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ABSTRACT In-vitro fertilization (IVF), as the most common fertility treatment, has never reached its
maximum potentials. Systematic selection of embryos with the highest implementation potentials is a
necessary step towards enhancing the effectiveness of IVE. Embryonic cell numbers and their developmental
rate are believed to correlate with the embryo's implantation potentials. In this paper, we propose an
automatic framework based on a deep convolutional neural network to take on the challenging task of
automatic counting and centroid localization of embryonic cells (blastomeres) in microscopic human
embryo images. In particular, the cell counting task is reformulated as an end-to-end regression problem
that is based on a shape-aware Gaussian dot annotation to map the input image into an output density map.
The proposed Cell-Net system incorporates two novel components, residual incremental Atrous pyramid
and progressive up-sampling convolution. Residual incremental Atrous pyramid enables the network to
extract rich global contextual information without raising the ‘grinding’ issue. Progressive up-sampling
convolution gradually reconstructs a high-resolution feature map by taking into account short- and long-
range dependencies. Experimental results confirm that the proposed framework is capable of predicting the
cell-stage and detecting blastomeres in embryo images of 1 — 8 cell by mean accuracies of 86.1% and
95.1%, respectively.

INDEX TERMS Cell Counting, Human Embryonic Cells, IVF, Medical Image Analysis, Deep Learning.

. INTRODUCTION

CCORDING to the World Health Organization (WHO),

one in every four couples in developing countries suf-
fers from infertility [1]. In-Vitro Fertilization (IVF) is one of
the most common infertility treatments that emerged about
four decades ago and practiced over one million times an-
nually around the world [2]. Unfortunately, IVF has never
reached to its maximum potentials. According to the Cana-
dian Fertility and Andrology Society (CFAC) [3], only 33.1%
of embryo transfer cycles led to a clinical pregnancy in
Canada in 2017.

In IVF process, the fertilized eggs (refers to as embryos)
are cultured for about 5 days inside an incubator to de-
velop into blastocysts. These blastocysts are then subjec-
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tively assessed and selected according to their morphological
characteristics for implantation. One of the most common
embryo quality assessment techniques is pre-implantation
genetic screening (PGS). While PGS has an excellent ability
to predict non-implanting embryos (negative predictive value
96%) [4], it suffers from a low positive predictive rate (41-
57% live birth rates) [4], [5]. Consequently, it is not the best
option for embryo quality assessment due to its low positive
predictive value and high costs (caused by embryo biopsy
and genetic testing). In Canada, only 16.4% of IVF treatment
cycles were classified as PGS treatment cycles in 2017 [3].
Therefore, embryo morphological grading remains the most
practical method for embryo selection.

Several studies suggest that the timing and the synchronic-
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(a) Blastomere cells (b) Blood cells [8]  (c) Bone marrow cells [9]

FIGURE 1: Blastomere cells in human embryo images versus other
types of human cells.

ity of the first few cleavages during the early human embry-
onic development correlate with an embryo's potentials for
developing into a healthy baby [6], [7]. Automatic counting
and centroid localization of embryonic cells (blastomeres)
can provide information about the timing and spatial patterns
associated with cell cleavages. Automatic cell counting is
also of great interest in other biomedical diagnosis/analysis
systems dealing with blood [8]-[12], tumor [13]-[15], and
bacterial [15], [16] cells.

Microscopic embryo images are usually acquired by an
embryoscope equipped with a digital microscope imaging
system that captures images at 5-minute time intervals. Mea-
suring the exact time associated with each cleavage requires
processing approximately 576 frames for a single embryo.
This measurement, if done manually, is expensive, error-
prone, and most importantly impractical. Automating this
process, although of great interest, is a challenging task.
Ambiguity, partial view due to occlusion and out-of-focus
conditions in these images results from the unconstrained
transformation of 3D spherically shaped embryos into 2D
image planes. In addition, background noise, cell fragmen-
tation, cell transparency, and shape variability make this task
even more complicated. Most of these complexities are not
observed in other cell-based medical applications, such as
tissue cell, blood cell counting (Fig. 1-b) or bone marrow
cell counting (Fig. 1-c). In addition, for applications with a
high number of cells, under- and over-counting of cells may
not affect the accuracy of the outcome significantly. However,
under- and over-counting of even one cell in human embryo
images can lead to a significant error in assessing an embryo's
quality.

