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ABSTRACT The emergence of Industry 4.0 and the Internet of Things (IoT) has meant that the manufac-
turing industry has evolved from embedded systems to cyber-physical systems (CPSs). This transformation
has provided manufacturers with the ability to measure the performance of industrial equipment by means
of data gathered from on-board sensors. This allows the status of industrial systems to be monitored and
can detect anomalies. However, the increased amount of measured data has prompted many companies to
investigate innovative ways to manage these volumes of data. In recent years, cloud computing and big
data technologies have emerged among the scientific communities as key enabling technologies to address
the current needs of CPSs. This paper presents a large-scale platform for CPS real-time monitoring based
on big data technologies, which aims to perform real-time analysis that targets the monitoring of industrial
machines in a real work environment. This paper is validated by implementing the proposed solution on a real
industrial use case that includes several industrial press machines. The formal experiments in a real scenario
are conducted to demonstrate the effectiveness of this solution and also its adequacy and scalability for future
demand requirements. As a result of the implantation of this solution, the overall equipment effectiveness
has been improved.

INDEX TERMS Anomaly detection, big data, cyber-physical system, industry 4.0, real-time processing.

I. INTRODUCTION
In recent years, industrial manufacturing has advanced due
to the fourth Industrial Revolution (Industry 4.0) and the
Internet of Things (IoT) [1]. This evolution has been boosted
by the specific needs of the industrial manufacturing sec-
tor [2]. Thus, companies have experienced a technological
transformation by adopting Cyber-Physical Systems (CPSs)
rather than traditional embedded systems [3]. Although the
term CPS is applied to a wide variety of domains, it is
assumed in this article to refer to an Industrial Cyber-Physical
System (ICPS) because the scope of this work covers the
manufacturing domain.

ICPSs enable new advanced strategies to be implemented
to improve and optimize the manufacturing processes in the
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entire lifecycle of the manufacturing system and, therefore,
of the product [4], [5]. This would lead to higher qual-
ity products and improvements in productivity and energy
savings. This has encouraged the European Monitoring and
Control (M&C) market to invest e143 billion in this area
by 2020, making a total ofe500 billion invested by the world
wide M&C market [6].

An ICPS can be made up of many different devices. Some
of these devices can communicate with each other to make
decisions while the system is in operation, leading to smart
manufacturing [7], [8]. Thus, it is necessary to capture all
data coming from ICPSs to cost-effectively monitor the oper-
ation of these industrial systems to timely detect anomalies
and avoid production shutdowns. The captured data allows
anomalies in the system to be found. This anomaly detection
helps to find errors at an early stage. However, to do so,
all information received from an ICPS must be captured
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and processed. Note that an ICPS can be composed of many
devices and, consequently, the data volume received is large.
Hence, the data volumes that are currently generated are too
large to be processed with traditional technologies [9], which
often means delays and may cause non-functioning. This
can be critical for decision-making processes, since obtaining
correct information at the correct moment is a key issue [10].
Late detection of a fault can also be critical for an industrial
machine and, consequently, for productivity. In an industrial
scenario, the system needs to be in operation 24/7. Therefore,
the devices, the network, and so on in a smart manufacturing
system cannot be interrupted, since this would cause a drop
in production and a loss of money. This is typically mea-
sured by the Overall Equipment Effectiveness (OEE), which
identifies the percentage of manufacturing time that is truly
productive.

The rapid growth and widespread use of a wide range of
information technologies, from individual sensors to cloud
computing and cloud services, has led to an increase in the
volume of data that needs to be processed. As the data volume
increases, the ICPS must be horizontally scaled up to add
more computational resources to ingest, process and store the
data. However, other issues can arise as more computational
nodes are added to the existing server to spread the load
across them, such as data partitioning [11] or the manage-
ment of the computational resources, among others. Hence,
scalability is one of the main challenges to these systems.
In this context, Big Data frameworks and cloud computing
are particularly important since they provide fast, scalable
and fault-tolerant data processing capabilities for ICPSs [5].
Cloud-based approaches are especially suitable for small and
medium enterprises since they provide on-demand services,
which require lower barriers and initial investments [12].

