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Scale-up and large-scale
production of Tetraselmis sp. CTP4
(Chlorophyta) for CO, mitigation:
o, from an agar plate to 100-m?3
e ®t - industrial photobioreactors

: Hugo Pereira(®?, Jaime Paramo?, Joana Silva?, Ana Marques?, Ana Barros?, Dinis Mauricio?,

© Tamara Santos?, Peter Schulze?, Raul Barros*, Luisa Gouveia®, Luisa Barreira(»! & Jodo Varela(®?
Industrial production of novel microalgal isolates is key to improving the current portfolio of available
strains that are able to grow in large-scale production systems for different biotechnological
applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled
up from an agar plate to 35- and 100-m3 industrial scale tubular photobioreactors (PBR). Growth was
performed semi-continuously for 60 days in the autumn-winter season (17t October — 14t December).
Optimisation of tubular PBR operations showed that improved productivities were obtained at a
culture velocity of 0.65-1.35m s~ and a pH set-point for CO, injection of 8.0. Highest volumetric
(0.08£0.01gL~*d~!) and areal (20.3 4-3.2gm~2 d %) biomass productivities were attained in the
100-m3 PBR compared to those of the 35-m* PBR (0.05+0.02gL"'d"*and 13.5+ 4.3gm~2d?,

. respectively). Lipid contents were similar in both PBRs (9-10% of ash free dry weight). CO, sequestration

. was followed in the 100-m? PBR, revealing a mean CO, mitigation efficiency of 65% and a biomass to
carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with
promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.

: Most microalgae are unicellular photosynthetic organisms that through photosynthesis and several metabolic
. pathways convert inorganic carbon (CO,) into organic carbon in the form of proteins, lipids, carbohydrates and
. nucleic acids. Therefore, the industrial production of microalgal biomass couples the mitigation of CO, with the
. production of biomolecules that can be purified or upgraded into bioproducts important for different biotech-
- nological applications (e.g. food, feed, pharmaceuticals and biofuels). Although several microalgae ventures have
. been established in recent years!, the implementation of industrial biomass production is still at an infant stage?.
© Nevertheless, mass culture of microalgal biomass is currently considered as one of the most promising approaches
* to manufacturing next-generation foods, feeds, and biofuels with the concomitant capture of CO, from emitting
industries and recycling nutrients from wastewaters®*.

Mass culture of microalgae can be achieved in open (e.g., open ponds or raceways) or closed (e.g., photobi-
oreactors; PBR) production systems (Fig. 1). Open ponds are the system chosen by most companies producing
microalgae at an industrial scale due to the low capital and operational costs®-. However, as cultures are directly
exposed to the atmosphere, the water and CO, losses and the probability of contamination are the main hin-
drances of open production systems’. In addition, the strict control of temperature and other culture parameters

: required to grow sensitive strains (e.g. diatoms) is rather challenging®. On the other hand, closed systems dis-
. play lower CO, and water losses, reduce the probability of contamination and allow a tighter control of growth
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Figure 1. Different large-scale systems currently used for the industrial production of microalgal biomass:
(a) 1-m? Flat panel photobioreactor. (b) 2.5-m? pilot-scale tubular photobioreactor. (¢) 100-m? industrial
tubular photobioreactor. (d) 200-m? raceway. Pictures depicted were kindly provided by CMP, Secil group,
Pataias, Portugal (a—c) and Necton S.A., Belamandil-Olhéo, Portugal (d).

conditions. This allows the cultivation of most microalgal strains>!%!!

productivities®’

In order to meet the full potential of microalgal biomass, the selection of robust and fast-growing strains is
crucial to develop feedstocks that can effectively grow in large-scale industrial facilities'>'®. Recently, Tetraselmis
sp. CTP4 was isolated and characterised as a robust, euryhaline, lipid-rich microalga able to grow both in stand-
ard growth media, as well as in urban wastewater effluents'*'>. Apart from its high potential for bioremediation,
Tetraselmis sp. CTP4 presents promising features as compared to common microalgal feedstocks. The biomass of
this microalga can be recovered through natural cell sedimentation, decreasing the total culture volume down to
20% within 6 hours'*. This property is essential to significantly decrease harvesting costs, one of the most costly
steps of culturing and retrieving microalgae from an aqueous growth medium!®.

