
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-019-02823-8

1 3

Puncalc: task‑based parallelism and speculative
reevaluation in spreadsheets

Alexander Asp Bock1 · Florian Biermann1

© The Author(s) 2019

Abstract
Spreadsheets are commonly declarative, first-order functional programs and are
used as organizational tools, for end-user development and for educational pur-
poses. Spreadsheet end users are usually domain experts who use spreadsheets as
their main computational model, but are seldom trained IT professionals who can
leverage today’s abundant multicore processors for spreadsheet computation. In this
paper, we present an algorithm for automatic, parallel evaluation of spreadsheets
targeting shared-memory multicore architectures, which lets end users transparently
make use of their multicore processors. We evaluate our algorithm on a set of syn-
thetic and real-world spreadsheets and obtain up to 16 times speedup on 48 cores.

Keywords Spreadsheets · Parallelism · Tasks · Speculative · Declarative
programming · End-user programming

1 Introduction

Spreadsheets are abundant in many application areas, such as science and finance,
where they are used as organizational tools [1], for end-user development [7, 8] and
for educational purposes [2, 12].

Spreadsheet end users are usually domain experts and use spreadsheets as their main
computational model, but are seldom trained IT professionals. They create and maintain

Alexander Asp Bock and Florian Biermann have contributed equally to this article.

Alexander Asp Bock: Supported by the Independent Research Fund Denmark (Grant No. DFF-
FTP-4005-00141). Florian Biermann: Supported by the Sino-Danish Center for Education and
Research (SDC).

 * Alexander Asp Bock
 albo@itu.dk

 Florian Biermann
 fbie@itu.dk

1 IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/222785725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-3792-0807
http://orcid.org/0000-0002-5814-3202
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02823-8&domain=pdf

 A. A. Bock, F. Biermann

1 3

large, complex spreadsheets over several years [14], and their complexity often leads to
errors [11] and poor performance. For instance, Swidan et al [23] report on a case study
of refactoring a spreadsheet that would originally take 10 h to recompute.

In recent years, multicore processors have become ubiquitous in commodity hard-
ware. For end users to leverage the performance of multicore systems, it has until now
been necessary to hire experts to reengineer spreadsheets [23].

How can end users hope to directly leverage the parallel programming power at their
disposal to accelerate the computation of slow spreadsheets without requiring help
from such expensive experts?

Spreadsheets are declarative, first-order purely functional programs [9]. Declarative
languages enable end users to focus on specifying what needs to be computed without
having to worry about how it gets computed. Being purely functional, all values are
immutable which guarantees data-race freedom and allows for implicit parallelization
of computations without putting the burden of traditional, shared mutable multicore
programming on the end user. These aspects make spreadsheets a prime candidate for
automatic parallelization.

In this paper, we present an algorithm for automatic, parallel evaluation of spread-
sheets targeting shared-memory multicore architectures. We have implemented our
algorithm in the experimental spreadsheet engine Funcalc [21] which introduces effi-
cient, sheet-defined, higher-order functions to the spreadsheet paradigm. The combina-
tion of these sheet-defined functions (SDFs) and our parallel recalculation algorithm
can contribute to change the general perception of spreadsheets as not being “real” pro-
gramming languages [9, 10, 20, 27] and enable end-user programmers to use spread-
sheets for heavyweight computations with a more reusable, modular, safer and scalable
programming platform. Our key contributions are:

• A parallel, task-based, topology-agnostic algorithm for minimal recalculation of
spreadsheets, implemented in Funcalc.

• An accompanying extension of the algorithm for dynamic parallel cycle detection
called speculative reevaluation.

• A thread-local evaluation optimization that exploits a specific spreadsheet topology
on the fly.

• Evaluation of a set of benchmarks for different types and sizes of spreadsheets with
different characteristics and topologies.

To our knowledge, no such algorithm for parallel evaluation of spreadsheets with
dynamic cycle detection has previously been proposed. Our benchmarks show that we
achieve between 1.4 and 6.5 times speedup on 16 cores and nearly a 16-fold speedup
on 48 cores.

1 3

Puncalc: task-based parallelism and speculative reevaluation…

2 Background: spreadsheet concepts

In this section, we will introduce some of the basic concepts at the core of the
spreadsheet paradigm that are necessary for understanding our algorithm. Read-
ers already familiar with the subject can skip this section, while those interested
in learning more are encouraged to read [21, Chapter 1].

2.1 Formulas and cell references

A cell in a spreadsheet contains either a constant, such as a number, a string or
an error (e.g. #NA or #DIV/0!), or a formula expression, indicated by a leading
equals character, e.g. =1+2. Each cell is denoted by its column and row, where
columns start at A and rows at 1.

A formula can refer to other cells by naming their column and row address;
this establishes dependencies between cells. For example, B3 refers to the cell in
the second column and third row. The formula =A1+B1 refers to two cells, and
its value depends on the contents of those cells. Formulas may also refer to a rec-
tangular cell area using the : operator by referring to two of its opposing corners,
or call functions. For example, computing the sum of all values in the first ten
rows of column A may be expressed as =SUM(A1:A10).

2.2 The support and dependency graphs

While the dependency graph of a spreadsheet captures cell dependencies, its
inverse, the support graph, captures cell support. The support graph is analogous
to a dataflow graph [15], where nodes are cells and data flows along the edges
from precedent cells to dependent cells. In Fig. 1, cell B3 contains the formula
=A1+B1, which means that B3 depends on A1 and B1, and A1 and B1 support
B3.

The dependency and support graphs may be cyclic. In Fig. 2, cells A1 and B1
conditionally refer to one another; this is a static cycle. It may or may not cause a
dynamic cycle during recalculation (see Sect. 2.3) depending on whether RAND()
evaluates to a value less than 0.5 or not. Cyclic references are usually disallowed,

A B
1 42 =A1*23
2
3 =-A1 =A1+B1

A1 B1

A3 B3

s

s

ss

Fig. 1 A spreadsheet containing formulas (left) and its corresponding support graph (right). We label
supporting edges with s. Editing A1 will recalculate cells A1, B1, A3 and B3; changing B1 will recalcu-
late B1 and B3; and editing A3 will only recalculate A3

 A. A. Bock, F. Biermann

1 3

because recalculation cannot proceed meaningfully. When a cyclic reference is
found, the user is commonly alerted through the GUI and recalculation aborts.

