
A Comparison Between SISAL 1.2 and Funcalc

Alexander Asp Bock

IT University Technical Report Series TR-2019-205

ISSN 1600–6100 March 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/222785715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c� 2019, Alexander Asp Bock

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-371-1

Copies may be obtained by contacting:
IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark
Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

A Comparison Between SISAL 1.2 and
Funcalc

Alexander Asp Bock
Computer Science Department

Table of Contents

1 Introduction 1

2 Di↵erences Between SISAL and Funcalc 1
2.1 Types . 2

2.1.1 Standard Types . 2
2.1.2 Array Types . 3
2.1.3 Stream Types . 4
2.1.4 Record Types . 4
2.1.5 Union Types . 6

2.2 Let Expressions . 7
2.3 Loops . 7

2.3.1 Non-Product Form . 7
2.3.2 Product Form . 8
2.3.3 Loop Indices . 9
2.3.4 Result Packaging . 10
2.3.5 Loop Filtering . 10
2.3.6 Dot Products . 11
2.3.7 Cross Products . 11

2.4 Functions . 11
2.5 Errors . 12
2.6 Intrinsic Functions . 13

3 Example Programs 14
3.1 Factorial Function . 15
3.2 Matrix Multiplication . 15

3.2.1 Sum of Products . 15
3.3 Matrix Transposition . 17
3.4 Calculating Pi . 18

3.4.1 Sequential Version . 19
3.4.2 Parallel Version . 20

3.5 Computing Statistics of An Array 21
3.6 Index of the First Minimum Element 22

3.6.1 Sequential Version . 22
3.6.2 Parallel Version . 23

3.7 Sieve of Eratosthenes . 24
3.8 Word Count . 27
3.9 Batcher Sort . 28
3.10 Gauss-Jordan Elimination Without Pivoting 32

1

3.11 Random Number Package . 35
3.12 Conway’s Game of Life . 41
3.13 Particle Transport . 43
3.14 Gel Chromatography . 52

4 Conclusion and Future Work 61
4.1 Funcalc Expressiveness . 61
4.2 Directions For Future Work 62

References 67

List of Spreadsheets 69

List of Listings 70

Appendix A Auxiliary Functions 71
A.1 IMAP . 71
A.2 Tail-Recursive Factorial Function 71
A.3 SUMPRODUCT . 71
A.4 UPDATEARRAY . 72
A.5 HSEQ . 72
A.6 ISCHAR and INDEXAT . 73
A.7 GENERATE . 73
A.8 SEQUENCE/CHAIN . 74

2

Alexander Asp Bock 2019

1 Introduction

The purpose of this technical report is to evaluate the expressiveness of
Funcalc by translating programs written in the Streams and Iteration in
a Single Assignment Language (SISAL) programming language to Funcalc
using sheet-defined functions (SDFs). We also examine di↵erences in their
type system, language constructs and syntax. The report unveils that Fun-
calc is able to express 16 SISAL programs of varying complexity taken from
a tutorial on SISAL [1]. Prior work has also demonstrated Funcalc’s ex-
pressiveness by translating Excel financial functions to Funcalc [2]. The
comparison is one-way from SISAL to Funcalc so we do not concern our-
selves with SISAL’s ability to express Funcalc SDFs. We highlight cases
where it is either di�cult or impossible to translate from SISAL to Funcalc.

This report is neither an introduction to SISAL nor Funcalc. We assume
that the reader is already adequately familiar with both of them. If not, we
refer the reader to resources on Funcalc [2, 3] and SISAL [1, 4].

The report is structured as follows. In section 2, we examine the di↵erences
between SISAL and Funcalc in terms of their types, syntax and error han-
dling. In section 3, we present the translation of the 16 SISAL programs
from [1] to Funcalc using SDFs. Lastly, in section 4, we conclude the report
by summarising our observations on the capability of Funcalc to express
SISAL programs, and highlight several directions for future work based on
the di�culties encountered during translation of the programs in section 3.

2 Di↵erences Between SISAL and Funcalc

While this report focuses solely on SISAL 1.2, there has been some develop-
ment on version 2.0 [5] and evidence that SISAL 3.1 has been in development
[6].

SISAL is a single-assignment, functional, statically typed language. The
SISAL language reference [4] does not mention how memory is handled or
any functions for allocating and deallocating memory. Therefore we assume
that memory is either garbage collected or that appropriate calls to allo-
cation and deallocation functions are inserted at the proper points in the
program. Overall, SISAL’s syntax and precedence rules are similar to those
of Fortran, Pascal and C.

1

Alexander Asp Bock 2019

Funcalc is a higher-order, functional spreadsheet language. There are no
explicit types in Funcalc and it mostly resembles a dynamically typed pro-
gramming language. Memory is garbage collected as the underlying imple-
mentation is written in C#.

2.1 Types

In this section, we discuss how SISAL’s simple and compound types can be
expressed in Funcalc.

2.1.1 Standard Types

SISAL has types for scalar values: boolean, integer, real, double real,
character and null.

Booleans in Funcalc are represented as 1 and 0 for true and false respec-
tively. For example, the EQUAL function compares its two arguments for
equality and returns 1 or 0 as the result.

Funcalc does not di↵erentiate between integers and floating-point numbers
as SISAL does, instead everything is represented as a double in the im-
plementation [3, section 2.8.2]. Consequently, Funcalc does not have the
conversion functions for these numeric types and the boolean values 1 and
0 are doubles as well.

In SISAL, a string is represented as an array of characters: array[character].
Funcalc represents strings or text using the TextValue class and has no
methods for manipulating text since users can call C# string manipulation
functions using the EXTERN function. We will later see an example of this
use case in section 3.8 where we need to count the words in a string.

SISAL has a null type that can be used to define enumerated types and
base cases for recursive union types (see section 2.1.5) [1]. The null type
contains only one value nil of type null which is used in definitions of
SISAL’s input/output language Fibre [1]. Funcalc has no null type and
the closest analogue is probably a blank cell although there is no ISBLANK

function as in Excel.

2

Alexander Asp Bock 2019

2.1.2 Array Types

SISAL supports n-dimensional arrays of a single element type such as array[integer]

or array[double_real]. Arrays can be nested to create multi-dimensional arrays
and powerful multi-dimensional indexing is supported.

As opposed to Excel, Funcalc supports first-class arrays and cells can contain
arrays. The type of the contained elements is not given explicitly and is not
limited to a single type. Unlike SISAL, Funcalc distinguishes between hori-
zontal and vertical arrays as exemplified by some of of its intrinsic functions:
HSCAN, VSCAN, HARRAY and VARRAY etc.

SISAL (and Excel) have more advanced functions for manipulating arrays
compared to Funcalc, although Sestoft [3] has demonstrated that SDFs can
be used to create Excel functions such as GOALSEEK and VLOOKUP.

SISAL supports sophisticated array indexing as shown in listing 1. We have
created the UPDATEARRAY function for this purpose (see appendix A) because
replace operations are used in the particle transport program in section 3.13.
It can perform all SISAL index operations although it may require multiple
calls since replace operations cannot be composed in the same update. As
both SISAL and Funcalc arrays are immutable (or rather single-assignment
in SISAL), the original array remains unmodified in both languages.

1 let
2 a := array[1: array[1: 1, 2, 3],
3 array[1: 4, 5, 6],
4 array[1: 7, 8, 9]]
5 in
6 a[1], % array[1: 1, 2, 3]
7 a[2, 3], % 6
8 a[2][3], % Same as previous
9 a[2: array[1: 0, 0, 0]], % Replaces the second row with a row of three zeroes

10 a[3, 3: 99], % Replaces 9 with 99
11 a[1, 1: -1; 2, 2: -5], % Negates the elements at (1, 1) and (2, 2)
12 a[3: 9, 8, 7] % Replaces the bottom row with [9, 8, 7]
13 end let

Listing 1: Various ways of indexing and modifying arrays in SISAL.

Lastly, arrays can be concatenated in SISAL using the || operator. Arrays
can be concatenated horizontally or vertically in Funcalc. Using HCAT and
VCAT the resulting array is also flattened, but using HARRAY and VARRAY,
no flattening occurs and the arguments are simply concatenated. If two
arrays were passed as arguments, the result would be an array of arrays for

3

Alexander Asp Bock 2019

example.

2.1.3 Stream Types

SISAL streams are similar to arrays but prohibit random access and enforce
sequential access. The literature on SISAL [1, 4] does not mention if streams
are lazily evaluated as in other languages such as Haskell or Scala. They are
only used in the Sieve of Eratosthenes program in section 3.7, an algorithm
for generating prime numbers whose e�cient functional implementation usu-
ally relies on lazy lists. Since streams are accessed di↵erently than arrays
they would be indistinguishable from arrays so are most likely lazy. Funcalc
has no lazy evaluation except for using function values to delay evaluation.

2.1.4 Record Types

Record types are a collection of di↵erent data types much like structs in C,
and can be nested to arbitrary depths. Funcalc has no such data structure,
but we can emulate records using cell arrays and the VLOOKUP or HLOOKUP
functions. Both of these were defined by Sestoft as SDFs [3, pp. 135–136].
Consider the “record” in sheet 1 that maps a person’s name to their age.

A B
1 Alice 36
2 Bob 52
3 Eve 27

Sheet 1: A table of records for persons and their age in Funcalc.

The A column holds the keys of the record and column B holds the val-
ues for each key. The VLOOKUP(x, arr, c) function returns the column
c, from the first row in array arr where the key is less than or equal to
x. This poses a problem because SISAL records are one-to-one mappings
that return values from exact key matches. Suppose we entered a new row
in the record just before Alice called Adam. In this case, Adam is lexico-
graphically less than Alice and Adam’s value would incorrectly be returned
instead of Alice’s. Therefore, we need to define a new function VLOOKUPX

that only returns exact matches (the X stands for the ‘x’ in exact) which
uses a helper function called MATCHROWX. Excel provides these functions but
they accept an additional parameter which controls whether the match is
exact or approximate.

4

Alexander Asp Bock 2019

A B
1 =DEFINE("matchrowx", B7, B2, B3, B4, B5)
2 'key= ...
3 'i= ...
4 'rows= ...
5 'array= ...
6 'c= ...
7 'terminate?= =B3>B4

8 'result=
=IF(B7, ERR("Element not found"), IF(EQUAL(INDEX(B5,
1, 1), B2), INDEX(B5, 1, B6), MATCHROWX(B2, B3 + 1,
B4, SLICE(B5, 2, 1, ROWS(B5), COLUMNS(B5)), B6)))

Sheet 2: SDF that finds the row which contains the key in its first column
and returns the element in the same row and the cth column.

Let us break it down into pieces and examine them individually. The func-
tion checks whether the query key is the key of the current row. If it is,
the value for that key is retrieved and returned, otherwise the next row is
checked. The first IF statement checks the termination condition in cell B7:
If our row counter i is bigger than the number of rows in the original array.
If this is true, the key was not found and we raise an error. Otherwise, we
move on to the next IF statement which checks if the item in the first row
and column, i.e. the top-left corner of the array, is the key we are looking
for. If it is, we return the value for that key which is assumed to be in the
same row and in column c specified by cell B6, hence INDEX(B5, 1, B6).
If the key did not match, we instead invoke a recursive call to MATCHROWX

incrementing the counter i and taking a slice of the array at position (2, 1).
The slice indices are relatively to the array itself, so this slice will always cut
o↵ the first row (recall that Funcalc indices are 1-based). Thus the check
of the second IF will actually inspect the key of the next row, or rather the
first row of the new slice. Why are we passing a slice? Slices are views of
their arrays so we save some space by not passing the full subarray at each
recursive call.

We should also mention that a slightly more e�cient implementation of
the MATCHROWX function can be implemented using indices instead of pass-
ing slices to the recursive calls. With MATCHROWX defined, we can define
VLOOKUPX.

SISAL records have unique keys as expected from a dictionary-like structure
but the Funcalc functions we just defined do not stop you from defining a
record with multiple instances of the same key. Funcalc cells are immutable
so for record insertion and deletion, we would need to return a new array
updated with the modifications. In general, emulating records in Funcalc

5

Alexander Asp Bock 2019

A B
1 =DEFINE("vlookupx", B5, B2, B3, B4)
2 'key= ...
3 'array= ...
4 'c= ...
5 'result= =MATCHROWX(B2, 1, ROWS(B3), B3, B4)

Sheet 3: A SDF similar to Sestoft’s VLOOKUP function from [3, pp. 135–
136], which returns exact key matches instead of keys that either match or
are less than the query key.

seems more like a curiosity than a useful abstraction for end-users.

2.1.5 Union Types

SISAL union types are similar to ML’s variants, Haskell’s user-defined data

types or F#’s discriminated unions, or unions from C. They can contain
data of di↵erent types, but only one field is active at any given time and
can be accessed. Like records, Funcalc has no native support for such a
structure although it can also be emulated by having a data table as we did
for the record and an accompanying index that marks the active field. It
could also be mimicked using a 2-element array where the first element is
the tag and the second is its value. In both cases, there is no support for
type-checking or additional functionality, and we doubt whether they would
be useful in a spreadsheet context.

As mentioned in section 2.1.1, SISAL supports recursive type definitions in
union types. For instance the following code uses the QTree union inside
its own definition [1, p. 23]:

1 % An enumerated type
2 type Quadrant = union[NE, SE, SW, NW: null];
3

4 % A recursive type definition
5 type QTree = union[Scalar: real;
6 NonScalar: record[NE, SE, SW, NW: QTree]];

Listing 2: Defining enumerated and recursive types using SISAL’s null

type.

This also showcases how null can be used to declare enumerated types.

6

Alexander Asp Bock 2019

2.2 Let Expressions

Let expressions are found in many functional programming languages and
SISAL is no exception. An example is shown in listing 3. The let construct
constrains the scope of the variables declared in the first let part to the
expression of the second in part. Funcalc has no let expression as there
are no scoping rules for variables (e.g. one function is free to reference a cell
used in another).

1 function AvgStddev(data: array[integer] returns integer, integer)
2 let
3 size := double_real(array_size(data));
4 avg := for x in data
5 returns value of sum double_real(x)
6 end for / size;
7 stddev := for x in data
8 returns value of sum exp(double_real(x) - avg, 2)
9 end for / size

10 in
11 avg, stddev
12 end let
13 end function

Listing 3: Using a let expression to calculate the average and standard
deviation of an array of integers. Notice how the for loop (product form)
can be used in an expression.

2.3 Loops

SISAL provides two di↵erent loop constructs: The sequential non-product
form and the parallel product form. Funcalc has no explicit loops but sup-
ports tail-recursive function calls which can substitute for looping. As of this
writing, infinite recursive loops are not monitored and terminated, so they
should be used with care. Theoretically all iterative loop forms in SISAL,
barring parallelism, should be expressible in Funcalc using tail recursion.

2.3.1 Non-Product Form

This loop form is entirely sequential by design. SISAL will not attempt to
parallelize them.

Using recursive function calls in Funcalc allows one to define any kind of
SISAL non-product loop. The initial variable declarations are passed along

7

Alexander Asp Bock 2019

1 for initial
2 I := 1
3 while I < 10649
4 I := old I * 22
5 returns array of I
6 end for

Listing 4: Example of a non-product, sequential loop in SISAL. The result
is the array [1, 4: 1, 22, 484, 10648].

with the initial function call and the termination condition can either be
hard-coded into the function or can use a function value given as argument.
For counted loops, we can pass the initial value of the loop variable and the
upper bound to recurse exactly a set number of user-defined times, or simply
pass the upper bound and decrease it on each iteration until it reaches zero,
if the loop variable itself is not important in the function.

2.3.2 Product Form

The independent statements of a product form loop can be executed in
parallel and then aggregated in a returns statement. This is similar to
the map-reduce or fold idiom found in functional programming, but with
implicit support for parallel execution. An example loop is given in listing 5.
In Funcalc, we can invoke multiple calls to the MAP functions then aggregate
the results using REDUCE. More specifically, the SISAL language reference
states that

“All computations that can be expressed by the product form can
also be expressed by the non-product form. The converse is not
true.” [4]

Thus by extension, if Funcalc can express all non-product forms, then it must
be able to express all product form loops. To allow parallel evaluation of such
Funcalc constructs, they must be expressed in a fashion that permits e�cient
parallel computation, for example by splitting a product form loop, that does
some computations on the elements of two arrays in parallel, into two MAP

calls with possible overhead stemming from repeated computation if e.g an
intermediate calculation is used in computing two otherwise independent
results. The di↵erences are illustrated in some of the example programs in
section 3 such as the sequential and parallel versions of the approximation
of ⇡ (section 3.4) and the retrieval of the index of the minimum element in

8

Alexander Asp Bock 2019

an array (section 3.6).

1 define main
2

3 function main(returns array[integer])
4 A := array[1: 1, 2, 3, 4, 5]
5 B := array[1: 6, 7, 8, 9, 10]
6

7 for a, b in A dot B
8 returns sum of a + b
9 end for

10 end function

Listing 5: Computing the sum of the pairwise additions of two sequences.
The result is 55. The additions can be done in parallel and the sum can be
done as a reduction.

