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Abstract

Background: Coral reefs are facing unprecedented pressure on local and global scales. Sensitive and rapid markers
for ecosystem stress are urgently needed to underpin effective management and restoration strategies. Although
the fundamental contribution of microbes to the stability and functioning of coral reefs is widely recognised, it
remains unclear how different reef microbiomes respond to environmental perturbations and whether microbiomes
are sensitive enough to predict environmental anomalies that can lead to ecosystem stress. However, the lack of coral
reef microbial baselines hinders our ability to study the link between shifts in microbiomes and ecosystem stress. In this
study, we established a comprehensive microbial reference database for selected Great Barrier Reef sites to assess the
diagnostic value of multiple free-living and host-associated reef microbiomes to infer the environmental state of coral
reef ecosystems.

Results: A comprehensive microbial reference database, originating from multiple coral reef microbiomes (i.e. seawater,
sediment, corals, sponges and macroalgae), was generated by 16S rRNA gene sequencing for 381 samples collected over
the course of 16 months. By coupling this database to environmental parameters, we showed that the
seawater microbiome has the greatest diagnostic value to infer shifts in the surrounding reef environment. In
fact, 56% of the observed compositional variation in the microbiome was explained by environmental
parameters, and temporal successions in the seawater microbiome were characterised by uniform community
assembly patterns. Host-associated microbiomes, in contrast, were five-times less responsive to the
environment and their community assembly patterns were generally less uniform. By applying a suite of
indicator value and machine learning approaches, we further showed that seawater microbial community data
provide an accurate prediction of temperature and eutrophication state (i.e. chlorophyll concentration and
turbidity).

Conclusion: Our results reveal that free-living microbial communities have a high potential to infer environmental
parameters due to their environmental sensitivity and predictability. This highlights the diagnostic value of microorganisms
and illustrates how long-term coral reef monitoring initiatives could be enhanced by incorporating assessments of
microbial communities in seawater. We therefore recommend timely integration of microbial sampling into current coral
reef monitoring initiatives.

Keywords: Microbial monitoring, Coral reef, Machine learning, Microbial indicators, Coral reef microbiomes, Microbial
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Background
Coral reef ecosystems are rapidly degrading due to local
and global pressures [1]. Overfishing, pollution, declin-
ing water quality, disease and outbreaks of coral predat-
ing crown-of-thorns starfish are responsible for localised
reef degradation [2] while climate change is impacting
reefs on a global scale, including remote reefs with little
local anthropogenic pressure [3]. For example, elevated
sea surface temperatures caused back-to-back coral mass
bleaching events in 2016 and 2017, resulting in a signifi-
cant loss of shallow-water corals on the Great Barrier
Reef (GBR) [4]. Climate conditions predicted for the end
of the century will result in even more frequent and se-
vere coral mass bleaching events with dire projections
for the future of coral reefs [5, 6]. This global coral reef
crisis is driving the development of new management,
reef restoration and bioengineering tools to counteract
reef loss and ensure the persistence of coral reefs [7, 8].
Early prediction of ecosystem stress is critical for an
effective implementation of local management and res-
toration strategies on threatened reef sites.
Microorganisms have considerable potential as a mon-

itoring tool for coral reef ecosystem health [9–11]. Mi-
croorganisms are fundamental drivers of biogeochemical
cycling on coral reefs [12–14]; they form intimate associ-
ations with the coral reef benthos [15–17], and they
contribute significantly to host health and ecosystem
homeostasis [18–20]. The constant amendment of mi-
crobial communities to exploit available resources [21]
can trigger differential abundances of specific microor-
ganisms; hence, shifts in community composition can
provide an early indication of environmental change
[22]. For example, compositional and functional shifts of
coral-associated microbial communities have been de-
scribed along gradients of anthropogenic impact [23–25]
and with changes in water quality [26]. However, despite
having many of the useful characteristics required of en-
vironmental indicators [9, 27], the diagnostic potential of
microorganisms for coral reef monitoring is largely con-
ceptual, with only a few studies elaborating on their po-
tential value. For example, the ‘microbialisation score’
measures human impacts on coral reefs based on the ra-
tio of microbial and fish metabolic rates [28]. The main
limitations to further develop and apply microbial-based
monitoring approaches are the lack of temporal and
spatial baselines for coral reef microbiomes [9, 29].
Coral reefs comprise a complex network of free-living

and host-associated microbial communities with strong
benthic-pelagic exchange [13, 30]. Therefore, holistic as-
sessments that combine different reef hosts and habitats
are required to better understand microbial dynamics and
sensitivities to environmental perturbations. The diagnos-
tic value of microbial-based monitoring is likely to vary
between distinct habitats of a coral reef ecosystem. For