Some functions like ROW and INDIRECT, which are found in both Excel
and LibreOffice Calc, can dynamically refer to other cells by interpreting argu-
ment strings as cell references. They may cause dynamic cycles even when their
dependencies are not statically given. For example, to evaluate the formula
=INDIRECT(“B”&A1), the string ”B” and the contents of cell A1 are concat-
enated with the string concatenation operator &. The resulting string is interpreted
as a cell reference which will refer to some cell in column B, but exactly which cell
will depend on the contents of cell A1. In Sect. 4.7, we show how these dynamic
indexing functions are handled by our parallel algorithm.

2.3 Recalculation

There are two types of recalculation. Full recalculation unconditionally reevaluates
all formula cells. Minimal recalculation only reevaluates the transitive closure of
cells reachable, via the support graph, from cells modified by the user and all vola-
tile cells. We call the cells that start a minimal recalculation the recalculation roots.
In Fig. 1, if a user changes the formula in B1 from =A1*23 to =A1+A3, then B1 is
a recalculation root and both B1 and B3 must be updated to reflect the change.

As noted above, some cells are marked as volatile because they contain calls to
volatile functions such as the NOW and RAND functions in Fig. 2, and are automati-
cally reevaluated regardless of whether the user modified the cell or not. The func-
tion NOW returns the current time and would otherwise contain a stale value if it was
not recomputed. Similarly, if a cell calling RAND was not recomputed on each recal-
culation, it would only produce a single random number and the call to IF in cell B1
would be stuck taking one branch until the cell was evaluated again.

2.4 Consistency requirements

The purpose of recalculation is to bring the spreadsheet to a consistent state [21,
sec. 1.8.3]. Let � be a mapping from cells to formula expressions and � a mapping
from cells to their values. The former models the underlying computations and
dependencies between cells in a spreadsheet, whereas the latter models the result of
a specific recalculation. Non-formula cells (i.e. constants) are not in the domain of
� . An evaluation has the form 𝜎 ⊢ e ⇓ v and says that expression e may evaluate to a
value v, given the mapping � . We can define the following consistency requirement:

(1)dom(�) = dom(�)

A B
1 =B1+1 =IF(RAND()<0.5, A1, B2)
2 =NOW()

A1 B1 B2
d

d
d

Fig. 2 A static cyclic reference in a spreadsheet (left) and its corresponding cyclic dependency graph
(right). We label dependency edges with d

1 3

Puncalc: task-based parallelism and speculative reevaluation…

Requirement (1) states that the domains of � and � must be the same. This implies
that a recalculation does not evaluate constants as they involve no work. Require-
ment (2) states that for every cell c in the domain of � , and thus also in the domain
of � by way of (1), the evaluation of its formula �(c) must agree with the value of
�(c) . The consistency requirements do not specify how recalculation must otherwise
proceed, sequentially, in parallel, or in which order cells must be evaluated.

A cyclic dependency can be resolved by assigning the cell c that contains the
cyclic reference a #CYCLE! error which is then propagated across cells such that
the spreadsheet eventually assumes a consistent state.

3 Funcalc: sequential implementation

Funcalc is an experimental spreadsheet engine [21] implemented in C# that adds
sheet-defined, higher-order functions to the spreadsheet paradigm. In this sec-
tion, we solely focus on Funcalc’s existing sequential implementation of minimal
recalculation.

In Funcalc, cells are assigned a state, which is either dirty, enqueued, computing
or uptodate. During a single recalculation, state changes only monotonically—e.g.
a cell cannot go back from uptodate to computing, according to the state transitions
in Fig. 3. During recalculation, the cell state indicates whether a cell should be eval-
uated anew or not. Moreover, cells cache their values. A cell that is uptodate has
cached its most recent value.

Minimal recalculation is a breadth-first traversal of the support graph. Funcalc
uses a global work queue to maintain all cells that have been encountered during
traversal and that have not yet been computed. The minimal recalculation algorithm
MiniMalRecalc (Algorithm 1) (1) marks the transitive closure of the recalculation
roots dirty by calling MaRkDiRty; (2) adds the recalculation roots to the global work
queue; and (3) dequeues cells from the head of the queue and evaluates them by
calling eval until the queue is empty. Table 1 lists a subset of the functions used in
pseudo-code.

During its evaluation, a cell’s state is computing. After evaluation, the algorithm
enqueues all the cell’s directly supported cells, updates the cell’s cache and sets its
state to uptodate. It enqueues supported cells via enqueueSuppoRteD if their state is
dirty and changes their state to enqueued.

(2)∀c ∈ dom(𝜙) ⋅ 𝜎 ⊢ 𝜙(c) ⇓ 𝜎(c)

dirty

computing

enqueued

uptodate

Fig. 3 The possible state transitions of a cell. The dashed connection denotes marking cells dirty in the
transitive closure of a recalculation root at the beginning of a particular recalculation

 A. A. Bock, F. Biermann

1 3

Algorithm 1 Funcalc’s algorithm for sequential minimal recalculation
1: function MarkDirty(cell)
2: if State(cell) �= dirty then
3: State(cell) ← dirty
4: for all u in Supported(cell) do
5: MarkDirty(u)

6: function Eval(cell)
7: switch State(cell)
8: case computing :
9: NotifyCycle!()
10: case enqueued or dirty :
11: State(cell) ← computing
12: Cache(cell) ← EvalExpr(cell)
13: State(cell) ← uptodate
14: EnqueueSupported(cell)
15: return Cache(cell)

16: function EnqueueSupported(cell)
17: for all u in Supported(cell) do
18: if State(u) = dirty then
19: State(u) ← enqueued
20: Enqueue(Q, u)

21: function MinimalRecalc(roots)
22: for all r in roots do
23: MarkDirty(r)
24: Enqueue(Q, r)
25: State(r) ← enqueued
26: while ¬(Empty?(Q) ∨ Cycle?) do
27: cell ← Dequeue(Q)
28: Eval(cell)

If a cell is being evaluated and one of its dependencies d is not yet uptodate,
evalexpR will recursively evaluate the dependency by calling eval(d). If the
dependency’s state is computing, recalculation has detected a cyclic reference (line 9
in Algorithm 1, function eval).

4 Puncalc: parallel implementation

Puncalc, short for parallel Funcalc, is a parallel variant of Funcalc based on the .
NET Task Parallel Library (TPL) [16]. We use TPL tasks and its work-stealing
queue implementation which we do not describe in further detail. In the follow-
ing sections, we introduce thread-safety requirements on cell state; our approach to
parallel, minimal recalculation and cycle detection; and how it complies with the
consistency requirement from Sect. 2.4. We then extend the algorithm with a thread-
local optimization technique that exploits a specific spreadsheet topology on the fly.

