural language (Kolomiyets, 2012).

Current annotation standards are restricted to normalise imprecise timex in
terms of language structure or language elements (Ferro, Gerber, Mani, Sund-
heim and Wilson, 2005; Sauri, Littman, Gaizauskas, Setzer and Pustejovsky,
2006; Pustejovsky, Lee, Bunt and Romary, 2010; Styler, Bethard, Finan, Palmer,
Pradhan, de Groen, Erickson, Miller, Lin, Savova and Pustejovsky, 2014). An ex-
pression like “few weeks” is normalised to represent an “undetermined period of
time” or an “undetermined number of weeks”, making it hard to connect that
expression to a timeline without any numerical value. When improving the nor-
malisation guidelines to consider a timex description in terms of uncertain values
or periods of time (e.g. range of values), events related to imprecise timexes can
be chronologically placed, and temporal reasoning can be applied.

Although it is relatively easy to recognise temporal expressions using rule-
based systems or supervised machine learning approaches, normalisation (inter-
preting them accurately) is a complex task that requires human knowledge, since
any practical approach to timex normalisation requires a hand-crafted rule set
(Llorens et al., 2012). Kolomiyets (2012) presents a TimeML-based normalisation
technique that comprises three sub-tasks:

1. Timex classification: a classifier has to distinguish between 4 different labels of
DATE, TIME, DURATION and SET, to define the type of time expression, as
it is defined in TimeML; a rule-based method performs the semantic analysis of
time expression constituents (token labelling), identifying different categories
(Table 1) with a comprehensive vocabulary and a set of context dependent
normalisation rules specific for that category.

2. Estimation of temporal values: temporal values are estimated (normalised);
this is not considered a difficult task for absolute temporal expressions, be-
cause such kinds of timexes contain all components required for calculating
the final value. Relative expressions (“last week”, “next month”) also can be
represented using ISO standards (ISO, 2007) representation facilities.

3. Aggregation of temporal values: an aggregation of temporal values is performed,
when one temporal expression consists of a set of shorter temporal expressions
that are obtained by pre-normalisation; in this case, partially estimated values
are aggregated to obtain a final temporal value.
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Table 1. Timex categories (Kolomiyets, 2012).

Category Examples

Temporal units day, month, year
Temporal modifiers last, previous, next
Temporal quantifiers several, few
Temporal directions ago, further, later
Temporal approximators almost, about
Day names Monday, Tuesday
Month names January, February
Cardinal numbers one, 1, two, 2
Ordinal numbers first, 1st, second, 2nd
Coreference timex period, time
Fixed timex today, yesterday, now

2.3. Imprecise Temporal Representation

Considerable effort has been carried out to extract temporal information from
natural language texts, allowing question answering systems to deal with more
complex temporal questions. However, temporal relationships expressed in nat-
ural language are often vague (which is inherently associated with real-world
temporal information), and it is necessary to extend traditional temporal rea-
soning formalisms to cope with this kind of vagueness (Schockaert et al., 2008).

In temporal question answering systems, answering a complex question may
require decomposing the original question into partial questions, to answer such
partial questions and combine the partial answers into the final answer. Temporal
questions are an important class of complex questions, in which the accurate
representation of the time span of events is essential to the treatment of such
complex questions (Schockaert, 2005).

However, a lot of time information is ill-defined, subjective or uncertain, and
the boundaries of time periods can often be vague. Thus, the time span represen-
tation should be tolerant of imprecision in temporal question answering systems.
Zhou, Li, Lu and Duan (2011) summarised the common types of temporal ex-
pressions, based on an exhaustive analysis of 147 clinical records, establishing
temporal expression classification from such expressions. Despite including un-
certain temporal expressions in the resulted classification, the authors state that
the automatic extraction work was hampered by the existence of such expression
type.

Although TimeML is able to distinguish imprecise temporal expressions, it is
restricted to describe imprecision in terms of language structure, clouding later
temporal processing. For example, in the sentence “frequent headaches for less
than one month”, a patient tries to describe how long a headache has lasted. The
corresponding amount of time, however, cannot be accurately defined, due to
the modifier “less than”. The target imprecise expression “less than one month”
is annotated in TimeML as <TIMEX3 value="P1M" mod="LESS THAN">. As a
consequence, when interpreting this expression and its annotated features, it is
not clear whether we should consider each possible number of days between 0
and 30 as equally likely, or whether for example, 20-25 days ago is more likely
than 5-10 days ago or even “yesterday”.

The fuzzy set theory is a representation formalism suitable for this purpose,
allowing the definition of a gradual beginning and ending of events (Nagypál and
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Figure 1. Concepts related to a fuzzy set (Coelho and Raposo, 2005).

Motik, 2003). A fuzzy set is the basic concept that underlies the fuzzy systems
theory (Pedrycz and Gomide, 1998), and involves capturing, representing, and
working with linguistic notions, being employed in those circumstances where
impreciseness, unpredictability, and vagueness are in concern. A fuzzy set S is
characterised by a membership function A mapping the elements of a (finite or
not) domain, space or universe of discourse T into the unit interval [0, 1]. That
is, A(t) : T → [0, 1] (Zadeh, 1994). A membership function A can be defined in
different forms, such as triangular or trapezoidal functions, or continuously differ-
entiable curves with smooth transitions, such as normalised Gaussian functions.
The height of a fuzzy set S is the largest membership grade of any element in that
set (Equation 1), whereas a fuzzy set S is called normal when height(S) = 1,
and subnormal otherwise (Pedrycz and Gomide, 1998).

height(S) = max {A(t), t ∈ T} (1)

The support of S, supp(S), is the crisp set with all the elements of T satisfying
A(t) > 0. Likewise, the core of S, core(S), is the crisp set with all the elements
of T satisfying A(t) = 1, whereas its boundary, bound(S), encompasses all the
elements of T with membership grades in the range ]0, 1[, as shown in Figure 1
(Coelho and Raposo, 2005).

Although some proposed approaches and systems can identify temporal in-
formation in text (Kolomiyets and Moens, 2013; Chambers, 2013; Bethard, 2013;
Strötgen, Zell and Gertz, 2013), they do not deal with imprecise temporal ex-
pressions, like “a few weeks ago” or “the coming months”, in terms of defining
more specific attributes to describe and connect those expressions to a timeline.
Such approaches do not implement temporal-related logics to manipulate such
inaccurate information, for example, to compare events associated respectively
to expressions such as “about 2 months ago” and “a few weeks ago”, indicating
which one happened before or after (Ling and Weld, 2010).

In Nagypál and Motik (2003), a fuzzy interval-based temporal model ca-
pable of representing imprecise temporal knowledge is described. It generalises
Allen’s (Allen, 1983) temporal relations on intervals, by providing a definition
of crisp interval relations based on set theory and then generalised them to the
fuzzy case. The presented temporal model is intended for use in ontology mod-
elling, following a modular semantics pattern which tries to keep the semantics
of each model separate and to provide clean interfaces between them. Examining
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Figure 2. Fuzzy set representing the time span of World War 2 (Schockaert, 2005).

the different properties of the fuzzy temporal relations (like transitivity), one can
observe basic inferences even in case of fuzzy intervals.

