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Abstract: In this paper, the problem of Simultaneous Localization And Mapping (SLAM) is addressed
via a novel augmented landmark vision-based ellipsoidal SLAM. The algorithm is implemented on a
NAO humanoid robot and is tested in an indoor environment. The main feature of the system is
the implementation of SLAM with a monocular vision system. Distinguished landmarks referred to
as NAOmarks are employed to localize the robot via its monocular vision system. We henceforth
introduce the notion of robotic augmented reality (RAR) and present a monocular Extended Kalman
Filter (EKF)/ellipsoidal SLAM in order to improve the performance and alleviate the computational
effort, to provide landmark identification, and to simplify the data association problem. The proposed
SLAM algorithm is implemented in real-time to further calibrate the ellipsoidal SLAM parameters,
noise bounding, and to improve its overall accuracy. The augmented EKF/ellipsoidal SLAM algorithms
are compared with the regular EKF/ellipsoidal SLAM methods and the merits of each algorithm is also
discussed in the paper. The real-time experimental and simulation studies suggest that the adaptive
augmented ellipsoidal SLAM is more accurate than the conventional EKF/ellipsoidal SLAMs.

Keywords: EKF/Ellipsoidal SLAM; robotic augmented reality; Nao Humanoid robot; adaptive
augmented Ellipsoidal- SLAM; landmark

1. Introduction

Navigation in structured and unstructured environments is a central activity in many robotics
applications. The simultaneous localization and mapping (SLAM) [1] problem has been recurrently
studied by researchers around the world in the last three decades. The problem is essentially creating
(updating) a map of an unknown environment along with the robot poses concurrently. The question
can be poised for static as well as dynamic settings, indoor or outdoor, for different robotic platforms,
and for different environments such as land, underwater, or the sky [2]. Although, for every robotics
platform, the type of sensors and the environment itself affect which mapping and navigation approach
fits best, resolving uncertainty in the robot and landmark positions have been on-going research
questions. This uncertainty has long been one of the prime bottlenecks towards building robust systems
in all domains to accomplish the task of autonomous navigation. As such, a viable solution is regarded
as a prerequisite for efficient implementation of a robotic solution to a particular application domain.
Consequently, in recent years, a great effort has been devoted to the development of efficient solutions
to the SLAM problem [3].

By adopting a landmark-based description of the environment, autonomous navigation including
mapping and localization problem can be cast as a state estimation problem for an uncertain dynamic
system based on noisy measurements. Depending on the assumptions of the uncertainty, the estimation
problem can be tackled in different ways. When a statistical description of the noise is adopted for
mapping and localization processes, the uncertainty is handled by a relevant probabilistic technique
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which is arguably the dominant paradigm for robotics navigation and SLAM. These approaches
represent uncertainty and ambiguity through explicit “acquired beliefs” using probability theories and
form robust control choices relative to the remaining uncertainty in the model. Standard solutions
are provided by the extended Kalman filter (EKF) [4–6] or other probabilistic techniques [7,8]. All the
methods based on the EKF generally model the uncertainty in robot dynamics and the measurement
process as zero-mean, white Gaussian noise. Unfortunately, as the robot moves away into increasingly
unstructured and unknown environments, such assumptions may not hold and the ability to deal with
uncertainty becomes a crucial component for designing successful SLAM systems. Moreover, even
when these assumptions are fulfilled, the EKF may not converge. This assumption is no longer valid
when the real error distributions are not Gaussian. These considerations have motivated researchers to
adopt alternative techniques. One of the most popular is the set-theoretic or set-membership estimators,
whose main feature is that the estimation uncertainty is represented by bounded sets in the state
space [9,10]. Its basic premise is to assume hard bounds on the noise, and consequently hard bounds
on the state estimate process. In contrast to the KF or EKF, noise sources are assumed to be stochastic,
and the highest probability state estimate and covariance are recursively calculated. The exact shape
of this set is, in general, very complicated and hard to obtain. Therefore, it is usually approximated
by simpler geometric shapes, such as box, ball, ellipsoid, orthotope, and zonotopes. Among them,
the ellipsoidal estimation seems to be more popular because of its analogy to the covariance in the
stochastic methods [11,12]. The general set membership approach is an appropriate choice to solve the
state estimation problem with bounded disturbances [13]. The set membership estimation method
recursively computes an output set in which no point is more likely to be the actual state than any
other point, but does guarantee that the actual state lies within this set [9]. The resulting algorithm has
a prediction-correction structure in-time update and observation update, which is similar to a Kalman
filter. This approach was initially introduced by Schweppe and Witsenhausen [14]. These authors
proposed solutions to set estimation problems of linear systems with specific hypotheses on the
boundaries. Under the assumption of unknown but bounded (UBB), the estimation process was
carried out in terms of feasible sets i.e.; sets containing the robot pose and the landmark positions.
As such, these estimation algorithms are able to provide guaranteed set-valued estimates of the robot
configuration as well as of the landmark positions. Ellipsoid methods require less information to
represent the uncertainty as compared to polytope methods, and are perhaps more intuitive because of
their analogy to the covariance in stochastic estimation.

The approach is to cast the nonlinear dynamics in a way that is suitable for implementation within
the linear set membership filter framework. Specifically, the nonlinear dynamics are linearized about
the current estimate in a manner that is similar to the EKF [11]. The remaining terms are then bounded
using interval mathematics, and they are incorporated into the algorithm as additions to the process
or sensor noise bounds. This allows the solution to be guaranteed for nonlinear systems so long as
a bound on the nonlinear term is guaranteed. The method is compatible with many current robust
control methods that require hard bounds, as well as with planning algorithms that require guaranteed
uncertainty information. It is also computationally efficient for online recursive implementation.
The new algorithm is termed the extended set membership filter (ESMF).

Despite the benefits of the ellipsoidal SLAM algorithm in terms of relaxing the noise in a dynamic
system and measurements and the convergence as an estimator and no explicit assumption for
Gaussian’s structure, it is subjected to its own concerns. The main issue is how to calibrate the
ellipsoidal SLAM parameters and how to improve its accuracy. The data association problem and
computational cost problem are also other issues to be considered. Another issue is that in SLAM, the
state vector contains only the landmark position and robot poses and SLAM alone is not expected
to convey more information about landmarks details. The map representation does not include any
information about landmark description in the environment and this can lead to false positives in the
data association.
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In this paper, we introduce the notion of the robotic augmented reality (RAR) technique to improve
the performance of the EKF/ellipsoidal SLAMs and to overcome the above issues. Adaptive augmented
EKF/ellipsoidal SLAMs have been implemented and tested in real-time. SLAM implemented on a
NAO humanoid robot. Those who have worked with this particular humanoid robot are aware that
it is generally not easy to interface external sensors; our goal, hence, is to design a SLAM system on
NAO using its own camera.

The outline of the paper is organized as follows: in Section 2, we review the related works and
highlight the current state-of-art in SLAM and its main challenges. In Section 3, we present the detailed
architecture of the proposed system. We will then include simulation studies and discuss the merits of
the proposed architecture in Section 4. We conclude the paper in Section 5.