In this paper, a modern deep learning based approach with
a novel architecture is proposed to automatically count the
number of blastomeres and localize their centroids in day
1-3 microscopic human embryo images. It is important to
mention that no more than one n-cell (n=1:8) per physical
embryo is utilized in the benchmark dataset for a true perfor-
mance measurement.

Il. RELATED WORK

A. DEEP CONVOLUTIONAL NEURAL NETWORKS
(DCNNS)

The evolution of neural network architectures for image-to-

image translation began in late 2014 by introducing fully
Convolutional Neural Network (FCN) [17]. Since FCN ar-
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chitecture does not utilize fully connected layers, it can
cope with images of arbitrary sizes. Despite all differences,
existing architectures [17]-[25] can be divided into three
main classes.

The first class utilizes an encoder-decoder structure. The
encoder extracts hierarchical features by gradually scaling
down the spatial dimension using pooling layers. The de-
coder scales up the dense features to reconstruct the original
dimension. Models of this class are similar in the encoder part
while their decoder design makes them distinct. Some of the
most popular architectures in this category include FCN [17],
DeconvNet [18], SegNet [19] and U-Net [20].

Methods of the second class extract sparse features in the
first place using dilated convolutions. Dilated convolutions
increase the field of view without reducing spatial dimen-
sions. DilatedNet [21], RefineNet [22], and DeepLab V2 [23]
are among the most popular architectures in this category.
These methods developed their own way of aggregating
multi-scaled features to generate the final prediction map.

More recently, a third class has emerged with the introduc-
tion of PSPNet [24] and DeepLab V3 [25]. These methods
introduced the concept of pyramid pooling to capture multi-
scale contextual information. This concept is proven to be
effective for handling objects at different scales.

B. AUTOMATIC METHODS FOR CELL COUNTING
Conventional approaches to cell counting include a two-stage
process where counting is performed following a detection or
segmentation phase [26], [27]. Expectedly, the performance
of the counting task relies heavily on the effectiveness of the
underlying cell detection/segmentation algorithm. Recently,
a new class of approaches for cell counting has emerged [8],
[15] that perform the task of counting in one step using
object density maps. These approaches do not require nor
depend on prior knowledge through the detection process.
Here, we focus on one-step approaches since the minimum
annotation requirement makes them highly advantageous for
biomedical applications. These approaches can be divided
into two categories:

1) Classification Based Approach for Cell Counting

To the best of our knowledge, [28] is the only classification-
based counting method for human embryo images. It per-
forms the cell counting task using a multi-label classifica-
tion approach via AlexNet network [29]. Such an approach
assigns the same class label, x, to all images that contain x
number of cells (as shown in Fig. 2-a).

2) Regression Based Approach for Cell Counting

Recently, we proposed a regression-based approach [30]
for embryonic cell counting by reformulating the task as
an end-to-end regression problem. This approach is based
on supervised learning and maps the input image into an
output cell density map. It undertakes the cell counting task
using a Residual Dilated U-Net (RD U-Net) comprised of
cascaded dilated convolutional layers and residual blocks.
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(b) Regressmn approach - Single cells

(a) Classification approach - 4-cells stage

FIGURE 2: Day 1-2 human embryo image samples at 1 to 5 cell
stages.

Such a regression-based approach alleviates the requirement
for balanced training samples by learning how a single cell
looks like regardless of its developmental stage (Fig. 2-b).