The returns clause can have a number of predefined packaging statements.
In reality any aggregation statement that uses an associative operator can
be used. They are discussed in detail in section 2.3.4.

2.3.3 Loop Indices

One can also iterate over the indices of elements in one or more arrays or
ranges in SISAL.

1 % Array is [1: 4, 2, 7, 9, 1]
2 for a in array at i
3 returns sum of a * i
4 end for
5 % Result becomes 4 * 1 + 2 * 2 + 7 * 3 + 9 * 4 + 1 * 5 = 70

Listing 6: Enumerating the elements and their indices in SISAL. Notice
that the lower bound of the array is set to 1 so we do not need to modify
the index in the summation.

In Funcalc, the built-in function TABULATE provides looping over array in-
dices. The TABULATE function would be trivial to run in parallel as the
closure parameter is applied independently to each two-dimensional array
index, and since arrays are immutable there is no fear of modifications to
the original array during the tabulation. The closure must additionally be
side-e↵ect free to get deterministic results.

9

Alexander Asp Bock 2019

2.3.4 Result Packaging

SISAL’s product form loop supports five ways of aggregating results:

I ’array of’ packages results into an array.

I ’stream of’ packages results into a stream.

I ’value of’ returns only the last value (filters apply).

We ignore stream of as Funcalc has no streams. Returning an array of values
corresponds to a MAP operation in Funcalc, while just returning the last value
of the operation can be done using a recursive function or a MAP operation
followed by an INDEX operation that picks out the last value (although the
latter is slightly less e�cient).

There are also five associative reduction operations:

I sum sums the results.

I product multiplies the results.

I greatest returns the maximum value.

I least returns the minimum value.

I catenate concatenates arrays and streams.

For summation, Funcalc has the built-in function SUM. Multiplication of a set
of values can be defined using REDUCE and a custom PRODUCT function that
multiplies its two arguments and returns the result. For the maximum and
minimum elements, we use MAX and MIN respectively. Finally for catenate,
we can use REDUCE with an empty array as the initial value, and HCAT for
concatenation, and VCAT vice versa for the vertical direction. The initial
array will be prepended to the result, as it must be non-empty, and will
have to be sliced from the result.

2.3.5 Loop Filtering

SISAL loops can contain filtering statements that remove certain results
during iteration. For example, the following loop filters out all odd numbers
in its iteration range.

1 for i in 1, 100
2 returns array of i when mod(i, 2) == 0

10

Alexander Asp Bock 2019

To create a filter function in Funcalc we can use a combination of MAP and
REDUCE or a recursive SDF. The recursive approach is used in section 3.7.

2.3.6 Dot Products

Dot products only apply to product form loops and zips the arrays. Thus
the following code returns array[1: 5, 7, 9] for A := array[1: 1, 2, 3] and B :=

array[1: 4, 5, 6].

1 for a in A dot b in B
2 returns array of a + b
3 end for

Thanks to the generalised behaviour of MAP, zipping is already available.

2.3.7 Cross Products

Cross products allow for nested loops. The following SISAL code [1] pro-
duces a Hilbert matrix.

1 for i in 1, 2 cross j in 1, 2
2 returns array of 1.0 / real(i + j - 1)
3 end for

We could either use TABULATE to calculate the Hilbert matrix or a recursive
function that keeps track of the indices of each loop which will also work for
higher dimensional matrices.

2.4 Functions

Even though SISAL is a functional programming language, the literature
does not indicate whether it is higher-order or not. None of the example
programs from [1] make use of them and there are no types defined for
functions, so we assume that SISAL is a first-order language. Other sources
seem to claim that this is indeed the case [7]. The same source also claims
that the proposal for SISAL 2.0 may include higher-order functions and
other features commonly found in contemporary functional languages such
as polymorphism and type inference. On the other hand, SISAL allows
function definitions inside functions whereas Funcalc does not but it would
likely be more confusing than useful. It is interesting that the resources

11

Alexander Asp Bock 2019

on SISAL [1, 4] do not emphasise higher-order functions and laziness (see
section 2.1.3 on streams), both hallmarks of functional programming [8,
9] that promote modularity and reuse. In section 3, we shall show many
examples of how higher-order functions can increase expressiveness and help
solve a number of problems elegantly in Funcalc. SISAL does not support
polymorphic or overloaded functions. In Funcalc, a function that takes three
arguments and packages them into an array does not care what the type of
the input values are, but that is the extent of the support. There are no
overloaded functions in Funcalc as there cannot exist multiple functions with
the same name.

Currently, Funcalc functions are limited to 10 input arguments. We assume
SISAL has a similar constraint which is not specified in the language ref-
erence or tutorial or any other manual. To overcome this limitation, we
can pass a subset of the arguments as an array and index each individual
argument inside the function.

1 a, b, c = FunctionReturningThreeValues()

Unpacking function results in SDFs is currently disallowed in Funcalc. SISAL
does not have any support for partial evaluation or function specialization,
while Funcalc supports both. Finally, SISAL also supports recursion and
possibly tail-recursion, being a functional language. Funcalc also supports
recursion but does not guard against infinite recursive calls.

A
1 ={RETURN THREE RESULTS()}
2 ={RETURN THREE RESULTS()}
3 ={RETURN THREE RESULTS()}

Sheet 4: Unpacking three results returned by a function using an array
formula into cells A1, A2 and A3.

2.5 Errors

SISAL has a single error type which is parametrised on a given type depend-
ing on the situation. For example, error[integer] might be used for division
by zero and error[array[real]] can signify that an expression in a for loop, pro-
ducing an array, failed at some point. Funcalc returns error values directly
in the a↵ected cells. There is the NA() function which returns the special
value #NA, signifying that a value was not available or yet to be given in a

12

Alexander Asp Bock 2019

closure. For function name errors, there is #NAME?. For anything else, the
built-in function ERR(msg) can be used, which takes a single error message
and outputs #ERR: msg. SISAL’s error types can only communicate infor-
mation about the error through its nested type. Accessing error values in
an array in SISAL produces an error value of the corresponding element
type, and inputs that are errors usually produce outputs that are errors too
unless an erroneous part of an array is sliced away and the remaining array
returned for example. Errors thus propagate through a SISAL program as
needed, much like how the (NaN) error values in Funcalc were designed to
propagate through expressions by clever exploitation of the IEEE 754-2008
floating-point standard [3, page 44, section 2.8.1].

2.6 Intrinsic Functions

SISAL provides a set of built-in functions, which we look at in turn and see
if they have a Funcalc counterpart or can be expressed as a SDF. We ignore
the functions that operate on streams.

SISAL functions with Funcalc equivalents are shown in the table below:

SISAL function Funcalc Equivalent

abs ABS
array_fill CONSTARRAY
exp xˆy
mod MOD
array_size ROWS and COLUMNS
array_addl HCAT and VCAT
array_addh HCAT and VCAT
array_remh SLICE
array_reml SLICE
array_adjust SLICE
floor FLOOR(NA(), 1)
max MAX
min MIN
trunc N/A

Table 1: The list of all predefined SISAL functions that have Funcalc
equivalents. Note that for array_reml and array_remh, the low and high indices
are also changed in SISAL, which is not the case in Funcalc.

In SISAL, the trunc function simply removes the non-integral part of the
input, truncating towards zero [4] whereas the FLOOR function in Funcalc
truncates towards �1 or +1 according to its second argument. An equiv-
alent SDF can be defined by selecting the second argument to the FLOOR

13

Alexander Asp Bock 2019

function based on the sign of the input value. The floor function rounds
towards negative infinity, so we need to give the Funcalc equivalent a pos-
itive number for its second argument in order to round the input in the
same fashion. The array_liml, array_limh that set the low and high indices of
an array, and array_setl cannot be expressed meaningfully in Funcalc as its
arrays are always one-based and has no array limits.

3 Example Programs

To demonstrate the capabilities and limitations of Funcalc’s expressiveness
of SISAL programs, we have taken the example programs from the SISAL
tutorial [1] and translated them to Funcalc using sheet-defined functions
(SDFs).

Most of the programs are relatively simple and therefore we omit any ex-
planation of their nature or intent. This reflects that this text is first and
foremost a comparison between two programming paradigms, and not a
primer on the subjects covered by the example programs. For instance, we
do not explain how matrix multiplication works or what it is used for, but
assume the reader already knows or can find out on his or her own.

We also omit error checking code in Funcalc to keep everything readable.
The SISAL code has been stripped of its Main method where possible, along
with explanatory comments and type aliases to keep things short. We have
also beautified the code for better readability. Refer to the original SISAL
tutorial for the unmodified code [1]. To improve readability, we reuse the
top-left corner of the sheet for every function in the Funcalc function sheets,
even those that are part of the same program. Note that this is not normally
possible in Funcalc. Lastly, we abbreviate function arguments as three con-
secutive dots ”. . . ” if their definition is not important, which is usually the
case for placeholder arguments in function definitions that exist so that the
SDF can be evaluated in the sheet, or functions that take long arrays as argu-
ments. SDFs are not necessarily as e�ciently implemented as possible since
we are more interested in Funcalc’s ability to express SISAL programs than
we are in performance. We follow the same convention for each program:
The SISAL code is first presented followed by a discussion and step-wise
presentation of the equivalent SDFs that make up the Funcalc translation
of the SISAL program. Lastly, we will sometimes refer to appendix A for a
list of oft used auxiliary functions.

14

Alexander Asp Bock 2019

3.1 Factorial Function

1 define Main
2

3 function Main(n: integer returns integer)
4 if (n <= 0) then 1 else n * Main(n - 1) end if
5 end function

Listing 7: The factorial function in SISAL.

The SDF is a straight-forward translation of the SISAL code.

A B
1 =DEFINE("fatorial", B3, B2)
2 'n= 0
3 'out= =IF(B2<=0, 1, B2*FACTORIAL(B2-1))

Sheet 5: Computing the factorial using recursion in Funcalc.

As an aside, it is straight-forward to design a tail-recursive version of the
FACTORIAL function that uses an extra accumulator argument and is more
e�cient than the implementation given above. Such a function is given in
subappendix A.2.

3.2 Matrix Multiplication

We first define the SUMPRODUCT function which is used for the matrix multi-
plication.

3.2.1 Sum of Products

The SUMPRODUCT is a well-known function from Excel which takes two arrays
of similar shapes, multiplies elements pairwise and sums the products. It is
similar to the mathematical dot product. For example, the SUMPRODUCT of
the two arrays [1, 2, 3] and [4, 5, 6] is 1 · 4 + 2 · 5 + 3 · 6 = 32. See
appendix A for the Funcalc implementation.

Defining the sum of products in SISAL is straight-forward by using a product
form loop and the SISAL dot product to iterate over the two arrays in a
pairwise fashion.

15

Alexander Asp Bock 2019

1 define SumProduct
2

3 function SumProduct(a: array[integer], b: array[integer] returns integer)
4 for i, j in a dot b
5 returns sum of i * j
6 end for
7 end function

Listing 8: The well-known function from Excel in SISAL. It performs
pairwise multiplication of the elements from both arrays, then sums the
result.

In a functional programming context, the zip or zip with functions come to
mind since SUMPRODUCT is doing pairwise operations with a binary function
which is followed by a reduction. Fortunately, Funcalc’s MAP function has
been generalised to operate on one or more arrays in a zip with manner.
In contrast, the ordinary map function in functional programming languages
usually only operates on a single array or list, as showcased in the following
Scala snippet:

1 val a = List(1, 2, 3)
2 a.map(_ + 1) // List(2, 3, 4)

The code defines a list of the values 1, 2 and 3, then maps that list to a
new list using an anonymous function which adds 1 to each element of the
original list. One would have to define map2, map3 etc. for mapping multiple
lists. Consequently, defining SUMPRODUCT in Funcalc is simple, and as an
added bonus, it operates on an arbitrary number of horizontal or vertical
arrays as well as two-dimensional arrays. However, because SDFs cannot be
variadic, we have to define one that takes two arguments (see appendix A
for its definition).

1 function Matmult(A, B: array[array[real]]; M, N, L: integer returns
array[array[real]]),!

2 for i in 1, M cross j in 1, L
3 S := for k in 1, N
4 returns value of sum A[i, k] * B[k, j]
5 end for
6 returns array of S
7 end for
8 end function

Listing 9: Matrix multiplication in SISAL.

The TABULATE built-in function applies a function to each index (r, c) for

16

Alexander Asp Bock 2019

an array range given by a number of rows and columns. This is well suited to
the matrix multiplication program. We start by defining a helper function,
MMULT HELPER.

A B
1 =DEFINE("mmult helper", B6, B2, B3, B4, B5)
2 'array1= ...
3 'array2= ...
4 'r= ...
5 'c= ...

6
'out=

=SUMPRODUCT(
SLICE(B2, B4, 1, B4, COLUMNS(B2)),
SLICE(B3, B5, 1, B5, COLUMNS(B3)))

Sheet 6: The helper function for computing the dot product of a single
element in matrix multiplication.

The function takes the two input arrays (matrices) and a row and column
index. It then uses the SUMPRODUCT function we defined in section 3.2.1 and
slices o↵ the appropriate row of the first matrix and column of the second
matrix. The second vector is a column vector so we need to transpose it,
because SUMPRODUCT internally uses MAP which expects its input arrays to
have the same shape, but we do a single transposition in the main MMULT

to avoid do transpositions for each element in the result matrix. The slices
created in MMULT HELPER are views of the original array and incur a lower cost
of creation as opposed to creating an entire new array. We can now define
MMULT binding the two arrays to the closure of MMULT HELPER, transforming
it into a function that needs only a row and column index, as expected by
TABULATE.

A B
1 =DEFINE("mmult", B4, B2, B3)
2 'array1= =...
3 'array2= =...

4 'out= =TABULATE(CLOSURE("MMULT HELPER", B2,
TRANSPOSE(B3), NA(), NA()), ROWS(B2), COLUMNS(B3))

Sheet 7: Main matrix multiplication function.

3.3 Matrix Transposition

Matrix transposition is already provided by the built-in function TRANSPOSE

in Funcalc, but for completeness, we provide it as an SDF TRANSPOSE1

nonetheless. Instead of using two recursive functions to implement the

17

Alexander Asp Bock 2019

1 function Transpose(A: array[array[integer]] returns array[array[integer]])
2 let
3 N := array_size(A)
4 M := array_size(A[1])
5 in
6 for i in 1, M cross j in 1, N
7 returns array of A[j, i]
8 end for
9 end let

10 end function

Listing 10: Matrix transposition in SISAL.

nested for loop, we use TABULATE and a function for returning the trans-
posed element for a given element position.

A B
1 =DEFINE("transpose element", B5, B2, B3, B4)
2 'array= =...
3 'r= =...
4 'c= =...
5 'result= =INDEX(B2, B4, B3)

Sheet 8: Getting the element in the resulting transposed matrix from the
input matrix.

A B
1 =DEFINE("transpose1", B3, B2)
2 'array= =...

3 'result= =TABULATE(CLOSURE("transpose element", B2, NA(),
NA()), COLUMNS(B2), ROWS(B2))

Sheet 9: Transposing a matrix using TABULATE. We call the function
TRANSPOSE1 to avoid name collision with the built-in TRANSPOSE function.

3.4 Calculating Pi

The SISAL tutorial [1] provides both sequential and parallel versions of
algorithms for approximating ⇡ over a given number of iterations. Bear
in mind that the two mathematical formulas used in the two functions are
di↵erent.

18

Alexander Asp Bock 2019

3.4.1 Sequential Version

Funcalc has no notion of parallel functions or loops. Despite this limi-
tation, we can implement both versions in Funcalc but without any par-
allelism. Note that Funcalc already provides a built-in function PI that
returns System.Math.PI from C# represented as a System.Double.

1 define Main
2

3 function Main(Cycles: integer returns real)
4 4.0 * for initial
5 Approx := 1.0;
6 Sign := 1.0;
7 Count := 1
8 while (Count < Cycles) repeat
9 Sign := -old Sign;

10 Count := old Count + 2
11 Approx := old Approx + Sign / real(Count)
12 returns
13 value of Approx
14 end for
15 end function

Listing 11: Sequential program for calculating the approximation of ⇡.

Like most functions that use recursion, the current values of a given recur-
sive function call must be passed along as function arguments. To hide this
from the users of the PISEQ function (i.e. the sequential function for approx-
imating ⇡), a helper function is sometimes used. We will apply the same
principle to the parallel Funcalc version.

A B
1 =DEFINE("piseq helper", B9, B2, B3, B4, B5)
2 'cycles= ...
3 'approx= 1
4 'sign= 1
5 'count= 1
6 'x= B3+NEG(B4)/(B5+2)
7 'negsign= NEG(B4)
8 'nextcount= B5+2
9 'out= =IF(B5<B2, PISEQ HELPER(B2, B6, B7, B8), B6)

Sheet 10: The helper function for sequentially approximating ⇡.

The recursive call in cell B8 is in tail position making PISEQ HELPER a tail-
recursive function. Using PISEQ HELPER, we can define PISEQ.