2. Related Studies

Readers not familiar with the origin, history, and derivation of SLAM may refer to classical and
recent papers on SLAM and its development [15–17]. The extended Kalman filter-based SLAM, which
has been also implemented in this work, is the most popular implementation [5,6,18]. The importance
of this approach as compared to the Kalman filter remains in its ability to represent non-linear models.
This capability is essential, as almost all navigation problems can be modeled as non-linear problems.
However, highly non-linear problems tend to have erroneous approximations and may cause the failure
of an EKF-based SLAM. This led to the idea of using an unscented Kalman filter (UKF)-based SLAM,
by Julier and Uhlmann [19]. The UKF would perform better linearization and therefore improve map
building by reducing errors. [20] Implementing the adaptive UKF solution will significantly reduce
the error and improve the accuracy of the navigation system. This was followed by FastSLAM [21],
which uses particle filter-based techniques to perform map building. Errors due to non-linearity and
high computational cost led to a host of sub-map-based SLAM algorithms that divide the map into
local sub-maps which perform partial updates. Recently, research has shifted towards solving the
SLAM problem with sparse optimization techniques which provide a higher efficiency SLAM yet do
not suffer from errors. In the study [22], the SLAM is solved via two parallel tasks: pose estimation,
and map optimization. Both tasks concurrently operate as a service in the Cloud. It is clear that all
probabilistic feature-based online/full SLAM solutions include the Kalman filter and its variants such
as the information filter, particle filter, and graph optimization solutions that all assume a Gaussian
distribution of uncertainties.

To cope with non-white, non-Gaussian noise, a set-theoretic approach to the problem of tracking
a mobile robot, based on angular measurements, has been introduced in [23] under the assumption
of bounded errors to obtain information fusion via set intersections. This approach has been later
extended to a mixed stochastic/set-membership framework [24], in which a probabilistic uncertainty
description is associated to ellipsoidal approximations of the admissible robot poses.

As far as the SLAM problem is concerned, preliminary ideas on how to deal with bounded errors
are given in [25–27]. These papers present set-theoretic approaches to localization only, which has
been recently developed and successfully applied to several problems in mobile robotics platforms.

Garulli and Vicino [28] present a simple localization way using a polytope set. The polytope method
been applied for SLAMs in [29–31]. They used the interval analysis and polytope set memberships
to find robot trajectory. The algorithms suffer from large computational costs and the correlations
between the robot and landmark positions are lost due to decomposition simplification [5]. In fact, the
polytope method increases the inequality number over time. It is not suitable for online application.

The ellipsoid method for state estimation with bounded noise was first introduced by
Schweppe [11], Fogel and Huang [14]. Many simulated technical papers followed this paper. Weyer
and Campi [32] obtained confidence ellipsoids which were valid for a finite number of data points.
Ros et al. [33] presented an ellipsoid propagation such that the new ellipsoid satisfies an affine relation
with another ellipsoid.
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Intervals of real numbers are used to represent the uncertainty in [30,31]. It translates full SLAM
problem in terms of a constraint satisfaction problem. It uses interval analysis and contraction techniques
to find the minimal envelope of robot trajectory and the minimal sets to enclose the landmarks but the
association between landmarks and observations is not solved. In [30], the algorithms only works off-line
due to the large computational cost of contraction. The adaptive augmented ellipsoidal SLAM and
RAR simplifies and solved the data association problem and reduce the computational cost. Also, the
implemented adaptive augmented ellipsoidal SLAM is able to work and calibrate its parameters online.
Our implemented adaptive augmented ellipsoidal SLAM can work with limited sensor requirements.

3. Methodology and Implementation

3.1. SLAM Solution with Extended Kalman Filter (EKF-SLAM)

Autonomous navigation is among the main areas of research in the mobile robotics field which
often requires a SLAM solution. SLAM algorithms allow a robot to map its environment while
concurrently localizing itself within that environment. The trajectory of the robot and the position of
the landmark in the map are estimated without the need for a priori knowledge.

By considering a landmark-based description of the environment, the SLAM can be considered a
state estimation problem for an uncertain dynamic system, based on noisy measurements. Consider a
robot moving in an unknown environment (NAO robot), observing a number of landmarks through
its embedded sensor (Figure 1).
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The robot requires a control signal ut {u1, u2, . . . , uk} to be able to move from position xt−1 to xt

using the IMU (inertial measurement unit) which has some uncertainty in its measurement, and the
robot takes some observation zt using its external sensors, e.g., lasers. The robot pose xt and/or the
landmark positions mi are concurrently estimated. The goal in every iteration is to find the posterior
data which refers to the estimated data of robot position (or the whole trajectory) and all landmarks
positions together and reduce the measurement errors and observation error. It can be represented in
one vector the environment map containing a list of objects.

EKF-SLAM was the first algorithm developed by Smith to solve SLAM problem and is still one of
the most influential and widely used SLAMs [34]. It concurrently solves the online SLAM problem
where the map is feature-based. The EKF essentially linearizes the non-linear functions around the
current state which is accomplished by the Taylor expansion technique. After this linearization process,
a classical Kalman filter is employed to estimate states. The EKF-SLAM estimates the state from a



Sensors 2019, 19, 2795 5 of 27

series of noisy measurements (movements and observations), where the noise distribution is assumed
Gaussian. The probability density function (PDF) of the estimated state is Gaussian, as well:

p[xt, m|z0:t, u0:t] = N({xt, mi},µt,Σt) = N(st,µt,Σt), (1)

where N is a Gaussian probability density with its mean µt and covariance matrix Σt. Therefore, for
every iteration of the EKF filter, the uncertainty of the state st will be represented through a column
vector µt of size n and a covariance matrix Σt of size n × n, where n is the dimension of the state. In the
EKF-SLAM, the probability density of the state transition p[st|st−1, ut] must be Gaussian, this means
that given the state st−1 at time t − 1 and the movement ut at time t, the transition of the state can be
written as [35]:

st = f (ut, st−1) + vt (2)

where vt is an additive Gaussian noise with zero mean and covariance matrix Qt that models the
uncertain in the state transition, i.e., P(vt) ∼ N (0, Qt). Since the motion model depends only on the
previous robot pose and on the current movement ut, we can omit in the equation the map vector, i.e.:

xt = f (ut, xt−1) + vt (3)

The function f doesn’t modify the map. The probability density function of the observation zt

must be Gaussian as well, that is:
ẑt = h(st, mi) + wt (4)

where h is a function that maps the current state in an expected observation ẑt given the landmark mi
associated to ẑt, wt is an additive Gaussian noise with zero mean and covariance matrix Rt that models
the observation noise, i.e., P(vt) ∼ N (0, Rt).