Because of the high potential of Tetraselmis sp. CTP4 for different biotechnological applications, the present
work describes the scale-up procedure used to reach industrial production. To enhance the biomass production,
the culture velocity and pH set point for CO, injection were tested and optimized in a pilot-scale tubular PBR.
To the authors’ knowledge, this is the first report addressing CO, mitigation as well as biomass and lipid produc-
tivities of microalgae cultures grown semi-continuously in an industrial-scale tubular PBR production system.

with higher areal and volumetric biomass

Results
Optimization of culture velocity and pH set point. In a first experiment, the culture velocity was tested
in 2.5 m? pilot-scale tubular PBR using three different culture velocities: 0.65, 1.01 and 1.35ms™'. The radiation
during the trial was 10.341.7 MJ m~2 d~!, while the temperature was 19.4 +2.9°C (Fig. 2a). Cultures under all
conditions displayed similar growth patterns, without significant differences among them (p > 0.05), reaching the
late exponential phase at day 13 and a final ash free dry weight (AFDW) of approximately 2.1 gL!. The same pat-
tern was observed for the volumetric and areal biomass productivities (0.14-0.15gL™' d~'and 12.9-13.6gm=2d "},
respectively), where no significant differences were observed (p > 0.05) under all velocities tested (Table 1). The same
was found for the maximum biomass productivity under all conditions (0.36-0.43gL~" d~'and 34.7-39.1gm=2d ).
Afterwards, a trial was performed in the same PBRs (2.5 m®) to assess the effect of different pH set points
on CO, injection (Fig. 2b). The temperature (12.7 4 3.3 °C) and daily radiation (8.3 +3.3 M] m~2d™') observed
during this trial were lower than those of the previous experiment (Fig. 2a). Interestingly, the different tested pH
set points affected the growth of Tetraselmis sp. CTP4, displaying significant differences between cultures main-
tained at pH 8 compared to pH 7.5 and 7.0 (p < 0.05). Accordingly, best growth was obtained at a pH set point
of 8.0, with higher volumetric and areal biomass productivities (0.15gL~"d~'and 15.9gm~2 d™", respectively).
Cultures at pH 7.5 (0.08 gL' d~! and 9.4gm ™2 d™?!) and neutral pH (7.0) displayed the lowest growth perfor-
mances (0.07gL™'d!and 7.8 gm~2 d™'). Consequently, faster growth (Fig. 2b) and maximum biomass produc-
tivity (Table 1) were achieved at pH 8.0 (0.37 gL' d~'and 34.1gm~2d™"), compared to that of pH 7.5 (0.20gL"!
d'and16.9gm—2d ') and 7.0 (0.14gL'd'and 13.1gm=2d™).
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Figure 2. Optimization of tubular photobioreactor operation in pilot-scale production systems. Tetraselmis sp.
CTP4 growth in 2.5-m? tubular photobioreactors. (a) Culture velocity. (b) pH set point for CO, injection.

Culture velocity (ms™")

0.65 |0.1440.02° |043+0.15* |12.94+1.44* |39.149.19°
101 [0.1540.01*° |0.394+0.09° |13.6+0.52* |354+5.12°
135 |0.1540.02° |0.36+0.10° |13.6+2.01° |34.7+828
PpH set point
7.0 | 0.07+£0.01* |0.14+0.02° |7.8+£0.39" 13.1+£1.85
7.5 | 0.08+0.01° [0.20£0.05 |9.440.44° 16.943.28
8.0 |0.154£0.02° |[0.37£0.04> |15941.19° |34.148.90"

Table 1. Volumetric and areal biomass productivities presented in ash free dry weight of batch cultures grown
in 2.5-m? outdoor tubular photobioreactors, using different culture velocities and pH set points for CO,
injection. Different letters indicate significant differences within each parameter tested.