This work presents a Big Data approach for ICPSs to per-
form a real-time analysis of the operational state of industrial
systems in the manufacturing industry. This will enable the
ICPS to take advantage of the benefits of Big Data in a
cloud computing environment. This work is validated in a real
industrial scenario where various press machines are used.
The validation comprises the implementation of this solution
to improve the performance and reliability of its monitor-
ing and anomaly detection systems, since they required a
new platform that is faster to process efficiently the data
volume they currently generate and scalable to meet future
needs. Consequently, this approach has helped to improve
the OEE of their industrial systems. Moreover, the monitor-
ing system developed here can be easily deployed on third-
party cloud infrastructures such as Amazon EMR,1 Microsoft
HDInsight2 or Cloud Dataproc.3

The main contribution of this work is the design and the
implementation of a large-scale ICPS for monitoring indus-
trial machines in a real work environment, where digitization

1https://aws.amazon.com/es/emr/
2https://azure.microsoft.com/es-es/services/hdinsight/
3https://cloud.google.com/dataproc/

is not yet very advanced. Specifically, the novelty of this work
lies in: (i) the use of a Big Data solution to satisfy the needs
of real industrial scenarios, both currently and in the future;
and (ii) addressing the challenges identified in the literature
review.

The rest of this article is structured as follows: Section II
presents the state of the art. Section III describes the proposed
Big Data architecture. Section IV details the configuration
of the experimentation as well as the industrial case study.
Section V analyzes the results of the scalability tests that we
have performed. Section VI presents conclusions and future
work. However, due to confidentiality, it is not possible to
show specific details about the anomaly detection process or
the OEE.

II. STATE OF THE ART
The term cyber-physical system was first coined by Helen
Gill at the National Science Foundation. Briefly, it can be
referred as a new generation of systems with integrated com-
putational and physical capabilities that can interact with
humans through many new modalities [13]. In fact, CPSs
can be defined as ‘‘physical, biological and engineered sys-
tems whose operations are monitored, coordinated, con-
trolled and integrated by a computing and communication
core’’ [14], although more definitions can be found in the
literature [15]–[18].

The communication between physical and digital elements
has come to play an important role in various industrial
domains [16], [19], [20]. Within a manufacturing context,
the use of ICPSs has led to smart manufacturing. According
to the National Institute of Standards and Technology (NIST),
these are ‘‘fully-integrated, collaborative manufacturing sys-
tems that respond in real time to meet changing demands
and conditions in the factory, in the supply network, and
in customer needs’’ [21]. However, an ICPS by itself is
not sufficient for efficient monitoring of industrial systems.
The gathered data must go through four IoT stages to gain
enough knowledge to make an accurate decision [22]–[25].
These stages start from the device’s connectivity to transmit
the data, followed by real-time monitoring that enables the
operational state of the systems to be visualized, and even-
tually leading to desired business outcomes. A data analytics
stage then delivers insight, predictions, and optimization for
the performance of the ICPS. Finally, an enhanced on-board
intelligence that provides themaximum business benefit from
the information obtained in the previous stages is required.
This allows companies to gather data from their industrial
systems and then process it to extract useful information
to help make relevant decisions, failure diagnoses and to
introduce predictive maintenance.

Given the necessity to analyze the data coming from the
physical elements as fast as possible and the huge volume of
captured data, Lee et al. [26] conclude that algorithms are
required to draw conclusions and avoid anomalies. Conse-
quently, data analysis can bemore efficient than analyzing the
data manually. As Niggemann et al. [27] show, humans are

52456 VOLUME 7, 2019



M. Canizo et al.: Implementation of a Large-Scale Platform for CPS Real-Time Monitoring

unable to draw conclusions in a fast and efficient way when
a huge amount of data is involved. They also claim that
systems managed by humans are hard to maintain, besides
being incomplete.

However, acquiring data and processing it involves high
levels of computational requirements. Colombo et al. [6]
claim that these systems should be based on process control
algorithms, architectures, and platforms that are scalable and
modular (plug and play), and which are applicable across
several sectors. Consequently, the application of cloud com-
puting and Big Data technologies to ICPSs has attracted
the interest of several researchers. Thus, the literature has
identified the challenges of cloud-based ICPSs [28]–[31], and
which agree on the need for an ICPS with the following
characteristics:
• Cloud-based distributed file systems for ubiquitous
access to data.

• Open-source programming frameworks to process and
analyze Big Data.

• Large-scale, fast and fault-tolerant data processing.
• Real-time data collection from cyber-physical devices
and storage in the cloud.

• Remote monitoring and control capabilities.
• Software as a Service (SaaS), Hardware as a Service
(HaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS).