In the 2D case, the state st at time t can be represented by the following column vector:

st =
(
px,t, py,t, pθ,t, mx,1, my,1, mx,2, my,2, . . . . . . . . . mx,N, mx,N, ms,N,

)T
(5)

where xt =
(
px,t, py,t, pθ,t,

)
denotes the robot’s coordinate, mx,i,my,i, are the coordinates of the i −th

landmark mi with ms,i its distinctive signature, i = 1, . . . , N.
The state vector st contains only landmark positions (mx,i,my,i,) and the robot pose xt. SLAM is not

expected to convey more information about the landmark’s description in the environment.
In the extended Kalman filter, the f () and h() functions are linearized using first order Taylor

expansion around the state of the system in order to apply the Kalman equations. In the case of the
state transition function f we can write:

f (ut, st−1) ' f (ut,µt−1) + Ft(st − µt−1) (6)

where Ft is the n × n jacobian matrix of the function f (n is the dimension of the state). The jacobian
usually depends on ut and µt−1:

Ft = ∇st−1 f (ut, st−1)
∣∣∣
st−1=µt−1,st=µt

(7)

The Kalman filter is completed in two steps: prediction and correction [36,37]. In the SLAM
problem, during the prediction step the state at time t is updated according to the motion model:

µt = f (ut,µi−1) (8)

µt = FtΣt−1 FT
t + Qt (9)
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where µi−1 and Σt−1 are the mean and covariance of the state at time t− 1, respectively. During the
correction step, for every observation zt associated with the landmark mi, it is computed an expected
observation ẑt = h(µt, mi) and a corresponding Kalman gain (11) that specifies the degree to which
the incoming observation corrects the current state estimation (Equations (12) and (13))

St = HtΣ−t HT
t + Rt (10)

St = HtΣ−t HT
t + Rt (11)

µt = µt + Kt(zt − h(µt, mi)) (12)

Σt = (1−KtHt)Σ−t (13)

where Ht is the jacobian of the function h:

Ht = ∇st h(ut, mi)
∣∣∣st−1=µt , mi = mi (14)

The standard formulation of the EKF-SLAM solution is not robust to incorrect association of
observations to landmarks: an accurate data association is then desirable [38].

In this work, the noise in motion model is modeled by white Gaussian noise with zero mean and
covariance value N (0, Qt) = diag [0.015 0.015 0.0001] and for observation model is N (0, Rt)= diag
[0.008 0.001].

3.2. Ellipsoidal Set Membership Filter Method for SLAM (Ellipsoidal SLAM)

The approach here is to cast the nonlinear dynamics in a way that is suitable for implementation
within the linear set-member filter framework. Specifically, the nonlinear dynamics are linearized
about the current estimate in a manner that is similar to the EKF. The remaining terms are then
bounded, and they are incorporated into the algorithm as additions to the process or sensor noise
bounds [39]. This allows the solution to be guaranteed for nonlinear systems so long as the bound
on the nonlinear term is guaranteed. The proposed method is compatible with many current robust
control methods that require hard bounds, as well as with planning algorithms that require guaranteed
uncertainty information. It is also computationally efficient for online recursive implementation.
The new algorithm is termed the extended set membership filter (ESMF) [11]. Figure 2 shows the how
ESMF works.

Consider a general discrete non-linear system described as:

xk+1 = f (xk, uk) + wk (15)

with its nonlinear output:
yk = h(xk, uk) + vk (16)

where xi ∈ Rn is the system state and yi ∈ Rm is the measurement output, f (.) and h(.) are both general
nonlinear C2 functions and the initial state x0 is known to be bounded by an ellipsoid given as:

x0 ∈ E(x̂0, P−1
0,0)⇐⇒ [x0 − x̂0)]

TP−1
0,0[x0 − x̂0] ≤ 1

where x0 is the center of the ellipsoid.
wk ∈ Rn and vk ∈ Rm are process and measurement noise, respectively, which are bounded at each

time step k and satisfy the following inequalities:

wk ∈ E(0nx1, Qk)⇐⇒ w T
k Q−1

K wk ≤1 ∀ k
vk ∈ E(0mx1, Rk+1)⇐⇒ v T

k R−1
K vk ≤1 ∀ k

where Pk,K, Qk and Rk are symmetric and positive definite matrices.
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At time step k, the goal is to characterize a set of states represented by a minimized ellipsoid
that are consistent with the available measurements and a priori bound constraints; the true state is
guaranteed to be contained in a resultant compact ellipsoid E(x̂k, Pk).
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Note that no assumptions on the structure of the noise are made except the bounds; hence, many types
of uncertainties are included within this framework including Gaussian and non-Gaussian uncertainties.

Assuming that f (.) and h(.) are continuously differentiable, and for all estimated values x̂k−1 or x̂k,
Equation (15) is linearized around the current state x̂k at time step k using Taylor expansion yields:

xk+1 = f (xk)
∣∣∣ xk=x̂k +

d f (xk)

dx

∣∣∣∣∣∣ xk=x̂k(xk − x̂k) + · · ·+ O
(
x2

K

)
+ wk (17)

The extended set membership filter (ESMF) method considers the higher order terms (H.O.T.
O
(
x2

K

)
or the remainder which is ignored in the traditional EKF) as a part of the process noise, and thus

the linearized Equation (17) can be rewritten as:

xk+1 = f (xk−1)
∣∣∣ xk−1=x̂k−1 +

d f (xk−1)

dx

∣∣∣∣∣∣ xk=x̂k (xk−1 − x̂k−1) + · · ·+
f (xk)

(n)

n!

∣∣∣∣∣∣∣ xk=x̂k (xk − x̂k)
n + Rn(xk − x̂k, Xk) + wk−1 (18)

where Rn is a Lagrange remainder is term and f (xk)
(n) is the nth derivative. The term Xk can take

on any value over an interval for which (xk − x̂k) is defined. Thus, Rn(xk − x̂k, Xk) can be bounded
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by simply defining the interval Xk and evaluating Rn(xk − x̂k, Xk) using interval mathematics. Using
interval analysis, the Lagrange remainder term can be expressed as:

Rn(xk − x̂k, Xk) =
f (n+1)

(
Xk

)
n!

(xk − x̂k)
n+1 (19)

where the Xk is the state interval bound in which (xk − x̂k) is defined:

X
i
k,∓ = x̂i

k ∓

√
Pi,i

k i = 1, 2, 3 . . . , n,

For a one-state (i.e., n = 1) linearization case with first order approximation (i.e., nr = 1), the state
function in (9).

The reminder or H.O.T. can be bounded by several ways. One approach is to choose the process
and sensor noise ellipsoids large enough to assure that they bound both the original noise and
the H.O.T. The approach here is to bind the H.O.T. using interval mathematics at each time step.
The interval bound can then be bounded using an ellipsoid and combined with the original process
noise bound. This approach is more amenable to on-line implementation as compared to similar
approaches. Compared to the EKF, the ESMF now bounds the linearization error. In addition, the
only restriction on the ESMF is that the Hessian and Jacobin must be continuous over the set of states.
The procedure for bounding the general remainder Rn(xk − x̂k, Xk) is shown pictorially in Figure 3 for
a two state case.
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β  = ( )∅ ∅  P , =  ∅ ∅  +     ,    β  ∈  (0,1) ∅  =  ∂f(x ) ∂x   
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Figure 3. (a) Derivation of the interval X_k from P_((K,k)); (b) derivation of the bound on the study
(illustration of ellipsoidal bound of linearization error).

It is now possible to recursively estimate state ellipsoid sets of any nonlinear system for which the
Jacobian and the Hessian are well defined.