Note that the SDF compiler ensures that the intermediate cells B6:B8 are

19

Alexander Asp Bock 2019

A B
1 =DEFINE("piseq", B3, B2)
2 'cycles= 1000
3 'out= =PISEQ HELPER(B2, 1, 1, 1)*4

Sheet 11: SDF for sequentially approximating ⇡.

only computed if they are needed by the output cell B9.

3.4.2 Parallel Version

1 define Main
2

3 function Main(Cycles: integer returns real)
4 (4.0/real(Cycles)) * for j in 1, Cycles
5 x := (real(j) - 0.5) / real(Cycles)
6 returns sum of 1.0 / (1.0 + x * x)
7 end for
8 end function

Listing 12: Parallel approximation of ⇡ in SISAL.

Upon examining the function, we can see that it is essentially a summation
of the values calculated by the loop and a single, final multiplication. We
can thus use SUM and MAP with HSEQ (see appendix A) as an argument to
MAP.

A B
1 =DEFINE("pipar helper", B5, B2, B3)
2 'j= 1
3 'cycles= 100
4 'x= =(B2-0.5)/B3
5 'result= =1/(1+B4*B4)

Sheet 12: Helper function for approximating ⇡ in parallel.

A B
1 =DEFINE("pipar", B5, B2, B3, B4)
2 'cycles= 100
3 'range= =HSEQ(1, B2, 1)
4 'fv= =CLOSURE("PIPAR HELPER", NA(), B2)
5 'result= =SUM(MAP(B4, B3))*(4/B2)

Sheet 13: Funcalc function for estimating ⇡ in parallel.

20

Alexander Asp Bock 2019

3.5 Computing Statistics of An Array

1 function Stats(data: array[integer] returns double_real, double_real, double_real,
double_real),!

2 let
3 num := double_real(array_size(data));
4 denom, maxv, minv, total := for x in data
5 returns value of sum 1.0D0/x
6 returns value of greatest x
7 returns value of least x
8 returns value of sum x
9 end for;

10 harm := num/denom;
11 avg := total/max(num, 1.0D0)
12 in
13 harm, avg, minv, maxv
14 end let
15 end function

Listing 13: Calculating the minimal, maximal elements and the average
and harmonic mean of an array.

All statistics, except for the harmonic mean have built-in functions: AVERAGE
for the average, MIN for the smallest element and MAX for the largest. How-
ever, the harmonic mean is easily computed using MAP and SUM with a SDF
that converts a number to its reciprocal.

A B
1 =DEFINE("reciprocal", B3, B2)
2 'n= =1
3 'result= =1/B2

Sheet 14: Computing the reciprocal of a number.

A B
1 =DEFINE("stats", B3, B2)
2 'array= =HARRAY(2, 4.45, 10.9, 3.3, 2, 2, 1, 16)

3 'result= =HARRAY(COLUMNS(B2)/SUM(MAP(CLOSURE("reciprocal"), B2)),
AVERAGE(B2), MIN(B2), MAX(B2))

Sheet 15: Computing the harmonic mean, average, minimum and maxi-
mum values of an array in Funcalc.

Notice that we return a horizontal array in the STATS function. Since all the
built-in functions in the STATS function work with two-dimensional arrays,
the most general form of this function would return a horizontal or vertical
array for the largest dimension of the input array. This could be done by

21

Alexander Asp Bock 2019

selecting the appropriate closure of either HARRAY or VARRAY and defaulting
to one of them when the array is square. As described in section 2.3.4, we
can use an array formula to unpack the results.

3.6 Index of the First Minimum Element

Like the approximation of ⇡, the SISAL tutorial provides both sequential
and parallel versions for finding the index of the first minimum element of
an array.

3.6.1 Sequential Version

1 function ifmin(X: array[double_real] returns integer)
2 for initial
3 imin := 1; k := 2;
4 while (k <= array_size(X)) repeat
5 k := old k + 1;
6

7 imin := if (X[old k] < X[old imin])
8 old k
9 else

10 old imin
11 end if;
12 returns value of imin
13 end for
14 end function

Listing 14: Using a sequential non-product form loop for finding the index
of the minimum element.

A B
1 =DEFINE("indexmin helper", B7, B2, B3, B4)
2 'array= =...
3 'index= =...
4 'min index= =...
5 'new index= =IF(INDEX(B2, 1, B3)<INDEX(B2, 1, B4), B3, B4)
6 'terminate?= B3+1>COLUMNS(B2)
7 'result= =IF(B6, B5, INDEXMIN HELPER(B2, B3+1, B5))

Sheet 16: The INDEXMIN HELPER function.

22

Alexander Asp Bock 2019

A B
1 =DEFINE("indexmin", B3, B2)
2 'array= =HARRAY(2, 4.45, 10.9, 3.3, 2, 2, 1, 16)
3 'result= =INDEXMIN HELPER(B2, 1, 1)

Sheet 17: The INDEXMIN function.

3.6.2 Parallel Version

The SISAL code seems less e�cient than its sequential counterpart as it
iterates through the array twice. First, we find the minimum element and
then the index of this element by using a loop with a filter.

1 function ifmin(X: OneDim returns integer)
2 let
3 vmin := for Elm in X returns value of least Elm end for;
4 in
5 for Elm in X at I
6 returns value of least I when Elm = vmin
7 end for
8 end let
9 end function

Listing 15: Finding the index of first minimum element in an array in
SISAL.

A B
1 =DEFINE("minindex", B4, B2, B3)
2 'tuple1= =HCAT(..., ...)
3 'tuple2= =HCAT(..., ...)
4 'result= =IF(INDEX(B3, 1, 2)<INDEX(B2, 1, 2), B3, B2)

Sheet 18: Comparing two tuples of elements and their indices.

We use MIN to find the minimum element vmin in the array and then iterate
sequentially through the array, returning the index of the first element that
has value vmin. Alternatively, we can MAP the elements of the array to
arrays of their value and their index using HSEQ (subappendix A.5), then
call REDUCE with a custom function that compares the values of two arrays
and returns the index of the smaller one. Alternatively, we could define
a IMAP or IREDUCE, with the MIN function, that keeps the indices of the
elements around.

23

Alexander Asp Bock 2019

A B
1 =DEFINE("indexmin par", B4, B2, B3)
2 'array= =...
3 'enumerated= =MAP(CLOSURE("enum"), HSEQ(1, COLUMNS(B2), 1), B2)
4 'result= =INDEX(REDUCE(CLOSURE("minindex"), HCAT(0, 1E+300),

B3), 1, 1)

Sheet 19: The INDEXMIN PAR function implemented using MAP and REDUCE.

We use the ENUM function to package in tuples, the indices generated by HSEQ

and the array elements of B2. Note that we return zero when there is no
minimal element in the case of an empty array. We pick a very large number
for the second element in the initial array given to REDUCE, since we cannot
access fields of types in Funcalc. More precisely, System.Double.MaxValue
is a public, static field which is why we pass null to the final method in the
following call.

System.Object.GetType(<double>).GetField("MaxValue").GetValue(null)

We cannot currently pass null values from Funcalc so we cannot retrieve
the value. An alternative implementation of INDEXMIN PAR can use MIN to
get the minimal element and a recursive, auxiliary function to iterate the
array by index and stop when the first occurrence of vmin is encountered
and return its index.

3.7 Sieve of Eratosthenes

The Sieve of Eratosthenes is a classical algorithm for finding the prime
numbers up to a given number.

1 global sqrt(a: double_real returns double_real)
2

3 function Filter(S: stream[integer]; M: integer returns stream[integer])
4 for I in S
5 returns stream of I unless mod(I, M) = 0
6 end for
7 end function
8

9 function Integers(Limit: integer returns stream[integer])
10 for initial
11 I := 3;
12 while I <= Limit repeat
13 I := old I + 2
14 returns stream of I
15 end for
16 end function
17

24

Alexander Asp Bock 2019

18 function main(Limit: integer returns stream[integer])
19 let
20 Maxt := integer(sqrt(double_real(Limit)))
21 in
22 for initial
23 S := Integers(Limit);
24 T := 2;
25 repeat
26 T := stream_first(old S);
27 S := if T <= Maxt then
28 Filter(stream_rest(old S), T)
29 else
30 stream_rest(old S)
31 end if
32 until stream_empty(S)
33 returns stream of T
34 end for
35 end let
36 end function

Listing 16: Sieve of Eratosthenes in SISAL.

The Sieve of Eratosthenes program is a good indication that SISAL streams
are indeed lazy as this is the only program where streams are used in the
entire SISAL tutorial and lazy streams are very useful to avoid allocating
multiple, large arrays when computing the primes. This makes it impossible
to implement the SISAL version of Sieve of Eratosthenes directly in Funcalc
as we only have eager arrays.

We can use the HSEQ function (see subappendix A.5) to generate the initial
array of numbers, referred to as S in the SISAL program. We also need to be
able to filter numbers. For this we define a FILTER function as in sheet 20,
and use an additional, initially empty, accumulator argument acc to make
it tail-recursive1.

Note how closely the definition of FILTER follows the structure of a typical
functional implementation, where the head is examined and then condition-
ally appended to the accumulator and the filter function is applied to the
tail of the array. An alternative, but perhaps slightly less e�cient, approach
of implementing FILTER uses MAP to map values that fail to satisfy the pred-
icate to empty arrays, then use REDUCE to concatenate the mapped values
with HCAT, which collapses the empty arrays.

Using HSEQ and FILTER, we can create a helper function for the main PRIMES

1This is a common optimisation technique in functional programming. Another tech-
nique for achieving tail-recursive is to use continuations, functions that contain the next
computation.

25

Alexander Asp Bock 2019

A B
1 =DEFINE("filter", B5, B2, B3)
2 'fv= =CLOSURE("...")
3 'array= =...
4 'acc= =HARRAY()
5 'head= =INDEX(B3, 1, 1)
6 'pred= =APPLY(B2, B5)

7 'result=
=IF(COLUMNS(B3)=0, B4,
FILTER(B2, SLICE(B3, 1, 2, ROWS(B3), COLUMNS(B3)),
IF(B6, HCAT(B4, B5), B4)))

Sheet 20: Filtering an array in Funcalc using a tail-recursive function.
Instead of passing slices around, we could just as easily pass indices around.

function which we dub PRIMES. We use the same trick as with filtering by
passing an additional accumulator argument to the PRIMES function in order
to make it tail-recursive. The implementation of the MOD function has been
omitted for brevity. It is like the built-in function MOD but with a negated
condition to ensure that FILTER keeps the elements that are not divisible by
its second input.

A B
1 =DEFINE(" primes", B5, B2, B3)
2 'maxt= =...
3 'integers= =...
4 'acc= =...
5 'head= =INDEX(B3, 1, 1)
6 'tail= =SLICE(B3, 1, 2, ROWS(B3), COLUMNS(B3))
7 'fv= =CLOSURE(" mod", NA(), B5)
8 'result= =IF(COLUMNS(B3)=0, B4, PRIMES(B2, IF(B5<=B2,

FILTER(B7, B5, HARRAY()), B6), HCAT(B4, B5)))

Sheet 21: The tail-recursive PRIMES helper function in Funcalc.

We create a new closure of the MOD function on each iteration that takes in
the current head of the list as a second argument. This is passed to FILTER

which then filters out any element that is divisible by the head.

Finally, we define PRIMES using PRIMES passing in the appropriate argu-
ments. We observe that 2 is the only even prime number while the rest
are odd (ironically making 2 the oddest prime), so we can omit it from the
integers array as in the SISAL program, and prepend it to the result of the
call to PRIMES. The initial array of integers can be created using =HSEQ(3,

Limit, 2).

Note that this implementation uses only horizontal arrays. We can store
the result in a single cell, but the result can only be used in a horizontal

26

Alexander Asp Bock 2019

A B
1 =DEFINE("primes", B4, B2)
2 'limit= =...
3 'maxt= =FLOOR(SQRT(B2), 1)
4 'result= =HCAT(2, PRIMES(B3, HSEQ(3, B2, 2), HARRAY())

Sheet 22: Function for generating the primes.

array formula. If we attempt to use the result in a vertical one instead, we
will only see the first argument and the rest will be filled with the error
code #NA. We will encounter this many times during the translation of these
programs, and provide suggestions for solving this issue in section 4.2.

3.8 Word Count

1 function is_char(c: character returns boolean)
2 if ((c = ' ') | (c = '\t') | (c = '\n')) then
3 false
4 else
5 true
6 end if
7 end function
8

9 function Main(text: array[character] returns integer)
10 for initial
11 count := 0; iword := 0; pointer := 1;
12 while (pointer <= array_size(text)) repeat
13 pointer := old pointer + 1;
14

15 count,
16 iword :=
17 if (is_char(text[old pointer]) & (old iword = 0)) then
18 1, 1
19 elseif (is_char(text[old pointer]) & (old iword = 1)) then
20 0, 1
21 else
22 0, 0
23 end if;
24 returns value of sum count
25 end for
26 end function

Listing 17: Counting the number of words in a sentence in SISAL.

Funcalc has no functions for string manipulation. Thus this problem is not
possible to express without the use of an external language. However, we
can use the EXTERN function to call functions in C# such as its string utility
functions. A word counting program in C# could be called with EXTERN

27

Alexander Asp Bock 2019

directly and wrapped in a SDF, or we could translate it to Funcalc using
individual string methods with the help of EXTERN. We implement the latter
approach to demonstrate more of the expressive power of Funcalc. We also
assume the existence of functions ISCHAR and INDEXAT that use EXTERN to
call the appropriate functions in C#. Both are available in subappendix A.6.
Getting the string length involves calling its Length property. Sestoft [3]
has already demonstrated this.

A B

1
=DEFINE(" wordcount", B7, B2, B3,
B4, B5)

2 'string= ="This sentence has five words"
3 'count= =0
4 'iword= =0
5 'pointer= =1
6 'char= =ISCHAR(INDEXAT(B2, B5))

7 'new values=
=IF(AND(B6, B4)=0, HCAT(B3+1, 1), IF(AND(B6, B4)=1,
HCAT(B3, 1), HCAT(B3, 0)))

8 'result= =IF(B5>LEN(B2), B3, WORDCOUNT(B2, INDEX(B7, 1, 1),
INDEX(B7, 1, 2), B5+1))

Sheet 23: A helper function for recursively counting words in a string.

We can now easily define a WORDCOUNT function in the same manner as
we have done before with other programs. The implementation in sheet 23
tries to follow the SISAL equivalent as closely as possible, but there are other
more elegant ways to implement word counting. For example, we could have
converted the string to an array and used MAP to map each character to one
if it is located at the beginning of a word, zero otherwise, and then used SUM

to count the words. Alternatively, we could just have used EXTERN to make
the following call:

=EXTERN("System.Array.get_Length()I",
EXTERN("System.String.Split([C)[T", string, null))

Unfortunately, we cannot currently pass a C# null value to external calls,
so the latter will not work.

3.9 Batcher Sort

Batcher sort is one of many sorting algorithms that use sorting networks. It
is an e�cient, parallel algorithm with a worst-case running time ofO(log2(n))
compared with its sequential equivalent of O(n·log2(n)), due to independent
compare-and-swap operations that can done in parallel.

28

Alexander Asp Bock 2019

1 function CeilingOfLog2(N: integer returns integer)
2 for initial
3 L := 0;
4 TwoToTheL := 1
5 while TwoToTheL < N repeat
6 L := old L + 1;
7 TwoToTheL := 2*old TwoToTheL
8 returns value of L
9 end for

10 end function
11

12 function FloorOfNOver2(N: integer returns integer)
13 if N = 1 then 0 else N/2 end if
14 end function
15

16 function Isec(I, P: integer returns integer)
17 if mod(I/P, 2) = 1 then P else 0 end if
18 end function
19

20 function Batcher(K: array[integer] returns array[integer])
21 let
22 N := array_size(K);
23 T := CeilingOfLog2(N)
24 in
25 for initial
26 P := exp(2, T);
27 B := array_setl(K, 0)
28 while P > 1 repeat
29 P := FloorOfNOver2(old P);
30 B := for initial
31 Q := exp(2, T);
32 R := 0;
33 D := P;
34 C := old B
35 repeat
36 C := for Elt in old C at I
37 NewElt := if (Isec(I, P) = old R) & (I + old D < N)

then,!
38 min(Elt, old C[I + old D])
39 elseif (Isec(I - old D, P) = old R) & (I >=

old D) then,!
40 max(Elt, old C[I - old D])
41 else Elt
42 end if;
43 returns array of NewElt
44 end for;
45 D := old Q - P;
46 Q := old Q / 2;
47 R := P
48 until Q < P
49 returns value of C
50 end for
51 returns value of B
52 end for
53 end let

29

Alexander Asp Bock 2019

54 end function

Listing 18: The Bacther sort algorithm in SISAL.

To implement this program in Funcalc, we will work outwards from the
inner part of the algorithm, factoring everything into functions that will be
combined to form the complete sorting routine. Before continuing, note the
call in line 27 which forces the lower bound of the SISAL array to start at
zero. Bear this in mind for the Funcalc implementation as Funcalc arrays
are one-based.