Schockaert et al. (2008) presents a framework to represent, compute and
reason about temporal relationships between events that have imprecise time
spans, represented by fuzzy sets (fuzzy time intervals). The proposed model
preserves many of the Allen’s relations’ properties, and it uses a transitivity
table for efficient fuzzy temporal reasoning. The qualitative relations between
two fuzzy intervals are defined in terms of the ordering of the gradual beginning
and endings of these intervals (ordering of the time points belonging to these
intervals). It also defines four basic fuzzy relations to order two time points a
and b (long before, before or at approximately at the same time, approximately
at the same time, just before). Four basic fuzzy relations are defined to order
two time points a and b (long before, before or at approximately at the same
time, approximately at the same time, just before).

Schockaert (2005) suggests an approach based on fuzzy sets to define the
beginning and ending of events, and provides a fully automatic procedure which
uses statements on the web to construct the membership functions. To obtain
useful statements from the web, authors used the snippets returned by Google7

for some automatically generated queries. In most applications, all membership
functions are defined by an expert. However, this is considered the first attempt
to construct membership functions for fuzzy time periods in an automatic way.
Figure 2 shows an example that considers the time span of the World War 2.
There does not exist a unique point in time that corresponds to the beginning
or ending of this war.

A similar approach was used in Blamey, Crick and Oatley (2013) to represent
a temporal expression S by a function f(t), which is a probability density function
for the continuous random variable Ts, using photographs uploaded to the photo-
sharing site Flickr.8 After collecting a list of timestamps for an specific temporal
term, the target is to find a probability density function to provide a convenient
representation, and smooth the data appropriately. Authors argue that temporal
expressions can communicate more than points and intervals, and their cultural
meaning is much more complex – often difficult to be precisely defined. Thus, a
distributed definition can capture such cultural meaning in a more detailed way,
as shown in Figure 3 for the expression “Christmas”.

Even though the related work described uses fuzzy sets to represent individual

7 http://www.google.com
8 http://www.flickr.com
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Figure 3. Distribution of “Christmas” images on Flickr (Blamey et al., 2013).

temporal expressions and temporal relations, by relying on external sources of
data in order to describe specific historical events or generic periods of time
(e.g. holidays), the approaches proposed are focused on specific expressions or
periods of time, and they do not attempt to create a generic normalisation model
to describe imprecision in temporal data among the different kinds of imprecise
temporal expressions. Our work does goes further, not tackling exactly the same
problem as the related work, and that it is therefore not directly comparable.

In this work, we assume that query times are grounded and known. How-
ever, this is in itself a significant task, covered in the literature (Kanhabua and
Nørv̊ag, 2010). Knowledge base population has included a simplified version of
the temporal bounding task, with maximum and minimum bounds for start and
end times, and a corresponding evaluation scheme (Ji, Grishman, Dang, Griffitt
and Ellis, 2010; Amigó, Artiles, Li and Ji, 2011).

3. Imprecise Temporal Data in Text

Considerable effort has been put into the extraction of temporal information
from natural language texts, allowing systems to deal with complex temporal
questions. However, the temporal intervals expressed in natural language are
often vague, making it necessary to extend traditional temporal reasoning for-
malisms to cope with the vagueness (Schockaert et al., 2008). Imprecise timexes
make it hard to evaluate whether events should be included in a query result
that involves timeline evaluation.

Figure 4 ilustrates the importance of dealing with imprecise points in time.
A query system performing searches over extracted events should be able to find
those bounded by a certain period of time. Given two events e1 and e2, each
one associated with a temporal expression t1 and t2, where t1 is a precise DATE
that makes it possible to place e1 in a specific point within a timeline, and t2 is
an imprecise reference in the form “approximately N days later” which makes it
impossible to know the exact day when event e2 occurred. However, it can be
reasoned the e2 occurred after e1. Considering a query that performs a search
within the period bounded by qb and qe, where: qb < t1 < qe and qe < t1 + N ,
we can surely affirm that e1 would be part of the search result. On the other
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Table 2. English (En) and Portuguese (Pt) corpora analysed about the occurrence of precise
and imprecise temporal expressions.

Corpus Lang Docs Description

AQUAINT En 73 News reports, also referred to as the Opinion Corpus, anno-
tated with time expressions (Pustejovsky et al., 2010).

TE3 Platinum En 20 The corpus used to rank participant systems in the
TempEval-3 evaluation exercise, consisting of newswire doc-
uments and blog posts annotated for events, time expressions
and relations (UzZaman, Llorens, Derczynski, Allen, Verha-
gen and Pustejovsky, 2013).

TE3 Silver En 2,452 Documents automatically annotated as a silver standard in
TempEval-3 (UzZaman et al., 2013).

TimeBank En 183 News articles annotated with temporal information, events,
times and temporal links between events and times
(Pustejovsky, Hanks, Sauri, See, Gaizauskas, Setzer, Radev,
Sundheim, Day, Ferro et al., 2003).

WikiWars En 22 Documents sourced from Wikipedia, within the domain
of military conflicts, containing timex annotated with
TIMEX2 (Mazur and Dale, 2010).

CSTNews4 Pt 50 A discourse-annotated corpus for fostering research on
single and multi-document summarization from news
texts (Cardoso, Maziero, Jorge, Seno, Di Felippo, Rino,
Nunes and Pardo, 2011).

* THYME En 248 Clinical narratives datasets used in SemEval-2015 Clinical
TempEval Task (Bethard et al., 2015).

* SLAM En 1,000 Medical records without any pre annotated timexes provided
by the Biomedical Research Centre and Dementia Biomedical
Research Unit at South London and Maudsley NHS Founda-
tion Trust and King’s College London (Stewart, Soremekun,
Perera, Broadbent, Callard, Denis, Hotopf, Thornicroft and
Lovestone, 2009).

* InfoSaude Pt 3,360 Medical records without any pre annotated timex extracted
from the InfoSaude system, Public Health Department in
Brazil (Bona, 2002).

* Clinical corpora

Figure 4. Example of an event (e2) placed in an imprecise point in time.

hand, it is not possible to evaluate whether e2 is part of the same query result, as
the numerical reference that surrounds the placement of e2 within the timeline
comprises a degree of vagueness that makes it impossible to say the exact date
when e2 happened.

In this Section we show the motivation for this work by quantifying the
number of imprecise temporal expressions found in different corpora. We also
propose a classification for imprecise timexes.
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Table 3. Occurrence of imprecise timexes in non-clinical and clinical corpora.

Non-clinical corpora Clinical corpora

Total number Imprecise Imprecise Total number Imprecise Imprecise
of Timexes Timexes % of Timexes Timexes %

AQUAINT 463 35 7.6% Thyme 3,358 659 19.6%
TE3 Platinum 158 20 12.7% SLAM 35,120 12,226 34.8%
TE3 Silver 15,191 863 5.7% InfoSaude 503,005 53,830 10.7%
TimeBank 478 60 12.6% General 134,388 13,785 10.3%

WikiWars 862 112 13.0% Gynecology 66,021 5,452 8.3%

CSTNews4 444 32 7.2% Nutrition 64,282 6,286 9.8%

Psychiatry 238,314 28,307 11.87%

Total (micro) 17,596 1,122 6.4% Total (micro) 541,483 66,715 12.3%
Total (macro) 9.8% Total (macro) 21.7%

Table 4. Occurrence of imprecise timexes by temporal granularity.

Non-Clinical Clinical
Temporal Granularity Corpora Corpora

Year 28.5% 21.1%
Month 20.1% 21.2%
Week 7.7% 6.8%
Day 10.7% 17.6%
Time (Hour, Minute and Second) 4.9% 2.8%
Undefined 23.8% 15.2%
Others∗ 4.3% 15.3%

∗“Others” includes Century, Decade, Quarter and Season.