An adaptive ellipsoidal SLAM algorithm can be summarized as follows (Algorithm 1):
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Algorithm 1. Adaptive Ellipsoidal SLAM

Start
Initialization -
x̂1,1 = 0 Pk,k = 0
Get Observation –
kz = 1

z1 = get_observations; Looking for NAO markers
while not_stop
Prediction Step – (4)

Check for safe distance to move by sonar. Move command
No safe distance. Turn 180 degree

[x̂K+1, Pk+1,k] = prediction (x̂k/k, Pk,k, uk)

βQk
=

√
Tr(Qk)√

Tr(Qk)+
√

Tr(Qk)

Q̂k =
Qk

1−βQk
+

Qk
βQk

,βQk
∈ (0, 1)

βQk
=

√
Tr(Q̂k)√

Tr(∅kPk∅T
k )+
√

Tr(Q̂k)

PK+1,k = ∅k
Pk

1−βk
∅T

k +
Q̂k
βk

,βk ∈ (0, 1)

∅k =
∂f(xk)
∂xk

∣∣∣∣ xk=x̂k

Get Observation (5)- Looking for NAO markers by turning head by 15 degrees.
If NAO find NAO markers to robot frame

Data Association (zk,x̂k/k, Pk+1,k)

Correction _Step - (x̂k/k, Pk+1,k, zk)

wk = Hk+1
Pk+1,k
1−ρk

HT
k+1 +

R̂k+1
ρk

ρk ∈ (0, 1)

kk+1 =
Pk+1,k
1−ρk

HT
k+1 w−1

k
x̂k+1 = x̂k+1,k + kk+1

[
yk+1 − h(x̂k+1)

]
Pk+1,k =

Pk+1,k
1−ρk

−
Pk+1,k
1−ρk

HT
k+1 w−1

k Hk+1
Pk+1,k
1−ρk

ρk =

√
Tr(R̂k+1)√

Tr(Hk+1Pk+1HT
k+1)+

√
Tr(R̂k+1)

Map_Step - (x̂k+1/k+i, Pk+1,k+1, zk) Add new Naomarks to the map
No Naomark –Turn Nao by 180 degree and go to step(5)

kz = kz + 1
Check if iteration numbers are achieved

No Go to step (4)
K = K + 1
End

where ρk and βk are filter parameters to be chosen online to minimize the ellipsoid.
The obtained EKF/ellipsoidal SLAMs results are still not very satisfactory, presumably due to the

range measurement bias and some other facts of imperfection like false positives in the data association
and landmark description, etc. In SLAM, the state vector st contains only landmark positions (mx,i,my,i,)
and robot poses xt. The SLAM alone is not expected to convey more information about landmarks
details. The map representation does not include any information about landmark description in the
environment and this will lead to false positives in the data association.

Accurate data association and landmark identification is very important in order to avoid
convergence towards the wrong SLAM solution. Also, the computational cost of the EKF SLAM
is quadratic with respect to a number of landmarks, i.e., O (N). It is a result of maintaining a full
covariance matrix of state estimate. Also, the correction step of the EKF will touch every single element
of the covariance matrix with a computation cost of O (N), which makes the problem intractable for
cases with hundreds of landmarks.



Sensors 2019, 19, 2795 10 of 27

To improve the EKF/ellipsoidal SLAM’s performance, including mapping in terms of reducing the
computational effort, landmark identification and recognition, to simplify the data association problem
and to improve the trajectory control of the algorithm, the robotic augmented reality (RAR) technique
is introduced in this project and used to get better EKF/ellipsoidal SLAMs performance. An overview
of augmented reality is included in the next section. Augmented reality is a recent technology which
enables users to obtain additional preloaded information from the observation of a particular object.

3.3. Robotic Augmented Reality (RAR)

Researchers in many areas have been inspired by augmented reality (AR) in many areas including
the medical, military, and entertainment fields. However, only a few applications are founded in
robotics research, especially in the robotic navigation area. In this work, augmented reality technology
has been integrated with EKF/ellipsoidal SLAM algorithms to improve their performances in real time.
A review of RAR is introduced in the next section.

The fundamental idea of augmented reality (AR) is to mix the view of the real environment with
virtual or additional computer-generated graphic content to improve our perception of the surroundings.
An example of AR application for mobile devices to obtain information in the environment is shown in
Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 10 of 28 
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Augmented reality is a subset of the more general area of mixed reality (MR) [40], which refers to
a multi-axis spectrum of areas that cover virtual reality (VR), telepresence, augmented reality (AR) and
other related technologies [41].

There are two main classes of augmented reality: marker-based and marker-less. In a marker-based
augmented reality application, the images to be recognized and provided beforehand, which
significantly simplifies the process of image recognition. Adding a few small, easy to understand bits
of information to a real scene can help guide the robot to easily perform many tasks.

Augmented reality can be used to improve the development of robot and robot applications, such
as robot navigation and human and robot interactions (HRIs). More and more studies have been
conducted on AR for humanoid robots and some of the applications of AR to humanoid robots have
been in path planning [42,43], where AR is used for drawing guide paths to provide a simple and
intuitive method for interactively directing the navigation of a humanoid robot through complex terrain.

The objective of augmented reality technology is to enhance the information acquisition of practical
world by augmenting with computer-generated sensory inputs. We have integrated augmented reality
with the EKF/ellipsoidal SLAM algorithms to improve SLAM performance and accuracy. SLAM
performance is improved by presenting preloaded information to the robot through different AR
markers placed in the robot’s indoor environment, and this information will help in the mapping process,
simplifying the data association problem and reducing computational costs. Figure 5 demonstrates
the outline of the navigation strategy. The same AR navigation module will be used as a part of a
simultaneous localization and mapping system, which is developed for the same humanoid robot
platform [44].
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The SLAM new state vector can be represented by the following column vector including the AR
marker IDs:

st =
(
px,t,py,t,pθ,t, ID1

(
mx,1,my,1,

)
, ID2(mx,2,my,2

)
. . . . . . IDN(mx,N,my,N))

T (20)

This new state vector will contain more information about the landmark IDs, which solves the
landmark identification problem and simplifies the data association problem, because the corresponding
landmark can be easily matched once the marked ID is re-observed, without having to compute the
Mahalanobis distance frequently. This will optimize path planning and will reduce computational costs.

3.3.1. Robotic Augmented Reality Implementation on the NAO Robot

The augmented reality and landmark-based SLAM approach is used for humanoid (NAO) robot
applications in indoor environments.

In order to explain the details of the proposed algorithm, we start this section with a description
of the NAO humanoid robot and how the NAO marks are employed. This background information
is required before introducing distance estimation for NAO that is essentially provides a monocular
vision system. We will then explain the NAO odometry problem and go through the derivation of the
SLAM for this system.

Platform and Software (NAO Humanoid Robot)

NAO is a small humanoid robot, developed by the French company Aldebaran, and is designed
to be versatile and affordable for educational research at universities, research centers, and also is a
good candidate for social robots in applications such as museums, dance performances, etc. [45].

