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Existence upper than the phase changing one, we study several properties related with vanishing in
Uniqueness time of the velocity component of the weak solutions. First, assuming the buoyancy forces
Extinction in time field extinct after a finite time, we prove the velocity component will extinct in a later
Power time-decay finite time, provided the thermo-absorption term is sublinear. In this case, considering
Exponential time-decay a suitable buoyancy forces field which vanishes at some instant of time, we prove the

velocity component extinct at the same instant. We prove also that for non-zero buoyancy
forces, but decaying at a power time rate, the velocity component decay at analogous
power time rates, provided the thermo-absorption term is superlinear. At last, we prove
that for a general non-zero bounded buoyancy force, the velocity component exponentially
decay in time whether the thermo-absorption term is sub or superlinear.
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1. Introduction

In general, the motion of a fluid driven by buoyancy forces is compressible. But, for many convective motions the system
may be considerably simplified by assuming the motion is isochoric, i.e. the flow is essentially incompressible except in the
body forcing term. Such fluids are said to be, roughly speaking, mechanically incompressible but thermally compressible.
This simplification of the problem is known in the literature as the Oberbeck-Boussinesq (OB), or only Boussinesq, approxi-
mation. In thermal convection problems, the density changes are caused by temperature changes alone. For such problems
the compressibility effects are small and, consequently, the density may be regarded as constant. Into the light of the OB
approximation, this corresponds to assume the density is constant except in the body force term. In consequence, when all
of these simplifying features are present, the equations for a linearly viscous, heat conducting, homogeneous, incompressible
fluid reduce to the following OB equations

divu=0, (1.1)
ou 1

— 4+ @@-VYu=f£f@) — —Vp+vAu, (1.2)
at 0

a0

5+u-V9:A<p(9). (1.3)
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Here u is the velocity field, p is the pressure, 6 is the absolute temperature, v is the constant kinematics viscosity and ¢
is a nonlinear function which usually expresses the thermal conductivity. In (1.2), p stands for a reference density constant
corresponding to a reference temperature, which can be taken to be the mean temperature in the flow or the temperature
at the boundary. The forcing term is given by f(6) = —(0(0)/p)g, where g is the acceleration due to gravity and p(0) is
the varying density in the forcing term. For a detailed discussion on the OB approximation, see e.g. Joseph [13], Rajagopal
et al. [20] and the references cited therein.

During the last two decades, considerable progress has been made in the mathematical analysis of the OB equa-
tions (1.1)-(1.3). First Cannon and DiBenedetto [7] proved the existence of a unique, local in time, weak solution in
RN x (0, T], where the advection for the temperature equation is satisfied with an extra term which is given. These re-
sults were carried out by transforming the problem into a singular integral equation which in turn was solved by using a
contraction argument. They also proved a global existence theorem for small initial data, if the exterior forces field depends
on the temperature in a suitable Lipschitz way. Later Morimoto [18] and Kagei [14] proved the existence of weak solutions
to the classical OB problem, by using the Galerkin method, and their uniqueness in some Lebesgue spaces. Goncharova [11]
and Diaz and Galiano [8] proved the existence of weak solutions for a generalization of the classical OB problem with
temperature-depending viscosity and with nonlinear thermal diffusion by using also the Galerkin method. There, it was also
proved the uniqueness of weak solutions in the special case of N =2 and regularity results as well.

With respect to the qualitative properties of the weak solutions of the OB problems, it should be remarked that questions
of time and spatial behavior have been studied by many authors. Hishida [12] proved that, when some parameters are small
enough, a strong solution near a steady state exists globally in time and uniformly goes to the steady state, as t — oo, with
exponential rate. In Rajopadhye et al. [21] is considered a generalized OB problem with dissipation and are established
algebraic bounds, in the L2-norm, for the decay rate of the associated energy. For the OB problem introduced in Diaz and
Galiano [8], Galiano [10] proved the existence and spatial localization of the free boundaries & = 0. He has proved also
the extinction in a finite time property but only for the temperature component of the weak solutions of the considered
problem. As for the Navier-Stokes problem, it seems to be very difficult to obtain better qualitative time results for the
velocity component of the OB problem weak solutions. In this paper we give a step towards this direction by extending the
results established in Antontsev and Oliveira [4], for the Navier-Stokes problem, to the Oberbeck-Boussinesq problem. We
consider the following modified OB equations

divu =0, (1.4)
B)

8_ltl + @ - Vu=f£©) —aju®?®2u—Vp+vAu, (1.5)
36

o Fu Vo ="200) (1.6)

in a general cylinder
Qr:=2 x (0,T) cRN xRT, with I't := 92 x (0, T),

where £2 is a bounded domain with a compact boundary 92 and N > 2 accounts for a general dimension. Egs. (1.4)-(1.6)
are supplemented by the initial and boundary conditions

u=uy and 6#=6; whent=0, (1.7)
u=0 and ¢@)=¢, onlIT, (1.8)

where ug, 6p and @, are given functions. In (1.5), @ is a positive constant and o is a temperature-depending function such
that o (0) > 1 for any 6 € R. Notice that, for the sake of simplicity, we have assumed p =1 in (1.5) and if we let &« =0, then
we fall in the usual OB problem. In the sequel, we will refer to the problem (1.4)-(1.8) as the modified Oberbeck-Boussinesq
problem, or abbreviating the modified OB problem. For the motivation and some physical justification for considering the
term o|u|®®~2u in the momentum equation (1.5), we address the reader to Antontsev and Oliveira [4], where was studied
the modified Navier-Stokes problem. Notice that, in the present case, the power o is a temperature-depending function
which brings much more difficulty to our model. By virtue of that, we will denote «|u|®® —2u as a thermo-absorption term.
A possible physical justification for the thermo-absorption term in (1.5), is the consideration, in the momentum equation, of
a forcing term like

h©,u) =f— a|ul° @2y,

where here f is a given vector field. With a similar writing, we already have considered in Antontsev et al. [2] a two-
dimensional stationary version of the OB problem, where the forcing term was assumed to satisfy

fo,u) - u< —au®® v, u) eR x R%

For the modified OB problem (1.4)-(1.8) we will study the existence of weak solutions, their uniqueness and the asymp-
totic behavior in time of the velocity component. The outline of the paper is the following. In Section 2, we introduce the
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main notation used throughout this paper, as well some auxiliary results which will be very important in the sequel. The
existence of weak solutions for the modified OB problem (1.4)-(1.8) will be proved, in Section 3, by introducing an iterative
scheme to uncouple the system and by using well-known facts about the Navier-Stokes and the nonlinear diffusion prob-
lems. To handle the thermo-absorption term, we shall work in the context of the Lebesgue spaces with variable exponents
to obtain the a priori estimates and the convergence of the correspondingly Galerkin approximations. In this section it is
also proved the uniqueness result for N =2 by using the fact that the natural spaces for velocity and temperature are
the same. The qualitative properties of the velocity component of the weak solutions as the extinction in a finite time or
the asymptotic stability for large t are made in Section 4 by using some relations about the generalized Lebesgue norms
together with a suitable energy method. The different obtained properties will depend on the range of the o function.