• An intelligent search engine to answer queries.
Although researchers have recently focused on achieving

some of these challenges, to the authors’ knowledge, none
have addressed these characteristics embedded in a single
solution.

III. BIG DATA ARCHITECTURE FOR AN INDUSTRIAL
CYBER-PHYSICAL SYSTEM MONITORING
This section details the proposed Big Data architecture for
ICPS real-time monitoring. First, the components of the
architecture are introduced (Section III-A). The technologies
that are used to implement this architecture are then described
(Section III-B). Finally, the workflow followed by the archi-
tecture to assess the monitoring of the ICPSs is detailed
(Section III-C).

A. ARCHITECTURE
The goal of this architecture is to process the data generated
by the industrial machines to monitor in real-time their opera-
tional state, providing key information to maximize the OEE.
However, when many industrial machines are continuously
sending data, a Big Data architecture is required to manage
the large volume of data that is generated by the ICPSs. At this
stage, a number of technological requirements arise, which
must be analyzed in depth [27], as follows:
• Data acquisition: a system that is capable of gathering
data from the industrial machines and sending it to
the cloud is required. Consequently, a system that is
capable of managing all of the data sent to the cloud

is also required. These systems must efficiently manage
thousands of messages per second without forming a
bottleneck. They must also be scalable to be able to
handle data volume increments. Finally, data loss must
be prevented since the monitoring cannot be properly
carried out without all of the relevant data. Thus, it must
be fault-tolerant [32].

• Data processing: a data processing engine that is capa-
ble of processing the streaming data coming from the
industrial machines is required. It must also enable batch
processing for advanced analytics purposes. To detect
anomalies as early as possible, the data processing
engine must be fast in terms of processing data and exe-
cuting calculations. It must also be able to manage data
volume increments (scalability) and to handle system
failures (fault-tolerant).

• Data persistence: there is a need to store huge vol-
umes of data with high throughput. Consequently, stor-
age flexibility is required as the data volume increases.
Moreover, an efficient search engine is required to query
the database without excessive delays. Fault-tolerance is
also required to miss no data in case a system failure
occurs.

• Data serving: a system that provides services to
query/push information from/to a user interface is
required to easily check in real-time the operational
status of the industrial machines. This system must
provide mechanisms to handle immediate information
(i. e., anomaly alerts or current machine status), and
medium to long-term information (i. e., advanced analyt-
ics). In other words, it manages the connections between
the cloud and the user interface.

With these requirements in mind, as depicted in Figure 1,
the architecture is divided into three main blocks: a local data
acquisition, a cloud platform, and a front-end. The former
is located physically on the manufacturing factory, that is,
it is deployed in the servers of the company (on-premise).
It is responsible for gathering data generated by the industrial
machines and then sending it to the cloud. The local data
acquisition system is composed of a database where the
data coming from the industrial machines is stored and a data
publisher pushes the new data to the cloud. This is part of the
data acquisition system; concretely, the local side.

The cloud platform is the core block of the architecture
since it is in charge of managing, processing, persisting, and
serving all of the data sent to the cloud. To give support
to all of the previously described requirements, according to
lambda architecture [33], the cloud platform is divided into
three layers: serving, speed, and batch layers. The serving
layer encompasses all services related to the data acquisition
in the cloud side, the data persistence, and the data serving.
The speed layer includes real-time data processing services;
that is, it is responsible for processing in real-time the data
coming from the industrial machines. The batch layer pro-
vides batch processing services, which means that the data
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FIGURE 1. Architecture of the proposed ICPS real-time monitoring system.

is processed periodically with a long time interval. This is
responsible for performing advanced analytics by aggregat-
ing historical data stored in the database.

The front-end is the visual component of the architecture.
It shows in real-time the status of the industrial machines
and it enables advanced analytics to be displayed to support
decision making. The front-end is also deployed within the
cloud platform.

B. CLOUD MANAGEMENT AND USED TECHNOLOGIES
Of the requirements that we have described, the management
of volume, velocity, scalability, and fault-tolerance are the
most important issues. The first two are already addressed
by adopting a Big Data paradigm since they are implicit [34].
In addition, the multi-node design of Big Data frameworks
provides scalability [35] and fault-tolerant features. There-
fore, the selection of these technologies was made in view
of the requirements and issues described above.