3.1. Quantifying Imprecise Timexes

In order to understand the relevance of normalising imprecise temporal infor-
mation in different domains, we analysed a set of three clinical and six non-
clinical corpora in English and Portuguese (Table 2) to compare the occurrence
of imprecise timexes in both general and specific domain data. We used the
HINX system (Tissot, Gorrell, Roberts, Derczynski and Fabro, 2015) to identify
the occurrence of imprecise timexes. HINX asserts a specific annotation feature
(precision = “imprecise”) to identify imprecise timexes, based on a set of rules
to identify words, expressions and specific language structures that represent
imprecision.

Table 3 compares the number of imprecise temporal expressions against the
total number of timexes in each corpus, and shows that imprecise timexes in
clinical corpora can reach almost 35% (SLAM corpus, 34.8%) of the temporal
expressions. The percentage of imprecise expressions found in newswire was no
more than 13% (WikiWars corpus).

Table 4 describes the distribution of imprecise timexes in terms of temporal
granularity. The temporal granularity is the time granularity used to compose
the timex, as DAY in “in less than 15 days”, or UNDEFINED in “more recently”.
The set of expressions with granularity YEAR, MONTH, WEEK and DAY rep-
resents more than 60% of the total amount of imprecise expressions in both
clinical and non-clinical corpora. Imprecise expressions denoting time (HOUR,
MINUTE, and SECOND) represent less than 5% of imprecise expressions in
non-clinical data and less than 3% in clinical corpora.
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Table 5. Occurrence of imprecise timexes by class in clinical corpora.

DATE TIME DURATION SET
Corpus Tot Imp % Tot Imp % Tot Imp % Tot Imp %

THYME 2,588 460 17.8% 118 13 11.0% 434 150 34.6% 218 36 16.5%
SLAM 22,678 9,296 41.0% 919 27 2.9% 8,001 2,801 35.0% 1,558 102 6.5%
SMS 210,596 19,082 9.1% 63,468 71 0.1% 190,411 34,524 18.1% 38,530 153 0.4%

General 59,835 4,838 8.1% 15,530 11 0.1% 49,829 8,900 17.9% 9,194 36 0.4%

Gynecology 33,965 1,642 4.8% 3,996 4 0.1% 24,088 3,783 15.7% 3,972 23 0.6%

Nutrition 23,324 1,969 8.4% 8,444 15 0.2% 26,933 4,285 15.9% 5,581 17 0.3%

Psychiatry 93,472 10,633 11.4% 35,498 41 0.1% 89,561 17,556 19.6% 19,783 77 0.4%

Avg (micro) 235,862 28,838 12.2% 64,505 111 0.2% 198,846 37,475 18.8% 40,306 291 0.7%
Avg (macro) 22.6% 4.7% 29.2% 7.8%

Finally, Table 5 shows the distribution of imprecise temporal expressions
found in clinical corpora according to each of the main temporal classes defined
by TimeML (DATE, TIME, DURATION, and SET). The occurrence of impre-
cise timexes is concentrated on the classes DATE and DURATION for clinical
documents. In a similar analysis, we observed the occurrence of imprecise timexes
is concentrated on the class DURATION in non-clinical documents.

3.2. Classification of Imprecise Timexes

We analysed the full set of imprecise expressions found in clinical corpora in order
to understand the different ways the imprecision can be expressed in natural
language. We defined 6 main groups of imprecise timexes according to their
main language elements:

1. Present Reference (PR): a time reference related to the present, based on
the document creation time (DCT) (e.g. “now”, “recently”, “currently”);

2. Modified Value (MV): an imprecise timex comprising a modified precise
amount of time (e.g. “approximately 10 days”, “less than a month”);

3. Imprecise Value (IV): an expression built around a certain imprecise amount
of time (e.g. “some days”, “several weeks”), or formed with undetermined
amount of time, in which granularity is usually presented in the plural, with
the absence of numeric values (e.g. “years”);

4. Range of Values (RV): an amount of time defined by boundaries (e.g. “every
3-4 months”, “between 8-10 years”);

5. Partial Period (PP): a portion of time within a larger time frame (e.g. “the
end of last year”, “middle of January”);

6. Generic Expression (GE): an expression denoting a generic period or amount
of time (e.g. “this time”, “at the same time”).

Table 6 details the number of imprecise timexes found in each clinical cor-
pus according to the imprecise group. A similar distribution was also observed
in non-clinical corpora. We chose to apply and test our proposed methodology
starting by the three most representative kinds of imprecise expressions in terms
of occurrence (PR, MV, and IV). The PR imprecise type represents more than
50% of imprecise timexes in the clinical domain. However, it comprises expres-
sions devoid of a temporal granularity, requiring distinct questionnaire design
and input data representation.
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Table 6. Timexes by Imprecise Type in clinical corpora.

Clinical Corpora
Imprecise Type THYME SLAM InfoSaude

PR 55.7% 58.0% 30.2%
MV 15.5% 6.6% 27.0%
IV 11.9% 14.4% 24.9%
RV 10.2% 4.0% 13.6%
PP 6.2% 3.2% 4.3%
GE 0.5% 13.8% 0.0%

TOTAL 659 12,229 53,830

4. Normalisation of Imprecise Timexes

Normalisation of an imprecise temporal expression depends on how people reason
about imprecise information. Reasoning about an imprecise timex in a specific
context, such as in clinical text, may depend on a broader narrative analysis, and
an understanding of the context in which the expression was created. Despite this
possible influence of different contexts on the interpretation of imprecise timexes,
we present a methodology on how to produce normalisation models for each
different imprecision type according to the people’s common cognitive perception
of temporal imprecision. Therefore, we collected and pre-processed data on how
people interpret vague descriptions of time in text, and we compared different
approaches in order to create and select the most appropriate normalisation
model.

4.1. Specification of the Input Data

In order to collect data on how people interpret vague descriptions of time in
text, we designed questionnaires9 in two different languages (Portuguese and
English). The design of the questionnaires were necessary since there is not an
available dataset/standard for analysing imprecise timexes. Each question aims
to capture the perception about an imprecise value for a given imprecise timex,
showing a sentence comprising 2 to 3 descriptions of time that could be pre-
cise or imprecise. The target imprecise timex to be evaluated is underlined. The
Portuguese questionnaire comprises 125 questions split into 5 questionnaires (25
questions each), each question made with modified (in order to guarantee de-
identification) sentences found in a set of medical records from the InfoSaude
corpus. The English version has a total of 150 questions split into 10 question-
naires (15 questions each), each question designed using fictional text to capture
the perception about specific imprecise value for a given set of imprecise timexes
(non-clinical).

Inter-annotator agreement (IAA) is usually used to measure the quality of
a data set, by seeing how closely people agree on some objective task that is
assumed to have a definitive answer, e.g. extraction of some phenomenon from
text. In such a case, we would expect annotators to converge on a common value,
assuming the data quality is high. Although we are asking people to fill in a ques-
tionnaire with a subjective opinion (i.e. not asking them to extract an objective

9 https://github.com/HeglerTissot/itn/tree/master/Questionnaire
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Table 7. Types of questions in each questionnaire and inter-annotator agreement.