example, microbial communities occurring in seawater
may be directly affected by the quality of the ambient reef
water or climate conditions; however, the high heterogen-
eity of seawater due to local hot-spots of available
resources [31, 32] may diminish the specificity of these
communities. In contrast, microbial communities that
dwell in corals live in tight association with the most im-
portant frame-builders of reefs [29] and hence may pro-
vide crucial information not only on the environmental
conditions but also on the effect of the environment on
the coral host itself. Sponges, a highly abundant and di-
verse component of coral reefs [33], are renowned for
their enormous filtration capacity [34] and form diverse
and intimate associations with microbial communities
[35]. Hence, sponge microbiomes may provide suitable
indicators to monitor water quality. Host-associated bio-
films, such as those inhabiting the mucus layer of corals
and the surface of macroalgae, provide another potential
niche habitat informative for microbial indicators of envir-
onmental state. Coral mucus, for example, has been de-
scribed as a suitable habitat to screen for enterobacteria
from sewage contamination due to its ability to trap bac-
teria [36].
Given the complexity of microbial life on coral reefs,

we sought to identify the most suitable reef microbiomes
for a microbial indicator program to pinpoint environ-
mental state. To do this, we quantified the (1) habitat-
specificity, (2) determinacy of microbial community suc-
cessions and (3) sensitivity towards environmental
parameters of multiple free-living and host-associated
microbiomes. Subsequently, we tested the microbiome’s
ability to infer environmental state using indicator value
[37] and machine learning approaches [38].

Results
Samples were collected during a 16-month period (February
2016–May 2017), at monthly (Magnetic Island—Geoffrey
Bay) and periodic (Orpheus Island—Pioneer Bay and Chan-
nel) intervals (Additional file 1: Table S1). The bacterial 16S
rRNA genes of 381 samples including seawater, sediment,
sponge tissue (Coscinoderma matthewsi and Amphimedon
queenslandica), coral tissue and mucus (Acropora tenuis
and Acropora millepora) and macroalgal surfaces (Sargas-
sum sp.) were sequenced (Fig. 1). In total 231,316 zero-
radius operational taxonomic units (zOTUs) were identified
based on 100% sequence similarity [39].

Coral reef microbiomes are habitat-specific
Habitat-specificity of coral reef microbes was assessed by
comparing the similarities of microbial communities as-
sociated with seawater (n = 48), sediment (n = 48), A.
queenslandica (n = 30), C. matthewsi (n = 42), A. tenuis
(tissue n = 48, mucus n = 46), A. millepora (tissue n = 42,
mucus n = 42) and Sargassum sp. (n = 35). Non-metric
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multidimensional scaling based on Bray-Curtis dissimi-
larities revealed a clear separation of the microbial com-
munities from different reef habitats (Fig. 1), and
habitat-specificity was further confirmed with permuta-
tional multivariate analysis of variance (PERMANOVA,
p = 9.999 × 10−5, Additional file 1: Tables S2-S3). Fur-
thermore, alpha diversities (ANOVA, F(8/372) = 142, p =
2 × 10−16) and zOTU richness (ANOVA, F(8/372) = 369,
p = 2 × 10−16) varied significantly between reef habitats
(Additional file 1: Figure S1 and Tables S4-S6). Sediment
harboured by far the most diverse (Shannon Index 7.4 ±
0.2 SD) bacterial community, although microbial diver-
sity was also high in coral surface mucus (Shannon
Index 5.1 ± 0.9 SD), macroalgal biofilms (Shannon Index
4.5 ± 1.4 SD), seawater (Shannon Index 4.4 ± 0.2 SD) and
in the tissue of the sponge C. matthewsi (Shannon Index
4.4 ± 0.3 SD). Microbial diversity was lowest in coral

tissue (Shannon Index 3.3 ± 0.8 SD) and in the sponge
A. queenslandica (Shannon Index 2.7 ± 0.8 SD). These
results suggest overall high habitat-specificity of free-
living and host-associated microbial communities within
coral reef ecosystems.

Uniform vs variable community assembly patterns
The uniformity versus variability of microbial community
assembly patterns was explored through comparison of
compositional similarity (Bray-Curtis Similarity Index, 0 =
dissimilar, 1 = identical) in samples collected monthly at
Geoffrey Bay (Magnetic Island). The microbial communi-
ties of seawater (n = 30, Wilcoxon Rank-Sum test p =
3.1 × 10−7) and sediment (n = 30; Wilcoxon Rank-Sum test
p = 3 × 10−5) had significantly higher similarities ‘within’
than ‘between’ sampling events (Fig. 2a). This uniform re-
sponse of the free-living microbial communities suggests