Since data persistence is required, Elasticsearch4 was
selected Elasticsearch is a distributed, document-oriented,
RESTful search and analytics engine that is capable of per-
sisting data and fulfilling the established requirements [36].
Besides satisfying our requirements, Elasticsearch is also
a mature and robust technology that has been successfully
adopted in other domains [37]–[40]. InfluxDB was also suit-
able for this use case although it was discarded as it must be
paid in case more than one node is used.

Apache Flume5 and Apache Kafka6 were selected to meet
the data acquisition requirements. Flume is a distributed,
reliable and available service that can efficiently collect,
aggregate and move large amounts of logged data. It is
used as a data publisher to send the data generated by the
industrial machines to the cloud. Its potential is demonstrated
in [41]. Kafka is a distributed messaging system that uses
the publisher/subscriber communication pattern [42]. It is in

4https://www.elastic.co/products/elasticsearch
5https://flume.apache.org/
6https://kafka.apache.org/

charge of passing the data sent by the data publisher into the
cloud. Furthermore, Kafka minimizes the loss of messages
by means of its fault-tolerant design. Apache Kafka has also
been adopted in similar use cases [43]–[45].

Apache Spark Streaming7 was adopted to process the data.
Spark Streaming is a scalable, high-throughput, fault-tolerant
stream processing for live data streams. For streaming data
processing, a short batch interval was defined while a long
batch interval was defined for batch processing. The main
advantage of Spark Streaming is its in-memory data pro-
cessing, which provides a faster engine than those using
disk I/O. This allows data to be processed 100 times faster
than traditional Big Data technologies [46]. In addition, it is
supported by a huge developer community and is powered
by companies such as IBM, Hortonworks or Cloudera, which
means that the framework is mature and resilient over time.

Two components are used to manage messages between
the application and the dashboard: a generic REST API to
query the database from the dashboard, and a WebSocket
that enables direct messages to be sent to the dashboard.
These are responsible for data serving, which is located
in the cloud within the serving layer. To provide fault-
tolerant and scalability capabilities to the dashboard, a micro-
service solution based on the 12-factor app approach8 was
adopted.

To carry out the management of cloud resources Apache
Mesos9 and Apache Zookeeper10 are used. Among other
computational resources, Apache Mesos abstracts CPU,
memory, and storage away from the machines (physical or
virtual), enabling fault-tolerant and elastic distributed sys-
tems [47]. Mesos is in charge of dynamically managing the
resources used by the frameworks within the cloud, specify-
ing where and how they have to be executed. In the same
way, it allows to dynamically add or reduce the resources

7https://spark.apache.org/streaming/
8https://12factor.net/
9https://mesos.apache.org/
10https://zookeeper.apache.org/
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FIGURE 2. Configuration of the cloud platform.

that a framework can use at run-time. Apache Zookeeper is a
centralized service that is used to maintain the configuration
information and naming, to provide distributed synchroniza-
tion and group services [48].

The design of the cloud management is shown in Figure 2.
Mesos has three master nodes and three agent nodes. The
former are responsible for managing the cloud and the latter
for executing the scheduled tasks. Only one of the master
nodes is active (the leader) while the others are in standby
mode as a replica in case the leader fails.

Zookeeper, Mesos, Elasticsearch, and Kafka have a master
node and two slave nodes. This allows a threefold replication
of the services. Therefore, if an error were to occur in one of
the nodes, then the data would still be available in the remain-
ing live nodes. Furthermore, this avoids the single point of
failure problem [49]; that is, there is no point at which if
something fails, the entire system stops working. In addition,
if anymaster node fails, then Zookeeper would be responsible
for selecting a new master node. Thus, the application could
continue working properly.

It is worth pointing out that Flume is deployed locally.
Thus, if network problems were to arise, the gathering of new
data would continue and submission of the data to the cloud
would take place when the network was able to recover its
normal behavior. Despite not being deployed on the cloud,
Flume can restart itself at the point it had reached before
failure occurred. To do this, it uses a checkpointing mech-
anism to ensure that no events are lost. Moreover, Flume
itself is a scalable framework. This guarantees scalability and
fault-tolerant services.

C. REAL-TIME MONITORING
This section describes the data-flow followed to perform the
real-time monitoring of the industrial systems and to early
detect anomalies. This process starts when data is gathered
from industrial machines through a data acquisition system.
At this stage, data is provided by a Programmable Logic Con-
trollers (PLCs) installed on each industrial machine; this data
is then persisted in a local database. Concurrently, the data
publisher periodically queries11 the local database to check

11https://github.com/keedio/flume-ng-sql-source

whether new data is available. If so, then it publishes new data
within Kafka topics (Kafka publisher role). Note that various
types of data are gathered from industrial machines and thus,
there is one topic for each data type.