2. Preliminaries

The notation used throughout this paper is largely standard in Mathematical Analysis and in particular in Mathematical
Fluid Mechanics - see, e.g., Lions [17] and Joseph [13]. We distinguish vectors from scalars by using boldface letters. For
functions and function spaces we will use this distinction as well. The symbol C will denote a generic constant - generally
a positive one, whose value will not be specified; it can change from one inequality to another. The dependence of C on
other constants or parameters will always be clear from the exposition. Sometimes we will use subscripted letters attached
to C to relate a constant with the result where it is derived from. In this paper, the notation £2 stands always for a domain,
ie., a connected open subset of RN,

Llet 1<p<ooand 2 C RN, with N > 1, be a domain. We will use the classical Lebesgue spaces LP(£2), whose norm is
denoted by | - [|Lr(2). For any nonnegative k, WK-P(£2) denotes the Sobolev space of all functions u € LP(£2) such that the
weak derivatives D*u exist, in the generalized sense, and are in LP(£2) for any multi-index « such that 0 < || < k. The
norm in W*P(§2) is denoted by || - lwk.p(s2)- The associated trace spaces are denoted by WK=1/P-P(32). Given T > 0 and a

Banach space X, LP(0, T; X) and whk.p (0, T; X) denote the usual Lebesgue and Sobolev spaces used in evolutive problems,

with norms denoted by || - Lo, 7:x) and | - lwke (o, 1. x)- The corresponding spaces of vector-valued functions are denoted by

boldface letters. All these spaces are Banach spaces and the Hilbert framework corresponds to p = 2. In the last case, we

use the abbreviations WK-2 = H* and W¥~1/2.2 = gk=1/2 By C%*(£2), with 0 < A < 1, we shall denote the Banach space of

Holder-continuous functions. In the special case of A =1, it is called the Banach space of Lipschitz-continuous functions.
Let us denote by P(£2) the set of all measurable functions p:£2 — [1, co] and define

p~ :=essinfp(x), pt :=esssup p(x).
xef2

xesf2

Given p € P(£2), we denote by LPO)(£2) the space of all measurable functions u in £2 such that its semimodular is finite:

Apey(u) = /|u(x)|""‘) dx < oo, (2.9)
2

The space LPO)(£2) is called Lebesgue space with variable exponent, or generalized Lebesgue space. Equipped with the norm

. u
lulleo (@) = mf{k >0: Ap() (X) < 1}, (2.10)

LP®)(£2) becomes a Banach space. Note that the infimum in (2.10) is attained if Apy(u) > 0. Variable exponent Lebesgue
spaces resemble classical Lebesgue spaces in many respects. If pt < oo, LP¢)(£2) is separable and the space C5°(£2) is dense
in LP)(£2). Moreover, if

1<p <pt<oo, (211)
LPO)(£2) is reflexive. One problem in variable exponent Lebesgue spaces is the relation between the semimodular (2.9) and
the norm (2.10). If (2.11) is satisfied, one can shows that

- +
lull?y, = 1< Apoy () < ullPy, +1. (212)

For every f € LPO)(£2) and g € L90(£2), with p and q satisfying to (2.11) and 1/q(-) +1/p(-) =1, the following generalized
Hélder’s inequality is valid

1 1
/uvdx<C||u||Lp(.>||v||Lq<.), = (213)

Q
If £2 is bounded, p(-) < q(-) a.e. in £ and g™ < oo, then it hold the following continuous imbeddings:
L2(2) < L1 (2) = LIO(2) = LPO(2) < [P (2) = L1(2). (214)

An important result that will be used in the sequel is the famous Gagliardo-Nirenberg-Sobolev inequality.
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Lemma 2.1. Let 2 be a domain of RN, N > 1, with a locally compact boundary 352. Assume that u € W(l)’p(.Q). Then, for every fixed
number r > 1 there exists a constant C depending only on N, p, r such that

1—
a2y < CIVuUlls o) 1l - (2.15)

where p, q > 1, are linked by

1 1\/1 1 1\
=) 5+s) =

and their admissible range is:

(D IfN=1,gelr, 00l y €[0, yrr—y] C=[1+(p = 1)/prl”;
(2) Ifp<N,qelgly.rlifr> g and q € [r, g% 1if r < g5, ¥ €[0,1]and C = [(N — )p/(N = p)I”;
B)Ifp=N>1qe[r,0),y €l0, %) and C =max{q(N —1)/N, 1+ (p — D)pr}”.

When y =1, (2.15) is known as the Sobolev inequality and, in this case, if ¢ = p = 2, then (2.15) is usually denominated
as the Poincaré inequality. This result is valid whether the domain §2 is bounded or not and notice the constant C does
not depend on £2. See the proof in Ladyzhenskaya et al. [16, p. 62]. The extension of Gagliardo-Nirenberg inequality (2.15)
to generalized Lebesgue spaces was proved by Kopaliani and Chelidze [15] for y = j/k= (1/q(-) —1/p(-))/(1/r(-) = 1/p(-))
and 0 < k/m <1 under the assumption that the exponents p(-) and r(-) are in B(£2). B(£2) denotes there the class of all
exponents p(-) for which the Hardy-Littlewood operator is bounded in LP®)(£2) (see [15]). Without this assumption on the
exponents, it is possible to prove the following Sobolev generalized inequality

Np()
ul|qc < ClIVullirer o, <) <pF ) i= —, 217
lullpao (2 IVullpo ) p(O<qC)<p () N —kp() ( )
where peP(2) and 1 <p~ <p(-)<pT <k/Nand C=C(£2,N,p,q).
In this work we shall make use of two other well-known inequalities written in the following lemma.

Lemma 2.2. For all p € P(£2) satisfying to (2.11) and for all constant § > 0, there exist constants C1 and C, depending on p~, p*
and N, such that forall £, n e RN, N > 1,

_ _ — (X)—2+6
|1E[P®=2g — 1nP®=2p| < C11E — 012 (16] + Inl)P™ (2.18)
and

p(xX)—2-48

(IEPXO=28 — |nP®=2) . (£ — ) > Cal& — > (I&] + Inl) (219)

Proof. The proof can be easily adapted from the one given, for constant p, in Barret and Liu [6]. O

For a detailed exposition of the theory of Lebesgue (and Sobolev) spaces with variable exponents, we address the reader
to the monograph by Diening et al. [9].