Fig. 1 Habitat-specificity of coral reef microbiomes. Seawater, sediment, coral (Acropora tenuis and Acropora millepora), sponge (Amphimedon queenslandica
and Coscinoderma matthewsi) and macroalgae (Sargassum sp.) samples were collected for 16S rRNA gene sequencing at fringing reefs surrounding Magnetic
Island (Geoffrey Bay) and Orpheus Island (Pioneer Bay and Channel; Queensland, Australia). Non-metric multidimensional scaling (NMDS) based on Bray-Curtis
dissimilarities revealed high habitat-specificity of coral reef microbiomes
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that deterministic rather than stochastic processes drive
their community assembly. For host-associated micro-
biomes, the overall response pattern varied between spe-
cies. Microbial communities associated with the sponge C.
matthewsi (n = 27; Wilcoxon Rank-Sum test, p = 0.0076),
the coral A. tenuis (mucus n = 28, tissue n = 30; Wilcoxon
Rank-Sum test, p = 0.0041 and p = 0.0096, respectively)
and the macroalga Sargassum sp. (n = 30; Wilcoxon Rank-
Sum test, p = 0.00013) followed the same trend as the
free-living communities, with significantly higher similar-
ities ‘within’ than ‘between’ sampling events (Fig. 2a). In
contrast, the microbiome of the sponge A. queenslandica
(n = 30; Wilcoxon Rank-Sum test, p = 0.23) and the coral
A. millepora (mucus n = 24, tissue n = 24; Wilcoxon Rank-
Sum test, p = 0.15 and p = 0.11 respectively) showed no
significant difference in similarities ‘within’ and ‘between’
time points (Fig. 2a). Analysis of the compositional simi-
larity of sample replicates within each sampling time point
indicated that the seawater microbial communities not
only exhibit an overall higher similarity ‘within’ replicates,
but the high compositional similarity is conserved across
all sampling events (Fig. 2b). In contrast, host-associated
microbial communities showed a generally lower compos-
itional similarity and higher variation between sample rep-
licates within each sampling time point (Fig. 2b).
Trends in the temporal community assembly pattern of

free-living, host tissue- and biofilm-associated microbial

communities were analysed using analysis of similarity
(ANOSIM) as a proxy to describe similarity patterns (R = 0
indicates equal similarity ‘within’ and ‘between’ time point
replicates and R = 1 indicates higher ‘within’ than ‘between’
sampling time point similarities; Fig. 2b and Additional file 1:
Figure S2). Overall, free-living microbiomes had R values
closer to 1 (seawater R = 0.9919 and sediment R = 0.7322),
whereas host-associated microbiomes had R values closer to
0 (A. queenslandica R= 0.2927, C. matthewsi R = 0.3449, A.
tenuis tissue R = 0.4547, A. millepora tissue R = 0.2151, A.
tenuis mucus R = 0.4613, A. millepora mucus R = 0.3090
and Sargassum sp. biofilm R = 0.4440; Fig. 2b and Add-
itional file 1: Figure S2). These results suggest that free-
living microbiomes (seawater and sediment) exhibit a uni-
form compositional succession, whereas host-associated
microbiomes (coral, sponge and macroalgae) are more sto-
chastic in their temporal community succession. The
uniform temporal response of free-living microbiomes
suggests a high diagnostic value of these microbial commu-
nities; hence seawater and sediment microbiomes should
provide an accurate prediction of environmental variables.
Microbiomes in seawater (n = 48) and sediment (n = 48)

were further tested for their compositional similarity be-
tween all three sampling sites (Geoffrey Bay, Pioneer Bay
and Channel). The microbial community composition of
sediment samples varied significantly between sampling
sites (ANOSIM R = 0.9430, p = 0.001, Additional file 1:

a b

Fig. 2 Compositional similarity of coral reef microbiomes over time. a Variations in the compositional similarity between and within sampling
time points of various coral reef microbiomes collected at Geoffrey Bay (Magnetic Island). A higher similarity within time point replicates than
between time point replicates suggests a uniform response of the microbial community to temporal variations. Similarities were calculated with
Bray-Curtis Similarity Index (0 = no similarity, 1 = high similarity) and significances tested with Wilcoxon rank-sum test. b The within sampling time
point similarities of replicates (n = 3) is indicated in colour and the dispersion (coefficient of variation—ratio of the standard deviation to the
mean expressed as percentage) is displayed as size. Analysis of similarity (ANOSIM) was further used as a proxy for the within and between time
point variation. R values of 1 indicate high similarity within sampling time points and high variability between sampling time points, whereas 0
indicates equal similarity within and between sampling time points
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Figure S3a). The seawater microbiome, in contrast,
showed high temporal variability (ANOSIM R = 0.9934,
p = 0.001) and low spatial variability (ANOSIM R = 0.2343,
p = 0.002; Additional file 1: Figure S3b). The high spatial
variability of sediment microbiomes indicates that habitat
characteristics rather than environmental fluctuations are
the main drivers structuring community composition.