Once the local side of the data acquisition system publishes
data on Kafka, the real-time processing service subscribes to
the corresponding topics to read themessages. It uses asmany
data streams as topics, which means that it can process the
sent data concurrently through these topics. It is noteworthy
that if the data volume increases in the future, then the number
of partitions per topic can be increased. Therefore, more data
streams can be created for each topic and, as a consequence,
the data ingestion throughput can be increased. Subsequently,
the tasks of Apache Spark are twofold and are executed
concurrently: 1) to persist the received data into Elasticsearch,
and 2) to process data and perform calculations to detect
anomalies.

Based on expert advice and experience, three flags were
defined to model the different states resulting from the cal-
culations: green, yellow and red. These colors indicate the
criticality of the anomaly, with the red flag representing the
most critical state and the green flag indicating normal behav-
ior. Each industrial machine has its own flag. Two boundaries
were defined to measure the criticality of the anomaly: a low
and a high boundary. These boundaries are static and were
set by experts. Hence, if the result of a calculation is higher
than the low boundary, then a yellow flag is generated. If it
is higher than the high boundary, then a red flag is generated.
Otherwise, the flag is set to green. The color of the flags can
only be modified to increase the criticality of the anomaly,
and an alert is generated only in this case. The state of the
alarms is reset to green by executing a specific mechanism
for resetting the alarms.

Within this use case, there are two types of calculations
to detect anomalies: in the first, cataloged as Single Data
Anomaly Detection (SDAD), a calculation is performed for
each received measurement. In the second, classified as Mul-
tiple Data Anomaly Detection (MDAD), multiple measure-
ments are required to execute a single calculation. Following
the computations, the criticality of each is verified using the
boundaries described above. At this point, critical anomalies
are detected and an alert is sent to the dashboard.

The current state of the alarm is compared with a newly
detected anomaly since an alert is only sent to the dashboard
if the anomaly is more critical than the current state. However,
Spark does not support the persistence of values between
batches as a default. Consequently, a stateful method was
adopted. In this way, the previous states are available within
each batch, for comparison purposes. This method takes into
consideration a key, a value, and a state as input parameters.
The key is a unique identifier for classifying the data; the
value is the data received within a batch, classified by key;
and the state is the parameter through which data can be
persisted in memory between batches.

Algorithm 1 shows the method followed for SDAD. First,
the data is received by means of data streams and it is then
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Algorithm 1 Single Data Anomaly Detection algorithm
1: receive data from kafka
2: group received data by key F key=machineNumber
3: execute statefulMethod;
4:

5: procedure statefulMethod(key, value, state)
6: calculations = doCalculations(value)
7: currentState = checkCurrentState(calculations)
8: previousState = getPreviousState(state)
9: if currentState > previousState then
10: update the current state
11: send an alert to the dashboard
12: end if
13: end procedure

Algorithm 2 Multiple Data Anomaly Detection Algorithm
1: receive data from kafka;
2: group received data by key; F key=machineNumber
3: execute statefulMethod1;
4: if statefulMethod1 returns some value then
5: execute statefulMethod2;
6: end if
7:

8: function statefulMethod1(key, value, state)
9: arrayData = getPreviousState(state);
10: fill arrayData with new received data;
11: check if all data is received;
12: if all data received then
13: remove state;
14: return arrayData;
15: else
16: update the current state;
17: end if
18: end function
19:

20: procedure statefulMethod2(key, value, state)
21: calculations = doCalculations(value);
22: currentState = checkCurrentState(calculations);
23: previousState = getPreviousState(state);
24: if currentState > previousState then
25: update the current state;
26: send an alert to the dashboard;
27: end if
28: end procedure

grouped by key. Subsequently, a stateful method is applied.
In this case, the key is the machine identifier, the value is the
data received in the actual batch, grouped by key, and the state
is a string containing the current color of the flag for each
machine. Following this, calculations are performed to check
whether a more critical anomaly is found. If so, then the value
of the state is updated with the corresponding color, and an
alert is generated and sent to the dashboard for visualization.
Finally, it returns to receive new data.

