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Length-frequency analysis (LFA)
methods are widely used in popu­
lation dynamics studies, particu­
larly for tropical fish species that
may be difficult or impossible to age
by the traditional methods ofread­
ing growth rings on hard parts. LFA
is characteristically subjective, and
numerous authors have warned
against its indiscriminate use,
pointing out that estimated para­
meters may be questionable or even
meaningless if the biology of the
species is not taken into consider­
ation or if the sampling was inad­
equate (e.g. Castro and Erzini,
1987; Macdonald, 1987; Morgan,
1987; Basson et aI., 1988; Erzini,
1990). Biological information can be
incorporated into these studies to
obtain better results by using aged
subsamples, time series of length­
frequency distributions, or by con­
straining parameters to be esti­
mated (Macdonald, 1987; Morgan,
1987). Constraints are based on
assumptions concerning mortality,
the relative abundance ofthe com­
ponent age classes, the type of
growth pattern or growth curve, the
shape ofthe length-at-age distribu­
tions, the magnitude ofthe variabil­
ity in length at age, and the pat­
tern of this variability with age or
size.

Our objective was to develop
simple models, relating variability
in length at age to life history and
environmental parameters that
could be used to select appropriate
starting values and constraints for
length-frequency analysis. We as-

sumed that both the magnitude of
variability in length-at-age and the
size-and-age-dependent trends are
related to species-specific life his­
tory and environmental character­
istics. We demonstrate that mea­
sures of dispersion for particular
lengths can be estimated on the ba­
sis ofeasily estimated parameter(s).

Methods

The data set used in this study con­
sisted of 468 records representing
168 species and 50 families (Erzini,
1991). The following measures of
variability in length at age were
calculated: standard deviation of
mean length at age (SD), variance
of mean length at age (V), and co­
efficient ofvariation ofmean length
at age (CV). The following life his­
tory and environmental param­
eters were also compiled: von
Bertalanffy K and LOG' the Gallucci
and Quinn (1979) growth param­
eter ro (intrinsic rate ofgrowth), the
growth performance index ell' (Long­
hurst and Pauly, 1987), maximum
observed age, age at 0.95 LOG' spawn­
ing pattern, spawning duration
(months), geographic location, and
environmental regime (tropical,
temperate, and boreal). Spawning
patterns were described as continu­
ous, continuous with one major
peak, continuous with two peaks,
discrete with one peak, and discrete
with two peaks. Only data sets that
were not based on LFA, composite
samples, or back-calculated lengths

at age were included in the analy­
sis.

Stepwise multiple regression
with selection ofvariables by maxi­
mum R2 improvement (SAS Insti­
tute Inc., 1985) was used to evalu­
ate the relative effectiveness oflife
history and environmental parli­
meters in predicting three mea­
sures ofdispersion (SD, V, and CV).
Qualitative variables such as envi­
ronmental regime and spawning
pattern were represented by indi­
cator variables with values of0 and
1 (Neter et aI., 1983). For each
qualitative variable consisting ofm
classes, m-l indicator variables
were formed. Preliminary plots and
simple and quadratic regressions
were used to guide the transforma­
tion and creation of new variables,
such as mean length at age squared
for the stepwise regression, result­
ing in a total of 19 independent
variables. Only data where the
sample size corresponding to the
measures ofdispersion was at least
10 were used.

After multiple linear regression
was used to identify the most im­
portant explanatory variables,
simple linear regression was used
to examine the trends in variabil­
ity in length at age for data grouped
into discrete classes of these vari­
ables. Three-dimensional smoothed
plots of measures of dispersion as
functions of the independent vari­
ables and the classification para­
meters were also used to investigate
trends in variability in length at age.

Results

The multiple regression models
show that the SD models have the
highest R2 values whereas the CV
models have the lowest (Tables 1­
3), The SD and the V are strongly
influenced by size and certain
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growth parameters such as ,', ro, and L_. In the case
ofthe CV, relative length at age seems to be the most
important variable and the growth parameter vari­
ables were not selected for the models with five or
less variables. Models with more than five indepen­
dent variables are not shown as there was little fur­
ther improvement in the amount ofvariation explained.

The influence ofgrowth parameters can be seen in
three-dimensional smoothed plots of the SD against
relative length and L_ (Fig. 1), the SD against rela-
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tive length and.' (Fig. 2), and the SD against rela­
tive length and ro (Fig; 3). Magnitude ofthe variabil­
ity of mean length at age generally increases with
L_, ,', and ro. In contrast, no growth-parameter-re­
lated trends were found in plots involving CV. For
example, in the plot of CV against relative length
and K (Fig. 4), relative variability consistently de­
creased with size for all values ofK.