In this paper, we extend our previous work [30] by in-
troducing a shape-aware Gaussian dot annotation, a content-
based loss function, and most importantly a novel DCNN ar-
chitecture. The main contributions of the proposed approach
include:

« Reformulating the task of human embryonic cell count-
ing as an end-to-end regression problem that is trained in
a supervised manner using shape-aware Gaussian anno-
tation via a content-based loss function. This approach
demonstrated great potentials and can be easily utilized
for counting other types of cells such as blood or tumour.

o Proposing two novel components: Residual incre-
mental Atrous pyramid (RIAP) and Progressive Up-
sampling Convolution (PUC). RIAP efficiently extracts
rich global contextual information without raising the
‘grinding’ issue. PUC gradually reconstructs the high-
resolution feature map by aggregating location-aware
contextual information. These components can be incor-
porated into the design of DCNN for other applications
such as semantic segmentation.

lll. METHODOLOGY
A. EMBRYOS STRUCTURAL ATTRIBUTES

Prior to describing the proposed approach, we detail some
of the unique aspects and properties of human embryos to
provide some insights regarding some of the choices made
for the proposed model. Human embryos possess unique
biological attributes that could potentially complicate the task
of counting the number of blastomeres inside them. Some of
these attributes include:

Residual Incremental
Atrous Pyramid (RIAP)

e Cell Overlap and Occlusions: The highly overlapped
and densely occupied space inside a human embryo
make the task of counting embryonic cells a challenging
one. Furthermore, the elliptically shaped overlapping
regions between adjacent cells could trigger identifying
false-positive cells.

o Cell Fragmentation and Artifacts: Fragmentation is de-
fined as the presence of the small portions of cytoplasm
that are enclosed by a cell membrane but separated from
the nucleus. Human embryos often exhibit some degree
of fragmentation that complicates the automatic analysis
of these images.

e Cell Size Variation: Unlike blood cells which have ap-
proximately the same size, embryonic cells may have
various sizes. Cells in an 8-cell embryo are smaller
than cells in a 2-cell embryo, although of the same
importance.

B. PROPOSED MODEL

The block diagram of the proposed Cell-Net model, which
comprises encoder and decoder parts, is depicted in Fig. 3.
In the encoder part of Cell-Net, residual incremental Atrous
pyramid module is designed following the ResNet-50 to
incorporate multi-scale contextual prior. An effective decoder
module is created by introducing progressive upsampling
convolution to recover fine details and object boundaries.
These two novel components are described next.

1) Residual Incremental Atrous Pyramid (RIAP)
Availability of some knowledge on the global context is
beneficial to the interpretation of microscopic images [24],
[25], [31] for the cell counting task. Context relationship is a
crucial factor in handling fragmentation and other artifacts
to comprehend the complex nature of embryo images. In
addition, scalable receptive field helps to improve the per-
formance on remarkably small or large cells as some visual
features become prominent only at a certain scale. PSP-
Net [24] proposed a pyramid pooling module by applying
pooling operations at 4 different scales to capture global
context prior. Although [24] extracts rich context features,
the pooling operation with striding leads to the information
loss at object boundaries. DeepLabv3 [25] proposed using
parallel Atrous convolution with different rates instead of
average pooling to capture the global context prior.

Dilated convolution [21] has become popular re-
cently [21], [25], [30], [32]-[34]. Utilizing dilated convo-
Iution enlarges the receptive field without introducing addi-

Progressive Upsampling
Convolution (PUC)