Table 1 Overview of the functions used in pseudo-code

Name Signature Description

cache cell → value Get the most recent, cached value of a cell
cycle? () → bool True if a cycle is present, false otherwise
evalexpR cell → value Evaluate the cell’s formula to a value
notifycycle! () → () After the call, calling cycle? returns true
State cell → state Get or set a cell’s state
SuppoRteD cell → [cell] Get a list of the cell’s supported cells

1 3

Puncalc: task-based parallelism and speculative reevaluation…

4.1 Thread safety

Funcalc is conceptually a strict, purely functional language. However, the imple-
mentation uses mutable state to make the language efficient, which we must make
thread safe: the global recalculation queue must be thread safe; cells cache the result
of their evaluation, and all threads should agree on the cached result due to the con-
sistency requirement from Sect. 2.4; cells also have a state that should be consistent
among all threads; and each cell should only be evaluated once. We relax the latter
requirement in Sect. 4.3 in order to detect cycles in parallel.

We handle the cells’ underlying mutable state using the following scheme. If mul-
tiple threads try to evaluate the same cell, one thread takes ownership of the cell and
sets the cell’s state to computing. We call this thread the cell’s owner. The thread
will then evaluate the cell’s formula, write the result to the cell’s value cache and
finally set the cell’s state to uptodate. The remaining threads block until the cell’s
state is set to uptodate and then read the value from the cell’s value cache.

We can use intrinsic locks on cells to implement this scheme but as it turns out,
locking on cells comes at the cost of performance and correctness. Threads that wait
for locks are de-scheduled, but often times, the cell’s value will be available soon,
since the average computation time per cell is usually rather low (see Sect. 5). This
makes de- and rescheduling a waste of time. In terms of correctness, it is legal to
create cyclic references in spreadsheets (see Sect. 2.2), but such cyclic references
can lead to deadlocks. Suppose thread t

1
 locks on cell c. When another thread t

2

examines c, it sees that c is locked by thread t
1
 and blocks. If threads t

1
 and t

2
 both

evaluate cells that are part of a cycle, they will deadlock as no thread is able to make
progress.

Instead of using locking, we implement our scheme using compare and swap
(caS) [13, sec. 5.8] on a cell’s state and value cache. This allows us, among other
things, to detect cyclic dependencies dynamically as described in Sect. 4.3. We
write f

TS
 to denote that function f is now thread safe. Furthermore, we switch to a

thread-safe, scalable and concurrent queue CQ (we use .NET’s thread-safe, concur-
rent queue). Note that all reads from and writes to State

TS
 are lock-free; reads from

cache
TS

 are lock-free if the cell is uptodate.
The overall idea is to let threads compete for setting a cell’s state to computing

using caS, as detailed in Algorithm 2. The thread that wins the race proceeds as
described above, while the other threads enter a busy-wait loop. Table 2 shows defi-
nitions for functions that we use in addition to those presented earlier in Table 1.

 A. A. Bock, F. Biermann

1 3

Algorithm 2 Thread-safe evaluation function
1: function EvalPar(cell)
2: s ← Statets(cell)
3: switch s
4: case computing :
5: while Statets(cell) �= uptodate do nothing
6: case dirty or enqueued :
7: if Cas(statets(cell), s, computing) then
8: Cachets(cell) ← EvalExpr(cell)
9: Statets(cell) ← uptodate
10: EnqueueSupportedts(cell)
11: return Cachets(cell)

 Only the thread whose caS succeeded is allowed to enqueue (line 10, Algo-
rithm 2). The cells in the support set may however also be part of some other cell’s
support set, so there still is a possibility for races. Note that enqueueSuppoRteD

TS

makes sure that each cell gets enqueued at most once (see Algorithm 1).

4.2 Parallel minimal recalculation

We must address two main problems when implementing a parallel recalculation
algorithm: first, choosing adequate termination criteria for recalculation, and sec-
ond, detecting cycles correctly, which we discuss in Sect. 4.3.

Algorithm 3 shows the main loop of parallel recalculation that handles ter-
mination. The emptiness of the global work queue alone is no longer a sufficient
termination criterion. The queue may be empty, while there are still cells being
evaluated by other threads, which may in turn enqueue more cells. Therefore, we
use a concurrent and scalable atomic counter class, inspired by the Java 8 Lon-
gAdder implementation [19] to keep track of the number of cells currently being
evaluated.

Table 2 Overview of the functions particular to parallel recalculation

Name Signature Description

caS r × c × v → bool Atomically set r to v if its value is c
Dec counter → () Atomically decrease the counter by one
encoDeowneR id × state → int Encode an identifier into a cell state’s upper bits
Get counter → int Atomically get the counter’s current value
iD thread → id Get the identifier for a thread
inc counter → () Atomically increase the counter by one
owneRBitS int → id Read only ownership bits from encoded state
Spawn fun → () Spawn a task to execute a function in parallel
StateBitS int → state Read only state bits from encoded state

1 3

Puncalc: task-based parallelism and speculative reevaluation…

Algorithm 3 Main algorithm for parallel minimal recalculation
1: function MinimalRecalcPar(roots)
2: counter ← AtomicCounter(0)
3: for all r in roots do
4: MarkDirtyts(r)
5: Enqueuets(CQ, r)
6: Statets(r) ← enqueued
7: while (Get(counter) > 0 ∨ ¬Empty?(CQ)) ∧ ¬Cycle?() do
8: cell ← Dequeuets(CQ)
9: if cell �= null then
10: Inc(counter)
11: Spawn(fun() ⇒ {
12: EvalPar(cell)
13: Dec(counter)
14: })

Parallel minimal recalculation begins similarly to its sequential counterpart by
marking all cells in the transitive closure of the recalculation roots dirty, enqueuing
the roots and changing their state to enqueued.

If the main thread successfully dequeues a cell from the queue, it increments
counter (line 10, Algorithm 3) and spawns a new task to compute it. The task is sent
to a thread pool where it evaluates the cell and subsequently decrements counter. In
Sect. 4.1, we made sure that only one task gets to set the computed value of the cell.

The termination condition of the while loop in line 7, Algorithm 3 states that it
should keep running as long as (1) there is at least one cell being evaluated or (2) the
queue is not empty, and (3) no cycles have been detected.