Environmental sensitivity
Environmental sensitivity of the different microbiomes was
assessed by comparing how much of the compositional
variation was explained by sea surface temperature, light
and water quality parameters (Additional file 1: Figures S4
and S5). The compositional variability of the seawater
microbiome (n = 30) was significantly explained by sam-
pling date, season (summer versus winter) and water quality
parameters, such as average seawater temperature, average
hours of daylight, total suspended solids (TSS), particulate
organic carbon (POC), chlorophyll a (Chl a) and non-
purgeable organic carbon (NPOC) concentration (permuta-
tional ANOVA for Bray Curtis distance-based redundancy
analysis (dbRDA); Fig. 3a and Additional file 1: Table S7a-
b). In total, these environmental parameters explained 56%
of the observed compositional variation in seawater (vari-
ation partitioning analysis, Fig. 3b, Additional file 1: Table
S7). Season (summer versus winter) and sampling date
solely explained 6% and 4%, respectively (variation parti-
tioning analysis, Fig. 3b). In comparison, sampling site sig-
nificantly explained 24% of the variation in sediment
microbial communities (n = 48), which overlapped by 12%
with the variation explained by sediment characteristics,
such as particle size and total organic carbon (TOC) con-
tent (permutational ANOVA for dbRDA and variation par-
titioning analysis; Additional file 1: Tables S7b and S8).
Water quality parameters and sea surface temperature ex-
plained only 3% of the observed variability in the sediment
microbiome (variation partitioning analysis).
Host-associated microbiomes varied substantially in

their response to environmental parameters (permuta-
tional ANOVA for dbRDA and variation partitioning
analysis, Fig. 3b, c, Additional file 1: Tables S7c-i and S8)
. On average, 11% of the observed community variations
in host-associated microbiomes were explained by the
environment (variation partitioning analysis), which is
five times less than what we found for the seawater-
associated microbial community (Additional file 1: Table
S8). This suggests that compositional variations of the
seawater microbiome are more likely to reflect environ-
mental changes. Host-associated microbiomes are com-
paratively stable to changes in environmental factors.

Predictability of environmental metadata
Due to the seawater microbiomes uniform temporal pat-
tern and high sensitivity to changing environmental

parameters, the ability to infer environmental state based
on microbial community data was tested using an indi-
cator value analysis [37] and a random forest machine
learning approach. In total, 110 zOTUs were identified
as significant indicators for temperature (indicator value
p < 0.01). Microbial zOTU assemblages that were indica-
tive of high, low and average seawater temperatures
(classification based on their variation around observed
annual averages) were present throughout the sampling
period. However, higher relative abundances and lower
variation (as calculated by coefficient of variation) were
evident at certain time points (Fig. 4a). Furthermore, we
were able to identify microbial indicator taxa for high
and low Chl a, TSS and POC levels (Additional file 1:
Figure S6). Indicators for low and high seawater temper-
atures were identified in the bacterial phyla Proteobac-
teria, Bacteroidetes, Cyanobacteria, Actinobacteria and
Planctomycetes (Fig. 4b). High temperatures were indi-
cated by an increase of zOTUs belonging to the bacterial
family Rhodobacteraceae and the presence of Cryomor-
phaceae, Synechococcaeae, Vibrio and Flavobacterium
(Fig. 4b). In contrast, the occurrence of zOTUS belong-
ing to the family Pelagibacteriaceae and the genus
Prochlorococcus were indicative for low seawater temper-
atures. The phyla Proteobacteria, Bacteroidetes and
Cyanobacteria had the greatest number of indicator
zOTUs for temperature and other water quality parame-
ters (Additional file 1: Figure S6). Flavobacteriaceae-af-
filiated zOTUs were significant indicators for
temperature, Chl a, TSS and POC. Halomonadaceae sig-
nificantly associated with high Chl a and TSS and
zOTUs belonging to the phylum Verrucomicrobia were
significant indicators for high TSS levels.
The diagnostic value of the seawater microbiome (n = 48)

was further evaluated by applying a random forest machine
learning classification and regression analysis with 1213
zOTUs preselected based on a non-zero abundance thresh-
old in at least 10% of the samples (n = 48). The seawater
microbiome enabled the prediction of seawater
temperature classes (low, average, high) with 92% accuracy
(Kappa = 88%, Fig. 5a, b and Additional file 1: Figure S7).
Highest accuracy (lowest out of bag (OOB) estimated error
rate) was achieved with mtry = 100 zOTUS. Random forest
regression of the seawater microbiome predicted
temperature values (R2 = 0.67, RMSE = 0.5) (Fig. 5c, d and
Additional file 1: Figure S8) with the highest accuracy (low-
est OOB estimated error rate) when mtry = 400 zOTUs.
The effectiveness of zOTUs in reducing uncertainty and
variance (also referred to as ‘feature importance’) within the
machine learning algorithm was measured by the decrease
in mean accuracy for classification and mean-squared error
(% Inc. MSE) for regression. The most important zOTUs
belong to the bacterial taxa Flavobacteriaceae, Pelagibacter-
aceae, Cyanobacteria, Rhodobacteraceae, Synechococcaceae
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and Pirrelulaceae. These results demonstrate that the mi-
crobial community associated with coral reef seawater al-
lows for the accurate prediction of fluctuations in sea
surface temperature and water quality parameters.