Algorithm 2 shows themethod followed forMDAD. In this
case, two stateful methods are used: the first waits until all
required data is received, and the second measures the criti-
cality of the calculations. In the first method, data received
within a batch is grouped by key. The value is the data
received within a batch grouped by key, while the state refers
to an array whose size is determined by the amount of data
required. Thus, this array is filled each time that a batch is
processed. If not all of the data is received, then it returns
to receive new data. The calculation can be performed when
all of the required data is received. At this point, the state is
removed to free memory space, since this data is not used
again in this context. The result is then sent to the second
stateful method, where the criticality of the given result is
measured. This second method performs the same process as
that described for SDAD. Finally, it returns to receive new
data.

To correct the maintenance process, alerts are also sent to
the Technical Assistance department where a maintenance
assistant analyzes the failure and plans the corresponding
corrective actions to be made, if needed. If the failure can be
remotely fixed, then the assistant will start the process using a
Virtual Private Network (VPN). Otherwise, the assistant will
launch a maintenance order, in which the assistant will have
to physically fix the fault.

This solution can be implemented in any industrial domain
as it is composed of generic frameworks. Regarding the
architecture, it must be equal for any domain. However, since
industrial systems in each domain have their own character-
istics and requirements, the way in which ICPSs gathers data
from the physical machines and how they send the data to the
local database must be changed. This is an ad-hoc process.
As the data flow is regarded, the data ingestion, the data
processing, and the data persistence are also ad-hoc processes
and, therefore, they must be adapted to the corresponding
requirements of the specific domain. Consequently, the data
structure and how the data is processed and modeled must be
modified.

IV. EXPERIMENTAL FRAMEWORK
This section describes the configuration and properties
related to the experimentation followed in this article. Note
that the experimentation only covers the performance and
scalability of the real-time processing side of the architecture.
This is due to the fact that it is themost demanding and critical
part of the entire system. We first describe the industrial
case study (Section IV-A). We then define a hypothesis in
order to rigorously define the objective (Section IV-B). Next,
we describe the used evaluation metrics (Section IV-C), and
the conducted scalability tests (Section IV-D).

A. INDUSTRIAL CASE STUDY
This work is validated in a real industrial scenario where press
machines are used. Although this work can be applied to other
domains (see Section III), the rest of the article is focused on
this particular use case. Press machines are industrial systems
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FIGURE 3. Composition of a press machine (main components).

that are capable of changing the shape of a workpiece by
applying pressure on it. The main components of a press
machine are shown in Figure 3. A press is composed of a
mechanism, two rigid platforms (head and base), a bed, a ram
and two dies (upper and lower). The die gives shape to the
workpiece. During this process, a workpiece is introduced
between two dies to mold it into the corresponding shape by
applying a specific pressure. The mechanism is responsible
for moving the head and, in turn, the ram and the upper die to
apply the required pressure to the workpiece. The complete
action of pushing down the mechanism to change the shape
of the workpiece is called a stroke.

Press machines have to work 24/7 and they must withstand
huge amounts of pressure at each stroke. Furthermore, their
components continuously grind against each other. There-
fore, structural failure can be critical for both the press
machine and the product. This can lead to unplanned down-
times, and consequently to expensive repair work. There are
three main indicators that can cause critical operation for
press machines [50]: (i) mechanismmisalignment, which can
lead to friction between components and thus to malforma-
tions of components that can cause imperfections in the final
workpiece; (ii) oil degradation is another indicator because
poor lubrication can indicate friction between the compo-
nents, which can also increase the temperature of the press;
and (iii) temperature is another key indicator that should
be taken into account. Any problem from these indicators
may cause a significant impact on any of the OEE scores
(Availability, Performance, and Quality).

These industrial systems are equipped with a number of
sensors that offer relevant measures related to the working
performance (i.e., temperature, pressure, inductive or flow-
meter sensors), which can be useful in monitoring the pre-
viously described indicators. However, processing the data
gathered from these sensors raises three issues. First, the data
volume generated may be too large to be processed in

real time. Second, the calculations required to detect anoma-
lies are generally expensive in terms of computational cost.
Finally, the industrial context is prone to failures (i.e., net-
work or power downtimes), which can lead to several unex-
pected errors that must be managed effectively.

The productivity of these press machines is measured by
the OEE, which is a relevant metric used in this domain
to identify the percentage of planned production time that
is truly productive [51]. The OEE is calculated as the mul-
tiplication of availability, performance and quality scores.
Availability takes into account unplanned and planned stops.
An availability score of 100% means that the process is
constantly running during planned production time. Perfor-
mance represents the percentage of the speed at which the
industrial system is running considering the speed for which
it was designed to run in optimal conditions, and takes into
account slow cycles and small stops. A performance score
of 100% means that the process is running as quickly as
possible. Quality takes the manufactured pieces that do not
meet quality standards into account, including pieces that are
later reworked. A quality score of 100% means there are no
defects (i.e., only good parts are being produced).