It is crucial that the checks for termination (1) and (2) are ordered as they are.
Imagine we were to swap (1) and (2) as in the timeline in Fig. 4, and initially, the
queue was empty and GET(counter) = 1 . The main thread t

main
 would evaluate the

while loop condition and see that CQ would be empty. Before t
main

 would continue,
t
1
 would finish evaluating a cell and enqueue a non-empty set of supported cells such

that CQ would be non-empty. Thread t
1
 would then decrement the counter so that

GET(counter) = 0 . Now t
main

 would incorrectly believe that there were no cells cur-
rently being evaluated and would exit the loop prematurely. This subtle race does
not occur when we order the checks as in Algorithm 3.

tmain

t1

CQ is empty

Enqueue
supported cells

Decrement
counter

Get(counter) = 0

Fig. 4 A timeline (from left to right), showing the interleaving of actions that could cause premature ter-
mination of the algorithm if the termination condition was to be reversed. Thread t

main
 is the main thread,

and thread t
1
 is a worker thread

 A. A. Bock, F. Biermann

1 3

4.3 Cyclic dependency detection

To detect a cyclic dependency during sequential recalculation, it is sufficient to
inspect a cell’s state before evaluating it and to check whether its state is comput-
ing. Detecting cycles in parallel is less straightforward. If any thread sees a cell
that is computing, it has not necessarily found a cyclic dependency as another
thread may currently be computing the cell. In this section, we discuss the chal-
lenges of parallel cycle detection and then discuss our solution.

We could circumvent the problem by sequentially checking for cycles before
initiating a parallel recalculation, but this would defeat the purpose of recalculat-
ing in parallel in the first place. A sequential static cycle check would be too con-
servative and lead to false positives (see Fig. 2).

As mentioned in Sect. 4.1, simply locking on a cell, either while evaluating it
or while waiting for another thread to evaluate it, is not a feasible solution either.
Alternatively, a thread that discovers a computing cell could immediately report a
cyclic dependency, but that would be overly pessimistic.

What we need is a tie-breaker that allows at least one thread to proceed so
that it can discover the cycle. During parallel recalculation, a cyclic dependency
occurs only if a thread ti encounters a cell that is computing and whose owner is
ti itself. If a cell is computing but owned by another thread, ti waits until the cell
becomes uptodate and then reads the cell’s cached value.

How do we decide which thread is allowed to proceed? We use thread IDs,
which impose an arbitrary, numerical order on threads, to determine thread prec-
edence. A thread ti has precedence over tj if iD(ti) < iD(tj). If ti and tj wait for a
cell that the respective other thread owns due to a cyclic reference, then, at some
point, ti may proceed and discover the cycle.

4.4 Encoding ownership in cell state

We want to manipulate state and ownership of a cell using a single atomic opera-
tion to avoid adding logic for handling partial states. Internally, cell state is rep-
resented by some bits of an integer. There are four cell states, so it suffices to use
two bits to encode these.

We can encode the ID of the current thread in the remaining, unused bits
along with the computing cell state to claim ownership of the cell, allowing us
to manipulate both using a single caS operation. Function owneRBitS(s) only
returns the ownership bits of s, and StateBitS(s) returns the state bits. For all
other cell states, the ownership bits are all zero.

1 3

Puncalc: task-based parallelism and speculative reevaluation…

4.5 Parallel recalculation with speculative reevaluation

This section details the implementation of a dynamic resolution of cyclic depend-
encies that we call speculative reevaluation. We only want to report cycles that
actually exist and occur dynamically during recalculation.

Algorithm 4 shows the pseudo-code for the evalpaRSpec function that we now
invoke instead of evalpaR in line 12, Algorithm 3. Functions evalpaRSpec and
tRyevalexpR directly encode the scheme described in Sect. 4.3. If the cell’s state
is computing, we check whether the current thread t

cur
 is the owner of the cell.

If yes, t
cur

 has detected a cyclic dependency and we must abort recalculation. To
allow any waiting threads to finish up, t

cur
 sets the cell’s state to uptodate and

notifies the main thread to stop spawning new tasks via notifycycle!
TS

 which
then exits the main loop. Other threads will simply terminate when they are done
evaluating their current cell.

Algorithm 4 Parallel speculative recalculation with dynamic cycle detection
1: function TryEvalExpr(cell, vold, s)
2: s′ ← EncodeOwner(Id(tcur), computing)
3: if Cas(Statets(cell), s, s′) then
4: v ← EvalExpr(cell)
5: if Cas(Cache(cell), vold, v) then
6: Statets(cell) ← uptodate
7: EnqueueSupportedts(cell)

8: function EvalParSpec(cell)
9: s ← Statets(cell)
10: vold ← Cachets(cell)
11: switch s
12: case computing :
13: if Id(tcur) = OwnerBits(s) then
14: Statets(cell) ← uptodate
15: NotifyCycle!ts()
16: else if Id(tcur) < OwnerBits(s) then
17: while Id(tcur) < OwnerBits(s) ∧ StateBits(s) = computing do
18: TryEvalExpr(cell, vold, s)
19: s ← Statets(cell)
20: else
21: while Statets(cell) �= uptodate do nothing
22: case dirty or enqueued :
23: TryEvalExpr(cell, vold, s)
24: return Cachets(cell)

 If t
cur

 is not the owner, it checks whether it has precedence over the current owner
and, if so, attempts to evaluate the cell by calling tRyevalexpR. If t

cur
 is neither the

owner of the cell nor has precedence over the current owner, it spins until it can
retrieve the cell’s cached value. If the cell is either dirty or enqueued, the thread
attempts to evaluate it directly, also using tRyevalexpR. If the cell is uptodate, the
function just returns the cell’s cached result.

Whenever a thread attempts speculative reevaluation, it claims ownership
of the cell. This reduces the number of redundant speculative evaluations and

 A. A. Bock, F. Biermann

1 3

is important for cycle detection. If a thread ti has precedence over thread tj and
claims ownership of cell c, and another thread tk has precedence over tj but not ti ,
such that iD(ti) < iD(tk) < iD(tj), tk is not allowed to speculatively evaluate c. If tk
happens to claim ownership of c before ti , then ti has to try and reclaim ownership
from tk again to detect cycles correctly.

To see the need for this, imagine cell c had a cyclic dependency on cell x owned
by ti , but tk successfully took ownership of c, while ti failed to take ownership and
would spin. As soon as tk arrived at cell x, it would detect that it does not have prec-
edence over ti and recalculation would become stuck. If thread t with iD(t) = n does
not return from evaluating a cell due to a cyclic reference, then at worst only n − 1
threads with lower IDs can evaluate the same cell speculatively before one of them
detects the cycle, so every cycle will eventually be discovered.