We do not need a separate function for CeilingOfLog2, as we can use the fol-
lowing equation instead:

⌃
log2(2(log10(x)/log10(2)))

⌥
. The logarithm function

in base 2 is not natively available in Funcalc, but we can instead use C#’s
mathematical library: =EXTERN("System.Math.Log$(DD)D", 1024, 2).

The FloorOfNOver2 function is already implemented in Funcalc by using
ordinary division and the FLOOR function. We then implement the Isec

function from line 16.

A B
1 =DEFINE("isec", B4, B2, B3)
2 'I= =10
3 'P= =2
4 'result= =IF(FLOOR(MOD(B2/B3, 2), 1)=1, B3, 0)

Sheet 24: The Isec function from the Batcher sort algorithm.

Getting into the meat of the sorting routine, we first implement a function
for computing the new elements of the array C in the inner loop in lines 36
to 44. We have named it BS CMAP as it is a function that e↵ectively maps
over C. The prefix stands for Batcher sort. Notice that we adjust the index
before passing it to ISEC in both cases. For readability’s sake, we have
separated the first condition in the result and the value of Elt.

30

Alexander Asp Bock 2019

A B

1
=DEFINE("bs cmap", B11, B2, B3, B4, B5,
B6, B7, B8)

2 'P= =4
3 'N= =15
4 'R= =0
5 'D= =5
6 'array= =...
7 'r= =1
8 'c= =1
9 'cond1= =AND(ISEC(B8-1, B2)=B4, B8+B5-1)
10 'Elt= =INDEX(B6, B7, B8)

11 'result=
=IF(B9, MIN(B10, INDEX(B6, B7, B8+B5)),
IF(AND(ISEC(B8-B5-1, B2)=B4, B8>B5), MAX(B10,
INDEX(B6, B7, B8-B5)), B10))

Sheet 25: The mapping function for computing the new elements of C in
Batcher sort.

We can now define a recursive function for the inner loop that calculates the
B array in lines 30 and 50.

A B
1 =DEFINE("b loop", B9, B2, B3, B4,

B5, B6, B7)
2 'P= =4
3 'N= =15
4 'Q= =8
5 'R= =0
6 'D= =4
7 'array= =...

8 'C= =TABULATE(CLOSURE("BS CMAP", B2, B3, B5, B6,
B7, NA(), NA()), ROWS(B7), COLUMNS(B7))

9 'result= =IF(B4<B2, B8, B LOOP(B2, B3, FLOOR(B4/2, 1),
B5, B4-B2, B8))

Sheet 26: The recursive B LOOP function for Batcher sort.

Next is the familiar (recursive) helper function for wrapping the outermost
loop in lines 25 and 52.

Finally, here is the BATCHERSORT function. We remark again that this func-
tion is tailored to work specifically with horizontal arrays. A call to an
external sorting routine is probably more e�cient.

31

Alexander Asp Bock 2019

A B
1 =DEFINE("batchersort helper", B8,

B2, B3, B4, B4, B6)
2 'P= =4
3 'T= =15
4 'N= =8
5 'array= =...
6 'P next= =FLOOR(B2/2, 1)
7 'B= =B LOOP(B6, B4, 2^B3, 0, B6, B5)
8 'result= =IF(B6>1, BATCHERSORT HELPER(B6, B3, B4, B7), B7)

Sheet 27: Batcher sort recursive helper function.

A B
1 =DEFINE("batchersort", B6, B2)
2 'array= =...
3 'N= =COLUMNS(B2)
4 'T= =CEILING(LOG2(2^(LOG10(B3)/LOG10(2))), 1)
5 'P= =2^B4
6 'B= =BATCHERSORT HELPER(B5, B4, B3, B2)

Sheet 28: The main Batcher sort function.

3.10 Gauss-Jordan Elimination Without Pivoting

We might consider using ROWMAP for Gauss elimination, but we encounter
an issue because the function expects a function value that takes exactly
as many arguments as there are columns in each row of the input. Con-
sequently, we would have to supply a function for each possible number of
columns we would want to support, which is neither scalable nor maintain-
able.

The Gauss elimination process expects a N⇥N matrix and a column vector
of N rows. In the Reduce function in listing 19, each row of the A and B

matrices are reduced in a way that is dependent only on the value of the
pivot (lines 8 and 19), so it makes sense to split them into two di↵erent
functions GAUSS REDUCEA and GAUSS REDUCEB. Because these operations use
the current index along with other parameters, we can use TABULATE.

We then define the GAUSS HELPER function which will be called from the
main GAUSS function.

Further examining the SISAL code, we notice that for each row of the A

matrix, each element in that row is reduced by an expression that is depen-
dent on a conditional. Likewise, the elements of the single-row B vector are
conditionally reduced for each n

2 times. This specific pattern works well

32

Alexander Asp Bock 2019

1 define Main
2

3 function Reduce(n, pivot: integer; A: array[array[double_real]]; B:
array[double_real],!

4 returns array[array[double_real]], array[double_real])
5 for i in 1, n
6 row := A[i];
7 mult := A[i, pivot]/A[pivot, pivot];
8 rA,
9 rB := if i = pivot then

10 for j in 1, n
11 returns array of row[j]/A[pivot, pivot]
12 end for,
13 B[i] / A[pivot, pivot]
14 else
15 for j in 1, n
16 returns array of row[j]-mult*A[pivot, j]
17 end for,
18 B[i]-mult*B[pivot]
19 end if
20 returns array of rA
21 array of rB
22 end for
23 end function
24

25 function Main(n: integer; Ain: array[array[double_real]]; Bin: array[double_real]
returns array[double_real]),!

26 for initial
27 i := 0;
28 A, B := Ain, Bin;
29 while i < n repeat
30 i := old i + 1;
31 A, B := Reduce(n, i, old A, old B);
32 returns value of B
33 end for
34 end function

Listing 19: Gaussian elimination on matrices in SISAL.

A B
1 =DEFINE("gauss reducea", B8, B2, B3, B4, B5)
2 'pivot= =1
3 'A= =...
4 'r= =1
5 'c= =1
6 'elem= =INDEX(B3, B4, B5)
7 'diag= =INDEX(B3, B2, B2)

8 'reduced= =IF(B4=B2, B6/B7, B6-INDEX(B3, B4,
B2)/B7*INDEX(B3, B2, B5))

Sheet 29: Gauss reduction of the A matrix.

33

Alexander Asp Bock 2019

A B
1 =DEFINE("gauss reduceb", B9, B2, B3, B4, B5, B6)
2 'pivot= =1
3 'A= =...
4 'B= =...
5 'r= =1
6 'c= =1
7 'elem= =INDEX(B4, B5, B6)
8 'diag= =INDEX(B3, B2, B2)

9 'reduced= =IF(B5=B2, B7/B8, B7-INDEX(B3, B5,
B2)/B8*INDEX(B4, B2, B6))

Sheet 30: Gauss reduction of the B matrix.

A B

1
=DEFINE("gauss helper", B9, B2, B3, B4,
B5, B6)

2 'A= =...
3 'B= =...
4 'i= =1
5 'n= =ROWS(B2)

6 'rA= =TABULATE(CLOSURE("GAUSS REDUCEA", B4, B2,
NA(), NA()), ROWS(B2), COLUMNS(B2))

7 'rB= =TABULATE(CLOSURE("GAUSS REDUCEB", B4, B2, B3,
NA(), NA()), ROWS(B3), COLUMNS(B3))

8 'result= =IF(B4<B5, GAUSS HELPER(B6, B7, B4+1, B5), B7)

Sheet 31: The recursive Gauss reduction helper function.

A B
1 =DEFINE("gauss", B4, B2, B3)
2 'A= =...
3 'B= =...
4 'result= =GAUSS HELPER(B2, B3, 1, ROWS(B2))

Sheet 32: The main Gauss reduction function.

with TABULATE as it did for matrix multiplication.

Using GAUSS REDUCEA and GAUSS REDUCEB along with TABULATE, we can de-
fine the GAUSS HELPER function that recursively reduces A and B.

As per usual, we define a convenience function that wraps the recursive
GAUSS HELPER, and that expects a square matrix and a column vector. The
issue of matrix shapes is obviated by the use of TABULATE that works with
any shape.

34

Alexander Asp Bock 2019

3.11 Random Number Package

This package is a functional random number package i.e. the next pseudo-
random number and the next seed are returned together to avoid stateful
and non-pure functions. Funcalc provides the RAND function for generating
a random number in the range of [0, 1[. Upon examining the SISAL code
in listing 20, we see that all the functions in the package simply compute
numbers. Thus the functions are readily translatable to Funcalc. We keep
type aliases for this listing since they are heavily used and removing them
would hamper readability.

1 type Four_Plex = array[integer];
2 type Seed_Array = array[Four_Plex];
3 type Bit_Array = array[integer];
4 type double = double_real;
5

6 forward function ranf(Seed: Four_Plex returns double, Four_Plex)
7 forward function rans(N, Seed1: integer returns Seed_Array)
8 forward function ranf_a_to_k(a: Four_Plex; k: Bit_Array returns Four_Plex)
9 forward function ranf_even(n: integer returns integer)

10 forward function ranf_k(n: integer returns Four_Plex)
11 forward function ranf_k_binary(k: Four_Plex returns Bit_Array)
12 forward function ranf_mod_mult(a, b: Four_Plex returns Four_Plex)
13 forward function ranf_odd(n: integer returns integer)
14

15 function ranf(Seed: Four_Plex returns double, Four_Plex)
16 double_real(Seed[3]) / 4096.0d0 +
17 double_real(Seed[2]) / 16777216.0d0 +
18 double_real(Seed[1]) / 68719476736.0d0 +
19 double_real(Seed[0]) / 281474976710656.0d0,
20 ranf_mod_mult(array[0: 373, 3707, 1442, 647], Seed)
21 end function
22

23 function rans(N_In, Seed1: integer returns array[Four_Plex])
24 function N_Is_Odd(N: integer returns Boolean)
25 if mod(N, 2) = 1 then true else false end if
26 end function
27

28 for initial
29 N := if N_is_Odd(N_In) then N_In else N_In + 1 end if;
30 i := 1;
31 seed := if Seed1 = 0 then
32 array[0: 3281, 4041, 595, 2376]
33 else
34 array[0: abs(Seed1), 0, 0, 0]
35 end if;
36 a := array[0: 373, 3707, 1442, 647];
37 a_k := if N > 1 then
38 ranf_a_to_k(a, ranf_k_binary(ranf_k(N)))
39 else
40 a

35

Alexander Asp Bock 2019

41 end if
42 while i < N repeat
43 i := old i + 1;
44 seed := ranf_mod_mult(old seed, a_k)
45 returns array of seed
46 end for
47 end function
48

49 function ranf_a_to_k(a: Four_Plex; k: Bit_Array returns Four_Plex)
50 for initial
51 i := 0;
52 a_i := a;
53 a_k := array[0: 1, 0, 0, 0]
54 while i < 46 repeat
55 i := oldi + 1;
56 a_k := if k[i] = 0 then
57 old a_k
58 else
59 ranf_mod_mult(old a_k, old a_i)
60 end if;
61 a_i := ranf_mod_mult(old a_i, old a_i)
62 returns value of a_k
63 end for
64 end function
65

66 function ranf_even(n: integer returns integer)
67 if mod(n, 2) = 0 then 1 else 0 end if
68 end function
69

70 function ranf_k(n: integer returns Four_Plex)
71 let
72 nn := n + ranf_even(n);
73 q3 := 1024 / nn;
74 r3 := 1024 - (nn * q3);
75 q2 := (r3 * 4096) / nn;
76 r2 := (r3 * 4096) - (nn * q2);
77 q1 := (r2 * 4096) / nn;
78 r1 := (r2 * 4096) - (nn * q1);
79 q0 := (r1 * 4096) / nn
80 in
81 array [0: q0, q1, q2, q3]
82 end let
83 end function
84

85 function ranf_k_binary(k: Four_Plex returns Bit_Array)
86 for i in 0, 3
87 returns value of catenate
88 for initial
89 j := 1;
90 x := k[i] / 2;
91 bit := ranf_odd(k[i])
92 while j < 12 repeat
93 j := old j + 1;
94 x := old x / 2;
95 bit := ranf_odd(old x)
96 returns array of bit

36

Alexander Asp Bock 2019

97 end for
98 end for
99 end function

100

101 function ranf_mod_mult(a, b: Four_Plex returns Four_Plex)
102 let
103 j0 := a[0] * b[0];
104 j1 := a[0] * b[1] + a[1] * b[0];
105 j2 := a[0] * b[2] + a[1] * b[1] + a[2] * b[0];
106 j3 := a[0] * b[3] + a[1] * b[2] + a[2] * b[1] + a[3] * b[0];
107 k0 := j0;
108 k1 := j1 + k0 / 4096;
109 k2 := j2 + k1 / 4096;
110 k3 := j3 + k2 / 4096
111 in
112 array [0: mod(k0, 4096), mod(k1, 4096),
113 mod(k2, 4096), mod(k3, 4096)]
114 end let
115 end function
116

117 function ranf_odd(n: integer returns integer)
118 if mod(n, 2) = 0 then 0 else 1 end if
119 end function

Listing 20: A random number package written in SISAL.

In the Funcalc implmentation, we have chosen to leave out the ranf odd and
ranf even functions and directly use MOD(n, 2) to determine parity. We
also leave out the embedded N Is Odd function as truth values in Funcalc
are 1 and 0 which is already returned by the MOD built-in.

A B
1 =DEFINE("ranf mod mult", B12, B2, B3)
2 'a= =...
3 'b= =...
4 'j0= =INDEX(B2, 1, 1)*INDEX(B3, 1, 1)

5 'j1= =INDEX(B2, 1, 1)*INDEX(B3, 1, 2)+INDEX(B2, 1, 2)*INDEX(B3, 1, 1)

6 'j2= =INDEX(B2, 1, 1)*INDEX(B3, 1, 3)+INDEX(B2, 1, 2)*INDEX(B3, 1,
2)+INDEX(B2, 1, 3)*INDEX(B3, 1, 1)

7 'j3= =INDEX(B2, 1, 1)*INDEX(B3, 1, 4)+INDEX(B2, 1, 2)*INDEX(B3, 1,
3)+INDEX(B2, 1, 3)*INDEX(B3, 1, 2)+INDEX(B2, 1, 4)*INDEX(B3, 1, 1)

8 'k0= =B4
9 'k1= =B5+B8/4096
10 'k2= =B6+B9/4096
11 'k3= =B7+B10/4096

12 'result= =HARRAY(MOD(B8, 4096), MOD(B9, 4096), MOD(B10, 4096), MOD(B11,
4096))

Sheet 33: The RANF MOD MULT function from the random package.

37

Alexander Asp Bock 2019

A B
1 =DEFINE("ranf", B5, B2)
2 'seed= =...

3 'temp= =INDEX(B2, 1, 4)/4096+INDEX(B2, 1, 3)/4096^2
+INDEX(B2, 1, 2)/4096^3+INDEX(B2, 1, 1)/4096^4

4 'new seed= =RANF MOD MULT(HARRAY(373, 3707, 1442, 647), B2)
5 'result= =HARRAY(B3, B4)

Sheet 34: The RANF function from the random package. We have replaced
the number constants from the SISAL code with their powers of 4096.

A B
1 =DEFINE("ranf k", B12, B2)
2 'n= =10
3 'nn= =B2+NOT(MOD(B2, 2))
4 'q3= =1024/B3
5 'r3= =1024-B3*B4
6 'q2= =B5*4096/B3
7 'r2= =B5*4096-B3*B6
8 'q1= =B7*4096/B3
9 'r1= =B7*4096-B3*B8
10 'q0= =B9*4096/B3
11 'result= =HARRAY(B10, B8, B6, B4)

Sheet 35: The RANF K function from the random package.

A B

1
=DEFINE("bitarray helper", B6,
B2, B3, B4, B5)

2 'n= =3
3 'start= =1
4 'nbits= =12
5 'acc= =HARRAY()

6 'result= =IF(B3<=B4, BITARRAY HELPER(FLOOR(B2/2,
1), B3+1, B4, HCAT(MOD(B2, 2), B5)), B5)

Sheet 36: The BITARRAY HELPER function for recursively generating a
bitarray.

A B
1 =DEFINE("bitarray", B4, B2)
2 'n= =3
3 'nbits= =12
4 'result= =BITARRAY HELPER(B2, 1, B3, HARRAY())

Sheet 37: The BITARRAY function for generating a bitarray.

38

Alexander Asp Bock 2019

A B
1 =DEFINE("ranf k binary", B4, B2)
2 'a= =...
3 'bitarrays= =MAP(CLOSURE("BITARRAY", NA(), 12), B2)
4 'bitarray= =REDUCE(CLOSURE("HCAT2"), HARRAY(), B3)

Sheet 38: The RANF K BINARY function from the random package.

In RANF K BINARY, we use the HCAT2 which is simply a wrapper around
HCAT to circumvent the current limitation where built-in functions cannot
be bound to closures at the time of writing. This limitation has since been
overcome.

