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Abstract

The widespread adoption of SSDs is due to the combination
of two factors: (i) superior performance, and (ii) identical block
device interface. However, the combination of these two fac-
tors is becoming a problem as SSD performance keeps on im-
proving, revealing performance bottlenecks throughout the I/O
stack. To tackle this issue, an increasingly popular solution for
cloud providers is to consider open-channel SSDs, i.e., custom
firmware SSDs that expose the physical storage space directly
to the host and its operating system. In this paper, we report on
the design and implementation of an open-channel SSD manage-
ment layer for Linux. We discuss how our open, extensible and
scalable design efficiently supports various data-intensive appli-
cations (e.g., file systems, database systems, or key-value stores),
and thus constitutes a new platform for developing software-
defined storage. We provide a performance evaluation of our
current implementation on top of NVMe devices and show the
low overhead of our design.

1. Introduction

Modern SSDs perform complex decisions about mapping and
scheduling, independently from the applications and operating
systems that write and read data. In particular, the Flash Transla-
tion Layer embedded in flash-based SSDs guesses I/O locality
in order to avoid contention, optimize its mapping, and reduce
garbage collection overhead. Conversely, applications map their
data structures onto the logical address space, exposed by the
SSDs without robust performance models to motivate their de-
cisions. This legacy double-blind design leads to waste of re-
sources, unpredictable performance and bottlenecks [6, 1, 5, 3].

There is a need for a tighter form of collaboration between
data-intensive applications, operating system and SSD to rec-
oncile the complexity of storage management with the high-
performance goals of modern applications. Examples of tight
integration can be found in the context of database systems,
with database appliances (e.g., Exascale or Netezza) or custom-
firmware SSD for SQL Server [4]. But, how about applications
running on warehouse-scale computers? How can warehouse-
scale SSDs implement optimized Flash Translation algorithms
to cater to the (ever changing) idiosyncrasies of a given appli-
cation workload? A solution is to decouple SSD management
from physical storage. More concretely, a solution is to consider
open-channel SSDs, i.e., custom firmware SSDs that expose
the physical storage space directly [6, 7]. The problem is then
how to organize SSD management, in a way that efficiently sup-
ports high-performance, data-intensive applications. This is the
problem we tackle in this paper.
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Figure 1: LightNVM Architecture.

2. Design

We propose LigthNVM, a new Linux kernel framework that ex-
tends the block layer as shown in Figure 1. Originally conceived
as an evaluation platform [2], LightNVM provides:

• Generic core features for flash-based SSD management such
as: list of free and in-use blocks, generic function for handling
flash characteristics, and information about the global state of
the device;

• Targets that expose a logical address space, possibly tailored
for the needs of a class of applications (e.g., key-value stores
or file systems), and rely on the generic core features to
organize its mapping onto the underlying physical address
space. Application-specific parameters include for example
data placement strategies (how many flash chips to write to at
a time), choice of garbage collector, and wear-leveling poli-
cies. Each target can then be specifically optimized to a given
workload based on (i) its characteristics (with possibly some
form of deduplication, compression or storage security), and
(ii) the performance it expects from the underlying storage
device. Targets do not handle work such as ECC, or more
advance durability techniques, such as data scrubbing, read
and write disturb, and similar optimizations that have to be im-
plemented within the open-channel SSD to extend the lifetime
of a device.

The internal and external I/O request flow management is
handled through the native Linux block layer. This design sim-
plifies the code necessary to control both external and internal
requests. Underneath, the device drivers register themselves as
open-channel SSDs and indicate the features exported by their
firmware, such as bad block tables or powercap features.
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Component Description
Native Latency(us) LightNVM Latency(us)
Read Write Read Write

Kernel and fio overhead Submission and completion to/from device driver 1.18 1.21 1.34 1.44

Time to complete request by HW
Null block device 0.060
Null NVMe hardware device 35
OpenSSD with LightNVM firmware 350

Table 1: Time spent at completing a 4K IO request within the block layer, LightNVM (page-level target), NVMe and OpenSSD hardware.

Metric Native LightNVM-Page Key-value
Throughput 29GB/s 28.1GB/s 44.7GB/s
Latency 32.04µs 33.02µs 21.20µs
Kernel Time % 66.03% 67.20% 50.01%

Table 2: Table summarizing the performance differences observed be-
tween the page-based block device interface, LightNVM page
target and LightNVM key-value target issuing 1MB writes.

3. Evaluation
We evaluate the overhead of LightNVM using a NVMe null
device with a constant write speed of 380MB/s. This experi-
ment considers the CPU overhead of LightNVM, using a fully-
associative logical to physical page-level target. The results are
shown in Figure 2 At 4KB IO request sizes, LightNVM increases
the CPU load by 6%, declining to 1.3% for 512KB IO requests.

Table 1 shows an analysis of where time is spent within the
kernel, LightNVM (still with the page-level target), and three
devices for a single request. With an SSD with embedded FTL
(denoted native on the table), the host requires 1.18µs for reads
and 1.21µs for writes for 4K IO access. In contrast, LightNVM
takes 1.34µs for reads, and 1.44µs for writes. Put differently,
for high-performance NVMe devices, where response time is
35µs, the overhead introduced by LightNVM accounts to 0.66%
of the overall response time for reads and 0.10% for writes.

The overhead is largely contributed by locks around in-flight
tracking and allocation of flash pages and blocks. This can be
improved by using multi-queue devices (Both the OpenSSD
device and the NVMe null device is single-queue) and per-cpu
data structures that preallocate flash pages and blocks.

In order to show the benefits of using application-specific
targets, we implemented a simple block-based key-value store
(KV) with LightNVM managing the storage. Lookups are made
by translating a given key into the corresponding physical block.
Inserts are handled by (i) allocating a new block from the address
space manager; (ii) associating a key to it; and finally (iii) writing
the payload to the physical block. Since KV store is intended to
be used directly by applications, we create a user-space API to
handle requests and notifications.

Table 2 shows the the performance differences observed be-
tween the native page-based block device interface, LightNVM
block device interface using page-based mapping, and key-value
target where each value is being assigned a unique physical
block. The experiments are performed using a null block de-
vice as backend device. With 1MB sequential writes, latency is
reduced 14.29% (from 33.02µs to 22.20µs). This has a major
impact in throughput, which improves 55.8% (from 28.1GB/s
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Figure 2: IOPS and CPU kernel usage of 4KB to 512KB random
write IO sizes with the null NVMe hardware device (Max
380MB/s).

to 44.7GB/s). It also reduces kernel CPU-usage by 17.2%.
These experiments illustrate the potential performance benefits
of application-specific software-defined storage.
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