FIGURE 3: The block diagram of the proposed Cell-Net model.
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FIGURE 4: structure of Residual Incremental Atrous Pyramid (RIAP).
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tional parameters to the network. Although applying dilated
convolution improves the performance in DeepLabv3 [25],
larger dilation rates could lead to a practical problem, known
as the ‘grinding’ issue. Grinding issue occurs when the
sampling rate is too large to capture high-frequency con-
tent [33]. When applying dilated convolution, we observed
that increasing the dilation rate can cause the correlation to
fall apart gradually. In practice, when a 3 x 3 kernel applies
to an image region or a feature map, the number of valid
weights decreases by increasing the dilation rate. When the
dilation rate is large, the number of valid weights reduces to
the point where the 3 x 3 kernel acts as a 1 x 1 kernel. Fisher
et al. [33] applied three policies (removing the max-pooling,
adding more layers, and removing residual connections) to
address grinding problem in a dilated residual network. More
recently, DeepLabv3 [25] adopted image-level features by
global average pooling to overcome the grinding problem.
Here, we address the root cause of the grinding problem by a
simple yet effective solution.

In a 2-D space, a s x s dilated convolution between signal
F' and kernel K with dilation rate r is defined as:

(F *p K)(z,y) = Z Z K(m,n)F(x — r.m,y —r.n)

m=—tn=—t
where t = (s —1)/2

1
In the dilated convolution, the kernel only visits the signal
at every rt" location of each dimension. Therefore, from a
Sq X sq dilated neighbourhood region, where s4 = (r —
1).(s—1)+s, only s x s pixels contribute to the computation
of the response at the central pixel. The s X s contributing
pixels are all » — 1 pixels away from each other and have
the same distance from the centroid. For example, ina 3 x 3
dilated kernel with » = 4 (Fig. 5-d), only 9 pixels (out of
the 81) contribute to the calculation of the kernel response,

under-utilizing a substantial ~ 89% of the information.
Here, we propose a simple yet effective solution, named
Residual Incremental Atrous Pyramid (RIAP). RIAP pursues
two primary objectives. First, it addresses the grinding issue
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FIGURE 5: The blue shades and numbers on each pixel indicate signifi-
cance of its contribution to the computation of the kernel response.

by allowing every single pixel in the dilated neighborhood to
participate in the computation of the kernel response. Second,
it further enlarges the receptive field. In RIAP, we set the
stage for applying a large dilation rate of 27 by backing it up
with smaller dilation rates of 2¢ where j > 1 > 0 with resid-
ual connections. Particularly, the dilation rate is increased to
2% at the (i +1)!" level of the pyramid, as illustrated in Fig. 4.
In ID convolution, not only does each pixel matter but also its
contribution is somewhat proportional to its distance from the
central pixel. RIAP is computationally efficient with a total
of five dilated convolutional layers that are built on the top of
each other. Cascaded structure (i.e., instead of parallel) and
residual connections are two major difference between RIAP
and ASPP in [25].

Figs. 5-a to 5-c depicts the receptive field of the ID
convolution. Here, ID has a receptive field of 15 x 15 (when
r = 4) which is backed by two convolutions with r = 2! and
r = 2°. Fig. 5-d shows the receptive field of a single dilated
convolution with »r = 4 and Fig. 5-e depicts the receptive
field of three cascaded dilated convolutions with » = 2. The
proposed ID convolution in Fig. 5-c has a wider and enhanced
receptive field with the same number of parameters compared
to the one in Fig. 5-e.

2) Progressive Upsampling Convolution (PUC)

Information associated with boundary features and texture
details could be lost in the absence of a proper up-sampling
strategy. In the decoding phase, most state-of-the-art DCNNs
simply use either bi-linear upsampling [20] or deconvolu-
tion [17], [18] to upscale the downsized dense features and
create a final prediction map. Bi-linear upsampling is not
learnable, and therefore the deconvolution could suffer from
a checkerboard artifact [35]-[37]. Recently, Shi et al. [38]
came up with an interesting idea (sub-pixel convolution) to
recover resolution in a single-image super-resolution sce-
narios. The sub-pixel convolution aggregates low-resolution
feature maps to reconstruct the high-resolution image. Wang
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FIGURE 6: Structure of the proposed Progressive Upsampling Convolution (PUC) decoder module.

et al. [34] adopted this idea for upscaling dense feature maps
in end-to-end segmentation reconstruction applications. The
sub-pixel convolution in [38], however, was originally de-
signed for super-resolution application, where the required
upscaling factor was either 2 or 4. However, for end-to-end
image processing applications, such as segmentation, usually
a much larger upscaling factor is required. For example,
ResNet [39], when employed as the encoder, downscales the
input by a factor of 32. The main problem is that these pixels
are upsampled regardless of their spatial locations, which
leads to crucial information loss when reconstructing details
and boundaries.