The main version of NAO is the H25, which has 25 degrees of freedom. Nao is 58 cm height and
about 5 kg weight. The robot also has an Intel ATOM Z530 1.6 GHz processor, with 1 Gb of RAM, as well
as an Ethernet port, a Wi-Fi connection and a USB port [45] provides a summary of the NAO robot and
its main features including movement, sensing, communication and acting. Gouaillier [46] describes
the details of the mechatronic design of the NAO. Figure 6 shows the NAO robot’s main sensors.
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In order to perceive its environment, Nao is equipped with several sensors, such as two cameras,
four microphones, two sonars, two bumpers, and an accelerometer, to name a few. The two
video cameras are located on its head; one is in the robot’s forehead (top camera) to view straight
ahead of the robot, and the other one (lower camera) is located at its mouth to view the ground
in front of the robot. In the NAO H25, which is the model used for our project, video cameras
provide up to 1280 × 960 resolutions at 30 frames per second (fps). Cameras are crucial sensors for
autonomous navigation

The NAO cameras and their field of view and their positioning are described in Figure 7.
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It can be seen that there is no considerable overlap between the two video cameras’ fields of
view. Therefore, the cameras do not provide stereo vision. This work utilized the NAO straight ahead
camera as a monocular vision system (top camera) for perception of the world.

Each camera is an Aptina MT9M114, maximum resolution 1280 × 960 with an associated frequency
of 5 Hz, and maximum frequency 30 Hz from 640 × 480 Video Graphics Array (VGA) (resolutions [45].
The resolution of the image is between QQVGA 80 × 60 and 4VGA 1820 × 960. The focal length of the
camera is fixed, and its aperture angle is 60.9◦ horizontally and 47.6◦ vertically.

The acquisition system of the camera is a rolling shutter, that is to say the image is acquired
line by line. This acquisition mode involves vertical deformation, which effects the image when the
robot moves; the speed of movement of the head is greater than the acquisition speed of the columns.
Settings such as white balance, brightness, or exposure time are adjustable. In practice, when the robot
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is moving, the images are subject to deformation because of strong kinetics and because the head is not
stabilized except when the robot has both feet on the ground or is not making a step.

NAO has a stable walking algorithm, described in [45]. A simple control system maintains its
equilibrium (notably using the inertial unit and the Magnetic Rotary Encoder (MRE )sensors), but has
no feedback on the actual movement of the robot. The control is thus in an open loop on the position.

On the software side, the NAO robot is equipped with the NAOqi operating system by the Softbank
Robotics Community. The NAOqi OS [45] is the operating system of the robot and is an embedded
GNU/Linux distribution based on Gentoo Linux. It was developed by Aldebaran to specifically fit
the needs of the robot by providing and running programs and libraries that together transform it
into a social robot. The main software of the NAOqi OS is NAOqi, which is responsible for running
behaviors on the robot but can also be used to test code on a simulated robot on a PC. The NAOqi
framework currently supports five programming languages: C++, Python, URBI, Java and Matlab. It
has also been tested in the Microsoft.Net framework for the C#, F# and Visual Basic programming
languages. Amongst the specified programming languages, Python and C++ are the most developed
for the NAO, with extensive libraries. This work was mainly developed in the Python language using
the Windows platform. The implementation methods were typical software engineering approaches,
which included planning, developing, debugging and testing.

NAO Markers

The NAO’s vision recognition engine can be used is to recognize different objects. Some of the
vision built-in functions and modules provided by Aldebaran are used, such as redBallDetection,
to recognize balls and faceDetection to recognize faces. ALLandMarkDetection is a vision module
in which the robot recognizes special landmarks with specific patterns on them. We refer to those
landmarks as “NAO marks”. One can use the ALLandMarkDetection module for various applications.
For example, they can be placed at different locations in the robot’s field of action. Depending on which
landmark the robot detects, the information about the robot’s location can be inferred. Coupled with
other sensory information, it is possible to build a rather robust localization module. This information
will help with the estimation of the camera pose in the NAO space and the camera pose in the world
space. Let us first discuss how to coordinate NAO marks in the robot’s camera [45].

Aldebaran robotics provides a total of 29 markers. Each of these markers has a unique shape that
distinguishes it from the others. As shown in Figure 8, a NAO marker is a black circle with a white
pattern in it. Encoded in the shape of the white pattern is the unique identity of the marker. When the
NAO camera detects the NAO mark, it acquires useful information from these markers as we will see
in next section [14].

Sensors 2019, 19, x FOR PEER REVIEW 13 of 28 

 

The NAO's vision recognition engine can be used is to recognize different objects. Some of the 
vision built-in functions and modules provided by Aldebaran are used, such as redBallDetection, to 
recognize balls and faceDetection to recognize faces. ALLandMarkDetection is a vision module in 
which the robot recognizes special landmarks with specific patterns on them. We refer to those 
landmarks as “NAO marks”. One can use the ALLandMarkDetection module for various 
applications. For example, they can be placed at different locations in the robot’s field of action. 
Depending on which landmark the robot detects, the information about the robot’s location can be 
inferred. Coupled with other sensory information, it is possible to build a rather robust localization 
module. This information will help with the estimation of the camera pose in the NAO space and the 
camera pose in the world space. Let us first discuss how to coordinate NAO marks in the robot’s 
camera [45]. 

Aldebaran robotics provides a total of 29 markers. Each of these markers has a unique shape 
that distinguishes it from the others. As shown in Figure 8, a NAO marker is a black circle with a 
white pattern in it. Encoded in the shape of the white pattern is the unique identity of the marker. 
When the NAO camera detects the NAO mark, it acquires useful information from these markers as 
we will see in next section [14].  

 
Figure 8. Some of the NAO markers  

As stated in the Aldebaran documents [45], the vision recognition module offers a simple 
approach to perceive the environment which is simple but presents several challenges. The first one 
is that the total number of NAO marks is limited, so if an application requires more of them, they 
need to be decoded again. The second is that these NAO marks require sufficient illumination, as 
correct decoding depends on contrast differences in the image. Proper illumination must be in the 
range of 100 lux and 500 lux. Lighting conditions below this range often result in the 
misidentification of the marker, or no detection at all in some cases. The third is that the tilt of the 
marker’s plane relative to the camera must be between +/- 60 degrees for detectability. For optimal 
performance, the NAO mark must also be in the direct line of sight of the robot. The final limitation 
is the size of the marker within the image and the range of detection by the camera. The minimum 
size is approximately 0.035 rad which corresponds to 14 pixels in a Quarter Video Graphics Array 
(QVGA) image, while the maximum size is approximately 0.40 rad or 160 pixels within the QVGA 
image. At this marker image size ranges and marker real size being 108.54 mm, the distance range 
for detection is from 30 cm to about 200 cm [45].  

The NAO mark can correctly detect if the image has only 60˚ of inclination in relation to the 
camera. On the other hand, an advantage of the NAO mark is that its rotation has no influence on 
detection. 

Also, it should be stated that the NAO can also recognize Quick Response (QR) codes; a QR 
code is a quick response code which is like a bar code in matrix form. It can store a lot of useful 
information. The NAO can be implemented to detect the QR code sign; the robot can then move 
closer to read it and finally work out its meaning. The AR markers (or NAO markers) do not have to 
be placed in any particular location as the NAO is programmed to recognize them and find where 
they are as it walks in its environment and then localizes them with respect to its pose as well as the 
global position. 

Figure 8. Some of the NAO markers.