Therefore, Big Data and cloud computing can help to min-
imize the gap between the current situation of the companies
and the ideal production scenario; that is, manufacturing only
good parts (quality), as fast as possible (performance), with
no unplanned stop time (availability). In fact, some studies
have already demonstrated that a company can increase their
productivity by using Big Data frameworks [46].

B. HYPOTHESIS
To measure the suitability of the proposed monitoring system
and to determine whether it successfully passes the estab-
lished tests, we defined the following hypothesis:

‘‘The developed real-time monitoring system is capable of
detecting anomalies by processing data generated by press
machines in a stable way, when the data volume is equal to the
data generated in the current scenario and under conditions
considered for future scenarios.’’
In this context, stable means that the application needs less

time to process data than the duration of a batch (i.e., five
seconds). Therefore, as the data received from the press
machines increases in volume, the monitoring system would
have to maintain stable by scaling its computational resources
and, consequently, processing more data within the same
period of time.

C. EVALUATION METRICS
In this section, we analyze the metrics used to measure the
performance and the scalability of the developed real-time
monitoring system. Different parameters provided by Spark
Streaming have been used to validate the hypothesis:
• Input rate: the number of messages received
per second.

• Scheduling delay: the time for which a batch waits
in a queue until the processing of previous batches
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is finished. For example, assuming that the monitor-
ing agent reads from the source with a frequency of
five seconds, and that the given batch took seven sec-
onds to compute, then means the agent is two seconds
behind (7 − 5 = 2), thus making the scheduling delay
two seconds long.

• Processing time: the time to process each batch of data.
• Delay time: the time spent to complete all the streaming
jobs of a batch. This is calculated by summing the
scheduling delay and the processing time. Following
the same example, if the agent is already two seconds
behind and the processing of the next batch takes a
further seven seconds, then the data will be processed
with a total delay of nine seconds (2 + 7 = 9). These
metrics are calculated for each batch. Therefore, since
this parameter is calculated from the previous ones, it is
used to measure the success of the test.

D. SCALABILITY TEST
To verify our hypothesis, three tests were conducted. Each
test varied from the others in terms of the input rate. In addi-
tion, in the last test, the computational resources provided
were also modified. The details of each test follow:
• Test 1: simulates the current scenario. This means that
the same data volume as that generated by the sensors of
the press machines in a normal scenario was used as the
input rate. This implies a data ingestion of 40 messages
per second.

• Test 2: currently, the number of press machines is low,
although it is expected to grow significantly. Thus, data
volume was increased to bring the monitoring system to
its limit. The input rate was progressively increased until
the processing time reached the duration of a batch and
the total delay started to increase. The objective of this
test was to find the maximum input rate supported by the
application.

• Test 3: the same input rate as used as for Test 2 was
established. However, the computational resources of
the application were increased. Therefore, verification
could be made as to whether or not the application
is scalable and, consequently, whether it could process
more data in a stable manner solely by adding computa-
tional resources.

For Tests 1 and 3, the total delay must be lower than a
threshold of 20 s to be considered successful. The duration
of each test was one day; that is, 17.280 batches. Table 1
shows the configuration used for executing the tests. More
specifically, the resources used in the drivers and executors
are as follows:

TABLE 1. Computational resources used for Tests 1, 2 and 3.

TABLE 2. Results of Tests 1, 2 and 3.

FIGURE 4. Test 1: a) input rate, b) scheduling delay, c) processing time,
d) total delay.

V. RESULTS AND DISCUSSION
The results of Test 1 are shown in Figure 4 and summarized
in Table 2. These results demonstrate that the monitoring
system is stable during the computation for the gathered data
(Figure 4a). It is worth pointing out that the used system
to push data to the cloud was not designed for real-time
purposes. Therefore, the input rate was not stable throughout
time due to system overheads. As shown in Figure 4b, the
processing time remains lower than the batch period. More-
over, as depicted in Figure 4c, the scheduling delay is almost
zero, which means that almost no batches are enqueued
before being processed. This implies that data processing is
performed in real time and that the total delay (Figure 4d)
is made up of processing time. Overall, the monitoring sys-
tem requires 1.71 s, on average, between gathering the data
coming from press machines and providing a result indicating
their status. Taking into account the condition defining suc-
cess and the obtained results, Test 1 was passed satisfactorily.