Growth in industrial scale photobioreactors.  After the optimization of the culture conditions, cells
were grown semi-continuously in 35- and 100-m? industrial tubular PBR for approximately 60 days (Fig. 3)
and harvested four times, every 13-14 days. Experiments were carried out (17" October — 14" December) in a
non-optimal season. In fact, the second half of this time range partially overlaps with the months when tempera-
ture and irradiance are lowest in the northern hemisphere. Ambient temperature decreased from 19.2 £2.9°C dur-
ing 17-30™ October to 12.9 +2.5°C between the 2" November — 14" December. The same pattern was observed
for the daily radiation, decreasing from 9.7 £ 1.9 MJ m~* d~! during the first 15 days to 7.94+2.9 MJ m~2d~" due
to higher cloud cover. Both PBRs were inoculated at a concentration of ~0.2 gL~!. Notably, the 100 m>-system
displayed on average higher biomass concentrations than the 35 m?® system (p < 0.05) with average concentrations
of 1gL™'and 0.8 gL}, respectively. As compared to the 35-m? system, the 100-m? PBR registered higher volu-
metric (0.08 £0.01 vs. 0.05+0.02gL~" d ') and areal (20.3£3.2 vs. 13.5+4.3gm 2d ') biomass productivities
(p <0.05; Table 2) as well as photosynthetic efficiencies (PEs; 3.3540.19 vs. 2.38 - 0.27%; p < 0.05). In addition,
the areal productivities were statistically higher during the first 30 days (35 m* 17.1£1.9gm2d; 100 m*
22.4+3.5gm > d"") as compared to the last 30 days (35 m* 9.9+£0.6gm=2d ;100 m* 182+ 0.4gm *d?)
in both PBRs. This result can be explained by the lower temperatures and radiation observed on site.

Taking into account the meteorological weather data and normalising the areal and volumetric productivities
for both PBRs, a strong positive correlation between productivity and supplied irradiation (r=10.97; p < 0.05)
and temperature (r=0.89; p < 0.05) was found. Temperature was also found to affect the PE, decreasing by 15%
when this parameter dropped below 15 °C. This indicates that growth performance of this strain in both PBRs was
strongly affected by light and temperature and that CTP4 tends to grow better at temperatures above 15°C. The
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Figure 3. Mean and maximum temperature and radiation registered during the growth of Tetraselmis sp. CTP4
in 35- and 100-m? industrial tubular photobioreactors grown semi-continuously. Cultures were harvested every
13-14 days for approximately 60 days, between 17 October and 15" December. Dashed grey line marks the
start of the following growth period.

35m?

17 — 30" Oct 0.07 0.18 18.4 46.8 2.62

27 — 14" Nov 0.06 0.15 15.8 39.1 2.59

17 — 29 Nov 0.04 0.15 10.3 41.7 2.20

1%t — 14" Dec 0.04 0.10 9.5 27.1 2.09

Mean 0.0540.02* 0.1540.03 13.5+4.3" 38.7+£8.4° 2.3840.27*
100 m?

17 — 30" Oct 0.10 0.19 24.9 424 3.54

2nd — 14 Nov 0.08 0.20 20.0 4.8 3.28

17 — 29 Nov 0.07 0.18 18.5 404 3.46

15t — 14 Dec 0.07 0.10 18.0 23.1 3.11

Mean 0.08 +£0.01° 0.17 £0.05* 20.34+3.2° 37.249.4° 3.3540.19°

Table 2. Volumetric and areal biomass productivities of Tetraselmis sp. CTP4 grown semi-continuously in 35-
and 100-m? tubular photobioreactors (PBRs) presented in ash free dry weight. The photosynthetic efficiency
(PE) obtained in the different growth periods is also presented. Using a semi-continuous growth system, four
different culture periods were established throughout the growth trial (17" Oct-15% Dec). Different letters
indicate significant differences in productivity and PE between PBRs.

maximum volumetric and areal productivities observed in the 35- (0.15+0.03gL™'d'and 38.7+8.4gm2d™!)
and 100-m® (0.17 £0.05gL"'d"'and 37.2+9.4gm ™2 d~') PBRs were similar (p > 0.05), reaching the double of
the average productivities in most growth periods.