3. Weak formulation

In this section, we will prove the existence of weak solutions for the modified OB problem (1.4)-(1.8) and, in the case
N =2, its uniqueness. If & =0 in (1.5), then we fall in the classical OB problem and it is well known that the corresponding
problem has a weak solution which is unique if N =2 (see e.g. Morimoto [18] and Kagei [14]). In order to define the notion
of a weak solution to the modified problem (1.4)-(1.8), let us introduce the free divergence function spaces:

V:={veCF(R): divv=0};
H ' :=closure of VinL'(22), r>1;
VS :=closure of Vin H’(2), s> 1;

where, for simplicity, we can assume s as the smaller integer not lesser than N/2, to avoid the complicated Sobolev spaces
with s non-integer. When r = 2, we denote as usual H! simply by H and when s = 1, which happens when the dimension
is N =2, we simply denote, as usual, V! by V. For the theory of all these spaces, we address the reader to the monograph
by Lions [17]. We only want to note that

Vs Vs H=H >V >V, s>1. (3.20)

Moreover the compact embedding Hg)(.Q) <> L2(£2) implies that the embedding V* < H is also compact for any s > 1.
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In order to deal with the thermo-absorption term, let us set

q:=0086, (3.21)

where o denotes the composition operator. Given o € P(R) satisfying to (2.11) and 6 € L*°(Q7), we can readily see that
q € P(Qr) and also satisfies to (2.11). Moreover, q(-, t) € P($2) for all t € [0, T] and still satisfies to (2.11).
The notion of weak solution for the modified OB problem (1.4)-(1.8) follows in a standard manner.

Definition 3.1. Let us assume that o € P(R) and satisfies to (2.11). The pair (u,0) is a weak solution of the modified OB
problem (1.4)-(1.8), if:

(1) wel2(0, T; V) NL>®(0, T; H) NLIC)(Q7);
(2) 0 €L™(Qr) and @(6) € {g, +L2(0, T; Hy(£2))};
(3) u(-,0) =ug ae. in £2, and for every ve VNLN(£2) NLIO(2), q(t) =q(-, 1),

%/u(t) -vdx+v/Vu(t):de+/[(u(t)-v)u(t)] -vdx
2

2 2
+a/|u(t)|"“)’2u(t)-vdx:/f(e(r)) -vdx (322)
2 2

for aa. t > 0;
(4) for every ¢ € L?(0, T; Hy (2)) nW'1(0, T; L2(£2)) with ¢(T) =0

/99dxdt+/V(<p(9)—49u)-V§dxdt=/90§(0)dx.
Qr Qr 2

With respect to the problem data, in the sequel we shall make the following assumptions:

6op>0 and 6y eLl®(2); (3.23)
@ €L?(0, T; H/2(382)); (3.24)
(XS c! 0, ), ©(0)=0 and ¢ is non-decreasing; (3.25)
@' eC®*(]0,00)), 0<2a <1 (neededonlyif |Vf| #0or o’ #0); (3.26)
u eH; (3.27)
fec®1([0, c0), RN); (3.28)
o €C%1([0, 00)); (3.29)
Jo-,0te(1,00): 1<o <o@)<oT <00 VOeR. (3.30)

Remark 3.1. For N < 4, (3.22) holds for every v e VN LI (£2), because, due to Sobolev’s inequality, H' (§2) — LN (£2) for
N < 4. Analogously for o (-) satisfying to (3.30) with ot < 4, (2.13)-(2.14) and Sobolev’s inequality, and still (3.21), imply
that H1 (£2) — LI©(£2) for all t > 0. In this case, (3.22) holds for every ve VNLN(£2). If both N, o+ <4, then (3.22) holds
only for every ve V.

Let us denote by 6, the function which simultaneously extends ¢, and 6y to the entire domain Qr. This function can be
defined as the unique weak solution of the following initial-boundary value problem

99 =Ap@) inQ
ot @ T,
6=0y fort=0,
@) =@y, onlr.

Its unique existence is proved under the assumptions (3.23)-(3.25) (see e.g. Alt and Luckhaus [1]). Therefore it is reasonable
to assume that the extension function 0, satisfies to

0, € L2(0, T; H'(£2)) NH'(0, T; L*(£2)) NL®(Qp). (331)
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Theorem 3.1. Let £2 be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundary 952, and assume that (3.23)-(3.31)
are fulfilled. Then, there exists, at least, a weak solution of the modified OB problem (1.4)-(1.8) in the sense of Definition 3.1.

To prove Theorem 3.1 we proceed as in Diaz and Galiano [8] and adapt well-known results for the Navier-Stokes problem
(see e.g. Lions [17]) and for nonlinear diffusion equations (see e.g. Alt and Luckhaus [1]). However, it is worth to notice that,
n (1.5), additionally to the usual nonlinear term for the classical Navier-Stokes equations, (u - V)u, we have another one,
the thermo-absorption term «|u|®®~2u. To prove the convergence of the correspondingly Galerkin approximations, we will
need to work in the context of generalized Lebesgue spaces.

Proof. We will split the proof of Theorem 3.1 into several steps.

Step 1. We introduce an iterative scheme to uncouple the problem. For each n € N, we set

divu, =0 inQr, (3.32)
T W V) = 1) — )Py — Vp £ vAw, in Qr, (3.33)
a6y .

T +Up—1- VO =A@, inQr, (3.34)
u,=uy and 6,=6; whent=0, (3.35)
u; =0 and 6, =¢, onlT. (3.36)

Step 2. Given a temperature, to prove the existence of a velocity. Let us consider the problem

divu=0 inQr, (3.37)
Z—‘: + - Vyu=f(w) —a/u/t)2u—Vp+vAu inQr, (3.38)
u=uy whent=0, (3.39)
u=0 onl/T, (3.40)

where, for simplifying the notation, u and w stay for u, and 6,_1, respectively, and, according to (3.21), ¢ = 0 o w. Prob-
lem (3.37)-(3.40) corresponds to the modified Navier-Stokes problem studied in Antontsev and Oliveira [4], but with g
depending upon the spatial and time variables. To emphasize this dependence, we shall write q(-,-), instead of g, or q(-,t)
instead of the usual written q(t).

Lemma 3.1. Let 2 be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundary 952, and assume that condi-
tions (3.27)-(3.30) are fulfilled. Assume also that w € L°°(Q ). Then, there exists, at least, a weak solution of the modified Navier-
Stokes problem (3.37)-(3.40) satisfying to (1) and (3) of Definition 3.1 and such that u; € L*(0, T; V).

Proof. 1. Existence of approximate solutions. We proceed as in Antontsev and Oliveira [4] by searching, for each m € N, for an
approximate solution uy, of (3.22) in the form

U (6) =Y Chm OV, (3.41)
k=1

where v, € V', V™ is the m-dimensional space spanned by m elements of the basis of V* := closure of V in H*(£2) and
ckm(t) are the functions we look for. Note that the exponent s is chosen such that V¥ < L*(£2), i.e. s > N/2. In particular,
we have V* — V. The functions ¢y, (t) are found by solving the following system of ordinary differential equations obtained
from (3.22):

%/um(t) -vkdx—i—v/V(um(t)) : Vvkdx—i—/(um(t)-V)um(t) -vkdx+a/|um(t)|q("t)72um(t) -V dx
2 2 2 2
= / f(w(0)) - vidx; (3.42)
2
Ckm (0) = / Ugpm - Vi dX; (3.43)

2
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for k=1,...,m and where ug; = u,(0) € V™ is such that

Uy — Ug  strongly in Has m — oo.