4.5.1 Ensuring consistency

It is possible that two or more threads attempt to evaluate the same cell, as illustrated
in Fig. 5. In Sect. 4.1, we discussed that all threads should agree on the cached value
of each cell, so we must ensure that only one of the evaluating threads gets to set the
cached value; the other threads must discard the result of their own evaluation and
continue using the now updated cached value. Function tRyevalexpR ensures that
only one thread gets to update the cell’s cache by using caS.

Our algorithm for parallel minimal recalculation retains the consistency require-
ment stated in Sect. 2.4 up to cyclic dependencies, similar to sequential Funcalc.
Using caS in line 5 in Algorithm 4 makes sure that all threads will agree on the
value of each cell in � (see Sect. 2.4). If the spreadsheet contains a cyclic depend-
ency, we cannot guarantee consistency. In this case, we let all threads continue using
possibly stale values and notify the main thread that a cyclic reference has been
found. While this approach may seem simplistic, it elegantly terminates the recalcu-
lation process.

4.5.2 Delayed speculative evaluation

In practice, we do not want to allow a thread with precedence to immediately specu-
latively evaluate a cell as in line 18, Algorithm 4. Instead, the thread first spins for a
short amount of time while continuously checking the cell state. If the cell becomes
uptodate during spinning, the spinning thread does not attempt to evaluate the cell

A B
1 =B1 =NOW()
2 =B1

B1

A1

A2

d

d

Fig. 5 Two cells depend on the same cell containing a call to NOW() If both cell A1 and A2 are evalu-
ated in parallel and both recursively attempt to evaluate B1, their respective threads must agree upon
which value B1 has evaluated to

1 3

Puncalc: task-based parallelism and speculative reevaluation…

speculatively; otherwise, it proceeds with the evaluation of the cell. This heuristic
makes sure that we do not needlessly start evaluating when the result will be avail-
able early.

4.6 Thread‑local evaluation

If a cell only has a single outgoing support edge, i.e. only a single cell in the spread-
sheet refers to it, Algorithm 3 will still spawn a new task for the single supported
cell, even though there is no parallelism that we can exploit. Instead the current
thread could evaluate the cell locally, circumventing the global queue and avoid
spawning a new task.

We can implement an optimization for such sequential chains by detecting when
a cell supports only a single cell. If so, evaluate the supported cell locally on the cur-
rent thread which continues to evaluate cells locally, until it reaches a cell that sup-
ports either zero or more than one cell, or is already uptodate.

We must use tRyevalexpR for thread-local evaluation as well, since the cells in
the sequential chain may still have multiple dependencies, and another thread may
still attempt to evaluate the same cell simultaneously.

4.7 Dynamic indexing functions

As mentioned in Sect. 2.2, some functions can dynamically refer to other cells by
interpreting strings as cell references. In this section, we show how Puncalc is able
to handle INDIRECT and similar dynamic indexing functions.

When a thread evaluates a cell containing a call to INDIRECT, it evaluates the
formula’s expression and its dependencies as usual. How should one model the sup-
port edges of such a cell? Since INDIRECT can refer to any cell in the spreadsheet,
we cannot statically create support edges for an INDIRECT cell, which means that
such cells may never get enqueued in the evaluation queue. This may result in an
inconsistent spreadsheet after recalculation. Alternatively, we could modify the
dependency graph during evaluation but this complicates the algorithm and puts fur-
ther thread-safety requirements on Puncalc. To avoid any inconsistencies or further
static analysis, we choose to make INDIRECT volatile [21, Section 5.5] so that it is

A B C
1 =1+2 =SIN(B2)
2 =A1+B1 =INDIRECT("A"&C2) 2

A1

ti

A2

ti

B2

tj

B1

ti

C2

d d d

d d

Fig. 6 Example of how a cycle introduced by the use of INDIRECT is handled by the parallel algorithm.
We have purposefully used a dashed line for the dependency of cell B2 on cell A2 because the depend-
ency is not explicitly given in the formula’s expression. Cell thread ownership is shown at each cell

 A. A. Bock, F. Biermann

1 3

reevaluated on each recalculation. While perhaps not fully optimal, this is a simple
and elegant solution and since threads evaluate their dependencies as usual, the par-
allel algorithm will also work in the presence of such functions. To convince readers
of this, we provide a small example in Fig. 6 where cell B2 is implicitly volatile.

Suppose that thread ti initially claims ownership of A1. After it is done evaluating
the cell, it evaluates cells A2 and B1. Thread ti does not follow a support edge to B2
since there is currently no such edge. Since cell B2 calls INDIRECT, it is volatile
and thread tj claims ownership of it. Thread tj evaluates cell B2’s dependency on
C2, evaluates the call to INDIRECT and subsequently attempts to evaluate cell A2
which is owned by thread ti . The situation at this point in time is depicted in Fig. 6.

One of two things can happen now, depending on the thread IDs of ti and tj . If
iD(ti) < iD(tj), ti will have precedence over tj and claim cell B2. It will evaluate the
cell, evaluate its dependency on A2 and discover it is already the owner of A2. On
the other hand, if iD(ti) > iD(tj), tj will have precedence over ti and claim cell A2.
It will evaluate its dependencies through B1 to B2 and discover itself. Thus, the
implicit cycle introduced by INDIRECT is detected in both cases.

5 Results and validation

5.1 Benchmark spreadsheets

We use the following spreadsheet suites to benchmark Puncalc:

Table 3 Spreadsheet statistics and benchmark results

Columns labelled ×n show relative speedup for n cores. Columns labelled ×n * show speedup for n cores
with thread-local evaluation enabled, as described in Sect. 4.6

Sheet Cells Roots Support Span Seq.(s) × 16 × 16* × 48 × 48*

Building-design 108,332 18,378 488,351,887 4 32.12 5.57 5.61 12.90 12.64
Energy-markets 534,507 35,198 287,818,610 3 168.16 2.17 2.17 1.53 1.54
Grossprofit 135,073 15,301 112,612,549 3 102.19 4.41 4.40 2.54 2.55
Ground-water 126,404 31,601 1,099,366,302 1 81.26 5.47 5.56 15.59 15.94
Stock-history 226,503 23,402 317,049 3 64.90 6.51 6.48 12.53 12.22
Stocks-price 812,693 10,876 233,376,389 3 102.74 2.57 2.58 0.84 0.62
Binary-join 262,146 1 393,215 18 138.63 4.12 2.75 2.34 1.19
Binary-tree 266,145 1 262,143 17 141.14 4.20 4.30 2.31 2.32
Fork 300,001 1 300,301 1001 160.14 4.45 4.04 2.42 2.34
Fork-join 300,002 1 300,600 1001 158.92 4.28 3.34 2.39 1.95
Map 300,001 1 300,001 1 160.82 3.77 3.74 2.24 2.24
Prefix 300,000 1 745,009 1100 161.32 1.37 1.02 0.56 0.35