Similarly, the results of Test 2 are represented in Figure 5
and summarized in Table 2. These results show that the
limit of the monitoring system, for the given computational
resources, is 4,000 messages per second, as can be seen
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FIGURE 5. Test 2: a) input rate, b) scheduling delay, c) processing time,
d) total delay.

FIGURE 6. Test 3: a) input rate, b) scheduling delay, c) processing time,
d) total delay.

in Figure 5a. As shown in Figure 5b, the processing time bor-
ders on the batch time, as its average is 5.56 s. Each time the
processing time exceeds the batch time threshold, this implies
a delay time. Moreover, the scheduling delay (Figure 5c)
increases due to the execution of other data processing tasks,
such as persisting data. This combination makes the total
delay (Figure 5d) too large to be considered to be a fast
response, since detecting an anomaly so late would be critical.
Otherwise, the scale of the graph would have been too large
to observe these values. The rest of the representation follows
the same pattern.

Once the maximum input rate for the given computa-
tional resources was known, Test 3 was executed. The results
are presented in Figure 6 and summarized in Table 2.

These results confirm the scalability of the developed moni-
toring system, as it was able to process the volume of data
forming the limit in the previous test (Figure 6a) in a sta-
ble way. As shown in Figure 6b, the increase of computa-
tional resources implied faster data processing than in Test 2.
Therefore, almost no batches are enqueued (Figure 6c) and,
consequently, the total delay is almost equal to the processing
time, as shown in Figure 6d. Thus, according to the condition
defined for success, Test 3 was passed successfully.

These tests show that the monitoring system satisfies all
of the requirements of the hypothesis: first, the system is
capable of detecting anomalies; second, the data processing
is stable under the current and future scenarios, as shown in
Tests 1 and 2; and finally, the monitoring system is scalable,
as it can handle future demand for data volume by scaling its
computational resources, as shown in Tests 2 and 3.

The implementation of this solution, for this particular use
case, has led to several enhancements in the maintenance
service. The combination of a fast, scalable, and fault-tolerant
real-time monitoring system with an effective feedback sys-
tem to manage the anomalies has improved the OEE. How-
ever, as it has only been a short time since this solution
was implemented, there is an absence of qualitative and
quantitative results from an empirical application and/or val-
idation. Therefore, it is difficult to evaluate the potential of
the proposed solution with respect to its usability and/or
usefulness for industry adoption. This is a general problem
when implementing this type of solution in the industry [52].
Preliminary studies made by the clients show the adequacy
and the correctness of this implementation. Nonetheless,
an exhaustive analysis of the monitoring system will be done
once the system has been in production long enough to obtain
sufficient quantitative data to measure the real gain.

VI. CONCLUSIONS AND FUTURE WORK
This work presents a Big Data solution for the real-time
monitoring of for ICPSs which is validated on a real industrial
scenario where several press machines are monitored. The
proposed solution demonstrates the potential of Big Data
technologies in an industrial scenario where the volumes
of data generated are very large, and unexpected failures
must be managed without affecting the proper operation
of the monitoring system. Therefore, this work uses fast,
scalable and fault-tolerant data acquisition and data process-
ing systems. In addition, a dashboard is developed to visu-
alize the performance of industrial machines and detected
anomalies.

The experimental results obtained in the industrial use
case show that the application exceeds the current needs of
the monitoring system, since the data processing remains
stable for the data volume generated in the current scenario.
Although the limit of this application was reached in Test 2,
its scalability is demonstrated in Test 3, since it allows this
volume (or more) of data to be processed simply by adding
more computational resources. Furthermore, this implemen-
tation has improved the OEE.
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In this work, a platform is developed where data related to
the performance of industrial machines is processed. Hence,
machines can be monitored to effectively detect anomalies.
However, this platform opens new possibilities to improve the
maintenance strategy, from fault diagnosis to failure progno-
sis [53], [54]. This is made possible by applying data mining
algorithms to the historical data that is already stored on
the database. Thus, instead of detecting an imminent failure,
it can be predicted and early repair work can be done. This
will increase the lifespan of the company’s systems, improve
their availability and reliability, and this will directly affect
productivity [55]. In addition, these strategies will reduce
operational and maintenance costs.
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