Since w € L*°(Q7) and f is Lipschitz-continuous, then

/f(w(t)) -Vedx e L®(0,T) forallk.
2

On the other hand, since o (and consequently q) is Lipschitz-continuous, using (2.12) and Holder’s generalized inequal-
ity (2.13), we can prove that also

/|um(t)|q("t)_2um(t) -Vdx el>®(0,T) forallk.
2

From the elementary theory of ordinary differential equations, problem (3.41)-(3.43) has a unique solution cy,; € C'[0, Tj],
for some small interval of time [0, T,,] C [0, T].

2. A priori estimates. We multiply (3.42) by cym (t), add these equations from k =1 to k =m and argue as in Lions [17] to
obtain

t t
A 1
[un(®] 20, +v/||Vum(s)||i2(m ds—|—2a/|um(t)|q(’s)dXdS< ||uOm||fz(9)+;/IIf(w(s))Hf,, ds (3.44)
0 Q¢ 0

for a.a. t < Tp. Since [[uom|li2(g) < lluolly2(). the assumptions (3.27) and (3.28), and also @ € L*°(Qr), justify that the right-
hand side of (3.44) is finite. In particular, we deduce that T, =T for all m € N. On the other hand, one can readily see that,
from (3.44),

u,;, remains bounded in L*°(0, T; H), (3.45)
u,,, remains bounded in L?(0, T; V). (3.46)

Moreover, using also (3.44) and the relation between the semimodular Ag..)(u) and the norm [[ul|pec.)(q,) (see (2.12)), we
can prove that

u,; remains bounded in L7 (Q 1), (3.47)

[um|9C) 2wy, remains bounded in L7 (Q 7). (3.48)
Proceeding in a similar way, and using, in addition, generalized Holder’s inequality (2.13), we can prove that

|y |99~ 2uy, remains bounded in L% (0, T; V}). (3.49)
Arguing as for the classical Navier-Stokes problem (see Lions [17]) and using in addition (3.49), we can prove that

oupy . ) ,

o remains bounded in L* (0, T; V). (3.50)

3. Passing to the limit. From (3.45)-(3.50), there exist functions u and Z, and there exists a subsequence, which we still
denote by u;;, such that

u; — u weak-starin L*°(0, T; H) asm — oo, (3.51)

u, — u weaklyin L2(0, T; V) as m — oo, (3.52)

u; —u weakly in LY¢7(Qr) asm — oo, (3.53)

U |90 2, — Z weakly in L9C)(Q7) asm — oo (3.54)
and

oun  Ju .9 ,

rTaindrs weakly in L*(0, T; V;) as m — oo. (3.55)

Then, due to (3.20), (3.52) and (3.55), and according to a well-known compactness result (see Lions [17, p. 58]),

u, — u strongly in L2(0, T; H) and a.e. in Qp, as m — oo. (3.56)
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Now, we multiply (3.42) by ¢ e C'([0, T]), with ¥(T) = 0, integrate the resulting equations from 0 to T and pass to the
limit m — oo by using the results (3.52)-(3.54) and (3.56). Due to the arbitrariness of ¥/, we obtain for every v € Vs and for
aa. te(0,T)

%fu(t)-vdx+/(u(t)-V)u(t)~vdx+v/Vu(t):Vvdx+a/2(t)~vdx:/f(a)(t)) -vdx. (3.57)
2 ko) 2 2 2

4. Use of monotonicity. To finish the proof of Lemma 3.1, it remains to prove that u = Z. Proceeding as in Lions [17,
pp. 212-215], using (3.57), we can prove that for a.a. t € (0, T)

%/|u(t)|2dx~|—v/|Vu(s)|2dxds+fZ(s)-u(s)dxds}/f(a)(s)) -u(s)dxds+%[ lug|? dx. (3.58)
Q2 Q¢ Q¢ Q¢ Q2

On the other hand, using (2.19), the operator defined by the thermo-absorption term satisfies to the following monotonicity
property

(Il 70020y — 707 %ug) - (u —uz) >0 Vuy,up e RV (3.59)
Finally, using (3.58) and (3.59), we can prove that

f(z — v[9¢)72y) . (u—v)dxdt >0 YveL*(0,T; V).

Qr

Analogously we can obtain the reverse of this inequality and, in consequence, Z = |u|9¢~)~2u. This concludes the proof of
Lemma 3.1. O

Step 3. Given a velocity field, to prove the existence of a temperature. Here, we consider the problem for the nonlinear diffusion
equation

06 .

5 TWVO=120@©) inQr, (3.60)
0(,0)=06p in$2, (3.61)
0=¢, onlr, (3.62)

where again, for simplifying the notation, w and 6 stay for u,_; and 6,, respectively.

Lemma 3.2. Let 2 be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundary 852, and assume (3.23)-(3.25) are
fulfilled. Assume also that w € L°°(0, T; H) N L2(0, T; V). Then, there exists a weak solution of the problem (3.60)-(3.62) satisfying
to (2) and (4) of Definition 3.1 and such that & € C(0, T; H~1(£2)).

Proof. The proof relies on an approximation argument. We consider the sequence of approximating problems (3.60)-(3.62),
with w replaced by wy, k € N. It is assumed that for every k € N, wy € L'(0, T; H'~!). Moreover, we assume that

”wk”LOO(QT) <k VkeN (363)

and

Wy — W, asj— oo, inLl"(Qr). (3.64)

The exponent r is chosen in a way such that the embedding L*°(0, T; H) N L2(0, T; V) — L"(Qr) is verified. This happens for
r=2+4/Nif1/2—1/N>0,orr=4—1/s forany s> 1 if 1/2—1/N < 0. Using (3.63) and the assumptions (3.23)-(3.25)
and (3.31), we can use well-known results (see e.g. Alt and Luckhaus [1]) to prove that, for every k € N, there exists a unique
weak solution 6 to the approximating problem (3.60)-(3.62). Then we proceed to obtain some uniform estimates which
allow us to extract subsequences 6y such that

Or — 0 weak-star in L*°(Q7) ask — oo, (3.65)
@) — ¥ weaklyin L?(0, T; H'(£2)) as k — oo, (3.66)
3 00

8—: — - weakly in (0, T; H'(2)) as k — oo. (3.67)

The proof of Lemma 3.2 finishes by a standard passing to the limit, where besides (3.64)-(3.67) it is used the convergence
Ok — 6, as k — oo, in C(0, T; H"1(£2)) and the equality ¥ = ¢(0). See the details in Diaz and Galiano [8]. O
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Step 4. To extract convergent subsequences to the weak solution. Lemmas 3.1 and 3.2 show us that, for each n € N, there
exists a couple of functions (u,, 6;) solution to the problem (3.32)-(3.36). Proceeding in a standard manner, we can extract
subsequences, still denoted by u, and 6,, such that (3.51)-(3.56) hold with n=m and Z =u, and also (3.65)-(3.67) hold,
here with n = k. Then, we can pass to the limit in the following equations