Discussion
Sensitive and rapidly responding markers of coral eco-
system stress are needed to underpin effective manage-
ment and restoration strategies. In this study, we used a
range of statistical tests and machine learning ap-
proaches across multiple free-living and host-associated
reef microbiomes to assess their diagnostic value as

sensitive indicators of environmental state. Our results
show that the microbial community in reef seawater has
the highest diagnostic value when compared to other
free-living (e.g. sediment) and host-associated micro-
biomes (e.g. coral, sponge and macroalgae). Our conclu-
sion is based on the microbiome’s (1) habitat-specificity,
(2) uniformity of its community assembly, (3) sensitivity
towards environmental fluctuations and (4) accuracy to
predict environmental parameters. This assessment of
the diagnostic capacity of various free-living and host-
associated coral reef microbiomes to extrapolate envir-
onmental variations provides crucial information for

a

c

d

b

Fig. 3 Coral reef microbiome sensitivity to environmental parameters. Bray-Curtis distance-based RDA (dbRDA) was used to evaluate the effect of
environmental fluctuations on the microbial community composition of various coral reef habitats/hosts. The total variance (in percent) explained
by each axis is indicated in parentheses. a Environmental factors (average temperature, daylight, TSS, NPOC, Chl a and POC) significantly explained the
observed compositional variation in the seawater-associated microbial community (permutational ANOVA for dbRDA). b Variation partitioning shows that
environmental parameters (average temperature, daylight, TSS, NPOC, Chl a and POC) rather than season and/or sampling date explain observed
community composition structures in the seawater microbiome. c Coral mucus and algae biofilm as well as d coral and sponge tissue microbial
communities were significantly influenced by environmental factors; however, environmental parameters only explain on average 11% of the observed
community variation (Additional file 1: Table S7)
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ecosystem management initiatives aimed at incorporat-
ing microbial monitoring.
In general, high habitat-specificity was observed across

free-living and host-associated microbiomes, confirming
previous reports on the compositional variability of mi-
crobial communities between coral reef habitats [40],
host species [15, 41–43] and even between host com-
partments [44]. High compositional divergence of micro-
bial communities across different reef habitats can be
due to the variation of available resources and/or biotic
interactions [21]. High habitat-specificity contributes to
the overall high diversity and complexity across different
microbial communities on coral reefs, highlighting the
importance of holistic studies that focus on microbial in-
teractions across the benthic-pelagic realm.
Bacterial community structure associated with water

and sediment is thought to be primarily governed by de-
terministic processes [45]. Our results are consistent
with this, showing uniform community assembly pat-
terns within time point replicates. In contrast, host-
associated microbiomes displayed little compositional
similarity within a sampling time point, suggesting a
non-uniform temporal response. Host-associated micro-
biomes were also only marginally affected by environ-
mental parameters, indicating that their community
assembly pattern is variable between conspecific individ-
uals [45]. A higher variability in community assembly
can lead to increased community heterogeneity, also re-
ferred to as dispersion, which has been described as a
common characteristic of host-associated microbiomes
[18, 46–48]. Furthermore, lower microbial compositional

similarities among replicates may be driven by increased
niche space (e.g. host compartments) [44] and host
genotype effects (e.g. host genetics) [42]. Collectively,
our results show that free-living microbial communities
have a higher potential to infer environmental parame-
ters (such as standard measures in environmental moni-
toring programs) than host-associated microbial
communities due to their higher uniformity and envir-
onmental sensitivity. Importantly however, previous
metaproteomic research on reef sponges has shown that
while microbial community composition can appear
stable when seawater temperatures increase, disruption
to nutritional interdependence and molecular interac-
tions (such as reduced expression of transporters in-
volved in the uptake of sugars, peptides and other
substrates) actually occurs prior to detectable changes in
community structure [49]. Hence, considering the im-
portance of microbes to reef invertebrate health, more
sensitive transcriptomic/proteomic approaches may still
be warranted for sensitive detection of microbial re-
sponses to environmental perturbations.
The diagnostic potential of microbial communities,

especially in combination with machine learning
approaches, has gained momentum across multiple re-
search fields, including disease identification by charac-
terisation of the human gut-microbiome [50], evaluation
of the environment and host genetics on the human
microbiome [51], prediction of hydrological functions in
riverine ecosystems [52] and assessment of macroecolo-
gical patterns in soil samples [53]. This development of
microbial-based diagnostics is largely due to availability