Inspired by [38], we take the idea of sub-pixel convolution
one step further and propose the Progressive Upsampling
Convolution (PUC) module as illustrated in Fig. 6. Here,
the sub-pixel convolution produces a high-resolution image
(upsampled by a factor of f) from f? low-resolution feature
maps. These kernels are activated periodically in the high-
resolution space to learn an individual upsampling kernel
for locations that are f pixels away from each other. When
the upsampling factor f is set to 32, for instance, each
kernel learns the upsampling of pixels that are not strongly

VOLUME 4, 2016

correlated in most regions. The proposed PUC attempts to
reconstruct a high-resolution image in a progressive manner.
The reconstruction begins by learning 4 upsampling kernels.
It then performs a mirroring action to learn the global context
of the high-resolution space. The reconstruction continues
by increasing the number of upsampling kernels exponen-
tially and performing the mirroring action. This mechanism
enables PUC to capture short- and long-range dependencies
between pixels in a high-resolution space.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. DATASET AND GROUND TRUTH

Unfortunately, there is no public dataset for early human
embryo images (days 1 — 3) in the biomedical field. Here, the
first public dataset! for human embryo images up to S-cell
stage is introduced and utilized for experimental purposes.
This benchmark human embryo dataset comprises 176 im-
ages that contain 511 embryonic cells collected at the Pacific
Centre for Reproductive Medicine (PCRM). It must be noted
that no more than one n-cell (n = 1 : 8) per physical embryo

! Dataset is available at: https://vault.sfu.ca/index.php/s/ilOM2T3MHw9Vu8t

5

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2019.2920933, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

TABLE 1: Details of the benchmark embryonic cell dataset.

No. of [ 1-cell 2-cell 3-cell 4-cell 5-cell 6-cell 7-cell 8—cell[Total

Images| 64 16 10 27 6 2 8 7 140
Cells | 64 32 30 108 30 12 56 56 | 388

Images| 11 5 4 6 3 1 3 3 36
Cells | 11 10 12 24 15 6 21 24 1123

mn

Test ||Tra

is utilized to ensure that there is no bias in the accuracy of the
method. These images have been acquired using an Olympus
IX71 inverted microscope that employs Nomarski optical
enhancement technique (DIC). The training set comprises
140 images (80%) containing 388 embryonic cells. The test
set comprises 36 images (20%) containing 123 embryonic
cells. Distribution of the data over all cell-stages is provided
in Table 1. The Ground Truth (GT) for these images is iden-
tified manually by expert embryologists at PCRM. We apply
2D elliptical Gaussian filters (proportional to the elliptical
approximation of blastomeres) to the blastomere centroids
to create shape-aware Gaussian dot annotation (as illustrated
in Fig. 7-b). In addition to our human embryo benchmark
dataset, two public datasets are utilized for external evalua-
tion. First, VGG dataset that is introduced in [8] and contains
200 images of simulated bacterial cells from fluorescence-
light microscopy. Second, MBM dataset that is introduced
in [9] and contains 44 images of bone marrow.

B. IMPLEMENTATION DETAILS

The proposed DCNN models are implemented using an
NVIDIA GeForce GTX 1080 Ti with 11-gigabyte memory
and 32-gigabyte RAM. The model was trained with 10 mini-
batches of size 14 and Adam optimizer [40] with initial
learning rate of 9.8e — 5.