As stated in the Aldebaran documents [45], the vision recognition module offers a simple approach
to perceive the environment which is simple but presents several challenges. The first one is that the
total number of NAO marks is limited, so if an application requires more of them, they need to be
decoded again. The second is that these NAO marks require sufficient illumination, as correct decoding
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depends on contrast differences in the image. Proper illumination must be in the range of 100 lux and
500 lux. Lighting conditions below this range often result in the misidentification of the marker, or no
detection at all in some cases. The third is that the tilt of the marker’s plane relative to the camera
must be between +/− 60 degrees for detectability. For optimal performance, the NAO mark must
also be in the direct line of sight of the robot. The final limitation is the size of the marker within the
image and the range of detection by the camera. The minimum size is approximately 0.035 rad which
corresponds to 14 pixels in a Quarter Video Graphics Array (QVGA) image, while the maximum size is
approximately 0.40 rad or 160 pixels within the QVGA image. At this marker image size ranges and
marker real size being 108.54 mm, the distance range for detection is from 30 cm to about 200 cm [45].

The NAO mark can correctly detect if the image has only 60◦ of inclination in relation to the camera.
On the other hand, an advantage of the NAO mark is that its rotation has no influence on detection.

Also, it should be stated that the NAO can also recognize Quick Response (QR) codes; a QR code
is a quick response code which is like a bar code in matrix form. It can store a lot of useful information.
The NAO can be implemented to detect the QR code sign; the robot can then move closer to read it
and finally work out its meaning. The AR markers (or NAO markers) do not have to be placed in any
particular location as the NAO is programmed to recognize them and find where they are as it walks
in its environment and then localizes them with respect to its pose as well as the global position.

Our real-time experiments show that QR codes have more or less the same issues as the NAO
markers. Firstly, the image resolution must be set according to the distance between the camera and
the code itself. Secondly, the maximum distance for the NAO to be able detect the QR code is about
2 m, and this distance decreases when the QR code is not in straight view of the camera. Whereas
our experiments show that NAO marks are very good to when used as landmark and produce better
performance. By improving the NAO mark size and color as shown in figure below, the NAO is able to
detect it up to 3.0–3.4 m from any camera angle. Figure 9 shows the detected NAO mark and QR codes
by the NAO and their distances.
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The coordinates of the marker acquired by the robot’s camera are computed using the information
shape of the marker. First, we need to know the physical dimension of the NAO mark detected.

The marker size of the printed marker used in our study shown in Figure 10 is 195 mm with some
information augmented to it. With this, we can calculate the distance of the marker from the robot, as
explained bellow.

In Figure 11, the variable (S) is the distance of the marker from the camera can be calculated using
the angular size (a) and the marker size (m) as show in the following equation. The parameters sizeX
and sizeY, for which identical values are given in the image of detected markers, are the dimensions
from the center-most to the edge on the horizontal and vertical image axes, respectively.

S =
m/2

atan(a/2)
(21)
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In Equation (21), the angles alpha and beta are used to obtain the transformation from the robot
to the landmark frame. To obtain the coordinate of the marker in the robot frame, a transformation
from the camera frame to the robot frame is required. This transformation is performed using methods
defined in the transform class of the implementation. The computation for this transformation is
presented in Equation (22):

RobotToLandmark
= landmarkToCameraRotationalTrans f orm
∗ landmarkToCameraTranslationalTrans f orm ∗ cameraToRobot

(22)

The result is a transformation matrix which includes the (x, y, z) coordinates of the landmark in
the robot frame.

Figure 12 explains the transformation between the global frame of the world and local frames of
the NAO robot and landmark (NAO mark).

In general, a 2D transformation between two frames is a combination of rotation and translation,
written as: [

Xglobal
Yglobal

]
=

[
cos∅ − sin∅
sin∅ cos∅

][
XNaomark/robot
YNaomark/robot

]
+

[
X0

Y0

]
(23)

where “robot” indicates marker coordinates in the robot frame (XNaomark/robot, YNaomark/robot) and X0

and Y0 are the robot’s location in the global frame. The angle ∅ denotes the orientation of the robot in
the global frame. The equation can be rewritten as:

Xglobal
Yglobal

1

 =


cos∅ −sin∅ X0

sin∅ cos∅ Y0

0 0 1




XNaomark/robot
YNaomark/robot

1

 (24)
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Now it’s possible to get the global coordinates of any NAOmark in the environment.

NAO Robot Odometry Problem

Bipedal walking robots present specific challenges depending on the environment in which
they operate; they rarely achieve the desired trajectory because of the deviation generated during
walking [47]. This problem is due to different circumstances such as robot manufacturing, wear and
tear of mechanic parts, or variations in floor flatness, and due to partial hardware failures, out-of-spec
components, the friction forces that are generated during motion, etc. [14].

The odometry provided by the NAO robot firmware is computed from the robot model, i.e., step
length and walk angle only, with no data from the inertial unit used (although it is available on the
robot). The robot pose outputs from odometry are relative to some starting point and so only relative
transformations to the previous poses are used in our localization system. The produced poses are
known to be biased with an additive error, which is not negligible for legged robots. It was noted in
the preliminary experiments that the odometry alone cannot be used for reliable robot navigation,
as the resulting robot pose deviates greatly from the ground truth. Figure 13 shows the discrepancy
between the actual robot trace and the reported odometry for a straight walk command. According to
the odometry, the robot moved across a straight line because of the given command, whereas in reality
the robot slipped to the left [48].
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The NAO’s issue of deviation during walking will lead to errors in robot position and orientation
after a few steps. Experiments show that the NAO’s orientation has a large error compared to its
position error and as a result, all landmarks (NAO mark location) will have an inaccurate position value
and consequently lead to a completely inaccurate map. Perception sensors which provide information
relative to the environment (e.g., the camera) also have uncertainty in their measurements. Due to
this high uncertainty in motion and perception, the estimation of the robot’s position, orientation and
building of an accurate map can be improved using some filtering methods like the Kalman filter and
its various non-linear extensions such as the extended Kalman filter (EKF) or the ellipsoidal SLAM as
the goal of this paper.

The augmented reality and vision-based probabilistic landmark-based SLAM approach are
implemented for humanoid (NAO) robot applications in indoor environments. It should be noted that
the NAO’s mono-camera system is used to capture NAO marks as landmarks for SLAM applications
as this humanoid robot do not have stereo vision, and due to its rather closed architecture, it is not
straightforward to interface any external hardware (such as a stereo camera) to this platform. Also,
adding additional hardware affects the walking stability of NAO. Finally, our solution alleviates the
additional computational costs of image processing. By extension, an additional sensor (sonar) is used
to find the safe distance for the NAO to move ahead and to avoid obstacles to perform the SLAM
algorithm. Also, the sonar sensor can be used to find a safe distance and to perform SLAM faster. In the
first stage, the application involves the NAO’s visual recognition ability to recognize some of the NAO
markers and obtain some preloaded augmented information. The information can also later be used
for the simplification of the data association problem in EKF/ellipsoidal SLAMs and help navigate in a
dense environment with multiple landmarks and obstacles. In the next stage, the same AR module is
transplanted into a vision-based autonomous humanoid robot to determine the position with respect
to its environment. Markers whose locations are mapped based on the estimated location of the robot
will be accurately updated in the update step of the EKF/ellipsoidal SLAMs.