1 3

Puncalc: task-based parallelism and speculative reevaluation…

Real-World Spreadsheets LibreOffice Calc [24] provides a set of large bench-
mark spreadsheets.1 Benchmarking on large supposedly “real-world” spreadsheets
is meant to give us insight into how well Puncalc copes with realistically structured
spreadsheets. To be able to run the spreadsheets in Puncalc, we have removed all
convenience macros and implemented unsupported functions as SDFs. Furthermore,
we detect all formula cells that have no formula dependencies and use them as recal-
culation roots (the “Roots” column in Table 3) to simulate minimal recalculation. As
a result, they are initially enqueued in the global work queue, and the main thread
can then dequeue cells from the queue with little interference from enqueueing
threads. However, this may have a positive effect on performance and is unrealistic
since users usually only edit one cell at a time.

Artificial spreadsheets To explore Puncalc’s behaviour in a controlled and sys-
tematic fashion, we use six programmatically generated spreadsheet topologies, as
shown in Fig. 7. Each cell calls a recursive SDF implementation of the Fibonacci
function FIB without tail-call optimization which allows us to control the amount of
work per cell. We pass a parameter to FIB that corresponds to roughly 0.7 ms evalu-
ation time per call, which is the maximum, average work per cell from all LibreOf-
fice spreadsheets.

5.2 Experimental setup

Our test machine is an Intel Xeon E5-2680 v3 with 48 logical 2.5 GHz cores and
32 GB of memory, running 64-bit Windows 10, version 1607, and .NET 4.7.1. We

(a) Binary fork (b) Binary join (c) Fork

(d) Fork-join (e) Map (f) Prefix

Fig. 7 Illustrations of the underlying support graph structures of the synthetic spreadsheets for bench-
marking. Black nodes mark recalculation roots. We only use one recalculation root per sheet to simulate
editing a single cell

1 Available at https ://gerri t.libre offic e.org/gitwe b?p=bench mark.git.

https://gerrit.libreoffice.org/gitweb?p=benchmark.git

 A. A. Bock, F. Biermann

1 3

initially performed three warm-up runs and ran each benchmark for five iterations.2
For each iteration, we ran the benchmark ten times and computed the average execu-
tion time. We report the average of those five averages and their standard deviation
in Table 3. Sequential (1-core) running times are measured without volatile reads
and writes, or any other thread-safe primitives or data structures to ensure a fair
comparison.

We limit the number of TPL threads to match the number of available, logical
cores for each run. Additionally, we disable TPL’s heuristics for thread creation and
destruction so that all threads are created at start-up. We have chosen a spin time of
1ms as this reflects the maximum, average evaluation time for formulas in the Libre-
Office benchmark suite.

5.3 Validation

We have validated that our algorithm for parallel minimal recalculation in Pun-
calc produces the same result as sequential minimal recalculation in Funcalc for all
sheets from the real-world benchmark suite. Hence, we believe that parallel recalcu-
lation respects the consistency requirements (Sect. 2.4).

5.4 Performance evaluation

There are three main observations to be made from the performance benchmarks:

Observation 1 Figure 8 shows that our approach scales for the majority of tested
spreadsheets up to 16 cores, where we gain most speedup on
average.

2 4 8 16 32 48
0

5

10

15

Processor Count

Sp
ee
du

p

building-design energy-markets grossprofits
ground-water stock-history stocks-price

Fig. 8 Average benchmark results over 50 runs per spreadsheet from the LibreOffice Calc spreadsheet
suite with thread-local evaluation enabled. Values are speedup factors over sequential performance on the
same machine; higher is better. The grey dashed line indicates 1-core performance. The standard devia-
tion is ≤ 0.21 for all benchmarks

2 Raw data available at https ://githu b.com/popul ar-paral lel-progr ammin g/punca lc-bench marks /tree/xeon.

https://github.com/popular-parallel-programming/puncalc-benchmarks/tree/xeon

1 3

Puncalc: task-based parallelism and speculative reevaluation…

The relative speedup decreases for all spreadsheets for more than 16 cores, except
for building-design, ground-water and stock-history from the LibreOffice bench-
marks. It is unclear what causes these three spreadsheets to continue to improve, but
there are likely multiple factors in play.

The performance decline after 16 cores may simply be caused by increased
contention and more speculative evaluations. Another explanation relates to
our Intel Xeon, which consists of two chips with twelve cores each. Up to 16
“logical” cores (i.e. including hyper-threading), communication does not hap-
pen across chips. Therefore, we do not have to pay an excessive synchronization
cost when threads wait for computing cells whose owners are scheduled off-chip.
The structure of the three aforementioned sheets might correct for such expensive
communication.

Observation 2 Thread-local evaluation does not improve performance compared
to eagerly spawning a task for each cell as shown in Fig. 9 and
often leads to worse performance than eagerly spawning tasks.

This may be due to two factors. First, thread-local evaluation is a depth-first
traversal, while eagerly spawning tasks are akin to breadth-first traversal. There-
fore, thread-local evaluation makes recursive evaluation of dependencies more
likely, which is slower than using the global work queue. For heavily sequen-
tial spreadsheets such as prefix (Fig. 7f), thread-local evaluation can alleviate the
overhead of parallelization, which may be favourable for a robust implementa-
tion. However, recursive evaluation can lead to stack overflow errors. Second, the
TPL [16] uses work-stealing: idle threads steal work in the form of tasks from
other threads. If we spawn less tasks and hence have more idle threads, they will
attempt to steal work more often. Frequent work-stealing is more costly if it hap-
pens across chips.

0

2

4
Sp

ee
du

p

binary-join binary-tree fork
fork-join map prefix

2 4 8 16 32 48
0

2

4

Processor Count

Sp
ee
du

p

Fig. 9 Average benchmark results over 50 runs per spreadsheet from the synthetic spreadsheet suite. Top:
without thread-local evaluation. Bottom: with thread-local evaluation. Values are speedup factors over
sequential performance on the same machine; higher is better. The grey dashed line indicates 1-core per-
formance. The standard deviation is ≤ 0.1 for all benchmarks

 A. A. Bock, F. Biermann

1 3

Observation 3 Neither the number of cells, roots, support edges or span (i.e. the
longest sequential path) of a spreadsheet are good indicators for
parallel performance.