Data augmentation: We applied standard data augmen-
tation by randomly performing vertical/horizontal flipping,
shear transform with an intensity of 0.1, zooming by a factor
within the range of [0.88,1.12] and rotating by an angle
within the range of [0°,360°].

Loss function: Predicting cell density map using a regular
loss function is not feasible since labels are highly biased
in favor of the background class (Fig. 7-b). As black pixels
dominate the GT heavily, the network constantly falls into lo-
cal minima, predicting all-zero image for any input image. In
order to direct the learning process to the cells, we applied a
Content-Based Mean Squared Error (CBMSE) loss function
defined by Eq. 2.

Sory (Pre, — Tart)2 x M,
n

CBMSE = 2

Here, n is the number of images in the batch and M, is a
content-based attention map that draws the attention of the
training task to the most important regions (as illustrated in
Fig. 7).

(b) Gaussian dot annotation

(a) Original sample (c) Attention map M

FIGURE 7: Visualization of the content-based attention map.

C. QUANTITATIVE RESULTS

Performance of the proposed method is evaluated at two
levels: image level and cell level. While the first one measures
the ultimate success of a cell counting system, the second
one provides a more detailed analysis of the performance.
The proposed approach is compared against [28], [30] that
are the only two methods developed exclusively for blas-
tomere counting. These methods are re-implemented, then
trained and tested on the benchmark dataset. Furthermore,
to highlight the effectiveness of the proposed architecture,
some state-of-the-art architectures are adopted in the pro-
posed shape-aware dot-annotation regression-based frame-
work, including UNet [20], TernausNet [41], PSPNet [24]
and DeepLabv3 [25].

1) The proposed regression-based framework vs the
classification-based approaches

Table 2 compares the performance of the proposed
regression-based approach with that of the classification-
based approach [28]. For a more comprehensive compar-
ison, we extended our experiments by testing other well-
established DCNN classification models (in addition to
the AlexNet [29] used in [28]), including VGGI6 [42],
ResNet50 [43], and Inception V3 [44]. Table 2 contains the
cell-stage prediction accuracy at the image level (i.e., predict-
ing the correct number of cells that exist in an image). A k-
fold cross-validation is performed for a more comprehensive
evaluation. Since in some categories such as 5 — cell or
6 — cell, one-third of the data is kept in the test set (as
shown in Table 1), there are 3 folds available to perform cross
validation.

Overall, the proposed regression-based approach performs
significantly better than the classification-based approach,
regardless of the underlying DCNN model. There are two
main reasons that explain the results in Table 2. First, unlike

TABLE 2: Comparison of the ﬁroposed regression approach
with the classification approach for cell counting (in %).

Cell-Stage Prediction Accuracy (in %)
1 — 3 stages 4 — 8 stages Overall

Khan et al. [28] 35.0 18.8 27.8
VGGI16 [42] 40.0 18.8 30.6
ResNet50 [43] 40.0 25.0 333
Inception V3 [44] 45.0 25.0 36.1
Cell-Net 95.0 75.0 86.1
3-fold cross validation 93.4 68.6 82.4
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TABLE 3: Comparison of the proposed Cell-Net model with
state-of-the-art architectures on cell-stage prediction (in %).

TABLE 4: Detailed comparison of the proposed Cell-Net
model with the state-of-the-art architectures (in %).

Cell-Stage Prediction Accuracy (in %)
1 — 3 stages 4 — 8 stages Overall

Baseline UNet [20] 95.0 37.5 69.4
RD UNet [30] 95.0 50.0 75.0
TernausNet [41] 85.0 56.3 72.2
PSPNet [24] 100 56.3 80.6
DeepLab V3 [25] 100 56.3 80.6
Cell-Net w/o PUC 90.0 62.5 77.8
Cell-Net w/o RIAP 95.0 62.5 80.6
Cell-Net 95.0 75.0 86.1
3-fold cross validation 93.4 68.6 82.4

a typical classification problem, images of different cell
counts are not independent of each other. For example, miss-
classification of a bicycle as a motorcycle is as wrong as the
miss-classification of a bicycle as a horse. However, miss-
classifying a 2-cell embryo as a 3-cell embryo is not the same
as miss-classifying it as a 7-cell embryo. Second, the avail-
ability of balanced/adequate training samples for all class
categories is necessary to train a CNN model effectively.
This, unfortunately, is rarely the case in medical field related
applications.