Coefficent ofvariation and variation in CV decreased
with increased relative length in all regressions for

Table 1
Examples of multiple linear regression models with the SD as the independent variable (n=3,050). cp' is the growth
performance index, L j is mean length-at-age, L j2 is the square of L j , RL is relative length (LJL.), A95 is the age
corresponding to 0.95L.. and 0) is the Gallucci and Quinn (1979) growth parameter. MSE = the mean square error. •
Model

SD = -7.341 + 3.642cp'

SD = -4.769 + 2.415cp' + 0.022Lj

SD = -2.739 + 1.952cp' + 0.028L; -1.479RL

SD = -3.532 - 0.049A95 + 0.092L; - 4.280RL - 0.0002Lj
2

SD = 2.771- 0.037A95 + 0.085Lj - 3.922RL - 0.0002L;2 + 0.0230)

MSE R2

1.99 0.62

1.66 0.68

1.59 0.07

1.49 0.72

1.47 0.72

Table 2
Examples of multiple linear regression models with the Vas the independent variable (n=3,050). L; is mean length
at age, RL is relative length (L;/ L..). A is age, A95 is the age corresponding to 0.95L... 0) is the Gallucci and Quinn
(1979) growth parameter. L.. is the von Bertalanffy growth parameter. MSE = the mean square error.

Model

V = -6.314 + 0.0478L j

V = -2.798 + 0.576Lj -1.516A

V = 2.582 + 0.42IL j - 19.33RL + 0.4640)

V = 1.198 + 0.472Lj - 16.80RL + 0.3790) - 0.032A2

V = 7.587 + 0.434Lj - 17.16RL - 0.025A2- 0.383A95 + 0.098L..

MSE R2

243.62 0.58

224.42 0.61

216.45 0.62

213.94 0.63

211.12 0.63

Table 3
Examples of multiple linear regression models with the CV as the independent variable (n=3.050). RL is relative
length (Lj / L..), A is age, A95 is the age corresponding to 0.95L.., AA95 is age divided by A95• and AMAXA is age
divided by the maximum observed age. MSE =the mean square error.

Model

CV = 16.38 - 12.96RL

CV = 22.09 -17.36RL - 0.17lA95
CV = 23.39 - 21.32RL - 0.173A95 + 3.614AA95
CV = 22.97 -19.97RL - 2.34AMAXA + 4.34AA95 - 0.155A95
CV = 23.55 - 20.53RL - 2.411AMAXA + 3.49AA95 - 0.179Ag5 + O.llA

MSE R2

16.50 0.31

13.95 0.42

13.56 0.44

13.41 0.44

13.36 0.45
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Figure 1
Smoothed surface graph ofthe standard deviation (SD) ofmean length
at age as a function of relative length (RL) and the asymptotic maxi­
mum length L~.
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Figure 2
Smoothed surface graph ofthe standard deviation (SDI ofmean length
at age as a function of relative length (RL) and the growth perfor­
mance index ".
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Figure 3
Smoothed surface graph ofthe standard deviation (Sn) ofmean length
at age as a function ofrelative length and the parameter ro. (Gallucci
and Quinn [1979] growth parameter.)

cv

,.
..
,.
15

,.

/
/

/

/
/

./

RL

Figure 4
Smoothed surface graph of the coefficient of variation (CV) of mean
length at age as a function of relative length (RL) and K, the growth
rate.
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Table 4
Regressions of the coefficient ofvariation (CV) against relative length (RL) for data grouped by the growth parameter.

K Intercept Slope n MSE R2 P

a 0.05-0.099 13.39 -12.51 326 11.49 0.31 0.0001
b 0.10-0.149 15.51 -14.04 611 9.80 0.41 0.0001
c 0.15-0.199 20.05 -17.50 602 16.10 0.44 0.0001
d 0.20-0.249 20.15 -19.22 220 11.64 0.48 0.0001
e 0.25-0.299 21.53 -19.13 214 12.32 0.48 0.0001
f 0.30-0.349 22.65 -20.69 260 11.05 0.58 0.0001
g 0.35-0.399 19.27 -15.87 221 10.70 0.34 0.0001
h 0.40-0.449 23.09 -20.44 181 5.13 0.61 0.0001

0.45-0.549 22.02 -16.14 124 13.43 0.37 0.0001
j ~ =0.55 23.40 -19.33 220 11.59 0.43 0.0001

r-..----------, .Or----------,

r----------, .Or--.-----------,
data grouped by the growth parameter K
(Fig. 5, A-J). With the exception of group­
ings for K<0.15 (Fig. 5,Aand B), which have
smaller intercept and slope values, the re­
gressions are similar (Fig. 5, C-J). The re­
gression line and the 95% confidence inter­
vals are also shown and the associated sta­
tistics are given in Table 4. The slopes of the
regressions are all significantly different
from 0 (P<0.001).
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Figure 5
The coefficient of relative variation as a function
of relative length for data grouped by K. RL is
relative length (LJL_, length-at-age divided by
L_). The interval classes and the regression sta­
tistics are given in table 4. Parallel lines are 95%
confidence intervals.