Imprecise Question #Questions #Answers (avg) Fleiss’ Kappa agreement
Type Type Port Eng Port Eng Port Eng

MV Approximately 30 38 70.4 88.7 0.329 0.322
Less Than 18 26 71.3 88.8 0.285 0.324
More Than 24 26 70.5 89.5 0.248 0.347

IV Imprecise Value 41 48 70.2 89.4 0.198 0.201
PR Present Reference 12 12 69.4 91.2 0.321 0.427

Total 125 150 70.3 89.3 0.268 0.297

Figure 5. Example of questions used to design the questionnaire in English.

fact from the text), we used Fleiss’ kappa (Fleiss et al., 1971) as a statistical
measure for assessing the reliability of agreement when a fixed number of raters
assign categorical ratings to a number of items. The types of questions cov-
ered by each questionnaire, average number of answers, and the inter-annotator
agreement are detailed in Table 7.

MV and IV questions in the Portuguese survey asked for a specific number of
days, weeks, months, or years (e.g. for “more than 10 days”, one specific number
of days should be selected, with options ranging from 7-60 days). The same
type of question in English asked for a possible range of time (e.g. for “more
than 5 days”, a range of days start-end should be selected, with start point
ranging from 0-40 days and end point ranging from 0-60 days). An additional
option “more than 60 days” was also included on the questions covering the
MV imprecise type. PR questions (“now”, “currently”, “recently”) asked for
a temporal granularity that would better describe when the associated event
starts. We wanted to test different ways to answer each question, leading to the
mentioned differences in the design of each questionnaire in terms of how the
answers should be entered. Figure 5 shows examples of questions extracted from
the questionnaires in English.

As most of the imprecise temporal expressions found in the documents we had
previously analysed refer to the classes DATE and DURATION, we considered “1
day” as being the basic and minimal unit of time in the experiments. We used
a discrete set of an integer number of days, disregarding granularities having
TimeML TIMEX3 type TIME (hours, minutes and seconds).

The Portuguese survey was approved by the InfoSaude Research Committee
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and submitted to 50 universities in Brazil, covering students and staff member
from different departments, from which we gathered a total of 352 submissions
– each question had in average 70 responses. The English survey was approved
by the University of Sheffield’s Research Ethics Committee and submitted to
all student and staff members of an opt-out mailing list in that institution. We
gathered a total of 890 submissions in English – each question had in average 90
responses.

4.2. Membership Functions

We aim to normalise imprecise expressions through the use of fuzzy membership
functions (MSF). The MSF would place an imprecise timex in the timeline with a
certain confidence level. In addition, a search result would have additional infor-
mation indicating the confidence score for each event associated to an imprecise
timex. Given a list of MSFs for the same kind of imprecise expression (e.g. of
the form “less than N days”), we want to produce a generic model where, given
N as an input, the model can calculate the parameters to describe a MSF for all
expressions of that type.

We used two types of MSFs in our experiments: trapezoidal (4-point-based)
and hexagonal (6-point-based) membership functions. Trapezoidal and hexago-
nal membership functions were chosen because: a) they are asymmetrical and
can have their shapes adapted flexibly to match different patterns, and b) their
linear boundaries make them easier to use in terms of computing fuzzy logical
and relational operations.

A trapezoidal MSF is defined by a set of 4 parameters (p, r, s, v), such as
M4(x) : I → [0; 1], and p < r ≤ s < v. Definition parameters p and v are the
boundary limits where the confidence is 0, r and s are the boundary limits where
the confidence is 1. When r = s, the MSF shapes like a triangular function. The
MSF parameters p, r, s, v are equivalent to values a, b, c, d in Figure 1.

Similarly, a hexagonal (6-point-based) MSF is defined by a set of 6 pa-
rameters (p, q, r, s, t, v), such as M6(x) : I → [0; 1], and p < q < r <= s <
t < v, and additionally the the trapezoidal boundaries, q and t are the values
where the confidence is 0.5. In this work we refer to trapezoidal and hexagonal
MSFs as by their definition parameters, using the notation M4(x, [p, r, s, v]) and
M6(x, [p, q, r, s, t, v]).

For each question within the questionnaires we attempted to best approxi-
mate the corresponding M4 and M6 membership functions with respect to their
definition parameters. For each question we calculated a histogram based on
the number of answers given to each possible option. Then, each histogram was
approximated to a trapezoidal and to a hexagonal membership function, using
a full search method in order to minimise the approximation error. We looked
for the best combination of values for the parameters (p, r, s, v) or (p, q, r, s, t, v),
and the best MSF height in the y axis, which corresponds to the number of given
answers. Figure 6(a) shows the histogram and trapezoidal function obtained for
the expression “less than 30 days” from the survey in Portuguese, defined as
LessThenP30D(xdays, [16, 19, 21, 31]) – parameters (p, r, s, v) represent number
of days, and the confidence = 1 at the height = 8 in the histogram. Similarly,
Figure 6(b) presents the histogram and approximated trapezoidal function for
the expression “about 3 months” from the questionnaire in English, defined as
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Figure 6. Histogram and trapezoidal MSF for two imprecise timexes.

ApproxP3M (xdays, [71, 87, 92, 110]) – the confidence = 1 at the height = 32 in
the histogram.

4.3. Normalisation Models

We compared different approaches, such as linear regression and multilayer per-
ceptron (Bishop, 1995), to model each kind of imprecision. In order to identify
which method best models each group of imprecise timex, we explored a di-
verse set of alternatives. The following steps were performed to analyse the data
collected from the questionnaire described in Section 4.1:

1. We started by spliting the total set of answers into two datasets (50%:50%) to
be used as training and test datasets. Input data collected from the question-
naire was pre-processed. For every question we calculated the distribution of
answers in the form of a histogram. A trapezoidal and a hexagonal membership
functions were approximated to describe the given histogram, as described in
the previous subsection.

2. For those questions using temporal granularity other than “DAY” we at-
tempted to use both options when training the models, (a) the original gran-
ularity and the numeric value (Val) extracted from the temporal expression
as it was with its original granularity (e.g. “3” in “about 3 months”), and (b)
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LessThan(n) = [0.7 ∗ n, 1.0 ∗ n]

Approx(n) = [0.8 ∗ n, 1.2 ∗ n]

MoreThan(n) = [1.0 ∗ n, 1.3 ∗ n]

FEW = [2, 3]

SOME = [4, 5]

MANY = [6, 8]

SEV ERAL = [9, 12]

Undefined = [8, 20]

Figure 7. Unsupervised baseline parameters for IV and MV expressions.

Table 8. MLP parameters and features used.

Type Name Description (Value)

Features Granularity Four input values to set the temporal granularity – “Val” variation
Reference Value Number extracted for MV expressions – “Val” variation
Reference Days Number of days extracted for MV expressions – “Day” variation
Temporal Context Number of days that represents the temporal context – IV expressions
Imprecise Value Five input values to set the imprecise value – IV expressions

Training maxIteration Maximum number of training iterations to be performed (5000)
Parameters minIteration Minimal number of iterations to be performed before stopping (1000)

maxNoBetter Training stops after 200 iterations with no improvement (200)
K Number of folds in K-Fold Cross Validation (4)

MLP hiddenLayer Number of neurons in the hidden layer
Design ( (inputLayerSize− 1) ∗ (outputLayerSize− 1) )

outputLayer Number of neurons in the hidden layer to produce trapezoidal MSFs (4)
or trapezoidal MSFs (6)

learningRate Learning rate used by the backpropagation algorithm (0.95)

the same expression converted to the granularity of days (Day) (e.g. “3” in
“about 3 months” was converted to “90 days”).