2) The proposed Cell-Net model vs state-of-the-art models
Table 3 and 4 compare the performance of the proposed
Cell-Net model with the state-of-the-art architectures [20],
[24], [25], [41] when employed in the proposed regression
based framework. To emphasize the contribution of each
of the two RIAP and PUC components, introduced in the
proposed Cell-Net, two variants of the proposed Cell-Net
model are implemented. In the first variant, the proposed
RIAP component is replaced with a plain dilated pyramid
pooling (i.e., as incorporated in DeepLabV3 [25]). In the
second variant, the proposed PUC component was replaced
with sub-pixel convolution (i.e., as introduced in [38] and
incorporated by [34]).

Table 3 summarizes results at the image (cell-stage predic-
tion) level. In this table, the prediction accuracy is reported
for both 4 — 8 and 1 — 8 cell-stage categories. As shown in
this table, the proposed Cell-Net model outperforms the state-
of-the-art models by a large margin.

Table 4 reports results at the cell level (cell detection per-
formance). Cell detection performance is more discernible
than the cell-stage prediction accuracy. Table 4 suggests that
the proposed Cell-Net model outperforms the state-of-the-art
models with an accuracy of 95.1%.

3) Localization performance

Table 5 compares the centroid localization performance for
detected cells (excluding [28] as it cannot localize cells). Eu-
clidean distance (Eq. 3) between the identified centroids and
the corresponding GTs is utilized to measure the localization
accuracy. In this table, the number of miss and perfectly lo-
calized blastomeres along with the mean Euclidean Distance
(ED) are reported. Miss and perfect localization are referred
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Cell Detection Performance
False False True Accuracy
positive  negative  positive
Baseline UNet [20] 4 12 111 87.4
RD UNet [30] 2 11 112 89.6
TernausNet [41] 3 10 113 89.7
PSPNet [24] 0 10 113 91.9
DeepLab V3 [25] 0 8 115 93.5
Cell-Net w/o PUC 2 9 114 91.2
Cell-Net w/o RIAP 1 8 115 92.7
Cell-Net 0 6 117 95.1
3-fold cross validation 1.67 6 117 93.8

TABLE 5: Localization performance comparison between the
proposed Cell-Net system and state-of-the-art models (in %).

No. of Miss No. of Perfect Euclidean

Localization Localization Distance

(out of 123) (out of 123) (pixels)
Baseline UNet [20] 28 32 11.3
RD UNet [30] 22 41 10.1
TernausNet [41] 23 37 10.4
PSPNet [24] 14 72 7.5
DeepLab V3 [25] 15 74 7.4
Cell-Net w/o PUC 19 70 7.8
Cell-Net w/o RIAP 16 73 7.5
Cell-Net 8 81 6.6
3-fold cross validation [ 10 78 6.9

to the cases where ED is greater than 10 pixels and less than
3 pixels, respectively.

1 N
ED =53 V@ =20 + i = 900”3

Here (x,;, yp:) is the centroid coordinates of the detected
blastomere, (z4i,%4;) is the centroid coordinates of the
ground truth, and N is the number of blastomeres in the
image.

4) Effect of the CBMSE loss function

To highlight the effectiveness of the proposed CBMSE loss
function, the proposed Cell-Net model is trained using a
regular MSE loss function and the comparison results are
reported in Table 6.