Initially, the EKF/ellipsoidal SLAMs perform regular map initialization processes and then start
its regular motion function. However, before the EKF/ellipsoidal SLAMs conduct the observation
function using the camera sensor, the NAO calls the landmark detection module aiming to find if
there are NAO marks in the camera’s current field of view. This process is shown in Figure 14 and the
algorithm below illustrates the process. The NAO starts turning its head by 15 degree increments and
at the same time looking for NAO markers. In each head turn, and once the vision system detects
any NAO marks, it will get the NAO mark’s data and all information associated with it and at the
same time calculate the marker’s coordinates with respect to the robot’s frame. The designed system
recognizes the location of a NAO marker from the image sequence taken from the environment using
the NAO’s camera and adds the location information to the user’s view in the form of 2D objects and
other information content using augmented reality (AR).
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Figure 14. Augmented EKF/ellipsoidal SLAM outline strategy. 

 

Figure 14. Augmented EKF/ellipsoidal SLAM outline strategy.

The pseudo-code for the augmented EKF/ellipsoidal SLAM of the whole project with augmented
reality is presented below (Algorithm 2).

Algorithm 2. Augmented EKF/ellipsoidal SLAM

Start
Initialization - EKF/Ellipsoidal -SLAM Initialization, NAO Robot Initialization
Get Observation –

Looking for NAO markers Yes - turning NAO’s head by 15 degrees.
No - NAO markers Turn Nao by 180 degree

while not_stop
Prediction Step - Check safe distance to move by sonar. Move command

No safe distance. Turn Nao by180 degree
Get Observation (5) - Looking for NAO markers by turning head by 15 degrees.

If NAO find NAO markers to robot frame
Yes – Are/Is there any Augmented NAO markers

Yes- go to step(6)
No –Turn NAO by 180 degree and go to step(5)

Data Association(6)-
NAO markers matching and data-association simplification

Correction _Step - Run standard EKF/ Ellipsoidal - SLAM update step.
Augmented _Map Add new NAOmarkers to the map
Check if iteration numbers are achieved

No Go to step 4
End



Sensors 2019, 19, 2795 19 of 27

NAO looks for the augmented NAO marker in its environment and the landmark detection
module should report the detected NAO marker by circling them, with the mark’s ID displayed next
to it. Once the right NAO marker is detected and the mark ID is retrieved, extra information can be
achieved corresponding to the mark ID number, which is inspired by augmented reality. The sonar
checks available space before the robot moves to the next prediction step.

As we can see from the algorithm, the NAO starts turning its head by 15 degree steps and gets
the NAO marker’s data at each step and at the same time calculates the marker’s coordinates with
respect to the robot’s frame. Using augmented reality algorithms, whether the robot sees normal NAO
markers or augmented NAO markers, the robot tries to find its location, simplify the data association
and then goes to the update step. If the robot did not see any augmented NAO markers, it will go to
the update step with the location calculated in the prediction step and run a regular EKF/ellipsoidal
SLAM. All NAO markers are then mapped to the global location using EKF/ellipsoidal SLAM.

The integration of augmented reality with the EKF/ellipsoidal SLAM algorithms succeeded in
the NAO robot based on the use of NAO marker recognition functions, as seen previously. Generally,
the fundamental structures of EKF SLAM and ellipsoidal SLAM remain, while the augmented reality
processes take place when the NAO marker is detected, where additional information is retrieved
regarding the detected NAO marker. The main contribution of integrating augmented reality into
both EKF SLAM and ellipsoidal SLAM is the use of this additional information to assist the robot in
navigating tasks within a practical environment.

The integration of augmented reality (AR) with EKF/ ellipsoidal SLAM is proposed and
implemented on a humanoid robot in this paper. The goal has been to improve the performance of
these SLAMs in terms of reducing the computational effort, simplifying the data association problem
and to improving the SLAM algorithm.

4. Experimental Results

In this section, we evaluate the effectiveness of the ellipsoidal SLAM through simulations and
experiments in real-time. We compared ellipsoidal SLAM with EKF SLAM. The experiment results
conducted in the Autonomous and Intelligent Systems Laboratory (AISL) as shown in Figure 15.
The NAO markers are placed on different unknown locations in the lab, as seen in the Figure 15, at the
same height as the of NAO. The robot stands up and starts looking for landmarks by turning its head
by 15 degrees.
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First the robot is placed at pose [0,0,0] and then a straight move command is applied
(moveTo(0.25,0,0)) on the NAO on the iteration step to move to (4, 0, 0). The NAO starts to
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deviate to the left side after the few first steps. With this error, the odometry alone cannot be used for
reliable navigation as explained in Section NAO Robot Odometry Problem. The goal is to leave the
NAO moving without any control and to find its location and map its environment.

Figure 16 shows the robot’s trajectory and the NAO marker locations estimated by EKF SLAM
under the Gaussian noise assumption. The figure shows that the robot’s position started at the origin.
It’s clear that the EKF is able to acceptably estimate the robot’s location compared to the real robot
location with inaccurate orientation. We noticed from the experiments that the uncertainty of the
robot’s motion after passing the first two landmarks increased. The EKF SLAM algorithm minimized
this error again when the system observed new landmarks but the estimation errors of the EKF SLAM
increased under Gaussian noise.
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The NAO marker locations were subject to more errors compared to the real location. This was due to
the robot’s orientation error. The NAO V4 provides poor orientation values from the Inertial Measurement
Unit (IMU) which will lead to false NAO marker locations and the data association problem.

In practice, the NAO robot detected some falsely-positive NAO markers. The false positive
problem happened firstly because of illumination, as mentioned previously, and because of the NAO
camera’s field of view; the NAO detects only one NAO marker at once so if two NAO markers are
located in the same field of view of the robot camera, the image processing algorithm for NAO marker
recognition fuses them to generate a new NAO marker shape and consequently the result will be
a false positive NAO markER. Figure 16 shows some false positive NAO markers detected by the
NAO camera.

These false positive NAO markers cause inaccurate localization and mapping processes.
Figure 17 shows the robot trajectory and the NAO marker locations estimated by ellipsoidal SLAM.
In ellipsoidal SLAM, the noise is bounded using the ellipsoidal method. It is clear that in some

parts, ellipsoidal SLAM performance is similar to the standard EKF SLAM, but the ellipsoidal SLAM
bounds the estimation errors after every iteration.

The implemented standard that the EKF/ellipsoidal SLAMs still suffer from are false positives in
data association, computational costs and the SLAM vector does not include any information about
landmark description in the environment. Furthermore, the standard ellipsoidal SLAM required a
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trial and error process to select its parameters and this process was more tedious in real time towards
robust SLAM.
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Augmented EKF/Ellipsoidal SLAM Results

In this part, we employed the augmented reality fundamentals to improve the mapping term
in EKF/ellipsoidal SLAM. Figure 18 shows the estimated NAO robot pose in each iteration step and
NAO marker positions using augmented EKF SLAM. AR solves the false positive NAO markers and
provides more information about the landmarks in the environment. It improves the SLAM algorithm
by providing what type of object is in the environment.
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In Figure 19, the NAO markers are placed in the robot’s path. While the robot moves between
these landmarks, the estimated robot position is minimized when the robot detects any augmented
NAO marker on its route.Sensors 2019, 19, x FOR PEER REVIEW 22 of 28 
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The new SLAM state vector now has more information about the object in its environment with
its locations as follows.

st =
(
px,t, py,t, pθ,t, Table

(
mx,1, my,1,

)
, A Car(mx,2, my,2

)
. . . . . . , Table(mx,N, my,N))

T

This will improve the SLAM algorithm and this will easily solve the data association problem
because the corresponding landmark can be easily matched once the marker ID is re-observed, thus
reducing the computational cost.