—/un -vddxdt—i—v/Vun:Vv¢dxdt+/[(un-V)un] -v¢dxdt+ozf [up 912wy, - v dxdt

Qr Qr Qr Qr
= [t vpdxdt. q1=c ot
Qr
—/Gn;“tdxdt—i—/c/V(p(@n)-V;dxdt:/Gnun_1 -V;dxdt+/6’0§(0)dx,
Qr Qr Qr 2

where v e VNLN(2) NLIO(2) (recall that q(t) = q(-,t)), ¢ € C°(0,T) and ¢ € L?(0, T; H)(£2)) N W1(0, T; L2(£2)). Due
to what have been proved in Lemmas 3.1 and 3.2, we only need to justify the coupling terms. From (3.56) with m =n
and (3.65) with k =n, we deduce that

/Onun_1 -Vigdxdt — /9u~V§¢dxdt
Qr Qr

for any ¢ € L?(0, T; H}](.Q)) and any ¢ € C3°(0, T). To prove the convergence of the other coupling terms, lets us assume
that |Vf| #0 and o’ #£0. If |Vf| =0 or ¢’ =0, then the convergence of each of the corresponding terms follows as in the
modified Navier-Stokes problem (see Antontsev and Oliveira [4]). The following convergence result is proved in Diaz and
Galiano [8] by using (3.67) and the assumption (3.26): for any p > 2

6p — 6 strongly in LP(Qr) and a.e.in Qr asn — oo. (3.68)
Now, since f is Lipschitz-continuous (cf. (3.28)), then

f(6,) — f(9) strongly inLP(Q7) and a.e.in Qt asn — oo (3.69)
and, as a consequence,

/f(@n_1) -vop dxdt — /f(e) -vo dxdt

Qr Qr

for any v e V and any ¢ € C3°(0, T). Analogously as for (3.69), from (3.68) and (3.21), and once that o is Lipschitz-continuous
too (cf. (3.29)),

qn — q strongly in LP(Q7) and a.e.in Q1 as n — oo. (3.70)

On the other hand, we can write

[ (a2, — o) - vpdxde = 1y + 1,

Qr
where
o= f (10191210, — [0, - vip i,
Qr
I := /(|un|q’2un — [u|?"2u) - vg dxdt.
Qr

The convergence I, — 0 follows by (3.54), with Z =u, and from relation (3.70) we can prove that I; — 0, both for any
veli® () and any ¢ € C°(0, T). Thus we have proved Theorem 3.1. O

Remark 3.2. It is possible to prove the above theorem by using a slightly different approach: first, given a velocity w,
to prove the existence of a temperature 6, solution of the problem (3.60)-(3.62); next, to define a nonlinear operator
A(w) =6 and to prove it is continuous; after, given a temperature w, to prove the existence of a velocity field u, solution
of the problem (3.37)-(3.40); then, to define a nonlinear operator /71(w) =u and to prove it is continuous; finally, to use
Schauder’s theorem to prove the composite operator I7TA has a fixed point. This approach was considered in Antontsev
et al. [2] for a Boussinesq like stationary problem.
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The following result is very useful to deal with the kinetics energy associated with the modified OB problem (1.4)-(1.8).

Theorem 3.2. Assume that the conditions of Theorem 3.1 are fulfilled. Then any couple of weak solutions of the modified OB prob-
lem (1.4)-(1.8) in the sense of Definition 3.1 satisfies to

1d

5 71900, + V[ VBO [ +af|u(t)|q(t) dx < /u(t)~f(9(t))dx (3.71)

2 2

fora.a. t € [0, T], where, according to (3.21),q=0 06.

Proof. The proof is straightforward. We take the limit inf, as n — oo, of the equation from which one derives (3.44), with @
replaced by 6. Then from (3.52), (3.53), (3.56) and a classical property of weak limits, we obtain (3.71). O

With respect to the uniqueness of weak solutions for the modified problem (1.4)-(1.8), we know that the answer to this
question is closely related with the same issue for the Navier-Stokes problem obtained from (1.4)-(1.8) by assuming an
isothermal process. Uniqueness of weak solutions, in the large, is proved only for N = 2. For N = 3 this result is proved only
for a short interval of time. In consequence, we are only able to establish a uniqueness result for the problem (1.4)-(1.8) in
the 2-D case.

Theorem 3.3. Let N = 2 and assume that ¢! € C%1[0, 0o) and the conditions of Theorem 3.1 are fulfilled. Then a weak solution of
the OB modified problem (1.4)-(1.8) in the sense of Definition 3.1 is unique.

Proof. Let (uq,67) and (uy,6,) be two weak solutions of the OB modified problem (1.4)-(1.8). We firstly notice that as-
sumption ¢~ € C®1[0, 00) and Theorem 3.1 imply that V(@) € L>(Q7). This and the fact that 6; € L*(0, T; H='(£2)) is
used in Diaz and Galiano [8] to prove that ; = 6,. Arguing as in Antontsev and Oliveira [4] and using (2.19), we can prove
that uy =u,. O

4. Asymptotic stability

In this section we shall study the behavior in time of the velocity component in the weak solutions of the modified
OB problem (1.4)-(1.8). The properties established here are concerned with the vanishing of the velocity component in a
finite time and, when this is not possible, to see how it decays for large t. From the Fluid Mechanics viewpoint, these
properties are related with stopping the fluid flow at some time, possibly infinity. It is well known, in Fluid Mechanics, that
it is possible to stop a fluid only by the thermo-mechanics process of phase changing. Therefore this work to be consistent,
we have to consider a small range of temperature, say 6 € [m, M], where 0 < m < M < oo, to avoid any phase changing
process. Here, we shall assume that T is sufficiently large or even let T = co. With this in mind, we shall consider in this
section the time domain (0, 0o). It is worth to recall that, to the best of our knowledge, the late studies on the asymptotic
behavior of the weak solutions for the classical OB problem provide only power time-decays (see the references cited in
Section 1).

Connected with the behavior of the velocity u is the forcing term. This in turn, in OB type problems, corresponds to
the buoyancy force and therefore comes as a function of the temperature. So, when we assume the buoyancy force is
zero, tacitly we are saying that the temperature is zero. Therefore we start by studying the conditions under which the
temperature vanishes in a finite time. If we assume the thermal conductivity function satisfies to

¢'(s) > Cs™ ! with0 <m < 1and C = constant > 0 (4.72)

and additionally

v.=0 ae.onlr, (4.73)

then we can prove the existence of a finite time, say t*, such that for any weak solution (u, 8) of the modified OB prob-
lem (1.4)-(1.8), # =0 for all ¢t >t* and a.e. in £2. The proof is carried out by using a suitable energy method with 67,
for a suitable p, as a test function in Eq. (1.6) and with the assumptions (4.72)-(4.73) (see Galiano [10, Theorem 3.1]). In
consequence the assumptions made in the following theorem on the buoyancy force can be reasonably satisfied.