There is no apparent correlation between these statistics and the performance
results in Table 3. This is much to our surprise, and a deeper structural analysis may
be required in order to discover the causes behind the observed results.

6 Related work

Little research deals with parallel recalculation of spreadsheets. The general focus
has instead been on detection and handling of errors [6].

There exist multiple distributed systems for spreadsheet computations, such as
ActiveSheets [4], Nimrod [3] and HPC Services for Excel [18]. All three systems
require reengineering of the spreadsheet, which may take a substantial amount of
time and require expert engineers [23]. In contrast, Puncalc runs on a shared-mem-
ory multiprocessor and automatically exploits the machine’s available processors
without needing to change the spreadsheet itself.

Wack [26] bridges the gap between distributed systems and automatic paralleliza-
tion. His dissertation describes an improved spreadsheet model that statically parti-
tions and schedules a set of predefined patterns and parallelizes them via message-
passing in a network of work stations. Apart from using a different machine model,
his work simply disallows cyclic dependencies [26, sec. 2.8.3], which corresponds
to static cycle detection.

Biermann et al. [5] parallelize spreadsheets by statically rewriting so-called cell
arrays to calls to higher-order functions on arrays, exploiting their inherent paral-
lelism. Their approach does not parallelize the evaluation of disjoint cell arrays and
requires certain predefined structures to be present.

Both works require static analysis of the spreadsheet prior to recalculation,
whereas Puncalc detects both parallelism and cyclic dependencies dynamically.

6.1 Commercial and open‑source applications

Excel is probably the most well-known commercial spreadsheet application. Being
closed source, little information is available about its recalculation engine although
it has an option that allows users to enable multi-threaded recalculation. Sestoft [21]
gives some additional information based on speculation and experimentation.

SpreadsheetGear [22] is a collection of commercial plug-ins for Excel, one of
which is a calculation engine that allows for multi-threaded recalculation through
.NET’s TPL. Further details are not available.

In collaboration with the LibreOffice open-source project, AMD has imple-
mented GPU parallelization for LibreOffice Calc by automatically compiling for-
mulas involving cell ranges, such as =SUM(A1:A100), into OpenCL kernels [25].

1 3

Puncalc: task-based parallelism and speculative reevaluation…

They report between 30 and 500 times speedups [17], but do not take additional
improvements to their internal data representation into account.

None of the applications above report results for systematic performance bench-
marks or give a detailed description of the underlying algorithms.

7 Conclusion

In this paper, we have presented Puncalc, a spreadsheet engine that targets shared-
memory multiprocessors and automatically extracts parallelism from spread-
sheet computations, obtaining overall satisfactory speedups without adding any
engineering overhead. To our knowledge, this is the first algorithm for parallel
spreadsheet recalculation with dynamic cycle detection that has been described in
the literature.

We have given a number of possible explanations for the performance results
in Sect. 5, but further investigation is needed. Furthermore, we are lacking a direct
comparison of the performance of Puncalc to that of other frameworks for spread-
sheet parallelization, such as those mentioned in Sect. 6.

We believe that our work, combined with the work on sheet-defined functions
[20, 21], is a first step towards a powerful framework for end-user development and
hope to pave the way for a paradigm shift where spreadsheets are viewed as a seri-
ous computational tool for a broad range of problems by both researchers and IT
professionals.

Acknowledgements Thanks to Peter Sestoft for useful technical discussions and to Claus Brabrand, Peter
Sestoft and Kenneth Ry Ulrik for useful comments on an earlier draft.

Compliance with ethical standards

Conflict of interest Author Alexander Asp Bock has been employed for three months as a research intern
at Microsoft Research Cambridge (MSRC) in 2017. The work conducted there is protected under a non-
disclosure agreement.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 1. Abraham R, Erwig M (2006) Type inference for spreadsheets. In: Proceedings of the 8th ACM SIG-
PLAN International Conference on Principles and Practice of Declarative Programming. ACM, pp
73–84. https ://doi.org/10.1145/11403 35.11403 46

 2. Abraham R, Erwig M (2007) UCheck: a spreadsheet type checker for end users. J Vis Lang Comput
18(1):71–95. https ://doi.org/10.1016/j.jvlc.2006.06.001

 3. Abramson D, Sosic R, Giddy J, Hall B (1995) Nimrod: a tool for performing parametrised
simulations using distributed workstations. In: Proceedings of the Fourth IEEE International

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1140335.1140346
https://doi.org/10.1016/j.jvlc.2006.06.001

 A. A. Bock, F. Biermann

1 3

Symposium on High Performance Distributed Computing, pp 112–121. https ://doi.org/10.1109/
HPDC.1995.51870 1

 4. Abramson D, Roe P, Kotler L, Mather D (2001) Activesheets: super-computing with spreadsheets.
In: 2001 High Performance Computing Symposium (HPC ‘01), Advanced Simulation Technologies
Conference, Citeseer, pp 22–26

 5. Biermann F, Dou W, Sestoft P (2018) Rewriting high-level spreadsheet structures into higher-order
functional programs. In: Calimeri F, Hamlen K, Leone N (eds) Practical aspects of declarative
languages, vol 10702. Lecture notes in computer science. Springer, Berlin, pp 20–35. https ://doi.
org/10.1007/978-3-319-73305 -0_2

 6. Bock AA (2016) A literature review of spreadsheet technology. Technical report 199, IT University
of Copenhagen. http://forsk nings datab asen.dk/en/catal og/23501 68960

 7. Burnett M (2009) What is end-user software engineering and why does it matter?. Springer, Berlin,
Heidelberg, pp 15–28. https ://doi.org/10.1007/978-3-642-00427 -8_2

 8. Burnett M, Cook C, Rothermel G (2004) End-user software engineering. Commun ACM 47(9):53–
58. https ://doi.org/10.1145/10158 64.10158 89

 9. Casimir RJ (1992) Real programmers don’t use spreadsheets. SIGPLAN Not 27(6):10–16. https ://
doi.org/10.1145/13098 1.13098 2

 10. Erwig M, Burnett M (2002) Adding apples and oranges. In: Practical Aspects of Declarative Lan-
guages. Springer, pp 173–191