a b

Fig. 4 Microbial indicator taxa for seawater temperature fluctuations. Seawater temperatures were z-score standardised and, based on the variation around
their mean, classified into low (< − 0.5), average (− 0.5–0.5) and high (> 0.5) temperature groups. Indicator zOTUs were identified with the indicator value
analysis (IndVal). a The average relative abundance of the sum of low, average and high temperature indicators is represented for each sampling time point.
Significant indicator zOTUs assemblages (p< 0.01) for the respective temperature group are indicated in black and size represents the coefficient of variation.
Colour gradient further represents the seawater temperature at the given sampling timepoints. b Relative abundances and taxonomic affiliation of zOTUs
identified to be significant (p< 0.01) indicators for high and low seawater temperatures. Each dot represents a unique zOTU
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of high-throughput sequencing of the 16S rRNA gene
and streamlined analytical pipelines that facilitate rapid
assessment of microbial community composition [54,
55]. In addition to its utility for inferring environmental
fluctuations, the seawater microbiome possesses numer-
ous characteristics desirable for environmental monitor-
ing programs: (i) non-destructive collection and simple
processing methods facilitate large-scale collections
alongside existing programs that sample water quality

measurements, (ii) high fractional contribution of abun-
dant microbes minimises the impacts of sequencing
biases (Additional file 1: Figure S9) and (iii) sampling is
conducive to future automated, high throughput
analyses such as in-line flow cytometry on vessels and
real-time DNA/RNA sequencing for community
characterisation.
Incorporation of seawater microbial community data

into coral reef monitoring approaches should enhance

a b

c d

Fig. 5 Random forest machine learning. a The 30 most important zOTUs reducing the uncertainty in the prediction of seawater temperature
classes (low, average, high) based on their mean decrease in accuracy and b their enrichment in the temperature classes. c The 30 most important zOTUs
reducing the variance (mean squared error (% Inc. MSE)) in regression-based prediction of seawater temperatures. d Predicted seawater temperature
values versus actual seawater temperature values based on random forest regression
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our ability to describe environmental conditions and
changes more holistically. For example, temperature
fluctuations drive structural variations in seawater mi-
crobial communities [56, 57], and elevated seawater tem-
peratures on coral reefs are highly correlated with coral
bleaching [1, 58]. The inclusion of microbial community
data alongside water quality parameters could therefore
improve our ability to predict the likelihood of ecosys-
tem stress. For instance, our sample sites, located in the
central sector of the GBR, were not affected by the 2016
bleaching that primarily affected the northern sector
[59]; however, they were impacted by the 2017 bleaching
event [60]. In the months prior to bleaching (late De-
cember 2016 till March 2017), we observed two to four
times higher relative abundances of high temperature in-
dicator assemblages than when compared to the equiva-
lent period at the beginning of 2016 (Fig. 4a), where no
bleaching was observed. Interestingly, high temperature
indicator assemblages included putative coral pathogens
(e.g. Vibrio) and opportunistic bacteria (e.g. Rhodobac-
teraceae, Verrucomicrobia and Flavobacterium). Coral
pathogens, such as Vibrio corallilyticus, increase their ef-
ficiency and motility behaviours with rising seawater
temperatures [61–63], and the higher abundance of
these microbes may explain the increased prevalence of
coral disease post bleaching [64]. Hence, microbial mon-
itoring could help inform managers about impending
disease outbreaks.

Conclusion
Our study provides the first holistic microbial baseline
spanning multiple free-living and host-associated micro-
biomes for selected GBR sites. Results suggest that there
is realistic scope to enhance long-term reef monitoring
initiatives by incorporating seawater microbiome obser-
vations for assessments of environmental change over
space and time, especially for rapid and sensitive identifi-
cation of early signs of declining ecosystem health. The
establishment of microbial observatories [65] and DNA
biobanks for long-term biomonitoring [66] will be para-
mount to successfully inferring ecosystem state and/or
perturbations from microbial communities. We there-
fore recommend timely integration of microbial sam-
pling into current coral reef monitoring initiatives.
Further refinement of the sampling and data analysis
techniques should focus on selection and validation of
additional indicator taxa as well as assessment of eco-
logically important microbial functions. A further con-
sideration is to explore which monitoring objectives
would benefit most from assessments of microbial com-
munities. For example, it is likely that the rapid response
time of microbial indicators makes them better suited to
early-warning, impact or compliance monitoring pro-
grams than to monitoring of slower, long-term changes.