To simplify the exposition in this section, let us recall the notation q := o o6 introduced in (3.21), and let us set now

q~ (t) :=essinfq(t, x), gt (t) := essinfq(t, X). (4.74)
Xe2 Xe

Given o € P(R) satisfying to (2.11) and 6 € L*°(Qr), we already know that q € P(Qr) and also satisfies to (2.11). In
addition, one can readily see that g~ (t), g™ (t) € P(£2) and still satisfy to (2.11).
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Theorem 4.1 (Extinction in time). Let (u, 0) be a weak solution of the modified OB problem (1.4)-(1.8) in the sense of Definition 3.1
such that (4.72)-(4.73) hold,

os<m<IXx,t) <M <oo VX, t)eQr

and

1<q () <qx.t)<qg () <2 Vx.t)eQr, (4.75)
where q~ (t) and g™ (t) are defined in (4.74).

(1) Assume that f(6(t)) = 0 for a.a. t > t* and a.e. in §2, where t* is a fixed positive time. If ug := u(t*) € H, then there exists t* > t*
such thatu =0 forallt > t* and a.e. in 2.
(2) Assume that £f(6) # 0, but

t m
ly <el1—— foraat>0, (4.76)
to ) 4

[fe®)

where g, = max(0, g), ty is a fixed positive time and  is given by (4.86) below. If uy € H, then there exists a constant €y > 0
such thatu =0 for all t >ty and a.e. in §2, provided 0 < € < €.

Proof. First assertion. If f(0(t)) =0 for a.a. t > t¥ and a.e. in £2, we obtain from (3.71)

d #
G EO+CEagn® <O foraat>c*, (4.77)

where

1 2 2
E@®):= 5 Ju® ”LZ(Q)’ Ezq0.0(0) := | Vu() ”LZ(Q) + Aqe. (u(®). (4.78)
where Ag(.¢(u(t)) denotes the semimodular of u(t) (see (2.9)). With no loss of generality, we may assume that
E(t) + Age.o(u®)) <1 foraa.t>t". (4.79)
By the generalized Holder’s inequality (2.13), properties (2.12) and (2.14), and assumption (4.79), we can prove that
1
[u® | 5-0@) < COAg0(®) 7O foraa.t >t (4.80)

where C(t) = C(£2,q (t),q" (t)). Now we shall use Gagliardo-Nirenberg-Sobolev inequality in the Sobolev spaces of func-
tions defined in £2 and depending on t as a parameter. So, taking p =q =2 and r =g (t) in (2.15), we obtain

[u® 120, < COIVUO[Joig [uO | 0, foraa.t > e, (4.81)

where C(t) = C(N, g~ (t)) is the constant resulting from applying (2.15) and, according to (2.16),
2q~(t)

yit)y=1- . (4.82)
(2—=q ()N +2q~(t)
Plugging (4.80) into (4.81), we get after some algebraic manipulations
Et) <CO)Ezq0.0®O*® foraa.t>t* (4.83)
where C(t) =C(£2, N,q (t)), and from (4.81) and (4.82),
22 —qT(t
WO =1+ — @-q®) (4.84)
qrOI2 —q=(©O)IN +2q9 (0]
Then (4.77) and (4.83) lead us to the homogeneous ordinary differential inequality
d 1
aE(t) +CHEM®) ™ <0 foraa.t>t", (4.85)

where now C(t) = C(v,a, £2,q(t),qT(t)). Now, let us analyze the exponent of nonlinearity w(t) given by (4.84). Recall
that w(t) is written in terms of the interpolation exponent y (t). According to Lemma 2.1 with p=q =2 and r =q~ (t),
and also (4.82), the admissible range of y(t) shows us that 0 < y(t) <1 ifand only if 0<q (t) <2 for N=1or N >3,

and 0 < y(t) < ﬁ if and only if 0 < g~ (t) <2 for N =2. In consequence, we see that w(t) > 1 if and only if 1 <
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q~ (), qT(t) < 2. The other possible values of g~ (t) and g*(t), i.e. 0 < g (t),qT (t) <1 go out of our initial assumption that
q~(t),q™(t) > 1. For this range 1 <q~(t),q" (t) <2, we can prove, from (4.84), that 1 < u(t) < % Proceeding analogously,
we can prove that C(t) is also bounded, for the same range 1 < q~(t),q" (t) < 2, in some domain independent of t. Then
we can define

C:=inf C(t d = inf w(t). 4.86
:;‘o() and u tlgou() (4.86)

Notice that the previous analysis is valid for all ¢ > 0 and, consequently, i > 1. Then, gathering these information in (4.85)
and from assumption (4.79), we obtain

d 1
aE(t) +CMHEM®” <0 foraa.t>t*.
Proceeding as in Antontsev and Oliveira [4], we prove the first assertion with
u-1
E(t*) 7
C )
where p and C are given by (4.86).

tr=t* 4+

Second assertion. If f(0) # 0, we use first Schwarz’s and Cauchy’s inequalities on the right-hand term of (3.71), to obtain

d
O+ CiE2q00(0 < C2[f(0 )| 2 foraa.t>0,

where C; = C(v, @) and Cy = C(v). Using (4.76) and (4.83), we obtain the following non-homogeneous ordinary differential
inequality

d 1 t\ 1
—E(t) + C3()E(t) "0 < Ce?(1— — foraa.t>0,
dt t(? +

where C3(t) =C(v, @, £2,q~(t),qT(t)) and w(t) is defined in (4.84). Defining the absolute constants C3 and w as in (4.86),
we achieve to

d 1 5 t AT
—E(t) + C3E(t)* < Cae (l ——) fora.a.t > 0.
dt to +

Now the proof follows just in the same way as the correspondingly one given in [4]. Thus, taking

C _ — 1\ w1 _
€= _1(1 _]<)<M k)l , forsomeke (0,1)
G M

we prove second assertion. 0O

Remark 4.1. These results can be extended to the limit case of g = 1. In fact, if ¢ =1, then q*,q~ =1 and consequently
m =14 2/(N + 2). Theorem is proved easily because here ¢ is constant. If ¢ =2 these results are no longer valid. For
instance, taking q* =g~ =2 in (4.84), we obtain from (4.85) a linear differential inequality which provide us only an
exponential decay. From (3.21), the cases g =1 and q = 2 correspond in the modified OB problem (1.4)-(1.8) to assume
oc=1and o =2.

The following theorem shows us that, for q(-,t) > q~(t) > 2 for a.a. t > 0, the velocity component in the weak solutions
of the modified OB problem (1.4)-(1.8) have a power time-decay rate, not only for buoyancy forces extinguishing in a finite
time, but also for non-zero buoyancy forces with suitable power time-decay rates.

Theorem 4.2 (Power decay). Let (u, 6) be a weak solution of the modified OB problem (1.4)-(1.8) in the sense of Definition 3.1 such
that (4.72)-(4.73) hold and

qx,t)=2q () >2 VX, t)eQr, (4.87)
where q~ (t) is defined in (4.74).