3. For each expression type, we defined range-based unsupervised parameters
to use as baseline, which were arbitrary, manually chosen. Figure 7 shows
the unsupervised interval parameters defined for MV and IV questions. Each
range [b, e] was mapped to a MSF (x, [b−1, b, e, e+ 1]) along the experiments.
For the modifier MANY, for example, the range value [6, 8] is equivalent to a
MSF (x, [5, 6, 8, 9]).

4. In order to produce a generic model that could be used to calculate any mem-
bership function for a given imprecise timex type, we applied four different
variations of a linear regression to generalise each one of the parameters used
to define trapezoidal (p, r, s, v) and hexagonal (p, q, r, s, t, v) membership func-
tions for each given type of imprecise timex: a) the usual (y = a+ b ∗x) linear
regression (Lin-A); b) we forced the independent constant a in the linear for-
mula to be equals to zero (Lin-0); c) the linear regression with the natural
logarithm values of each expression (ln(y) = a + b ∗ ln(x)), in an attempt to
map those expression given in terms of years (e.g. “5 years” = “1825 days”) as
close to those describing periods of days or weeks (Log-A); and lastly, d) the
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linear regression based on the logarithm values was extended to force a = 0
(Log-0).

5. For those timexes comprising imprecise values (IV), we also calculated the
mean (MEAN) values of each membership function parameter, combining the
normalised values described in 2 (Val and Day) and 4 (Lin and Log).

6. For those timexes comprising imprecise values (IV) and present references
(PR), we used the temporal context as input value. We considered the “Tem-
poral Context” as the distance in days between the current date (DCT - docu-
ment creation time) and the last timex mentioned in the sentence prior to the
imprecise timex being evaluated. For the designed questionnaires, DCT was
defined as the date when each questionnaire was published. This approach was
used in an attempt to evaluate whether the perception of a present reference
imprecise timex would be influenced by the temporal context distance.

7. For MV and IV types of imprecise expression, we used a multilayer perceptron
(MLP) with the Backpropagation algorithm (Gardner and Dorling, 1998) to
learn how to return the membership function parameters for a given imprecise
timex. We also combined the normalised values described in 2 (Val and Day)
and 4 (Lin and Log). We used k-fold cross-validation to select the best model
with k = 4. The internal MLP structure and learning parameters were chosen
in a previous tuning step, after testing and comparing different configuration
settings. Table 8 describes features and parameters used in the training step.
In order to test the hypothesis that Present Reference (PR) expressions un-
derstanding could be influenced by the temporal context, we only tested the
linear regression approach for that kind of expressions.

8. In order to evaluate each model we compared each individual membership
function generated by the given model with the equivalent membership func-
tions from the testing dataset. We used the areas of each membership func-
tions to produce the F1-score (Equation 2), which defines how much the two
functions areas overlap. Partial areas that do not overlap are considered false
positive and false negative areas, and the overlap is considered as a true posi-
tive area. When F1 = 1 both membership functions are exactly the same, and
when F1 = 0 there is no overlap between those given functions. The F1-score
for the entire model was calculated using the average F1-score from all the
membership functions used to test the model.

F1(A,B) =
2× CommonArea(A,B)

Area(A) + Area(B)
(2)

Figure 8 shows two hexagonal membership functions – A(x,[1,3,10,13,14,17])
and B(x,[2,3,5,7,9,14]) – and the visual representation of the F1-score between
A and B, meaning the percentage of the common area relative to the total
area of both functions. In the illustrated example, F1-score resulted 0.6567.

9. Finally, for each type of imprecise timex, we used the average F1-score obtained
from all the different expression variations and between the trapezoidal and
hexagonal membership functions in order to compare and select the most
appropriate normalisation model.

The linear regression model is motivated by the hypothesis that some kinds of
imprecise temporal expressions (e.g. “less than x days ago” or “in approximately
x weeks” could be linearly dependent on the input amount of time x. Given this
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Figure 8. F1-score representation between membership functions A and B – partial areas
that do not overlap are considered false positive and false negative areas, and the overlap is
considered as a true positive area (See Equation 2).

hypothesis, the simplest and least data-hungry tools to apply are linear regression
and MLP. While SVM offers higher expressivity, it also risks making mistakes
with lower amounts of data, and certainly if good results can be found through
LR or MLP, this result is strong on its own. Additionally, we contrasted the linear
regression results with a non-linear approach. We adopted MLP as a non-linear
alternative to train normalisation models for each kind of imprecise timex, and
provide comparisons there.

In order to graphically represent the normalisation models, we developed a
chart format where we plot both the testing data, and the produced general-
isation model. Figure 9 shows how this graphical representation works. Each
known membership function produced from the input data (e.g. subfigure in
the top left side represents the expression “less than 30 days”) is plotted as a
vertical bar, with a dark central area representing the top of the MSF, where
confidence is 1 – the bottom and the top of each vertical bar represent the
MSF limits where confidence is 0. The grey area in the chart’s background is
the normalisation model resulted for the expression type “LessThan”. Thus,
when we need to normalise an unknown expression, the normalisation model
will give us the parameters that describe the corresponding MSF definition for
the given expression type, by taking the limits of each dark and light grey area.
For example, the selected red area at the right side represents the limits for an
unknown expression “less than 90 days”, which would be defined as trapezoidal
MSF LessThanP90D(xdays, [23, 65, 85, 96]). Other examples of known MSFs rep-
resented in the same figure as vertical bars include “less than 10 days”, “less than
2 weeks”, and “less than 2 months” – the figure shows 10 MSFs corresponding
to the test dataset for the given type of imprecise expression.10

10 There are actually two distinct MSFs corresponding to the expression “less than 30 days”
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Figure 9. Graphical representation of a normalisation model.

5. Evaluation

In this section we present the results11 of the analysis for the evaluated imprecise
types (MV, IV, and PR), based on the representation model described in the
previous section. We have performed a statistical hypothesis t-test for verifying
the significance of the F1 scores reported for each approach. The significance
threshold was set at 0.05.

5.1. Modified Value (MV) Expressions

Table 9 compares the results of each model used to produce trapezoidal (M4)
and hexagonal (M6) membership functions for the group of expressions com-
prising “less than”, “more than”, and “approximately” subtypes for both lan-
guages (Portuguese and English). Different models are compared using the av-
erage (Avg) score between M4 and M6. We highlight in boldface the best Avg
score for each approach (Regression and MLP) in each language (English and
Portuguese).

The Log-A variation achieved the best score for this kind of expression among
all the Linear Regression variations for both Languages. The MLP approach pro-
duced a result that is better than the Log-A regression variation in Portuguese.
However, MLP achieved a result that is similar to the baseline in English.

in Figure 9, resulted from two different questions in the survey, but their representation is
cloudy.
11 See https://github.com/HeglerTissot/itn for further details about the questionnaires
used in this work and the resulting models for the studied imprecise time expressions.
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Table 9. F1-scores for MV temporal expressions in Portuguese and English.