A B
1 =DEFINE("ranf a to k", B4, B2, B3)
2 'a= =...
3 'k= =...
4 'result= =RANF A TO K HELPER(1, B3, B2, HARRAY(1, 0, 0, 0))

Sheet 39: The RANF A TO K function in the random package. The input k
is a bitarray.

A B

1
=DEFINE("ranf a to k helper", B6, B2, B3,
B4, B5)

2 'i= =1
3 'k= =...
4 'a i= =...
5 'a k= =...

6 'result=
=IF(B2<=46, RANF A TO K HELPER(B2+1, B3, RANF MOD MULT(B4,
B4), IF(INDEX(INDEX(B3, 1, B2)=0, B5, RANF MOD MULT(B5,
B4))), B5))

Sheet 40: The RANF A TO K HELPER function in the random package.

39

Alexander Asp Bock 2019

A B

1
=DEFINE("rans helper", B8, B2, B3, B4,
B5, B6)

2 'i= =1
3 'n= =2
4 'seed= =...
5 'a k= =...
6 'acc= =HARRAY()
7 'temp?= =RANF MOD MULT(B4, B5)

8 'result= =IF(B2<=B3, RANS HELPER(B2+1, B3, B7, B5, HCAT(B6, HARRAY(B7))),
SLICE(B6, 1, 2, ROWS(B6), COLUMNS(B6)))

Sheet 41: The RANS HELPER function from the random package.

A B
1 =DEFINE("rans", B8, B2, B3)
2 'n= =2
3 'seed1= =...
4 'm= =B2+NOT(MOD(B2, 2))
5 'seed= =IF(B3=0, HARRAY(3281, 4041, 595, 2376))
6 'a= =HARRAY(373, 3707, 1442, 647)
7 'a k= =IF(B4>1, RANF A TO K(B6, RANF K BINARY(RANF K(B4))), B6)
8 'result= =RANS HELPER(1, B4, B5, HARRAY(HARRAY()), B7)

Sheet 42: The RANS function in the random package.

There was only one slight problem with translating the SISAL code. No-
tice that the rans function returns an array[Four_Plex] i.e. an array of ar-
rays of integers since Four Plex is a type alias for array[integer]. If we use
HCAT to recursively construct the result array, we end up flattening and
concatening the arrays, yielding a one-dimensional array, because HCAT un-
packs its second argument concatenates it to the first: =HCAT(HARRAY(1,

2), HARRAY(3, 4)) is HARRAY(1, 2, 3, 4). On the other hand, HARRAY
concatenates arrays without any unpacking, so if we have two arrays in
an array, e.g. HARRAY(HARRAY(1, 2), HARRAY(3, 4)), and we concatenate
a third array, we end up with an array of two elements: An array of ar-
rays in the first element, and a single array in the second argument. Nei-
ther outcome is what we need to return the correct array. Instead we can
use HCAT and HARRAY together to get the behaviour we are looking for.
We pass an empty, horizontal array of arrays to the accumulator of the
RANS HELPER function (line 44), and then use HCAT with the accumulator
array and the next array to be concatenated packaged inside a HARRAY.
Due to the described behaviour of these functions we get the intended be-
haviour: =HCAT(HARRAY(1, 2, 3), HARRAY(HARRAY(4, 5, 6))) becomes

40

Alexander Asp Bock 2019

=HARRAY(HARRAY(1, 2, 3), HARRAY(4, 5, 6)). If we really wanted to,
we could define a separate SDF for appending arrays to arrays of arrays as
in sheet 43.

A B
1 =DEFINE("happend", B4, B2, B3)
2 '2d array= =HARRAY(HARRAY(1, 2), HARRAY(3, 4))
3 '1d array= =HARRAY(5, 6)
4 'result= =HCAT(HARRAY(B2), HARRAY(B3))

Sheet 43: Using HCAT and HARRAY to append one-dimensional arrays to
two-dimensional arrays.

3.12 Conway’s Game of Life

In Conway’s Game of Life, a number of cells are located on a grid where a
cell is denoted by 1, empty spaces by 0. Cells are updated according to a
set of predefined rules based on the number of neighbours a cell has. We
state the three rules as defined in the code of the SISAL program below.

I If a cell has more than five neighbors, then it should be a 0.

I If an empty space does not have exactly three neighbors, then it should
be a 1.

I Otherwise, the position in the grid remains unchanged.

Conway’s Game of Life has an incredibly elegant solution in Funcalc using
immutable arrays, powerful built-in functions and array slicing. The original
SISAL code included functions for generating a random grid of cells using the
random number generation package from section 3.11, but we have omitted
it here and instead focused on the functions that compute each iteration.
Again, the TABULATE function suits our needs as we can update each cell by
looking at the input array at each cell position.

First, we need a function to count the number of neighbours of a given cell
at some position the in grid.

Sheet 44 is quite a simple and elegant solution. We slice o↵ the appropriate
subarray for the cell’s neighbours at the given row and column index, then
calculate their sum. Finally, we subtract the value in the current cell to
avoid counting the cell itself towards its number of neighbours. Since cells

41

Alexander Asp Bock 2019

1 function Compute(G: Grid; I, J: integer; returns integer)
2 let
3 Total := G[I-1,J-1] + G[I-1,J] + G[I-1,J+1] +
4 G[I,J-1] + G[I,J+1] +
5 G[I+1,J-1] + G[I+1,J] + G[I+1,J+1];
6 in
7 if (G[I, J] = 1 & Total > 5) then 0
8 elseif (G[I, J] = 0 & Total ~= 3) then 1
9 else G[I, J] end if

10 end let
11 end function
12

13 function DoWork(G: Grid; Rows, Columns: integer returns Grid)
14 let
15 First := for i in 0, Columns + 1 returns array of G[0, i] end for;
16 Last := for i in 0, Columns + 1
17 returns array of G[Rows + 1, i]
18 end for;
19 Core := for I in 1, Rows
20 Mid := for J in 1, Columns
21 returns array of Compute(G, I, J)
22 end for;
23 Row := array_addl(Mid, G[I,0]);
24 returns array of array_addh(Row, G[I, Columns + 1])
25 end for;
26 in
27 array_addl(array_addh(Core,Last),First)
28 end let
29 end function

Listing 21: Updating the cells in Conway’s Game of Life in SISAL.

A B

1 =DEFINE("neighbours", B5, B2, B3, B4)

2 'array= =...
3 'r= =1
4 'c= =1

5 'count= =SUM(SLICE(B2, B3-1, B4-1, B3+1, B4+1))-INDEX(B2, B3, B4)

Sheet 44: Calculating the number of neighbours for a cell in Conway’s
Game of Life.

are either 0 or 1, subtraction is a no-op for empty cells. Next, we define the
UPDATE function for updating a cell. In the corresponding SISAL program,
the empty border cells are added around the result of each update and
returned. While this is certainly possible in Funcalc using HCAT, VCAT and
some range generation functions, we opt for a more simplistic solution that

42

Alexander Asp Bock 2019

sets a cell to zero if it appears as part of the border.

A B
1 =DEFINE("update", B7, B2, B3, B4)
2 'array= =...
3 'r= =1
4 'c= =1
5 'border?= =OR(B3=1, B4=1, B3=ROWS(B2), B4=COLUMNS(B2))
6 'neighbours= =NEIGHBOURS(B2, B3, B4)
7 'old cell= =INDEX(B2, B3, B4)

8 'new cell= =IF(B5, 0, IF(AND(B7=1, B6>5), 0, IF(AND(B7=0, B6<>3), 1, B7)))

Sheet 45: Updating a cell in Conway’s Game of Life.

Since this program involves bounded recursion, the astute reader may al-
ready have guessed that we need a helper function to provide a nice interface
to users. This function is defined in sheet 45 and the CONWAY function is de-
fined in sheet 47.

A B
1 =DEFINE("conway helper", B6, B2, B3, B4)
2 'i= =1
3 'iterations= =4
4 'array= =...
5 'updater= =CLOSURE("update", B4, NA(), NA())

6 'result= =IF(B2<B3, CONWAY HELPER(B2+1, B3, TABULATE(B5, ROWS(B4),
COLUMNS(B4))), B4)

Sheet 46: The recursive helper function for Conway’s Game of Life.

A B
1 =DEFINE("conway", B4, B2, B3)
2 'iterations= =4
3 'array= =...
4 'result= =CONWAY HELPER(1, B2, B3)

Sheet 47: The main function for generating a number of iterations in
Conway’s Game of Life.

3.13 Particle Transport

1 function reflect(x, pivot, xmax, delta: double_real returns double_real)
2 let
3 frac := x - double_real(trunc(x / xmax)) * xmax
4 in
5 if frac = 0.0d0 then pivot - delta else pivot - frac end if

43

Alexander Asp Bock 2019

6 end let
7 end function
8

9 function move(np, xcell, ycell: integer;
10 dt, q, mass, xmax: double_real;
11 ymax, xpcell, ypcell: double_real;
12 xin, yin, vxin, vyin: array[double_real];
13 returns array[double_real],
14 array[double_real],
15 array[double_real],
16 array[double_real])
17 let
18 cell, wght :=
19 for i in 1, np
20 r_row := yin[i] / ypcell + 1.0d0;
21 r_col := xin[i] / xpcell + 1.0d0;
22 row := trunc(r_row);
23 col := trunc(r_col);
24 lft := r_col - double_real(col);
25 rht := 1.0d0 - lft;
26 bot := r_row - double_real(row);
27 top := 1.0d0 - bot;
28 cell := array[1: row, col];
29 wght := array[1: lft, top, rht, bot]
30 returns array of cell
31 array of wght
32 end for;
33

34 grids := for i in 1, 10
35 returns array of
36 for initial
37 k := (i - 1) * np / 10;
38 ep := k + np / 10;
39 row := array_fill(1, xcell + 1, 0.0d0);
40 rho := array_fill(1, ycell + 1, row)
41 while k < ep repeat
42 k := old k + 1;
43 r := cell[k, 1];
44 c := cell[k, 2];
45 qsw := q * wght[k, 2] * wght[k, 3];
46 qse := q * wght[k, 1] * wght[k, 2];
47 qnw := q * wght[k, 3] * wght[k, 4];
48 qne := q * wght[k, 1] * wght[k, 4];
49 rho := old rho[r, c: old rho[r, c] + qsw;
50 r, c + 1: old rho[r, c + 1] + qse;
51 r + 1, c: old rho[r + 1, c] + qnw;
52 r + 1, c + 1: old rho[r + 1, c + 1] + qne]
53 returns value of rho
54 end for
55 end for;
56

57 rho := for i in 1, ycell + 1 cross j in 1, xcell + 1
58 returns array of
59 for k in 1, 10 returns value of sum grids[k, i, j] end for
60 end for;
61

44

Alexander Asp Bock 2019

62 esp := for initial
63 i := 0;
64 pi := 3.1415926d0;
65 dx2 := xpcell * xpcell;
66 esp := for y in rho at i, j
67 returns array of pi * y * dx2
68 end for
69 while i < 10 repeat
70 i := old i + 1;
71 esp := for y in old esp at i, j
72 w := if j = 1 then 0.0d0
73 else old esp[i, j - 1] end if;
74 n := if i = 1 then 0.0d0
75 else old esp[i - 1, j] end if;
76 e := if j = xcell + 1 then 0.0d0
77 else old esp[i, j + 1] end if;
78 s := if i = ycell + 1 then 0.0d0
79 else old esp[i + 1, j] end if;
80 z := pi * y * dx2 + (w + n + e + s)/4.0d0
81 returns array of z
82 end for
83 returns value of esp
84 end for;
85

86 ax, ay := for k in 1, np
87 i := cell[k, 1];
88 j := cell[k, 2];
89 bot := (esp[i, j] - esp[i, j + 1]) / xpcell;
90 top := (esp[i + 1, j] - esp[i + 1, j + 1]) / xpcell;
91 lft := (esp[i, j] - esp[i + 1, j]) / ypcell;
92 rgt := (esp[i, j + 1] - esp[i + 1, j + 1]) / ypcell;
93 ex := top * wght[k, 4] + bot * wght[k, 2];
94 ey := lft * wght[k, 3] + rgt * wght[k, 1]
95 returns array of ex * q / mass
96 array of ey * q / mass
97 end for;
98

99 vx1, vy1 := for i in 1, np
100 returns array of vxin[i] + ax[i] * dt
101 array of vyin[i] + ay[i] * dt
102 end for;
103

104 x1, y1 := for i in 1, np
105 returns array of xin[i] + vx1[i] * dt
106 array of yin[i] + vy1[i] * dt
107 end for;
108

109 x, vx, y, vy :=
110 for i in 1, np
111 delta := 0.0000000001d0;
112 x, vx := if x1[i] < 0.0d0 then
113 reflect(x1[i], 0.0d0, xmax, -delta), -vx1[i]
114 elseif x1[i] = 0.0d0 then
115 x1[i] + delta, -vx1[i]
116 elseif x1[i] > xmax then
117 reflect(x1[i], xmax, xmax, delta), -vx1[i]

45

Alexander Asp Bock 2019

118 elseif x1[i] = xmax then
119 x1[i] - delta, -vx1[i]
120 else
121 x1[i], vx1[i]
122 end if;
123 y, vy := if y1[i] < 0.0d0 then
124 reflect(y1[i], 0.0d0, ymax, -delta), -vy1[i]
125 elseif y1[i] = 0.0d0 then
126 y1[i] + delta, -vy1[i]
127 elseif y1[i] > ymax then
128 reflect(y1[i], ymax, ymax, delta), -vy1[i]
129 elseif y1[i] = ymax then
130 y1[i] - delta, -vy1[i]
131 else
132 y1[i], vy1[i]
133 end if
134 returns array of x
135 array of vx
136 array of y
137 array of vy
138 end for
139 in
140 x, y, vx, vy
141 end let
142 end function

Listing 22: The particle transport program for simulating the movements
of particles in a cell.

The particle transport function may seem large and complicated, but on
closer examination, we discover that it is essentially a single big function
move that only uses arithmetic and loops, and should therefore be read-
ily expressible in Funcalc. The only hurdle is the array update in lines 36
to 54 that updates a part of the rho array. There is no intrinsic func-
tion in Funcalc that provides this functionality, but we can define our own
function UPDATEARRAY that provides us with this functionality. Refer to
subappendix A.4 for details.

A B
1 =DEFINE("reflect", B7, B2, B3, B4, B5)
2 'x= =0.745425
3 'pivot= =0
4 'xmax= =1
5 'delta= =0.1
6 'frac= =B2-FLOOR(B2/B4, 1)*B4
7 'result= =IF(B6=0, B3-B5, B3-B6)

Sheet 48: The REFLECT function from the SISAL particle transport pro-
gram in Funcalc.

46

Alexander Asp Bock 2019

We now define functions for calculating the cell and wght variables in
lines 18 to 32.

A B
1 =DEFINE("cell", B6, B2, B3, B4, B5)
2 'xin i= =0.5
3 'yin i= =0
4 'xpcell= =1/4
5 'ypcell= =1/4
6 'result= =HCAT(FLOOR(B3/B5+1, 1), FLOOR(B2/B4+1, 1))

Sheet 49: The CELL function from the SISAL particle transport program
in Funcalc which calculates the new cell vector.

A B
1 =DEFINE("wght", B14, B2, B3, B4, B5)
2 'xin i= =0.987245
3 'yin i= =0.24854
4 'xpcell= =1/4
5 'ypcell= =1/4
6 'r row= =B3/B5+1
7 'r col= =B2/B4+1
8 'row= =FLOOR(B6, 1)
9 'col= =FLOOR(B7, 1)
10 'lft= =B7-B9
11 'rht= =1-B10
12 'bot= =B6-B8
13 'top= =1-B12
14 'result= =HCAT(B10, B13, B11, B12)

Sheet 50: The WGHT function which calculates the new weight vector.

Next, we define a function for computing the grid variable in lines 34 to 55.
The loop runs for exactly ten iterations so instead of defining a recursive
function as we would perhaps normally do, we instead use MAP in conjunction
with HSEQ (see subappendix A.5 in appendix A), but first we need a function
for the inner loop that computes the rho array.

47

Alexander Asp Bock 2019

A B
1 =DEFINE("rho", B19, B2, B3, B4, B5, B6)
2 'k= =9
3 'ep= =10
4 'rho= =CONSTARRAY(...)
5 'cell= =HARRAY(...)
6 'wght= =HARRAY(...)
7 'r= =INDEX(INDEX(B5, 1, B2+1), 1, 1)
8 'c= =INDEX(INDEX(B5, 1, B2+1), 1, 2)
9 'qsw= =B18*INDEX(INDEX(B6, 1, B2+1), 1, 2)*INDEX(INDEX(B6,

1, B2+1), 1, 3)
10 'qse= =B18*INDEX(INDEX(B6, 1, B2+1), 1, 1)*INDEX(INDEX(B6,

1, B2+1), 1, 2)
11 'qnw= =B18*INDEX(INDEX(B6, 1, B2+1), 1, 3)*INDEX(INDEX(B6,

1, B2+1), 1, 4)
12 'qne= =B18*INDEX(INDEX(B6, 1, B2+1), 1, 1)*INDEX(INDEX(B6,

1, B2+1), 1, 4)
13 'qsw1= =INDEX(B4, B7, B8)+B9
14 'qse1= =INDEX(B4, B7, B8+1)+B10
15 'qnw1= =INDEX(B4, B7+1, B8)+B11
16 'qne1= =INDEX(B4, B7+1, B8+1)+B12
17 'next rho= =UPDATEARRAY(B4, VCAT(HCAT(B13, B14), HCAT(B15,

B16)), B7, B8)
18 'q= =1
19 'result= =IF(B2+1<B3, RHO(B2+1, B3, B17, B5, B6), B17)

Sheet 51: The RHO function which computes the rho variable.