(1) Assume that £(6(t)) = 0 for a.a. t > t* and a.e. in 2, where t* is a fixed positive time. If ug € H, then there exist positive constants
Cq1, Ca and o (i < 1) such that

Ju®)| 2 < (€1t +C) T foraa.c>tt, (4.88)
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(2) Assume that £(6) # 0, but exist positive constants K1, Ko, K3 and u (u < 1) such that
K1
v S oy Joraat=0. :
LA < foraa.t>0 (4.89)
(Kot + K3) -~

Ifug € H, then

R
[u®] o) < (Kot +K3)" 207 fora.a.t>0. (4.90)

Proof. Here we use the same notations introduced in the proof of Theorem 4.1 and, with no loss of generality, we as-
sume (4.79) as well. Firstly we observe that by using generalized Holder’s and Sobolev’s inequalities, respectively (2.13)
and (2.17), we obtain

w2 @ SCO[u® [ yeo g [VuO |2, foraat=o, (4.91)

where C(t) = C(N, 22,97 (t),q"(t)), where q—(t) and g™ (t) are defined in (4.74). Using property (2.12) and assump-
tion (4.79) in the generalized norm of (4.91), we obtain, after some algebraic manipulations,

E(t) < C(t)Ezq¢.0 O*® foraa.t>0, (4.92)
where E3 g1 (t) is defined in (4.78) and

_2+q*0
MU= S0

Notice that the assumption 2 < g~ (t) < g*(t) < oo for all t > 0 implies that 1/2 < u(t) <1 for all t > 0.

First assertion. If f(6(t)) =0 for a.a. t > t* and a.e. in £2, then (4.77) and (4.92) lead us to the homogeneous ordinary
differential inequality

1

d 1
aE(t) +CHEM)™ <0 foraa.t >t (4.93)
where C(t) = C(N, £2,q(t),qT (t), v, a). Now we define

C:=infC(t) and p :=supu(t). (4.94)
t20 t>0

Then, gathering these information in (4.93) and from assumption (4.79), we obtain

1

d #
G EO+CEQ# <0 foraa.t>t". (4.95)

Integrating (4.95) between t =0 and t > 0 we obtain (4.88) with C; =(1—pu)/uC and C; = (1— ,u)/,tl,(nuolliz(m/2)(“_”/“,
where the constants C and w are defined in (4.94).

Second assertion. Now, we assume that f(9) # 0 and satisfies to (4.89). Using Holder’s inequality on the right-hand side
of (3.71) and then the same reasoning used to obtain (4.95), lead us to

1

%E(t) +GEO" <V2EQ|E0®)] 2, foraat>o, (4.96)

where C; =C, and C and p are the constants defined in (4.94). Now we introduce the new function £(t) := /2E(t)
and (4.96) comes

d 2-p
7EO+GEO T < If6®) 2 foraat=o, (4.97)
where C, = 21/1C4. Solving the homogeneous ordinary differential equation associated to (4.97), we obtain
_n
E(t) =(Cst+Cy) 20-1 (4.98)
2—p)

where C3 =2(1 — u)/uCy and C4 = |lug|| . Let us consider the function

T
12(2)

F(t) = ((C3 — O)t + C4) T (4.99)
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for some positive constant C < C3. One can readily sees the function F(t) defined in (4.99) is an upper bound for the
function £(t) defined in (4.98). On the other hand, the function F(t) satisfies to

d 2—p Cs
SFO+CFO T =

2_7}1 9
((C3 — O)t + Ca) ™0

where C5 = u/(2(1 — u))C and is therefore a solution of (4.97) if condition (4.89) is satisfied with K1 =Cs, K =C3 —C
and K3 = C4. In consequence, we obtain (4.90). O

Remark 4.2. Notice that the validity of the generalized Sobolev’s inequality (2.17), used in (4.91), implies that g~ (t) > 2 for
all t > 0. Therefore assumption (4.87) can be relaxed to q(x,t) > g (t) > 2 for all (x,t) € Qr. In this case, we need to avoid
that gt (t) =2 for all t > 0, by assuming, for instance, that g*(t) > g (¢t) for all t > 0. In the limit case ¢~ (t) = q* (t) =2 for
all t >0, (4.93) becomes a linear differential inequality and, again, we can derive an exponential decay.

In Theorem 4.1 we have seen that for 1 < g~ (t) < q(-,t) <qt(t) <2 for all t >0 and f(@(t)) =0 for a.a. t > t*, or
for f(0) satisfying to (4.76), it was possible to establish that the velocity component in the weak solutions of the modified
OB problem (1.4)-(1.8) extinct in a finite time. If q(-,t) > g~ (t) > 2, with g™ (t) > 2, for a.a. t > 0 and f(6(t)) =0 for a.a.
t > t* or for f(9) satisfying to (4.89), it was possible to prove, in Theorem 4.2, that the velocity component decay at a
power time rate. Now we shall study the case when f(6) is non-zero and merely belongs to a suitable function space. Using
Cauchy’s inequality with a suitable ¢ in (3.71), we obtain

d
aE(t) + C1E2,4¢.0(t) < Co / yf(e(r))\zdx fora.a.t >0, (4.100)
2

where E(t) and Ej 4. r)(t) are defined in (4.78) and C1; = C(v, ) and C = C(v). We assume that

/|f(0(t))|2dx <Cp foraa.t>0, (4.101)
2

where Cy is a positive constant. If (4.75) holds, we use (4.83), and in the case of (4.87) holds, we use (4.92). In any case, we
obtain from (4.100) and (4.101)

d
EE(t) +C1OE@) D <C, foraa.t>0, (4.102)

where, for a.a. t >0,

_ " OI2—g )N +2q~(©)]

£(t) = O ON T © if (4.75) holds (4.103)
or
£(t) = 2000 if (4.87) holds (4.104)
Cato+2 ’ '

and Cq1(t) = C(&(t), v, ), C; = C(Cg, v). Notice that in the limit case of q(-,t) =2 both expressions of & in (4.103)-(4.104)
converge to the same value & = 1. To overcome the dependence of & and Cy on the parameter t, let us define

Cy:=infC1(t) and & :=supé&(t). (4.105)
t=20 t>0
According to assumption (4.79), we obtain from (4.102) and (4.105),

d

EE(t) +C1E(®t)¢ <C; foraa.t>0.
Let us now set

d § d §

aE(t) +CLE(t)y =C < aE(t) =Cy — C1E(b)® := A(D). (4.106)
If A(t) <0 or A(t) >0 at some time t (possibly different), then E(t) is decreasing or increasing, respectively, at that time.
In consequence, the asymptotically stable equilibrium of (4.106) is reached when

1
(&)

A =0 & E(t):(c—>g:=—zE*. (4107)
1
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A simple analysis of (4.106) and (4.107) shows us that if there exists a positive time tg such that E(tp) < E, then 0 <
E(t) < E, for all time t >ty and, consequently, E(t) / E, as t — oo. In this case, we are done and we obtain

[u)]2, o) <& foralit >t

The reciprocal case stated in the following theorem can be proved directly from Antontsev and Oliveira [4].