 11. EuSpRiG. EuSpRiG horror stories. http://euspr ig.org/horro r-stori es.htm. Accessed 14 June 2016
 12. Harvey B, Wright M (1999) Simply scheme: introducing computer science. MIT Press, Cambridge
 13. Herlihy M, Shavit N (2008) The art of multiprocessor programming. Elsevier/Morgan Kaufmann.

http://www.world cat.org/isbn/97801 23705 914
 14. Hermans F, Pinzger M, van Deursen A (2011) Supporting professional spreadsheet users by gener-

ating leveled dataflow diagrams. In: Proceedings of the 33rd International Conference on Software
Engineering. ACM, ICSE ’11, pp 451–460. https ://doi.org/10.1145/19857 93.19858 55

 15. Johnston WM, Hanna JRP, Millar RJ (2004) Advances in dataflow programming languages. ACM
Comput Surv 36(1):1–34. https ://doi.org/10.1145/10132 08.10132 09

 16. Leijen D, Schulte W, Burckhardt S (2009) The design of a task parallel library. SIGPLAN Not
44(10):227–242. https ://doi.org/10.1145/16399 49.16401 06

 17. Meeks M (2014) LibreOffice calc: spreadsheets on the GPU, iWOCL. http://www.iwocl .org/iwocl
-2014/abstr acts/libre offic e-sprea dshee ts-on-the-gpu/. Accessed 13 Mar 2018

 18. Microsoft (2015) HPC services for excel. https ://techn et.micro soft.com/en-us/libra ry/ff877
820(v=ws.10).aspx. Accessed 30 June 2016

 19. Oracle (2014) Class LongAdder. https ://docs.oracl e.com/javas e/8/docs/api/java/util/concu rrent /
atomi c/LongA dder.html. Accessed 21 Feb 2017

 20. Peyton-Jones S, Blackwell A, Burnett M (2003) A user-centred approach to functions in excel. In:
Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming.
ACM, ICFP ’03, pp 165–176. https ://doi.org/10.1145/94470 5.94472 1

 21. Sestoft P (2014) Spreadsheet implementation technology. The MIT Press, Cambridge
 22. SpreadsheetGear LLC (2012) Easily take advantage of multi-core CPUs. https ://www.sprea dshee

tgear .com/suppo rt/help/sprea dshee tgear .net.7.0/Key_Conce pts_Easil y_Take_Advan tage_of_Multi
-Core_CPUs.html. Accessed 18 Jan 2018

 23. Swidan A, Hermans F, Koesoemowidjojo R (2016) Improving the performance of a large scale
spreadsheet: a case study. In: IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, pp 673–677. https ://doi.org/10.1109/saner .2016.100, http://
swerl .tudel ft.nl/twiki /pub/Main/Techn icalR eport s/TUD-SERG-2016-003.pdf

 24. The Document Foundation. LibreOffice Calc. https ://www.libre offic e.org/disco ver/calc/. Accessed
09 May 2016

 25. Trudeau J (2015) Collaboration and open source at AMD: LibreOffice. https ://devel oper.amd.com/
colla borat ion-and-open-sourc e-at-amd-libre offic e/. Accessed 2015 July 31

 26. Wack AP (1996) Partitioning dependency graphs for concurrent execution: a parallel spreadsheet on
a realistically modeled message passing environment. PhD thesis, University of Delaware, Newark.
http://porta l.acm.org/citat ion.cfm?id=26955 1

 27. Yoder AG, Cohn DL (1994) Real spreadsheets for real programmers. In: Proceedings of the 1994
International Conference on Computer Languages, 1994, pp 20–30. https ://doi.org/10.1109/
ICCL.1994.28839 6

https://doi.org/10.1109/HPDC.1995.518701
https://doi.org/10.1109/HPDC.1995.518701
https://doi.org/10.1007/978-3-319-73305-0_2
https://doi.org/10.1007/978-3-319-73305-0_2
http://forskningsdatabasen.dk/en/catalog/2350168960
https://doi.org/10.1007/978-3-642-00427-8_2
https://doi.org/10.1145/1015864.1015889
https://doi.org/10.1145/130981.130982
https://doi.org/10.1145/130981.130982
http://eusprig.org/horror-stories.htm
http://www.worldcat.org/isbn/9780123705914
https://doi.org/10.1145/1985793.1985855
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1145/1639949.1640106
http://www.iwocl.org/iwocl-2014/abstracts/libreoffice-spreadsheets-on-the-gpu/
http://www.iwocl.org/iwocl-2014/abstracts/libreoffice-spreadsheets-on-the-gpu/
https://technet.microsoft.com/en-us/library/ff877820%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/ff877820%28v=ws.10%29.aspx
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html
https://doi.org/10.1145/944705.944721
https://www.spreadsheetgear.com/support/help/spreadsheetgear.net.7.0/Key_Concepts_Easily_Take_Advantage_of_Multi-Core_CPUs.html
https://www.spreadsheetgear.com/support/help/spreadsheetgear.net.7.0/Key_Concepts_Easily_Take_Advantage_of_Multi-Core_CPUs.html
https://www.spreadsheetgear.com/support/help/spreadsheetgear.net.7.0/Key_Concepts_Easily_Take_Advantage_of_Multi-Core_CPUs.html
https://doi.org/10.1109/saner.2016.100
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2016-003.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2016-003.pdf
https://www.libreoffice.org/discover/calc/
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
http://portal.acm.org/citation.cfm?id=269551
https://doi.org/10.1109/ICCL.1994.288396
https://doi.org/10.1109/ICCL.1994.288396

1 3

Puncalc: task-based parallelism and speculative reevaluation…

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Puncalc: task-based parallelism and speculative reevaluation in spreadsheets
	Abstract
	1 Introduction
	2 Background: spreadsheet concepts
	2.1 Formulas and cell references
	2.2 The support and dependency graphs
	2.3 Recalculation
	2.4 Consistency requirements

	3 Funcalc: sequential implementation
	4 Puncalc: parallel implementation
	4.1 Thread safety
	4.2 Parallel minimal recalculation
	4.3 Cyclic dependency detection
	4.4 Encoding ownership in cell state
	4.5 Parallel recalculation with speculative reevaluation
	4.5.1 Ensuring consistency
	4.5.2 Delayed speculative evaluation

	4.6 Thread-local evaluation
	4.7 Dynamic indexing functions

	5 Results and validation
	5.1 Benchmark spreadsheets
	5.2 Experimental setup
	5.3 Validation
	5.4 Performance evaluation

	6 Related work
	6.1 Commercial and open-source applications

	7 Conclusion
	Acknowledgements
	References