Portuguese English
Method Var M4 M6 Avg M4 M6 Avg

Baseline 0.673 0.646 0.660 0.741 0.731 0.736
Regression Lin(A) 0.635 0.558 0.597 0.615 0.613 0.614
Regression Lin(0) 0.762 0.740 0.751 0.797 0.794 0.796
Regression Log(A) 0.772 0.746 0.759 0.814 0.806 0.810
Regression Log(0) 0.669 0.661 0.665 0.678 0.693 0.686
MLP Day/Lin 0.321 0.584 0.452 0.340 0.514 0.427
MLP Day/Log 0.729 0.755 0.742 0.679 0.786 0.733
MLP Val/Lin 0.785 0.742 0.763 0.738 0.787 0.763
MLP Val/Log 0.757 0.738 0.747 0.760 0.774 0.767

For both languages, the t-test evidences significant differences when com-
paring the best MLP against the best Regression F1 scores, considering the
significance threshold set at 0.05: a) in English, p-value=0.000481 when com-
paring the results between Regression-Log(A) and MLP-Val/Log approaches; b)
in Portuguesse, p-value=0.003243 when comparing the results between Regres-
sion-Log(A) and MLP-Val/Lin approaches. In addition, we also compared the
results between Regression-Lin(0) and Regression-Log(A), from which we found
no significant differences for both languages (p-value=0.183702 for English;
p-value=0.314776 for Portuguese. The Lin(0) variation does not rely on loga-
rithmic transformations and this model can be directly calculated by applying
simple linear transformations on the input imprecise expression.

Figure 10(a) shows the model using the Log-A Linear Regression variation,
and Figure 10(b) shows the model from MLP-Val/Log, both used to produce
trapezoidal functions for expressions of the form “less than N days” in English.
The MLP model is consistent when producing membership function parameters
that are inside the limit boundaries used to train the given model. However, it is
not consistent when trying to produce membership function parameters that are
outside those limits. For instance, it finds values for the parameters r and s that
are greater than N for “less than N days” for each N > 60 (darker grey area in
the chart). Similar differences between Linear Regression and MLP approaches
were observed in the Portuguese models. Linear Regression models are more
consistent when generalising MV imprecise timexes.

Although the MLP approach resulted better for one of the languages, its
inconsistency when dealing with imprecise expressions outside the limit bound-
aries used to train the model impose limitations and restrictions for its use.
Lin-0 and Log-A models are more efficient and stable on generalising this kind
of temporal imprecision, and their statistical similarity led us to believe the sim-
plicity and stright forward applicability of the Lin-0 model makes it strongly
recommended to model MV imprecise expressions. In Table 10, we present the
factors [Bp, Br, Bs, Bv] used to calculate the parameters [p, r, s, v] that define
trapezoidal MSFs for MV temporal expressions in both languages for a given
amount of time in a temporal granularity (Ntgran). For example, the expression
“less than 30 days” in English is defined as:

LessThanndays
= MSF (xdays, [n ∗ 0.3693, N = n ∗ 0.7964, n ∗ 0.9371, n ∗ 1.0803])

LessThan30days = MSF (xdays, [30 ∗ 0.3693, 30 ∗ 0.7964, 30 ∗ 0.9371, 30 ∗ 1.0803])

= MSF (xdays, [11, 23, 28, 32])
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Figure 10. Generalisation of “less than X days” expressions within the period of 0-90 for two
different approaches in English.

(3)

5.2. Imprecise Value (IV) Expressions

Table 11 compares the results of each model used to produce trapezoidal and
hexagonal membership functions for the IV type of temporal expressions. Linear
Regression and MLP methods used the distance in days (Temporal Context) to
the last precise temporal expression found in the text prior to the target im-



Normalization of Imprecise Temporal Expressions Extracted from Text 23

Table 10. Linear regression factors [Bp, Br, Bs, Bv ] used to produce the parameters [p, r, s, v]
that define Lin-0 trapezoidal MSFs for MV expressions in Portuguese (Pt) and English (En).

Pt En
Modifier [Bp, Br, Bs, Bv ] [Bp, Br, Bs, Bv ]

Approx(Ntgran) [0.7185, 0.9375, 0.9964, 1.2335] [0.7101, 0.9325, 1.0602, 1.2965]
LessThan(Ntgran) [0.6921, 0.8290, 0.8554, 0.9888] [0.3693, 0.7964, 0.9371, 1.0803]
MoreThan(Ntgran) [0.9705, 1.2111, 1.2605, 1.4995] [0.8799, 1.0704, 1.2036, 1.7093]

Table 11. F1-scores for IV temporal expressions in Portuguese and English.

Portuguese English
Method Var M4 M6 Avg M4 M6 Avg

Baseline 0.325 0.311 0.318 0.318 0.298 0.308
Mean Day/Lin 0.661 0.847 0.754 0.866 0.847 0.857

Day/Log 0.657 0.848 0.753 0.867 0.846 0.856
Val/Lin 0.669 0.850 0.760 0.859 0.845 0.852
Val/Log 0.656 0.847 0.751 0.844 0.831 0.837

Regression Day/Lin 0.660 0.850 0.755 0.892 0.871 0.881
Day/Log 0.660 0.846 0.753 0.884 0.868 0.876
Val/Lin 0.673 0.858 0.765 0.889 0.877 0.883
Val/Log 0.668 0.841 0.755 0.847 0.848 0.848

MLP Day/Lin 0.610 0.779 0.695 0.792 0.827 0.809
(Granularity) Day/Log 0.694 0.728 0.711 0.849 0.814 0.831

Val/Lin 0.820 0.767 0.793 0.848 0.832 0.840
Val/Log 0.751 0.726 0.738 0.848 0.819 0.834

MLP Day/Lin 0.626 0.582 0.604 0.760 0.757 0.759
(Imprecise Value) Day/Log 0.712 0.551 0.632 0.862 0.843 0.853

Val/Lin 0.784 0.738 0.761 0.821 0.811 0.816
Val/Log 0.762 0.766 0.764 0.841 0.762 0.802

precise timex as an input parameter when creating each model. We used two
MLP approaches: a) one to learn each temporal granularity (“days”, “weeks”,
“months”, “years”), and b) one to learn each imprecise value (“few”, “some”,
“many”, “several”). We highlight in boldface the best Avg score for each ap-
proach in each language.

The best average F1-scores for each evaluated method are similar in each
language (ranging from 0.76 to 0.79 in Portuguese, and from 0.84 to 0.88 in
English). The best average F1-score was achieved by the MLP model trained
based on Granularities in Portuguese and by the Linear Regression (Val/Lin) in
English. However, those models do not show any significant difference against
the corresponding best model using the Mean method considering the signifi-
cance threshold set at 0.05: a) in English, p-value=0.075434 when comparing
the Mean Day/Lin and the Regression (Val/Lin) approaches; b) in Portuguese,
p-value=0.199188 when comparing the Mean Val/Lin and the MLP Val/Lin
(Granularity) approaches. The main advantage of the Mean approach refers to
the fact it can be applied independently of an input value or temporal context.

Figure 11 shows the hexagonal functions created by the method Mean(Day/Lin)
for the IV timexes in Portuguese and English. Table 12 presents the parameters
[p, r, s, v] used to define trapezoidal MSFs for IV temporal expressions in both
languages. The set of parameters [p, r, s, v] is given by the granularity value
(Val/Lin) and by the absolute number of days (Day/Lin). For example, the ex-
pression “few weeks” in English is defined as FewWeeks(xweeks, [1, 3, 3, 9]) (by
the Val/Lin approach) or as FewWeeks(xdays, [9, 20, 25, 59]) (by the Day/Lin
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Figure 11. Hexagonal membership functions for IV imprecise timexes comprising modifiers
“few”, “some”, “many”, and “several” combined with distinct temporal cardinalities (“days”,
“weeks”, “months”, and “years”) – y-axes are the result (µ) of each MSF and x-axes represent
the amount of time in the same temporal granularity corresponding to the label of each chart.

approach). Note that the approaches Val/Lin and Day/Lin produce MSFs with
different temporal granularities, respectivly identified by xweeks and xdays in each
MSF definition. The former describes imprecision in the same temporal grani-
larity as in the original expression; the later always expresses the probabilistic
distribution of a imprecise temporal expression in number of days.
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Table 12. Parameters [p, r, s, v] produced by the Mean approach used to define trapezoidal
MSFs for IV temporal expressions in Portuguese (Pt) and English (En).