A B
1 =DEFINE("grids", B11, B2, B3, B4, B5,

B6)
2 'np= =10
3 'xcell= =4
4 'ycell= =4
5 'cell= =HARRAY(...)
6 'wght= =HARRAY(...)
7 'rho= =CONSTARRAY(0, B4+1, B3+1)
8 'ks= =HCAT((1-1)*B2/10, (2-1)*B2/10, ...)
9 'eps= =HCAT(INDEX(B8, 1, 1)+B2/10, INDEX(B8, 1, 2)+B2/10,

...)
10 'fv= =CLOSURE("rho", NA(), NA(), B7, B5, B6)
11 'result= =MAP(B10, B8, B9)

Sheet 52: The GRIDS function for computing the grids variable, imple-
mented using MAP.

The next variable in line 57 is also called rho but is declared in a dif-
ferent scope. It can be implemented elegantly: =MAP(CLOSURE("SUM"),

GRIDS(...)). We only need to wrap the SUM function in a SDF, so that we
can bind it to a closure.

48

Alexander Asp Bock 2019

A B
1 =DEFINE("esp", B9, B2, B3, B4, B5, B6)
2 'i= =1
3 'dx2= =0.25^2
4 'esp= =CONSTARRAY(...)
5 'xcell= =4
6 'ycell= =4
7 'fv= =CLOSURE("newesp", B4, B3, B5, B6, NA(), NA())
8 'new esp= =TABULATE(B7, ROWS(B4), COLUMNS(B4))
9 'result= =IF(B2<10, ESP(B2+1, B3, B8, B5, B6), B8)

Sheet 53: The ESP function for computing the esp variable.

A B
1 =DEFINE("newesp", B12, B2, B3, B4, B5,

B6, B7)
2 'esp= =CONSTARRAY(...)
3 'xcell= =4
4 'ycell= =4
5 'dx2= =0.25^2
6 'r= =5
7 'c= =5
8 'w= =IF(B7=1, 0, INDEX(B2, B6, B7-1))
9 'n= =IF(B6=1, 0, INDEX(B2, B6-1, B7))
10 'e= =IF(B7=B3+1, 0, INDEX(B2, B6, B7+1))
11 's= =IF(B6=B4+1, 0, INDEX(B2, B6+1, B7))
12 'z= =3.1415926*INDEX(B2, B6, B7)*B5+(B8+B9+B10+B11)/4

Sheet 54: The NEWESP helper function for computing the esp variable in
sheet 53.

We also need a function for computing the initial value of esp given in
lines 66 to 68.

A B
1 =DEFINE("esp init", B6, B2, B3, B4, B5)
2 'rho= =CONSTARRAY(...)
3 'dx2= =...
4 'r= =1
5 'c= =1
6 'result= =3.1415926*INDEX(B2, B4, B5)*B3

Sheet 55: The function for calculating the initial value of the esp variable.

We then compute the two acceleration vectors ax and ay. We split the
calculations into two separate calls to MAP.

49

Alexander Asp Bock 2019

A B
1 =DEFINE("ax", B15, B2, B3, B4, B5, B6,

B7)
2 'cell= =CONSTARRAY(...)
3 'wght= =CONSTARRAY(...)
4 'esp= =CONSTARRAY(...)
5 'mass= =1
6 'q= =1
7 'k= =1
8 'i= =INDEX(INDEX(B2, 1, B7), 1, 1)
9 'j= =INDEX(INDEX(B2, 1, B7), 1, 2)
10 'xpcell= =1/4
11 'ypcell= =1/4
12 'bot= =(INDEX(B4, B8, B9)-INDEX(B4, B8, B9+1))/B10
13 'top= =(INDEX(B4, B8+1, B9)-INDEX(B4, B8+1, B9+1))/B10
14 'ex= =B13*INDEX(INDEX(B3, 1, B7), 1,

4)+B12*INDEX(INDEX(B3, 1, B7), 1, 2)
15 'result= =B14*B6/B5

Sheet 56: The AX function for computing the acceleration in the x-direction.

A B
1 =DEFINE("ay", B15, B2, B3, B4, B5, B6,

B7)
2 'cell= =CONSTARRAY(...)
3 'wght= =CONSTARRAY(...)
4 'esp= =CONSTARRAY(...)
5 'mass= =1
6 'q= =1
7 'k= =1
8 'i= =INDEX(INDEX(B2, 1, B7), 1, 1)
9 'j= =INDEX(INDEX(B2, 1, B7), 1, 2)
10 'xpcell= =1/4
11 'ypcell= =1/4
12 'lft= =(INDEX(B4, B8, B9)-INDEX(B4, B8+1, B9))/B11
13 'rgt= =(INDEX(B4, B8, B9+1)-INDEX(B4, B8+1, B9+1))/B11
14 'ey= =B12*INDEX(INDEX(B3, 1, B7), 1,

3)+B13*INDEX(INDEX(B3, 1, B7), 1, 1)
15 'result= =B14*B6/B5

Sheet 57: The AY function for computing the acceleration in the y-direction.

With the acceleration vectors, we can now calculate the velocity and position
vectors. The calculations for the variables vx1, vy1, x1 and y1 are all daxpy
computations (double-precision A · X plus Y) so we can define a common
function for these operations.

50

Alexander Asp Bock 2019

A B
1 =DEFINE("daxpy", B5, B2, B3, B4)
2 'a= =2
3 'x= =5
4 'y= =8
5 'result= =B2*B3+B4

Sheet 58: Function for computing the double-precision variant of a · x+ y.

We can use this function with MAP to compute the vectors, passing in the
right arguments in each case. As for the computation for the cell and weight
vectors, we also opt to split the computations of x, vx, y and vy in lines 109
to 138 to retain the parallel nature of the product-form loop that is used to
perform the calculations. We note that the code for the two dimensions are
identical, so we only need two functions for all four variables.

A B
1 =DEFINE("xy", B5, B2, B3, B4)
2 'xy i= =...
3 'xy max= =...
4 'delta= =1E-10
5 'result= =IF(B2<0, REFLECT(B2, 0, B3, -B4), IF(B2=0, B2+B4,

IF(B2>B3, REFLECT(B2, B3, B3, B4), IF(B2=B3, B2-B4,
B2))))

Sheet 59: A function for calculating the x and y vectors in the particle
transport program.

A B
1 =DEFINE("vxvy", B5, B2, B3, B4)
2 'xy1 i= =...
3 'vxvy1 i= =...
4 'xy max= =1E-10
5 'result= =IF(OR(B2<0, B2=0, B2>B4, B2=B4), -B3, B3)

Sheet 60: A function for calculating the vx and vy vectors in the particle
transport program.

We finally have all the functions we need to define the entire move function
that steps forward in time using a fixed delta and updates the position,
speed and acceleration of all the particles.

A B
1 =DEFINE("move", B34,

B2, B3, B4, B5, B6)
2 'params= =HCAT(10, 4, 4, 0.1, 1, 1, 1, 1)
3 'xin= =HCAT(...)

51

Alexander Asp Bock 2019

4 'yin= =HCAT(...)
5 'vxin= =HCAT(...)
6 'vyin= =HCAT(...)
7 'np= =INDEX(B2, 1, 1)
8 'xcell= =INDEX(B2, 1, 2)
9 'ycell= =INDEX(B2, 1, 3)
10 'dt= =INDEX(B2, 1, 4)
11 'q= =INDEX(B2, 1, 5)
12 'mass= =INDEX(B2, 1, 6)
13 'xmax= =INDEX(B2, 1, 7)
14 'ymax= =INDEX(B2, 1, 8)
15 'xpcell= =B13/B8
16 'ypcell= =B14/B9
17 'cell= =MAP(CLOSURE("cell", NA(), NA(), B15, B16), B3, B4)
18 'wght= =MAP(CLOSURE("wght", NA(), NA(), B15, B16), B3, B4)
19 'grids= =GRIDS(B7, B8, B9, B17, B18)
20 'rho= =RHO(B19)
21 'esp init= =TABULATE(CLOSURE("esp init", B20, B15*B15, NA(),

NA()), ROWS(B20), COLUMNS(B20))
22 'esp= =ESP(1, B15*B15, B21, B8, B9)
23 'ax= =MAP(CLOSURE("ax", B17, B18, B22, B12, B11, NA(),

B15, B16), HSEQ(1, B7, 1)
24 'ay= =MAP(CLOSURE("ay", B17, B18, B22, B12, B11, NA(),

B15, B16), HSEQ(1, B7, 1)
25 'daxpy= =CLOSURE("DAXPY", NA(), B10, NA())
26 'vx1= =MAP(B25, B5, B23)
27 'vy1= =MAP(B25, B4, B24)
28 'x1= =MAP(B25, B3, B26)
29 'y1= =MAP(B25, B4, B27)
30 'x= =MAP(CLOSURE("xy", NA(), B13, 1E-10), B28)
31 'y= =MAP(CLOSURE("xy", NA(), B14, 1E-10), B29)
32 'vx= =MAP(CLOSURE("vxvy", NA(), NA(), B13), B28, B26)
33 'vy= =MAP(CLOSURE("vxvy", NA(), NA(), B14), B29, B27)
34 'result= =HARRAY(B30, B31, B32, B33)

Sheet 61: The MOVE function that updates the positions of the particles.

3.14 Gel Chromatography

1 global LOG(x: double_real returns double_real)
2

3 function RUNKUT(COF1, COF2, COF3, COF4, COF5, COF6, RATIO: double_real;
4 LN: array[array[double_real]]; N: integer
5 returns array[array[double_real]])
6 let
7 rc1, rc2, rc3, rc4, rc5 :=
8 for J in 2, N
9 CLI := LN[1, J];

52

Alexander Asp Bock 2019

10 CMI := LN[2, J];
11 CMLI := LN[3, J];
12 CML2I := LN[4, J];
13 CML2ISOI := LN[5, J];
14 RKK1 := COF1 * CMI * CLI + COF2 * CMLI;
15 RKL1 := -(RKK1 + COF3 * CMLI * CLI + COF4 * CML2I);
16 RKP1 := RATIO * (RKK1 + RKK1 + RKL1);
17 RKM1 := COF5 * CML2I + COF6 * CML2ISOI;
18 RKN1 := -(RKK1 + RKL1 + RKM1);
19 U := CLI + 0.5D0 * RKP1;
20 W := CML2I + 0.5D0 * RKN1;
21 XX := CMLI + 0.5D0 * RKL1;
22 RKK2 := COF1 * (CMI + 0.5D0 * RKK1) * U + COF2 * XX;
23 RKL2 := -(RKK2 + COF3 * XX * U + COF4 * W);
24 RKP2 := RATIO * (RKK2 + RKK2 + RKL2);
25 RKM2 := COF5 * W + COF6 * (CML2ISOI + 0.5D0 * RKM1);
26 RKN2 := -(RKK2 + RKL2 + RKM2);
27 VV := CLI + 0.5D0 * RKP2;
28 Y := CMLI + 0.5D0 * RKL2;
29 Z := CML2I + 0.5D0 * RKN2;
30 RKK3 := COF1 * (CMI + 0.5D0 * RKK2) * VV + COF2 * Y;
31 RKL3 := -(RKK3 + COF3 * Y * VV + COF4 * Z);
32 RKP3 := RATIO * (RKK3 + RKK3 + RKL3);
33 RKM3 := COF5 * Z + COF6 * (CML2ISOI + 0.5D0 * RKM2);
34 RKN3 := -(RKK3 + RKL3 + RKM3);
35 R := CLI + RKP3;
36 S := CMLI + RKL3;
37 T := CML2I + RKN3;
38 RKK4 := COF1 * (CMI + RKK3) * R + COF2 * S;
39 RKL4 := -(RKK4 + COF3 * S * R + COF4 * T);
40 RKP4 := RATIO * (RKK4 + RKK4 + RKL4);
41 RKM4 := COF5 * T + COF6 * (CML2ISOI + RKM3);
42 RKN4 := -(RKK4 + RKL4 + RKM4);
43 DELK := (RKK1 + RKK2 + RKK2 + RKK3 + RKK3 + RKK4) / 6.0D0;
44 DELL := (RKL1 + RKL2 + RKL2 + RKL3 + RKL3 + RKL4) / 6.0D0;
45 DELM := (RKM1 + RKM2 + RKM2 + RKM3 + RKM3 + RKM4) / 6.0D0;
46 v1 := CLI + RATIO * (DELK + DELK + DELL);
47 v2 := CMI + DELK;
48 v3 := CMLI + DELL;
49 v4 := CML2I - (DELK + DELL + DELM);
50 v5 := CML2ISOI + DELM;
51 returns array of v1
52 array of v2
53 array of v3
54 array of v4
55 array of v5
56 end for;
57 r1 := array_addl(rc1, 0.0D0);
58 r2 := array_addl(rc2, 0.0D0);
59 r3 := array_addl(rc3, 0.0D0);
60 r4 := array_addl(rc4, 0.0D0);
61 r5 := array_addl(rc5, 0.0D0);
62 in
63 array [1: r1, r2, r3, r4, r5]
64 end let
65 end function

53

Alexander Asp Bock 2019

66

67 function RENUM(NP: integer;
68 LN: array[array[double_real]];
69 N, I, IELUTE: integer;
70 VSEG: double_real;
71 CELUTE: array[array[double_real]]
72 returns array[array[double_real]], double_real)
73 let
74 K := I / IELUTE;
75 VOL := double_real(K) * VSEG;
76 CELUTE_1 := CELUTE[1, K: LN[1, N];
77 2, K: LN[2, N];
78 3, K: LN[3, N];
79 4, K: LN[4, N];
80 5, K: LN[5, N]];
81 in
82 CELUTE_1, VOL
83 end let
84 end function
85

86 function OUT(LN: array[array[double_real]]; N: integer; VOL: double_real; KELUTE:
integer;,!

87 VSEG, F: double_real; CELUTE: array[array[double_real]]
88 returns double_real, array[double_real], array[double_real],

double_real, double_real,,!
89 double_real, double_real, double_real, double_real,

double_real, integer,,!
90 double_real, double_real, double_real)
91 let CTL,
92 CTM := for J in 1, KELUTE
93 CTL := CELUTE[1, J] + CELUTE[3, J] + CELUTE[4, J] +
94 CELUTE[4, J] + CELUTE[5, J] + CELUTE[5, J];
95 CTM := CELUTE[2, J] + CELUTE[3, J] + CELUTE[4, J] +
96 CELUTE[5, J];
97 returns array of CTL
98 array of CTM
99 end for;

100 TOTM,
101 TOTML,
102 TOTML2,
103 TOTML2I := for J in 1, KELUTE
104 returns value of sum CELUTE[2, J]
105 value of sum CELUTE[3, J]
106 value of sum CELUTE[4, J]
107 value of sum CELUTE[5, J]
108 end for;
109 TOT := TOTM + TOTML + TOTML2 + TOTML2I;
110 TOTMA := 1.554870369D-05 * 0.486D0;
111 PERML,
112 JSTOR,
113 STOR,
114 PERCENT,
115 HL := if (TOT = 0.0D0) then
116 0.0D0, 0, 0.0D0, 0.0D0, 0.0D0
117 else
118 let

54

Alexander Asp Bock 2019

119 PERML := 100.0D0 * (TOTML + TOTML2 + TOTML2I) / TOT;
120 STOR,
121 JSTOR := for initial
122 STOR := CTL[915];
123 JSTOR := 915;
124 J := 915;
125 while (J <= 1190) repeat
126 J := old J + 1;
127 STOR,
128 JSTOR := if (old STOR < CTL[old J]) then
129 old STOR, old JSTOR
130 else
131 CTL[old J], old J
132 end if;
133 returns value of STOR
134 value of JSTOR
135 end for;
136 TOT1 := for J in 1, KELUTE
137 returns value of sum CTL[J]
138 end for;
139 TOT2 := for J in 1, JSTOR
140 returns value of sum CTL[J]
141 end for;
142 PERCENT := 100.0D0 * TOT2 / TOT1;
143 HL := -LOG(2.0D0) * double_real(JSTOR) *
144 0.016D0 / (F * LOG(PERCENT / 18.02233D0));
145 in
146 PERML, JSTOR, STOR, PERCENT, HL
147 end let
148 end if;
149 in
150 VOL, CTM, CTL, TOTM, TOTML, TOTML2, TOTML2I, TOT, PERML, TOTMA,
151 JSTOR, STOR, PERCENT, HL
152 end let
153 end function
154

155 function FILLUP(N: integer; DX: double_real; KELUTE: integer; VSEG: double_real;
156 NSEG: integer; GZERO: array[double_real]
157 returns array[double_real], array[array[double_real]],
158 array[array[double_real]], array[double_real])
159 let
160 X_c := for J in 2, N
161 returns array of double_real(J - 1) * DX
162 end for;
163 X := array_addl(X_c, 0.0D0);
164 V := for J in 1, KELUTE
165 returns array of double_real(J) * VSEG
166 end for;
167 C := for M in 1, 5
168 Cr := array_fill(2, NSEG, GZERO[M]) ||
169 array_fill(NSEG + 1, N, 0.0D0);
170 returns array of array_addl(Cr, 0.0D0)
171 end for;
172 CELUTE := for I in 1, 5 cross J in 1, KELUTE
173 returns array of 0.0D0
174 end for;

55

Alexander Asp Bock 2019

175 in
176 X, C, CELUTE, V
177 end let
178 end function

Listing 23: The gel chromatography program for simulating observed elu-
tion patterns of proteins and ligands in a column of gel.