5) External validation

External validation is performed on two public datasets,
VGG dataset [8] (200 images with an average of 174 4 64
simulated bacterial cells) and MBM dataset [9] (44 images
with an average of 126 £ 33 bone marrow cells). We follow
the same training protocol used in [8], [9], where a fixed set
of 100 images is reserved for testing while the size of the
training and validation sets are varied. Since every image on
these datasets contain more than 100 cell samples, a relatively
smaller portion of data is sufficient for training and validation
purposes. In Table 7, N; and N, represents the number of
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TABLE 6: Effect of the CBMSE loss function on the prediction
accuracy (in %).

Cell-Stage Prediction Cell Detection

MSE CBMSE MSE  CBMSE
Cell-Net 83.3 86.1 943 95.1
3-fold cross validation 79.7 82.4 92.9 93.8

TABLE 7: Comparison of the test set Mean Absolute Error
(MAE) on two external datasets.

VGG Dataset (200 Images) [ MBM Dataset (44 Images)
Nty =32 Ngop =100 [Ngow =10 Niop =20

FCRN [8] 3.440.2 2.9+0.2 28.94+22.6 22.2+11.6
Count-ception [9]| 2.940.5 2.3+04 12.6+3.0 10.74+2.5
Cell-Net 2.7+0.6 2.24+0.5 11.3+4.8 9.84+3.2

images used for training and validation processes. Sample
images from these datasets are depicted in Fig. 1.

D. QUALITATIVE RESULTS

Table 8 displays some sample outputs of the proposed Cell-
Net model and visually compares them against Base-
line UNet [20], TernausNet [41], PSPNet [24], and
DeepLabV3 [25]. The results from 1-cell stages are skipped
due to their simplicity and to reserve the space for more
complicated cases. The 15¢ row of Table 8 depicts an exam-
ple with background floating particles/cells. Both Baseline
UNet [20] and TernausNet [41] mis-interpreted the floating
cells as blastomeres. Rows 2 and 8 show cases where the
proposed Cell-Net model, PSPNet, and DeepLabV3 handle
fragmentation by not mis-interpreting it as a blastomere cell,
unlike baseline UNet and TernausNet. The example in the
374 row depicts a case where two blastomeres overlap. The
elliptically shaped overlapping region between neighboring
cells triggers false identification of a new blastomere in
Baseline UNet [20] and TernausNet [41] but not in Cell-Net.
Rows 4, 5, 6, and 7 represent cases where partial view due to
occlusion and out-of-focus planes make the blastomeres am-
biguous. This is the main area where the proposed Cell-Net
model delivers superior performance comparing to PSPNet
and DeepLabV3 models.

E. COMPUTATIONAL COMPLEXITY

Figure 8 depicts a visual comparison of all the discussed
models at both image and cell levels along with their
network's parameter sizes. The proposed Cell-Net model
contains roughly ~ 34 millions parameters. While such a
number is larger than some of the earlier models (Baseline
UNet [20], RD-UNet [30], and TernausNet [41]) with much
lower performance, it is roughly the same as PSPNet [24] and
~ 5 millions less than DeepLab V3 [25].

V. CONCLUSION

In this paper, an automatic framework based on a deep
convolutional neural network was proposed to take on the
challenging task of automatic counting and centroid localiza-
tion of blastomeres in microscopic images of early human
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embryos. In particular, the cell counting task is formulated
as an end-to-end regression problem that is based on su-
pervised learning to map the input image into an output
density map. The proposed Cell-Net system introduced two
novel components, residual incremental Atrous pyramid and
progressive upsampling convolution. Residual incremental
Atrous pyramid extracts rich global contextual information
without raising the grinding issue. Progressive upsampling
convolution gradually reconstructs the high-resolution fea-
ture map by taking into account local and global contextual
structures of the scene. Experimental results confirm that the
proposed framework is capable of predicting cell-stage and
detecting cells by a mean accuracy of 86.1% and 95.1%,
respectively. Furthermore, experimental results confirmed
that the proposed method is capable of localizing blastomere
centroids with a mean Euclidean distance error of 6.6 pixels.
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