Pt Pt En En
Val/Lin Day/Lin Val/Lin Day/Lin

Modifier Granularity [p, r, s, v] [p, r, s, v] [p, r, s, v] [p, r, s, v]

Days [1, 2, 3, 10] [1, 3, 5, 14]
Weeks [1, 3, 3, 7] [9, 18, 22, 50] [1, 2, 4, 11] [7, 18, 30, 73]
Months [1, 2, 4, 11] [39, 65, 110, 312] [1, 3, 5, 10] [26, 92, 134, 296]
Years [1, 3, 10, 14] [485, 1259, 3577, 4802] [1, 3, 4, 16] [239, 1125, 1498, 5550]

Few Days [1, 2, 4, 14] [1, 2, 4, 8]
Weeks [1, 2, 3, 7] [8, 12, 23, 50] [1, 3, 3, 9] [9, 20, 25, 59]
Months [1, 2, 3, 7] [43, 58, 96, 198] [1, 3, 4, 7] [25, 80, 107, 205]
Years [1, 2, 3, 6] [183, 588, 1164, 2274] [1, 3, 4, 8] [315, 993, 1304, 2806]

Some Days [1, 2, 5, 14] [1, 3, 6, 29]
Weeks [1, 3, 3, 6] [6, 18, 23, 44] [1, 2, 3, 6] [6, 18, 22, 45]
Months [1, 2, 4, 9] [38, 65, 129, 250] [1, 2, 4, 11] [27, 72, 120, 310]
Years [1, 2, 5, 8] [345, 671, 1681, 2789] [1, 3, 5, 13] [235, 1134, 1776, 4675]

Many Days [3, 5, 11, 30] [2, 5, 13, 37]
Weeks [1, 3, 3, 9] [9, 19, 23, 64] [1, 4, 5, 15] [6, 31, 36, 102]
Months [3, 6, 8, 21] [76, 195, 254, 630] [2, 6, 8, 17] [59, 191, 233, 504]
Years [1, 10, 13, 16] [356, 3784, 4528, 5764] [2, 4, 7, 12] [709, 1737, 2573, 4150]

Several Days [2, 8, 12, 28] [1, 4, 5, 10]
Weeks [1, 3, 3, 9] [9, 19, 23, 64] [1, 3, 5, 11] [8, 24, 34, 76]
Months [1, 3, 5, 22] [57, 93, 128, 663] [1, 3, 5, 14] [52, 81, 145, 401]
Years [1, 3, 10, 16] [596, 1029, 3428, 5849] [1, 3, 5, 14] [261, 1280, 1583, 5081]

5.3. Present Reference (PR) Expressions

Present Reference (PR) imprecise timexes comprise those expressions including
“currently”, “recently”, and “now”. For this kind of imprecise timexes we asked
people to choose the most appropriate option to express the amount of time since
when the event associated with the target expression occurred. Figure 12 shows
two examples of questions extracted from the English questionnaire. In each
question, the target imprecise expression should be defined by another imprecise
timex. Options included four IV expressions: “days”, “weeks”, “months”, and
“years”.

We calculated the histogram of the given answers for each PR question, and
we used the percentage of answers given to each IV expression option to create a
combined membership function using a percentage of the parameters extracted
from each IV expression. To calculate the linear regression model, we used the
percentage of answers given for each PR question in order to produce a generic
model based on the temporal context (in days). Figure 13 shows the models for
two different periods (50 weeks and 20 years), including the resulted membership
functions representation for each PR question in English and Portuguese. Table
13 shows the weights used to combine IV expressions with different temporal
granularities in order to produce a membership function that describes each PR
expression.

For example, in question number 7 (Figure 12) the expression “recently” can
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Figure 12. Example of questions covering PR imprecise timexes in English.

Table 13. Weights used to combine temporal granularities from IV membership functions to
produce the parameters that define trapezoidal MSFs for PR expressions in Portuguese (Pt)
and English (En).

Lang IV approach PR expression IVdays IVweeks IVmonths IVyears

Pt Mean Now 0.729 0.182 0.074 0.015
Recently 0.313 0.462 0.168 0.056
Currently 0.379 0.308 0.231 0.081

Regression Now 0.784 0.130 0.075 0.011
Recently 0.325 0.439 0.157 0.079
Currently 0.512 0.379 0.095 0.013

En Mean Now 0.385 0.175 0.338 0.102
Recently 0.180 0.528 0.281 0.010
Currently 0.343 0.390 0.208 0.059

Regression Now 0.557 0.161 0.339 -0.056
Recently 0.239 0.574 0.189 -0.003
Currently 0.437 0.474 0.078 0.012

be mapped to a MSF by combining the IV parameters from the Mean approach:

Mrecently =0.180×Mdays +

0.528×Mweeks +

0.281×Mmonths +

0.010×Myears

which is equivalent to:

Mrecently =

M(x, [0.180× 1 + 0.528× 7 + 0.281× 26 + 0.010× 239,

0.180× 3 + 0.528× 18 + 0.281× 92 + 0.010× 1125,

0.180× 5 + 0.528× 30 + 0.281× 134 + 0.010× 1498,

0.180× 14 + 0.528× 73 + 0.281× 296 + 0.010× 5550])
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Figure 13. Hexagonal membership function model for PR imprecise timexes.
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or:

Mrecently = M(xdays, [13, 47, 70, 180])

PR expressions in English are more linearly dependent of the temporal con-
text than the same expression in Portuguese. That means “recently” represents
more in terms of amount of time in English when used in a temporal context
of “10 years” than when it is used in a temporal context of “6 months”. In
the other hand, the equivalent expression in Portuguese seems to have a similar
understanding independently of the temporal context being used.

The linear dependency in English and the non-linear dependency in Por-
tuguese are confirmed by the statistical t-test when considering the significance
threshold set at 0.05. We compared the PR models produced by MEAN and
Linear Regression approaches from IV imprecise expressions: a) the MEAN ap-
proach is a non-temporal dependent method that uses the mean values obtained
from IV expressions in order to compound PR expressions based on the average
of distinct IV modifiers; b) the Linear Regression approach uses the Temporal
Context as input parameter to produce MSFs. In Portuguese, Mean and Linear
Regression approaches do not evidence significant differences when comparing
their final scores (p-value=0.438141), whilst the same models in English present
significantly different (p-value=0.015191).

We found the set of PR imprecise temporal expressions much more challenge-
able to model in terms of fuzzy representation. We believe further experiments
focused in this specific type of imprecise temporal reference are required in or-
der to better understand the interpretability of each possible PR expression in
different contexts.

5.4. Comparing Languages

We compared models created for imprecise temporal expressions in English and
Portuguese. We calculated the F1-score between both languages as the average
of each F1-score calculated for each expression format for the trapezoidal and
hexagonal MSFs. All expressions within the same type were combined to calcu-
late a partial F1-score (e.g. “some days” in Portuguese and the same expression
in English) as the average between F1-score for the trapezoidal and hexagonal
MSFs. The calculated average F1 score among all the expressions resulted the
similarity between Portuguese and English.