Methods
Sample collection
Samples for microbial community characterisation were
collected monthly (Magnetic Island) and periodically
(Orpheus Island) from seawater, sediment and multiple
host organisms (i.e. corals, sponges and macroalgae),
along with environmental metadata, between February
2016 and May 2017 at three Great Barrier Reef sites
(Fig. 1). Samples were collected under the permit G16/
38348.1 issued by the Great Barrier Reef Marine Park
Authority.
Samples (n = 3/sample type/sampling event) for mo-

lecular analysis and additional environmental metadata
were collected following the standard operational proce-
dures of the Australian Marine Microbial Biodiversity
Initiative (AMMBI; https://data.bioplatforms.com/
organization/pages/australian-microbiome/methods). In
brief, seawater for molecular analysis was collected with
collapsible sterile bags close to the reef substrate at 2 m
depth and pre-filtered (50 μm) to remove large particles
and subsequently filtered (2 L) onto 0.2 μm Sterivex-
filters (Millepore). The sediment surface layer was sam-
pled with sterile 50 mL tubes at 2 m depth and subsam-
pled immediately into 2 mL cryogenic vials. The sponges
Coscinoderma matthewsi and Amphimedon queenslan-
dica were removed from the substrate (at 7 m and 3 m
respectively) with sterile scalpel blades, rinsed with
0.2 μm filter-sterilised seawater and subsampled into
2 mL cryogenic vials. The surface mucus layer of the
two acroporid coral species, Acropora tenuis and Acro-
pora millepora, was sampled with sterile cotton swabs
[18]. Additionally, coral fragments of each sampled coral
were collected at 3 m depth. Coral fragments were
rinsed with 0.2 μm filtered-sterilised seawater and placed
into 5 mL cryogenic vials. The thallus (including stem,
floats and blades) of the macroalgae Sargassum sp. was
sampled with sterile scalpels at 3 m depth, rinsed with
0.2 μm filtered-sterilised seawater and placed into 2 mL
cryogenic vials. All samples were immediately flash
frozen in liquid nitrogen after processing and stored at
− 80 °C until DNA extraction.
Additional seawater samples were collected with a

diver-operated Niskin bottle close to the reef substrate
at 2 m depth at each sampling occasion. Water was sub-
sampled in duplicate for analyses of salinity and concen-
trations of dissolved organic carbon (DOC), dissolved
inorganic carbon (DIC), particulate organic carbon
(POC), dissolved inorganic nutrients (DIN), total
suspended solids (TSS) and chlorophyll a (Chl a) con-
centration. Samples were further analysed according to
the standard procedures of the Australian Institute of
Marine Science (AIMS, Townsville, Australia) [67]. Sedi-
ment samples were collected with 100 mL glass jars at
2 m depth and characteristics, such as grain size
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distribution and total organic carbon (TOC) and nitro-
gen (TON) content, were assessed for each sampling
event. Seawater temperatures were obtained from AIMS
long-term monitoring temperature records (http://eatlas.
org.au/).

DNA extraction
Prior to extraction, the macroalgal biofilm was separated
from the algal tissue by overnight incubation at 200 rpm
in 10 mL 1x PBS at 37 °C. Coral fragments were defrosted
on ice and the tissue was stripped from the skeleton with
an airgun into 1x PBS solution, homogenised for 1 min at
12.5 rpm with a tissue homogeniser, pelleted (10 min at
16,000 rcf) and snap frozen in liquid nitrogen prior to
DNA extraction. DNA from seawater, sediment, sponge
and macroalgal biofilms was extracted with the DNeasy
PowerSoil kit (Qiagen) and DNA of coral tissue and
mucus samples was extracted using the DNeasy Power-
Biofilm kit (Qiagen) following the Manufacturer’s instruc-
tions. DNA extracts were stored at − 80 °C until being
sent for sequencing.

16S rRNA gene sequencing
DNA extracts were sent on dry ice to the Ramaciotti
Centre for Genomics (Sydney, Australia) for sequencing.
The bacterial 16S rRNA genes were sequenced using the
27F [68] and 519R [69] primer pairs on the Illumina
MiSeq platform utilising a duel indexed 2 × 300 bp paired
end approach. Further documentation outlining the stand-
ard operating procedures for generating and sequencing
amplicons is available at https://data.bioplatforms.com/
dataset/marine-microbes-methods.

Sequence analysis
Sequencing data were analysed as single nucleotide vari-
ants in a standardised platform alongside other Austra-
lian microbial biodiversity initiative samples [39, 70]. In
brief, forward and reverse reads were merged using
FLASH [71]. FASTA formatted sequences were extracted
from FASTQ files and those < 400 bp in length or
containing N’s or homopolymer runs of > 8 bp were
removed using MOTHUR (v1.34.1) [72]. USEARCH (64
bit v10.0.240) [73] package was used to de-replicate se-
quences and to order them by abundance. Sequences
with < 4 representatives and Chimeras were removed.
Quality-filtered sequences were mapped to chimera-free
zero-radius operational taxonomic units (zOTUs) and a
sample by read abundance table created. zOTUs were
taxonomically classified with SILVA v132 [74] database
using MOTHUR’s implementation of the Wang classifier
[75] and a 60% Bayesian probability cut-off.
Chloroplast and mitochondria-derived reads as well as

singletons were removed from the dataset. Remaining
data were rarefied to 3600 reads per sample and

transformed to relative abundances using the phyloseq
package [76] in R [77].