Like the particle transport program, the gel chromatography program con-
sists only of arithmetic and loops. Due to the lenghty functions in this
program, we have opted to move the SDFs to a separate appendix for the
interested reader. We begin by defining the RUNKUT function.

A B
1 =DEFINE("runkut", B17, B2, B3, B4, B5,

B6, B7, B8, B9)
2 'cof1= =1
3 'cof2= =2
4 'cof3= =3
5 'cof4= =4
6 'cof5= =5
7 'cof6= =6
8 'ratio= =0.0005
9 'ln= =VARRAY(...)
10 'n= =3
11 '?= =RUNKUT HELPER(2, B10, HARRAY(B2, B3, B4, B5, B6,

B7), B9, B8, CONSTARRAY(HARRAY(), 1, 5))
12 'rc1= =INDEX(B11, 1, 1)
13 'rc2= =INDEX(B11, 1, 2)
14 'rc3= =INDEX(B11, 1, 3)
15 'rc4= =INDEX(B11, 1, 4)
16 'rc5= =INDEX(B11, 1, 5)
17 'result= =HARRAY(HCAT(0, B12), HCAT(0, B13), HCAT(0, B14),

HCAT(0, B15), HCAT(0, B16))

Sheet 62: The RUNKUT function from the SISAL gel chromatography pro-
gram in Funcalc.

In cell B11 of sheet 62, we use a helper function for calculating the many
computations given in lines 9–50. This function is given below.

A B
1 =DEFINE("runkut helper", B61, B2,

B3, B4, B5, B6, B7)
2 'j= =2
3 'n= =4
4 'coefficients= =HARRAY(...)
5 'ln= =VARRAY(...)
6 'ratio= =0.0005

56

Alexander Asp Bock 2019

7 'v accs= =HARRAY(HARRAY(), ...)
8 'cof1= =INDEX(B4, 1, 1)
9 'cof2= =INDEX(B4, 1, 2)
10 'cof3= =INDEX(B4, 1, 3)
11 'cof4= =INDEX(B4, 1, 4)
12 'cof5= =INDEX(B4, 1, 5)
13 'cof6= =INDEX(B4, 1, 6)
14 'cli= =INDEX(INDEX(B5, 1, 1), 1, B2)
15 'cmi= =INDEX(INDEX(B5, 2, 1), 1, B2)
16 'cmli= =INDEX(INDEX(B5, 3, 1), 1, B2)
17 'cml2i= =INDEX(INDEX(B5, 4, 1), 1, B2)
18 'cml2isoi= =INDEX(INDEX(B5, 5, 1), 1, B2)
19 'rkk1= =B8*B15*B14+B9*B16
20 'rkl1= =-(B19+B10*B16*B14+B14*B17)
21 'rkp1= =B6*(B19+B19+B20)
22 'rkm1= =B12*B17+B13*B18
23 'rkn1= =-(B19+B20+B22)
24 'u= =B14+0.5*B21
25 'w= =B17+0.5*B23
26 'xx= =B16+0.5*B20
27 'rkk2= =B8*(B15+0.5*B19)*B24+B9*B26
28 'rkl2= =-(B27+B10*B26*B24+B11*B25)
29 'rkp2= =B6*(B27+B27+B28)
30 'rkm2= =B12*B25+B13*(B18+0.5*B22)
31 'rkn2= =-(B27+B28+B30)
32 'vv= =B14+0.5*B29
33 'y= =B16+0.5*B28
34 'z= =B17+0.5*B31
35 'rkk3= =B8*(B15+0.5*B27)*B32+B9*B33
36 'rkl3= =-(B35+B10*B33*B32+B11*B34)
37 'rkp3= =B6*(B35+B35+B36)
38 'rkm3= =B12*B34+B13*(B18+0.5*B30)
39 'rkn3= =-(B35+B36+B38)
40 'r= =B14+B37
41 's= =B16+B36
42 't= =B17+B39
43 'rkk4= =B8*(B15+B35)*B40+B9*B41
44 'rkl4= =-(B43+B10*B41*B40+B11*B42)
45 'rkp4= =B6*(B43+B43+B44)
46 'rkm4= =B12*B42+B13*(B18+B38)
47 'rkn4= =-(B43+B44+B46)
48 'delk= =(B19+B27+B27+B35+B35+B43)/6.0
49 'dell= =(B20+B28+B28+B36+B36+B44)/6.0
50 'delm= =(B22+B30+B30+B38+B38+B46)/6.0
51 'v1= =B14+B6*(B48+B48+B49)
52 'v2= =B15+B48
53 'v3= =B16+B49
54 'v4= =B17-(B48+B49+B50)
55 'v5= =B18+B50
56 'v1 acc= =INDEX(B7, 1, 1)
57 'v2 acc= =INDEX(B7, 1, 2)
58 'v3 acc= =INDEX(B7, 1, 3)
59 'v4 acc= =INDEX(B7, 1, 4)

57

Alexander Asp Bock 2019

60 'v5 acc= =INDEX(B7, 1, 5)
61 'result= =IF(B2>B3, HARRAY(B56, B57, B58, B59,

B60), RUNKUT HELPER(B2+1, B3, B4, B5, B6,
HARRAY(HCAT(B56, B51), HCAT(B57, B52),
HCAT(B58, B53), HCAT(B59, B54), HCAT(B60,
B55))))

Sheet 63: The recursive RUNKUT HELPER SDF which calculates the long list
of computations in lines 9–50.

A B
1 =DEFINE("renum", B11, B2, B3, B4,

B5, B6, B7)
2 'ln= =VARRAY(...)
3 'n= =...
4 'i= =...
5 'ielute= =...
6 'vseg= =...
7 'celute= =CONSTARRAY(...)
8 'k= =MAX(FLOOR(B4/B5, 1)
9 'vol= =B8*B6
10 'celute 1= =UPDATEARRAY(B7, SLICE(B2, 1, B3,

ROWS(B2), B3), 1, B8)
11 'result= =HARRAY(B10, B9)

Sheet 64: The RENUM function in Funcalc. See appendix A for the definition
of UPDATEARRAY.

58

Alexander Asp Bock 2019

A B
1 =DEFINE("fillup", B18, B2,

B3, B4, B5, B6, B7)
2 'n= =...
3 'dx= =...
4 'kelute= =...
5 'vseg= =...
6 'nseg= =...
7 'gzero= =...
8 'x c= =TABULATE(CLOSURE("j dx", B3, NA(), NA()), 1,

B2-1)
9 'x= =HCAT(0, B8)
10 'v= =TABULATE(CLOSURE("j vseg", B5, NA(), NA()), 1,

B4)
11 'ctemp1= =HCAT(0, CONSTARRAY(INDEX(B7, 1, 1), 1,

B6-2+1), CONSTARRAY(0, 1, B6+1))
12 'ctemp2= =HCAT(0, CONSTARRAY(INDEX(B7, 1, 2), 1,

B6-2+1), CONSTARRAY(0, 1, B6+1))
13 'ctemp3= =HCAT(0, CONSTARRAY(INDEX(B7, 1, 3), 1,

B6-2+1), CONSTARRAY(0, 1, B6+1))
14 'ctemp4= =HCAT(0, CONSTARRAY(INDEX(B7, 1, 4), 1,

B6-2+1), CONSTARRAY(0, 1, B6+1))
15 'ctemp5= =HCAT(0, CONSTARRAY(INDEX(B7, 1, 5), 1,

B6-2+1), CONSTARRAY(0, 1, B6+1))
16 'c= =HARRAY(B11, B12, B13, B14, B15)
17 'celute= =CONSTARRAY(0, 5, B4)
18 'result= =HARRAY(B9, B16, B17, B10)

Sheet 65: The FILLUP SDF in Funcalc.

We now define the auxiliary functions j dx and j vseg that calculate the
multiplication of variables v and x c in lines 160 to 166.

A B
1 =DEFINE("j dx", B5, B2, B3, B4)
2 'dx= =...
3 'r= =...
4 'c= =...
5 'result= =B4*B2

Sheet 66: The J DX auxiliary function.

A B
1 =DEFINE("j vseg", B5, B2, B3, B4)
2 'dx= =82.824
3 'r= =1
4 'c= =1
5 'result= =B4*B2

Sheet 67: The J VSEG auxiliary function.

59

Alexander Asp Bock 2019

A B
1 =DEFINE("out", B24, B2, B3, B4, B5, B6, B7)
2 'ln= =VARRAY(...)
3 'n= =3
4 'vol= =4.56465
5 'kelute= =1200
6 'vseg= =7.42524
7 'f= =1.4254
8 'celute= =CONSTARRAY(...)
9 'ctl= =CTL HELPER(1, B5, B8, HARRAY())
10 'ctm= =CTM HELPER(1, B5, B8, HARRAY())
11 'totm= =SUM(SLICE(B8, 2, 1, 2, B5))
12 'totml= =SUM(SLICE(B8, 3, 1, 3, B5))
13 'totml2= =SUM(SLICE(B8, 4, 1, 4, B5))
14 'totml2i= =SUM(SLICE(B8, 5, 1, 5, B5))
15 'tot= =B11+B12+B13+B14
16 'totma= =1.554870369E-05*0.486
17 'perml= =IF(B15=0, 0, 100*(B12+B13+B14)/B15)
18 'jstor= =IF(B15=0, 0, INDEXMAX(SLICE(B9, 1, 915,

1, 1190))+914)
19 'stor= =IF(B15=0, 0, INDEX(B9, 1, B17))
20 'percent= =IF(B15=0, 0, 100*B22/B21)
21 'hl= =IF(B15=0, 0, -LOG10(2)*B17*0.016/

(B7*LOG10(B19/18.02233)))
22 'tot1= =SUM(B9)
23 'tot2= =SUM(SLICE(B9, 1, 1, 1, B17))
24 'result= =HARRAY(B4, B10, B9, B11, B12, B13, B14,

B15, B16, B17, B18, B19, B20, B21)

Sheet 68: The OUT main SDF in the gel chromatography program.

Finally, we define the two helper functions that we use to calculate ctl and
ctm variables in cells B9 and B10 of sheet 68. Note that we use the INDEXMAX
function which does the same as INDEXMIN from section 3.6 but finds the
index for the greatest element.

A B
1 =DEFINE("ctl helper", B6, B2, B3,

B4, B5)
2 'j= =1
3 'kelute= =5
4 'celute= =CONSTARRAY(...)
5 'acc= =HARRAY()
6 'result= =IF(B2<=B3, CTL HELPER(B2+1, B3, B4, HCAT(B5,

INDEX(B4, 1, B2)+INDEX(B4, 3, B2)+INDEX(B4, 4,
B2)*2+INDEX(B4, 5, B2))), B5)

Sheet 69: The CTL HELPER helper function.

60

Alexander Asp Bock 2019

A B
1 =DEFINE("ctm helper", B6, B2,

B3, B4, B5)
2 'j= =1
3 'kelute= =5
4 'celute= =CONSTARRAY(...)
5 'acc= =HARRAY()
6 'result= =IF(B2<=B3, CTM HELPER(B2+1, B3, B4, HCAT(B5,

INDEX(B4, 2, B2)+INDEX(B4, 3, B2)+INDEX(B4, 4,
B2)+INDEX(B4, 5, B2))), B5)

Sheet 70: The CTM HELPER helper function.

4 Conclusion and Future Work

We conclude this report by discussing and summarising the expressiveness
of Funcalc and suggesting directions for future work.

4.1 Funcalc Expressiveness

We can safely conclude that Funcalc is a very expressive language despite the
relatively small number of built-in functions available in the current version
as of this writing (last update on October 5th, 2016) and its lack of some of
the benefits of contemporary functional languages, which is largely remedied
by SDFs. In only a small number of cases did we need to define our own
utility functions in Funcalc such as UPDATEARRAY (see subappendix A.4).
One reason is perhaps that both SISAL and Funcalc were developed to han-
dle computation while having di↵erent computational paradigms: SISAL
was built for high-performance scientific computing as a functional replace-
ment or alternative for the then dominant Fortran language, while Funcalc
was built predominantly to demonstrate that SDFs can be e�cient and ex-
pressive tools for computations in spreadsheets. In the next paragraphs, we
briefly reiterate cases where Funcalc could elegantly express SISAL programs
and some of the limitations we encountered.

Records and unions were not readily expressible in Funcalc without some
trickery. As described in section 2.1.4 and section 2.1.5, we can emulate both
of the structures using arrays of data and some supporting SDFs, but we
are sceptical about their usefulness in real-world spreadsheets. Streams were
not expressible either because Funcalc is eager, but we could perhaps use
closures as thunks to delay computation. This is not likely a useful tool for
end-users in general. Programs like the Sieve of Eratosthenes would benefit

61

Alexander Asp Bock 2019

greatly from laziness to avoid generate huge arrays where a large part of
them are subsequently filtered away. Although we encountered some initial
problems with manipulating arrays, like array concatenation in section 3.11
and updating part of an array in section 3.13, we managed to express these
constructs anyway, albeit in a less e�cient manner.

Still one cannot help but envy the conveniences of modern functional pro-
gramming languages. Suggestions for some of these limitations are given in
the next section and attempt to take into consideration that the target audi-
ence of Funcalc are end-users that usually do not have any formal computer
science training, so we cannot simply implement sophisticated features from
the functional programming world without taking this into account [10].

4.2 Directions For Future Work

The following bullet points summarise suggestions for future work that were
conceived during the writing of this report, and in particular the SDFs of
section 3.

I Funcalc would benefit from functions to traverse single-row or single-
column arrays like lists in functional languages. At the moment one
can use recursion as a looping construct, but this presents some prob-
lems:

1. Recursively shortening the array using slicing requires a reliable,
and preferably fast, way of testing if the array is empty which is
also invariant to the orientation of the input. While we can use
ROWS and COLUMNS as we did in section 3.7, we still need to know
beforehand if we are working with a row or a column, although
we could check both. An EMPTY function can be defined as a SDF
(see appendix A)

2. Passing the array directly and using an index is fine, but requires
two separate functions for the horizontal and vertical directions,
or some of trickery to have a single function work for both direc-
tions.

3. One can just use TRANSPOSE for creating the vertical or horizontal
counterpart, but this requires either that the user remembers to
use TRANSPOSE or that we define two functions for every case:
One “real” function and a transposed counterpart for the other

62

Alexander Asp Bock 2019

direction which will take a performance hit.

I Readability would be improved if instead of CLOSURE("MY FUNC"), we
could instead simply write MY FUNC or "MY FUNC". The type system
could ensure that the syntax desugaring only happens when the argu-
ment is expected to be a function value.

I ROWMAP and COLMAP should accept a function value that takes a single
row/column as argument for scalability and maintainability, instead of
a function that takes as many arguments as there are elements in the
row or column. In their current state, they require end-users to know
the exact number of arguments for the function. We also sacrifice
generality as a given function can only be used for a specific number
of arguments. The updated functions would be able to express the
same as what they can express in their current state.

I Anonymous function closures would be very beneficial in Funcalc. As
an example, take the function =MAP(CLOSURE("MULT3 ADD2 COS"),

array) which for each element multiplies by 3, adds 2 and then applies
the cosine function to the result. Normally one would need to define a
new SDF which may only be used once. We encountered this multiple
times when translating the SISAL programs. Instead, one could use
some hypothetical syntax for anonymous functions, e.g. =MAP(COS(@1
* 3 + 2), array), where @1 refers to the elements in the input ar-
ray. For multiple arguments, one would use @2, @3, etc. while @* could
perhaps refer to all the arguments packaged as an array. Notice that
we are assuming that we can omit the CLOSURE function as previously
described. The anonymous function should be cached with its expres-
sion for reuse when a similar expression is given for an argument that
requires a function value. Current work is being conducted in order to
identity this proposal’s viability and possible challenges.

I We have repeatedly encountered the following pattern: Perform some
computations for some number i until some other number n where
i < n incrementing i after each round of computation. The solution
has been a recursive function, but perhaps more elegant solutions exist
such as a function taking a predicate which is tested on each iteration.