However, when calculating the F1-score using the MSF area, it was not pos-
sible to identify whether the differences are more concentrated in the top (con-
fidence=1) or the bottom (confidence=0) of such functions. In order to identify
how relevant such differences are, we used a variation of F1-score that we called
F13D. We considered each MSF as a tridimensional object, from which the third
dimension identifies how deep each MSF is, varying from 0 at the bottom to 1
at the top. Instead of using the MSF areas, we then used the MSF volumes to
calculate F13D (Equation 4). Figure 14 illustrates the difference between F1 and
F13D, comparing three MSFs (A, B, and C). A and B have a difference in the top,
whilst A and C have the exact same difference in terms of area, in the bottom
instead. Thus, F1(A,B) = F1(A,C) = 0.9655. When calculating the F13D, we
can observe F13D(A,B) < F13D(A,C), what means A and B have differences
more concentrated in the top comparatively to the differences between A and C
– differences at the top have more influence to decrease F13D than differences at
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Figure 14. Contrasting F1 and F13D scores used to calculate the similarity between mem-
bership functions.

Table 14. F1 and F13D-scores between Portuguese and English.

Imprecise Type F1 F13D

MV 0.731 0.692
IV 0.767 0.719
PR 0.391 0.304

the bottom due to the MSF depth.

F13D(A,B) =
2× CommonV olume(A,B)

V olume(A) + V olume(B)
(4)

We used the following normalisation models to compare the results in En-
glish and Portuguese: a) Log(A) regression models to compare MV expressions;
b) MEAN models to compare IV expressions; and c) Lin(A) regression models
to compare PR expressions. Table 14 shows the F1 and F13D-scores between
English and Portuguese. We can observe F1 > F13D for all the three types of
imprecise temporal expressions analysed, indicating that differences tend to be
concentrated more closely to the top of the MSFs, where the confidence is higher,
and differences can be considered more relevant.

6. Conclusions

We have presented an analysis of previously unstudied imprecise time expressions
(timexes) in text. This analysis helps to address the overall problem of deal-
ing with temporal expressions in information extraction. Our work introduces
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three novel techniques for this analysis. First, we provide a novel classification of
imprecise timexes. Second, we develop a novel methodology to obtain member-
ship functions for timexes, based on human interpretation of imprecise timexes.
Third, as well as the usual F1-score for evaluation, we introduce a novel metric
for identifying the differences between membership functions, along 3 dimensions
- the F13D. Our models were applied to both English, and for the first time, to
Portuguese expressions.

The resulting models give an insight in to the way in which imprecise expres-
sions are interpreted in different languages. For example, the Linear Regression
Log(A) membership function that defines the expression “less than 90 days” in
Portuguese includes possible interpretations - albeit at a low level of confidence
- of 91 to 95 days. This leads us to believe that temporal imprecision is not
mathematically reasoned, and that there is a level of uncertainty that is able
to cross the boundary limits defined by the numerical values found within the
temporal expressions.

In future work, we plan to perform experiments to obtain normalisation mod-
els corresponding to the other types of imprecise expressions (PP, RV, and GE),
and examine whether the differences between languages can be influenced by
the knowledge domain or by cultural differences. We also plan further examine
the relation between the F1 and F13D scores and compare their interpretabil-
ity against other probability distribution divergence metrics, such as the the
Kullback–Leibler (KL) divergence. Additionally, we plan to compare the mem-
bership function models against other probabilistic representations (e.g. gaussian
or gamma distributions), and validate in what extent such probabilistic general-
isations are able to mimic the results we found in this work.

Up to 35% of temporal expressions may be imprecise in some domains. By
normalising these imprecise expressions, we can greatly increase the amount
of extracted events connected to a timeline. We plan to perform search-based
experiments over the extracted events from medical records, in order to provide
an extrinsic evaluation of the impact of dealing with such imprecise temporal
data on the overall IE process.
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Pustejovsky, J., Castano, J., Ingria, R., Sauŕı, R., Gaizauskas, R., Setzer, A. and Katz, G.
(2003), TimeML: Robust specification of event and temporal expressions in text, in ‘in
Fifth International Workshop on Computational Semantics (IWCS-5)’.

Pustejovsky, J., Hanks, P., Sauri, R., See, A., Gaizauskas, R., Setzer, A., Radev, D., Sundheim,
B., Day, D., Ferro, L. et al. (2003), The TimeBank corpus, in ‘Proceedings of the Corpus
Linguistics Conference’, Vol. 2003, p. 40.

Pustejovsky, J., Lee, K., Bunt, H. and Romary, L. (2010), ISO-TimeML: An international
standard for semantic annotation, in ‘Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10)’, ELRA.

Sauri, R., Littman, J., Gaizauskas, R., Setzer, A. and Pustejovsky, J. (2006), ‘TimeML Anno-
tation Guidelines, Version 1.2.1’.

Schockaert, S. (2005), Construction of membership functions for fuzzy time periods, in ‘Pro-
ceedings of the ESSLLI 2005 Student Session’.

Schockaert, S., Cock, M. D. and Kerre, E. E. (2008), ‘Fuzzifying Allen’s temporal interval
relations.’, IEEE T. Fuzzy Systems 16(2), 517–533.

Stewart, R., Soremekun, M., Perera, G., Broadbent, M., Callard, F., Denis, M., Hotopf, M.,
Thornicroft, G. and Lovestone, S. (2009), ‘The South London and Maudsley NHS Foun-
dation Trust Biomedical Research Centre (SLAM BRC) case register: development and
descriptive data’, BMC Psychiatry 9, 51.

Strötgen, J., Zell, J. and Gertz, M. (2013), Heideltime: Tuning english and developing spanish
resources for tempeval-3, in ‘2nd Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the 7h International Workshop on Semantic Evaluation
(SemEval 2013)’, ACL, Atlanta, Georgia, USA, pp. 15–19.

Styler, W., Bethard, S., Finan, S., Palmer, M., Pradhan, S., de Groen, P., Erickson, B., Miller,
T., Lin, C., Savova, G. and Pustejovsky, J. (2014), ‘Temporal annotation in the clinical
domain’, Transactions of the Association for Computational Linguistics 2, 143–154.

Sun, W., Rumshisky, A. and Uzuner, O. (2013), ‘Evaluating temporal relations in clinical text:
2012 i2b2 Challenge’, J Am Med Inform Assoc 20(5), 806–813.

Tissot, H., Gorrell, G., Roberts, A., Derczynski, L. and Fabro, M. D. D. (2015), UFPRSh-
effield: Contrasting rule-based and support vector machine approaches to time expression
identification in clinical tempeval, in ‘Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015)’, Association for Computational Linguistics, Denver,
Colorado, pp. 835–839.



Normalization of Imprecise Temporal Expressions Extracted from Text 33

UzZaman, N. and Allen, J. F. (2010), Trips and trios system for tempeval-2: Extracting tempo-
ral information from text, in ‘Proceedings of the 5th International Workshop on Semantic
Evaluation’, SemEval ’10, Association for Computational Linguistics, Stroudsburg, PA,
USA, pp. 276–283.

UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M. and Pustejovsky, J. (2013),
SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal
Relations, in ‘Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013)’, ACL, pp. 1–9.

Zadeh, L. A. (1994), ‘Fuzzy logic, neural networks, and soft computing’, Commun. ACM
37(3), 77–84.

Zhou, X., Li, H., Lu, X. and Duan, H. (2011), Temporal expression recognition and temporal
relationship extraction from chinese narrative medical records, in ‘International Conference
on Bioinformatics and Biomedical Engineering’, pp. 1–4.