Habitat and host-specificity
Habitat and host-specificity of a microbiome was assessed
by calculating the compositional similarities of all 381 sam-
ples with the Bray-Curtis Similarity Index and illustrating
them in a non-metric multidimensional scaling (NMDS)
plot using the phyloseq package [76]. To confirm habitat
and host-specificity, permutational multivariate analysis of
variance (PERMANOVA) was applied using the adonis()
function of the vegan package [78] with 10,000
permutations.

Uniform response pattern
The microbiome similarity of replicates for sampling
time points versus the microbiome similarity between
sampling time points was compared by obtaining the
Bray-Curtis Similarity for each habitat individually. The
variation between the overall within and between time
point replicates was tested with a Wilcoxon Rank-sum
test in R [77]. The dispersion of the Bray-Curtis Similar-
ities within a sampling time point was calculated as the
coefficient of variation (ratio of the standard deviation to
the mean expressed as a percentage). The higher the co-
efficient of variation, the higher the variability in the
microbiome composition among replicates of a time
point. Analysis of similarity (ANOSIM; anosim() func-
tion of the vegan package [78]) based on Bray-Curtis
Similarities was used to further evaluate within and be-
tween time point similarities in the microbial
communities.

Environmental sensitivities
Environmental metadata were z-score standardised [79]
and checked for collinearity using the Pearson correl-
ation coefficient. Collinearity was assumed if correlation
was > 0.7 or < − 0.7 [80]. Collinear variables were con-
sidered redundant and removed from the analysis.
zOTU relative abundance, environmental metadata

(e.g. average seawater temperature, average hours of day-
light, Chl a, POC, NPOC and TSS concentration), sea-
son (summer versus winter) and sampling date were
used for Bray-Curtis distance-based redundancy analysis
(dbRDA) using the phyloseq package [76]. The signifi-
cance of each response variable was confirmed with an
analysis of variance (ANOVA) for the dbRDA (ano-
va.cca() function in the vegan package [78]). Only sig-
nificant (p value < 0.05) response variables were kept in
the model. The explanatory value (in %) of significant re-
sponse variables (e.g. environmental parameters, season
and sampling date) was assessed with a variation parti-
tioning analysis of the vegan package [78].

Glasl et al. Microbiome            (2019) 7:94 Page 10 of 13

http://eatlas.org.au/
http://eatlas.org.au/
https://data.bioplatforms.com/dataset/marine-microbes-methods
https://data.bioplatforms.com/dataset/marine-microbes-methods


Indicator value analysis
Indicator taxa were identified with the indicator value ana-
lysis (indicspecies package [37]) using the following thresh-
olds: 1000 permutations, minimum specificity (At) and
minimum sensitivity (Bt) set to 70% and p value ≤ 0.01.

Random forest machine learning
Random forest machine learning was performed with
the caret [81] and random forest package [82] in R [77].
zOTUs with non-zero abundance values in at least 10%
of the samples (n = 48) were preselected and z-score
standardised prior to model training. Random forest
(with ntrees = 10,000) prediction error was measured with
out-of-bag (OOB) error. Highest accuracy (lowest OOB
estimated error rate) for classification was achieved with
mtry = 100 zOTUS and for regression with mtry = 400
zOTUs. Importance of zOTUs was measured using the
decrease in mean accuracy for classification and mean-
squared error (% Inc. MSE) for regression.

Additional file

Additional file 1: Supplementary figures and tables. Supplementary
material contains additional information on the frequency of sampling
(Table S1) and detailed statistical outputs (Table S2-S8). Furthermore,
additional supplementary figures are illustrating alpha diversity measures
of microbial communities associated with the distinct coral reef habitats
(Figure S1), within and between time point similarities of microbial
community composition (Figure S2), PCoA plots for sediment and
seawater microbiomes (Figure S3), environmental variability at Geoffrey
Bay (Magnetic Island) (Figure S4), collinearity of environmental metadata
collected at Geoffrey Bay (Magnetic Island) (Figure S5), microbial
indicator taxa, calculated with the Indicator Value analysis, for high and
low temperature, Chla, POC and TSS concentrations (Figure S6),
classification of seawater temperature based on Random Forest machine
learning (Figure S7), Random Forest machine learning seawater
temperature regression (Figure S8) and the relative fraction of stable and
transient microbiomes associated with the distinct coral reef habitats
(Figure S9). (DOCX 2596 kb)
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