Theorem 4.3 (Exponential decay). Assume ug € H and f(6) # 0 satisfies to (4.101). Let (u, ) be a weak solution of the modified OB
problem (1.4)-(1.8) in the sense of Definition 3.1. In addition, assume that exists a positive time to such that |Ju(to)||? > &,. Then

L2(2)
there exists a positive constant C such that

[0 |2y < ([ut0) |20 — E)e™ S + &, forallt > o,

where &, is given in (4.107).

The conclusions about the time properties we proved in this section are based on the analysis of nonlinear ordinary dif-
ferential inequalities. When dealing with these we always reduce them, by means of suitable assumptions, to the nonlinear
ordinary differential inequalities with constant exponents of nonlinearity. The study of such nonlinear ordinary differential
inequalities with variable exponents of nonlinearity is still an open problem.

5. Conclusions

Throughout this paper we have seen that the modification we made to the Oberbeck-Boussinesq model in (1.4)-(1.6)
allowed us to obtain time properties for the velocity component of the weak solutions which are not known for the classical
model (1.1)-(1.3). Using the same techniques these properties can be derived for modified problems obtained from more
generalized Oberbeck-Boussinesq models. For instance, we could have considered the modified problem obtained from the
Oberbeck-Boussinesq problem studied in Diaz and Galiano [8], with the velocity field and the temperature coupled by the
following system of equations:

ou
at
ac(o
% +u-VCO) =kAp®).
Here D is the symmetric part of Vu, the kinematics viscosity v depends on the temperature 6, and C and ¢ are functions
of the specific heat and thermal conductivity, respectively. To obtain the properties of the previous section, besides the
assumptions on o, we need to assume the temperature-depending viscosity is bounded:

+ - Vyu=£©) — alul”®2u - Vp +div(v(6)D);

0 < constant = v~ < v(9) < v = constant < oo for all 6 € [m, M].

The results still remain valid if we modify the Oberbeck-Boussinesq problem by an anisotropic thermo-absorption term:

6)—2 6)—2
(1lu |7 2uq, .. oy fun oV

UN);

requiring analogous assumptions for the o; functions as for the o function in the isotropic thermo-absorption case. Inter-
esting is that, in the anisotropic case, we may allow that one «;, but only one, can be zero. See Antontsev and Oliveira [3]
where it was considered the isothermal case. Concerning the same properties for the temperature ¢, we know that when
Eq. (1.6) is linear, we obtain an exponential decay in time. Different properties can be derived for the temperature of the
problem resulting from the modification of the Oberbeck-Boussinesq problem considered in Diaz and Galiano [8]. As we
have seen at the very beginning of Section 4, the proofs of the finite speed of propagations and of the waiting time prop-
erties established in Galiano [10], for the temperature component of weak solutions to the same problem considered in
Diaz and Galiano [8], can be easily adapted for the correspondingly modified problem. With respect with similar properties
in space, so far we are only able to prove the velocity component of the weak solutions have compact support in §2 for
2D stationary modified problems (see Antontsev et al. [2]). The results of this paper can be generalized for more complete
models as those that assume a varying density p. In this case, the properties are obtained by considering a bounded density
such as in Antontsev et al. [5]. The extension of these results to exothermic non-Newtonian models is also possible. Here the
main interest is for dilatant fluids, because for pseudo-plastic fluids the structure of the stress tensor alone is responsible
for stopping the fluid in a finite time (see Oliveira [19]).

Acknowledgments

The work of both authors was partially supported by FEDER and FCT-Plurianual 2010.



S.N. Antontsev, H.B. de Oliveira / J. Math. Anal. Appl. 379 (2011) 802-817 817

References

[1] H.W. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (3) (1983) 311-341.
[2] S.N. Antontsev, ].I. Diaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: thermal effects without phase changing, in: Progr.
Nonlinear Differential Equations Appl., vol. 61, Birkhduser, 2005, pp. 1-14.
[3] S.N. Antontsev, H.B. de Oliveira, Navier-Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time,
RIMS Kokyiiroku Bessatsu B 1 (2007) 21-42.
[4] S.N. Antontsev, H.B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Appl. Anal. 89 (12) (2010) 1805-1825.
[5] S.N. Antontsev, ].I. Diaz, S.I. Shmarev, Energy Methods for Free Boundary Problems, Progr. Nonlinear Differential Equations Appl., vol. 48, Birkhduser,
2002.
[6] J.W. Barret, W.B. Liu, Finite element approximation of the parabolic p-Laplacian, SIAM ]. Numer. Anal. 31 (2) (1994) 413-428.
[7] J.R. Cannon, E. DiBenedetto, The initial value problem for the Boussinesq equations with data in LP, in: Lecture Notes in Math., vol. 771, Springer,
Berlin, 1980, pp. 129-144.
[8] J.I. Diaz, G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, Topol. Methods Nonlinear
Anal. 11 (1) (1998) 59-82.
[9] L. Diening, P. Harjulehto, P. Hasto, M. RuZicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer preprint.
[10] G. Galiano, Spatial and time localization of solutions of the Boussinesq system with nonlinear thermal diffusion, Nonlinear Anal. Ser. A: Theory Meth-
ods 42 (3) (2000) 423-438.
[11] O.N. Goncharova, Solvability of a nonstationary problem for equations of free convection with temperature-dependent viscosity, Dinamika Sploshn.
Sredy 96 (1990) 35-58 (in Russian).
[12] T. Hishida, Global existence and exponential stability of convection, ]J. Math. Anal. Appl. 196 (2) (1995) 699-721.
[13] D.D. Joseph, Stability of Fluid Motions, vols. I and II, Springer Tracts Nat. Philos., vol. 28, Springer-Verlag, Berlin, New York, 1976.
[14] Y. Kagei, On weak solutions of nonstationary Boussinesq equations, Differential Integral Equations 6 (3) (1993) 587-611.
[15] T. Kopaliani, G. Chelidze, Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces, J. Math. Anal. Appl. 356 (2009) 232-236.
[16] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American
Mathematical Society, Providence, RI, 1967.
[17] ].-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969.
[18] H. Morimoto, Nonstationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 39 (1) (1992) 61-75.
[19] H.B. de Oliveira, On the influence of an absorption term in incompressible fluid flows, in: Adv. Math. Fluid Mech., Sringer-Verlag, 2010, pp. 409-424.
[20] K.R. Rajagopal, M. RiiZicka, A.R. Srinivasa, On the Oberbeck-Boussinesq approximation, Math. Models Methods Appl. Sci. 6 (8) (1996) 1157-1167.
[21] S.V. Rajopadhye, M.E. Schonbek, M. Wiegner, Asymptotic decay for a generalized Boussinesq system, ]J. Dynam. Differential Equations 11 (4) (1999)
595-623.



	The Oberbeck-Boussinesq problem modiﬁed by a thermo-absorption term
	Introduction
	Preliminaries
	Weak formulation
	Asymptotic stability
	Conclusions
	Acknowledgments
	References