A number of LFA methods, especially those
that estimate parameters by maximum like­
lihood methods, allow constraints on mea­
sures ofdispersion. For example, the simplex
method of Kumar and Adams (1977) incor­
porates linear constraints on the standard
deviations (SD's) ofnormal components. The
SD's can be equal or fixed and the coefficient
of variation (CV) can be fixed or constant in
the program MIX (Macdonald and Pitcher,
1979; Macdonald and Green, 1985). The SD's
can be linear functions of mean length or of
age in the Schnute and Fournier (1980)
method. MULTIFAN (Otter Software, 1988)
allows age-dependent or length-dependent
trends in SD's. A common CV between 0.01
and 0.5 for all lengths at age or SD's that
increase linearly with mean length was pro­
posed for LFA constraints by Liu et a1. (1989)
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In addition to these methods which allow specific
constraints, some iterative methods require starting
or initial values for some parameters, such as num­
ber of components, corresponding mean lengths at
age, proportion in each age class and SD's of the com­
ponent distributions (e.g. Akamine, 1982, 1984, 1985).

Our results can be used to select appropriate con­
straints and starting values for measures of disper­
sion for LFA methods. We have shown that the mag­
nitudes of SD and V are dependent to a large extent
on life history parameters. Therefore, ifthe LFAuser
has estimates of growth parameters, the multiple
linear regression models in Table 1 can be used to
estimate the SD for the species and size in question.

However, in most cases the objective of LFA is to
estimate growth parameters, which are therefore not
available for input into the predictive models. In this
case, the ev may be more useful as a constraint.
While the magnitudes ofSD and V ofmean length at
age are related to characteristics ofeach species, rela­
tive variability in length at age (eV) is similar in
species that differ greatly in life history parameters.
Furthermore, while there are no consistent age- and
size-dependent trends in absolute measures of vari­
ability, relative variability decreases in a predictable
manner in almost all cases.

This was confirmed in a previous investigation of
the shapes, magnitude, and age and size dependence
of length-at-age distributions of marine fishes
(Erzini, 1994). Analysis of 415 individual data sets
showed that in 97% ofthe data sets the evwas nega­
tively related to relative length at age, and the slope
was significant (P<O.05) in 53% of the sets. ev val­
ues were similar for all species. A negative relation­
ship between ev and size and decreasing variation
with size are to be expected because changes in vari­
ability with growth are typically of smaller magni­
tude than changes in size with growth.

In contrast, although there was no dominant size­
dependent or age-dependent trend for the SD, the
most common pattern was that of increasing vari­
ability~ a maximum at an intermediate age or size.
This trend for increasing variability to a maximum
at an intermediate size is illustrated in Figure 1,
where the SD is plotted against relative length and
asymptotic maximum length (L_). It is particularly
evident for species with large L_ values.

In conclusion, we believe that the practical impli­
cations for LFA are that these empirically derived
relationships between measures of dispersion, size,
age, and life history parameters can be used to se­
lect starting values and to impose constraints on
measures of dispersion corresponding to particular
lengths at age. This is useful as there are no well
established rules or guidelines for this process, which
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consequently has been highly subjective and depen­
dent on each LFA user.

The choice of model depends on the availability of
the data for the independent variables of the mod­
els. In the absence of any such data, the simplest
model of the ev as a function of relative length can
be used. As a preliminary step, length-frequency dis­
tributions should be examined and the number of
possible component distributions and modes that
may represent mean lengths at age identified visu­
ally. An estimate of L_ obtained from the literature
or on the basis of the maximum observed size can be
used to convert lengths to relative lengths. The esti­
mated ev values and their corresponding confidence
intervals for these modes can then be estimated with
the models presented in this study. One possible ap­
proach is to use the estimated eV's as starting values
and the confidence intervals as lower and upper con­
straints. Such a strategy would provide realistic start­
ing values, reasonably narrow constraints, and would
improve the often arbitrary choices which are made.
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