It was noted that the uncertainty of the robot’s motion increased when the robot was running under
the standard EKF SLAM (no augmented NAO marker had been detected) and the EKF SLAM process
could not minimize the error. However, when the system was augmented by new NAO markers, it
corrected its position and minimized the error. Furthermore, the estimated NAO marker positions were
improved by using augmented reality. Additionally, the robot’s position in the augmented ellipsoidal
SLAM was better than in the augmented EKF SLAM. These observations support our conclusion that
generally, the ellipsoidal SLAM algorithm improves the motion model and decreases its error.

In ellipsoidal SLAM, the parameters which minimize the ellipse are calculated by trial and error
and adaptive augmented ellipsoidal SLAM finds these parameters online in every iteration to improve
the accuracy of the SLAM algorithm. Table 1 illustrates these values.

Table 1. Ellipse parameters for adaptive augmented ellipsoidal SLAM.

Estimated Parameters of Adaptive Augmented Ellipsoidal SLAM

βk
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.21 0.19 0.18 0.16 0.174 0.17 0.158 0.148 0.16 0.19 0.17 0.20 0.18 0.16 0.14

ρk × 10−5 49 47 45.5 46 54 44.5 43 41 40.4 40 43 46 43 41 39
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We employed the root mean square (RMS) method for the computational cost in the comparison
of the accuracy and consistency of the implemented SLAMs. The RMS is defined as:

e =

√∑nx
i=1(xi − x̂i)

2

nx
(25)

where xi is the truth value for the state vector, while x̂i is the estimated state value. Furthermore, the
estimated positions of landmarks were also evaluated. Some detailed results calculated by the RMS
are listed in Table 2. They are the average values over real-time experiments. As the table shows,
the NAO’s IMU has the largest error in the y-axis, with a 45

◦

orientation error after the final step of
movement. EKF SLAM reduces the heading error by 66.6% of the total error of the IMU, but this is not
enough to perform an accurate SLAM. Adaptive augmented EKF SLAM reduced this error by 88%.
Thus, we can draw the conclusion that adaptive augmented EKF SLAM is much more effective for
improving accuracy.

Table 2. Comparisons of the performances of implemented SLAM algorithms.

Algorithm Nao x-Pose
Error/m

Nao y-Pose
Error/m

Nao Heading
Error/rad

Naomarks-x
Error/m

Naomarks-y
Error/m

NAO IMU 0.7120 48.9912 0.78558 - -
EKF SLAM 0.0184 0.18451 0.17975 0.1413 0.4022

Ellipsoidal SLAM 0.0180 0.12016 0.12128 0.1173 0.4143
Augmented EKF SLAM 0.0178 0.1439 0.077072 0. 5901 0.2153
Adaptive Augmented

Ellipsoidal SLAM 0.0163 0.1001 0.034711 0.2566 0.1024

Figures 20 and 21 compare the RMS errors of the NAO’s x-position and the headings of the
implemented SLAM. Obviously, the trend of errors in adaptive augmented Ellipsoidal SLAM is steady
and smaller than that of EKF/ellipsoidal SLAM and augmented EKF SLAM, including both the NAO
position errors and heading errors. All of the errors decrease by about 88 percent under the adaptive
augmented ellipsoidal SLAM. The steady RMSE in the figures means that the NAO is not moving
in that specific time duration and performing the observation step, looking for NAO markers in
the environment.
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Figure 20. The root mean square (RMS) errors of NAO x-positions of the implemented SLAM.
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Figure 21. The RMS errors of the NAO heading of the implemented SLAM.

Moreover, the time to reach steady-state estimation should also be taken into account. Figure 22
shows the total time required for the filters to reach steady-state estimation. For adaptive augmented
ellipsoidal SLAM, there is a slightly difference compared to augmented EKF SLAM. The adaptive
augmented ellipsoidal SLAM still has a speed advantage over EKF and ellipsoidal SLAM, while
preserving a more accurate and consistent estimate. Thus, we can see that adaptive augmented
ellipsoidal SLAM is clearly time-saving compared to EKF and ellipsoidal SLAMs. Adaptive augmented
ellipsoidal SLAM needs 120s after the 6th step to provide stable, accurate, and consistent estimates.
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Figure 22. Steady-state time elapsed for the implemented SLAM algorithms.

The results of the experiments performed shows that the standard EKF/ellipsoidal SLAM
algorithms have very similar performance. Noticeably, Adaptive augmented ellipsoidal SLAM
SLAM algorithm improves the localization and mapping process with very small error.
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5. Conclusions

The ultimate goal of this project was to study various SLAM algorithms using monocular vision as
the only information source to model the environment and provide accurate solutions and implement
them on the NAO humanoid robot. Augmented EKF/ellipsoidal SLAM solutions, which integrate
augmented reality techniques with ellipsoidal SLAM were explained and tested on the NAO humanoid
robot to enable the NAO move through its environment. The fundamentals of each step of mapping
and localization have been explained and implemented with the NAO robot for EKF/ellipsoidal
SLAM algorithms. The results of the experiments performed in the AISL lab showed that regular
EKF/ellipsoidal SLAM algorithms have very similar performance in terms of mapping and in most
simulated cases, ellipsoidal SLAM was more robust in modeling the motion errors. Furthermore, errors
are bounded and modeled by ellipsoid sets without assuming a Gaussian environment, so we have
more realistic error modeling capable of building maps for both indoor and outdoor environments.
The augmented EKF/ellipsoidal SLAM systems give more accurate robot pose estimations and NAO
marker positions. Noticeably, adaptive augmented ellipsoidal SLAM improves localization and
mapping. Besides the improvement of the algorithm itself to include some landmark information, we
have reported great improvement in the consistency and accuracy. Adaptive augmented ellipsoidal
SLAM results decreased IMU errors by 88%, while EKF/ellipsoidal SLAM reduced this in the range of
66%–75%. These results are good to be used with the NAO robot for indoor applications. The adaptive
augmented ellipsoidal SLAM was able to determine the robot’s position each time with very small errors
when compared to localization done by odometry or by regular EKF/ellipsoidal SLAM. The mapping
process and data association are solved successfully despite having some false positive NAO markers
using RAR.

The experiments show that the robot can find its location and build an acceptable map around
itself successfully at each step in an acceptable time using adaptive augmented ellipsoidal SLAM.
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Abbreviations

The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization and Mapping
AEKF Augmented Extended Kalman Filter
EKF Extended Kalman Filter
RAR Robotic Augmented Reality
CML Concurrent Mapping and Localization
ESMF Extended Set-Membership Filter
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