I There are currently no tools for debugging in general or debugging
recursive SDFs. This makes the process cumbersome and error-prone.
As evident from section 3, Funcalc programs with several intricate
loops can quickly become unwieldy requiring extra care from the user

63

Alexander Asp Bock 2019

to ensure correctness and avoid infinite loops, even if infinite recursion
was guarded. For example, a debugging tool for stepping through the
execution of an SDF would be very useful.

I The highlighting of intermediate calculations in a SDF helped uncover
unused variables. In the RUNKUT HELPER function, variables RKN4, RKP4
and RKN4 are not used and in the RENUM function in the gel chromatog-
raphy program (section 3.14), the parameter NP is not used either (in
fact, the RENUM function itself is not even used).

I The generalised MAP function is very useful as it also acts as a zip
function for multiple arguments. The function argument to MAP must
accept as many arguments as there are arrays in the subsequent argu-
ments. This requirement degrades the general practicality of the MAP

function and indeed any other function that uses the same approach
like ROWMAP and COLMAP. Consider using MAP for computing some val-
ues of n arrays. We assume the existence of a function FUNC that takes
exactly n arguments. The call then becomes MAP(CLOSURE("FUNC"),
array1, ..., arrayn). Should n ever need to change, we must de-
fine a new function that takes that number of arguments instead, even
though the two functions do the same form of computation. Clearly,
this is not scalable. Instead, one solution would be that MAP passes
an array of n arguments to the function closure. This does require
that the function value can handle an arbitrary number of arguments.
Functions that need to operate on individual elements are still possi-
ble since we can extract the elements of the array using INDEX at the
expense of multiple calls to INDEX that may worsen readability.

I Array formulas would be useful tools in SDFs. They would allow for
result unpacking as explained in section 2.4, however using arrays and
indexing works as well.

I It would interesting to find a minimal set of functions that can imple-
ment all the functions in Excel for example, or to verify whether the
current set of intrinsic functions in Funcalc is minimal in this regard.

I Similar to how one can view all formulas in a spreadsheet using a
formula view, it would very convenient to have a variable view for
function sheets where cell references are replaced by the variable names
that appear on the left side of the computations of a SDF. This would
greatly aid debugging as it is easier to refer to named variables than cell
references which can be a source of o↵-by-one errors where an incorrect

64

Alexander Asp Bock 2019

cell is referenced. It can also lead to infinite loops. In this report, we
have kept variable names on the left side of the values, but this was just
a convention we chose arbitrarily. Others may feel it is more natural
to use a horizontal layout where the variable names appear above the
values. This complicates finding the mapping between variable names
and values, and more work is needed to find strategies for making the
view as reliable as the formula view.

I We often encountered a situation where we needed to compute a value
by having a initial value then passing it to a function. The result of
that function application is then given as input to the same functions
and so on as in f

3(x) = f(f(f(x))). We cannot use MAP in this case as
the each computation depends on the previous computation. Instead,
this could be abstracted into a recursive function called SEQUENCE or
CHAIN that applies a function to a starting value n times. This would
obviate the need for continuously defining recursive functions which
do the same computations but with di↵erent functions. An implemen-
tation is given in subappendix A.8.

65

Alexander Asp Bock 2019

References

[1] David C. Cann. SISAL 1.2: A Brief Introduction and Tutorial. Lawrence
Livermore National Laboratory.

[2] Peter Sestoft. “Corecalc and Funcalc Spreadsheet Technology in C#”.
In: (2014). url: http://www.itu.dk/people/sestoft/funcalc/
(visited on 10/12/2016).

[3] Peter Sestoft. Spreadsheet Implementation Technology. The MIT Press,
2014. isbn: 9780262526647.

[4] James McGraw et al. SISAL: Streams and Iteration in a Single As-
signment Language, Language Referece Manual. Tech. rep. Version 1.2.
Lawrence Livermore National Laboratory, Mar. 1, 1985.

[5] D. C. Cann et al. SISAL Reference Manual: Language Version 2.0.
Lawrence Livermore National Laboratory, 1992.

[6] Victor N. Kasyanov and Alexander P. Stasenko. “A Functional Pro-
gramming System SFP: Sisal 3.1 Language Structures Decomposi-
tion”. In: Parallel Computing Technologies: 9th International Confer-
ence, PaCT 2007, Pereslavl-Zalessky, Russia, September 3-7, 2007.
Proceedings. Ed. by Victor Malyshkin. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 62–73. isbn: 978-3-540-73940-1. doi: 10.
1007/978-3-540-73940-1_6. url: http://dx.doi.org/10.1007/
978-3-540-73940-1_6.

[7] Project CROAP. Sisal. url: http://www-sop.inria.fr/croap/
transllprog/subsection3_3_3.html (visited on 11/02/2016).

[8] J. Hughes. “Why Functional Programming Matters”. In: Comput. J.
32.2 (Apr. 1989), pp. 98–107. issn: 0010-4620. doi: 10.1093/comjnl/
32.2.98. url: http://dx.doi.org/10.1093/comjnl/32.2.98.

[9] Zhenjiang Hu, John Hughes, and Meng Wang. “How Functional Pro-
gramming Mattered”. In: National Science Review (2015). doi: 10.
1093 / nsr / nwv042. eprint: http : / / nsr . oxfordjournals . org /

content/early/2015/07/13/nsr.nwv042.full.pdf+html. url:
http://nsr.oxfordjournals.org/content/early/2015/07/13/

nsr.nwv042.abstract.

66

http://www.itu.dk/people/sestoft/funcalc/
http://dx.doi.org/10.1007/978-3-540-73940-1_6
http://dx.doi.org/10.1007/978-3-540-73940-1_6
http://dx.doi.org/10.1007/978-3-540-73940-1_6
http://dx.doi.org/10.1007/978-3-540-73940-1_6
http://www-sop.inria.fr/croap/transllprog/subsection3_3_3.html
http://www-sop.inria.fr/croap/transllprog/subsection3_3_3.html
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/nsr/nwv042
http://dx.doi.org/10.1093/nsr/nwv042
http://nsr.oxfordjournals.org/content/early/2015/07/13/nsr.nwv042.full.pdf+html
http://nsr.oxfordjournals.org/content/early/2015/07/13/nsr.nwv042.full.pdf+html
http://nsr.oxfordjournals.org/content/early/2015/07/13/nsr.nwv042.abstract
http://nsr.oxfordjournals.org/content/early/2015/07/13/nsr.nwv042.abstract

Alexander Asp Bock 2019

[10] Simon Peyton-Jones, Alan Blackwell, and Margaret Burnett. “A User-
centred Approach to Functions in Excel”. In: Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Program-
ming. ICFP ’03. New York, NY, USA: ACM, 2003, pp. 165–176. isbn:
1-58113-756-7. doi: 10.1145/944705.944721. url: http://doi.acm.
org/10.1145/944705.944721.

List of Spreadsheets

1 A table of records for persons and their age in Funcalc. . . . 4
2 Auxiliary SDF for VLOOKUPX 5
3 Variant of VLOOKUP for exact matches 6
4 Unpacking results of an SDF using an array formula 12
5 Computing the factorial using recursion in Funcalc. 15
6 Helper function for matrix multiplication 17
7 Main matrix multiplication function. 17
8 Transposing a single matrix element 18
9 Transposing a matrix using TABULATE 18
10 The helper function for sequentially approximating ⇡. 19
11 SDF for sequentially approximating ⇡. 20
12 Helper function for approximating ⇡ in parallel. 20
13 Funcalc function for estimating ⇡ in parallel. 20
14 Computing the reciprocal of a number. 21
15 Computing statistics of an array 21
16 The INDEXMIN HELPER function. 22
17 The INDEXMIN function. 23
18 Comparing two tuples of elements and their indices. 23
19 The INDEXMIN PAR SDF . 24
20 Filtering an array using a tail-recursive function 26
21 The tail-recursive PRIMES helper function in Funcalc. 26
22 Function for generating the primes. 27
23 A helper function for recursively counting words in a string. . 28
24 The Isec function from the Batcher sort algorithm. 30
25 Computing new elements of C in Batcher sort 31
26 The recursive B LOOP function for Batcher sort. 31
27 Batcher sort recursive helper function. 32
28 The main Batcher sort function. 32
29 Gauss reduction of the A matrix. 33
30 Gauss reduction of the B matrix. 34

67

http://dx.doi.org/10.1145/944705.944721
http://doi.acm.org/10.1145/944705.944721
http://doi.acm.org/10.1145/944705.944721

Alexander Asp Bock 2019

31 The recursive Gauss reduction helper function. 34
32 The main Gauss reduction function. 34
33 The RANF MOD MULT function from the random package. . . . 37
34 The RANF function from the random package. 38
35 The RANF K function from the random package. 38
36 Recursively generating a bitarray 38
37 The BITARRAY function for generating a bitarray. 38
38 The RANF K BINARY function from the random package. . . . 39
39 The RANF A TO K function in the random package 39
40 The RANF A TO K HELPER function in the random package. . . 39
41 The RANS HELPER function from the random package. 40
42 The RANS function in the random package. 40
43 Appending 1d arrays to 2d arrays 41
44 Examining a cell’s neighbours in the Game of Life 42
45 Updating a cell in Conway’s Game of Life. 43
46 The recursive helper function for Conway’s Game of Life. . . 43
47 The main SDF for Conway’s Game of Life 43
48 The REFLECT SDF . 46
49 The CELL SDF from the SISAL particle transport. 47
50 The WGHT function. 47
51 The RHO function. 48
52 The GRIDS function. 48
53 The ESP function. 49
54 The NEWESP helper function. 49
55 SDF for calculating the initial value of the esp variable . . . 49
56 SDF for computing the acceleration in the x-direction 50
57 SDF for computing the acceleration in the y-direction 50
58 Double-precision variant of a · x+ y 51
59 Calculating the x and y vectors 51
60 Calculating the vx and vy vectors 51
61 The MOVE SDF updates the positions of the particles 52
62 The RUNKUT SDF from the gel chromatography program . . . 56
63 Recursive RUNKUT HELPER SDF 58
64 The RENUM function in Funcalc. 58
65 The FILLUP SDF in Funcalc. 59
66 The J DX auxiliary function. 59
67 The J VSEG auxiliary function. 59
68 The OUT main SDF in the gel chromatography program. . . . 60
69 The CTL HELPER helper function. 60
70 The CTM HELPER helper function. 61

68

Alexander Asp Bock 2019

71 Extended version of MAP which also operates on indices 71
72 More e�cient, tail-recursive factorial function. 71
73 Defining the SUMPRODUCT SDF 72
74 Helper function for updating part of an array. 72
75 SDF for returning a modified copy of an existing array. 72
76 Recursive SDF for creating a range of values with a step value 73
77 Test if a character is whitespace or not by calling C#. 73
78 Indexing a string in Funcalc using C#. 73
79 Call a function at each position in a call to TABULATE 74
80 SDF for creating an array using a nullary function. 74
81 SDF for applying a function n times to an initial value 74

List of Tables

1 List of all intrinsic SISAL functions with Funcalc equivalents 13

List of Listings

1 Various ways of indexing and modifying arrays in SISAL. . . 3
2 Enumerated and recursive types in SISAL 6
3 Using let bindings in SISAL 7
4 Example of a non-product, sequential loop in SISAL. 8
5 Computing the sum of the pairwise additions of two sequences 9
6 Enumerating the elements and their indices in SISAL 9
7 The factorial function in SISAL. 15
8 Computing the sum of products of two arrays 16
9 Matrix multiplication in SISAL. 16
10 Matrix transposition in SISAL. 18
11 Sequential program for calculating the approximation of ⇡. . 19
12 Parallel approximation of ⇡ in SISAL. 20
13 Calculating statistics of an array 21
14 Sequentially finding the index of a minimal element 22
15 Finding the index of a minimal element in parallel 23
16 Sieve of Eratosthenes in SISAL. 25
17 Counting the number of words in a sentence in SISAL. 27
18 The Bacther sort algorithm in SISAL. 30
19 Gaussian elimination on matrices in SISAL. 33
20 A random number package written in SISAL. 37

69

Alexander Asp Bock 2019

21 Updating the cells in Conway’s Game of Life in SISAL. . . . 42
22 Simulating the movements of particles in a cell 46
23 Simulating elution patterns in a gel 56

70

Alexander Asp Bock 2019

Appendices

Appendix A: Auxiliary Functions

This appendix contains the Funcalc auxiliary helper SDFs used in some of
the example programs in section 3.

A.1: IMAP

A B
1 =DEFINE("imap", B4, B2, B3)
2 'fv= =...
3 'array= =...
4 'result= =MAP(B3, HSEQ())

Sheet 71: An extended version of the MAP function which also passes the
one-based index of the current element to the argument closure which has
to be a binary function, accepting the index as its first argument and the
element as the second. As it is not possible to specify variadic functions
in Funcalc without constructing a built-in function, IMAP only maps over a
single array.

A.2: Tail-Recursive Factorial Function

A B
1 =DEFINE("factorial", B4, B2, B3)
2 'n= =...
3 'acc= =...
4 'result= =IF(B2=0, B3, FACTORIAL(B2-1, B2*B3))

Sheet 72: More e�cient, tail-recursive factorial function.

A.3: SUMPRODUCT

71

Alexander Asp Bock 2019

A B
1 =DEFINE("sumproduct", B4, B2, B3)
2 'array1= =HARRAY(1, 2, 3)
3 'array2= =HARRAY(4, 5, 6)
4 'out= =SUM(MAP(*, B2, B3))

Sheet 73: Defining the SUMPRODUCT SDF. Here, we assume we can bind
built-in functions to closures. In the real implementation, we define a
PRODUCT SDF that is passed to MAP instead.

A.4: UPDATEARRAY

A B

1
=DEFINE("assign", B8, B2, B3, B4, B5,
B6, B7)

2 'array= =...
3 'subarray= =...
4 'tr= =2
5 'tc= =2
6 'r= =1
7 'c= =1

8 'result=
=IF(AND(B6>=B4, B7>=B5, B6<B4+ROWS(B3),
B7<B5+COLUMNS(B3)), INDEX(B3, B6-B4+1, B7-B5+1),
INDEX(B2, B6, B7))

Sheet 74: Helper function for updating part of an array.

A B
1 =DEFINE("updatearray", B6, B2,

B3, B4, B5)
2 'array= =...
3 'subarray= =...
4 'r= =2
5 'c= =2

6 'result= =TABULATE(CLOSURE("assign", B2, B3, B4, B5,
NA(), NA()), ROWS(B2), COLUMNS(B2))

Sheet 75: SDF for returning a modified copy of an existing array.

A.5: HSEQ

HSEQ takes a start value, an end value and a step value and returns an array
of the all the values starting from the start value to the end value in incre-
ments of the step value. Calling HSEQ with the placeholder values in sheet 76
will yield the array =HARRAY(0, 2, 4, 6, 8, 10). It is straight-forward to
implement a tail-recursive variant of HSEQ and a vertical counterpart VSEQ.

72

Alexander Asp Bock 2019

A B
1 =DEFINE("hseq", B6, B2, B3, B4, B5)
2 'z= =0
3 'n= =10
4 'step= =2

5 'result= =IF(B2>B3, HARRAY(), HCAT(B2, HSEQ(B2+B4, B3, B4)))

Sheet 76: A recursive SDF for creating a range of values in an interval
with a given step value.

A.6: ISCHAR and INDEXAT

A B
1 =DEFINE("ischar", B3, B2)
2 'char= ="C"
3 'result= =NOT(EXTERN("System.Char.IsWhiteSpace$(C)Z", B2))

Sheet 77: Test if a character is whitespace or not by calling C#.

A B
1 =DEFINE("indexat", B3, B2)
2 'string= ="This is a string"
3 'index= =5
4 'result= =EXTERN("System.String.Substring(II)T", B2, B3-1, 1)

Sheet 78: Indexing a string in Funcalc using C#. Notice that we sub-
tract one from the index when calling the external function in order to keep
indexing one-based.

Notice that we are using System.String.Substring as it does not seem
possible to call the index operator string[i] from Funcalc, nor could we
successfully call the EnumerableAt extension method.

A.7: GENERATE

73

Alexander Asp Bock 2019

A B
1 =DEFINE("gen at", B5, B2, B3, B4)
2 'fv= =CLOSURE("...")
3 'r= =1
4 'c= =1
5 'result= =APPLY(B2)

Sheet 79: The helper function for calling a closure at each position in an
array created by TABULATE.

A B
1 =DEFINE("generate", B5, B2, B3, B4)
2 'fv= =CLOSURE(...)
3 'rows= =3
4 'cols= =3
5 'result= =TABULATE(CLOSURE("GEN AT", B2, NA(), NA()), B3, B4)

Sheet 80: A SDF for generating an array of a given size using a nullary
function. We cannot use CONSTARRAY since it evaluates its argument only
once.

A.8: SEQUENCE/CHAIN

A B
1 =DEFINE("sequence", B5,

B2, B3, B4)
2 'fv= =CLOSURE(...)
3 'z= =1
4 'n= =10
5 'result= =IF(B4>0, SEQUENCE(B2, APPLY(B2, B3), B4-1), B3)

Sheet 81: A function for applying a function n times to an initial value.
Alternative names might have been CHAIN or APPLYN.

74