The volumetric and areal lipid productivities were about 10% of the respective biomass productivities, since
the lipid content in the biomass produced throughout the four growth periods and in both PBRs was quite stable,
averaging 9.9 £0.3% of AFDW (Fig. 4a). The results were confirmed by fluorescence microscopy of cells stained
with BODIPY 505/515 (Fig. 4b). Overall, obtained results revealed that the lipid content was not significantly
affected by the volume of the PBR, temperature or light intensity (p > 0.05).

CO, sequestration. The capacity of Tetraselmis sp. CTP4 to mitigate CO, was investigated in the 100-m?
PBR for 30 days (17 Oct - 17" Nov). The mass balance of CO,, considering the CO, that enters the system
and the CO, exhausted from the PBR, was related with the C content of the biomass (determined by elemental
analysis). In agreement with the elemental analysis of the biomass that showed mass contents of 49.1% C, 7.84%
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Figure 4. Lipid content and fluorescence microscopy of Tetraselmis sp. CTP4 grown semi-continuously in
tubular photobioreactors. (a) Lipid content of cultures grown industrially in four different growth periods and
mean value obtained in the overall experiment. (b) Brightfield and fluorescence microscopy of cultures grown
in the in the 35- and 100-m?® tubular photobioreactors. Depicted pictures show the differential interference
contrast (DIC), as well as BODIPY 505/515 and chlorophyll fluorescence of Tetraselmis sp. CTP4 cells. Scale
bar=10pum.

H and 5.80% N, the following approximate stoichiometry can be used to describe biomass formation from CO,
and nitrate:

1.101CO, + 0.101NO;~ + 1.008H,0 — CH, 4,0 56sNp 101 + 1.3210, + 0.101HCO,~ (1)

This equation shows that 1.80 g of CO, are consumed for the formation of 1.0 g of ash free algal biomass.
Accordingly, the CO, mass balance in the 100-m? PBR was performed by quantifying the volume of injected CO,
(99.99%), its content in the air used for degassing the culture (0.04%), and the CO, content of the exhaust gas
(0.3-0.5%). Even though the volumetric flow of the later stream was not accurately measured due to operational
impracticability of placing a rotameter in the exhaust section of the PBR, it can be assumed that its molar flow will
be quite close to that of the compressed air, because it is two orders of magnitude higher than pure CO, injection.
Our calculations (Supplementary data) show that 60-75% of the CO, introduced in the PBR is taken up by the
culture, while 25-40% of the CO, is exhausted from the PBR to the atmosphere. In summary, a total of ~535kg of
CO, were consumed to produce ~296 Kg biomass in the 100-m* PBR during a 60-day operation.

Season comparison using an AIgem® photobioreactor. A season comparison assay was performed
using an Algem® PBR to simulate the Spring and Autumn seasons at the latitude and longitude of AlgaFarm
using controlled artificial LED light. The main objective of the simulation was to estimate the growth potential
of Tetraselmis sp. CTP4 under average abiotic conditions in order to expand the findings obtained outdoors. The
Algem® built-in software defines a maximum light intensity of 700 and 1400 umol s—' m~2 and a mean temper-
ature of 12 and 20 °C for Autumn and Spring, respectively (Fig. 5). The growth conditions simulating Spring
presented a higher growth rate, reaching the stationary phase in approximately 5 days with a final AFDW of
2.02gL™!, and a biomass productivity of 0.25gL~! d~!. On the other hand, cultures grown in conditions simulat-
ing Autumn displayed a lower growth performance, reaching a final AFDW of 1.76 gL~ and a biomass produc-
tivity of 0.12g L' d ! in the end of the assay (day 9). During day 1 and 9, the spring simulation yielded on average
a significant higher biomass concentration (1.7 gL™') as compared to the winter conditions (1.3gL™; p <0.05).
These results suggest that the expected growth rate of cultures and effective CO, mitigation has a marked seasonal
dependence. This rate is expected to be twice as high in spring, when compared to its value in autumn (0.45 g CO,
L1d1vs0.22gCO,L1d™}).

| (20718)8:5112 | DOI:10.1038/541598-018-23340-3
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Figure 5. Season comparison assay of Tetraselmis sp. CTP4 in Algem® photobioreactors. Growth curves of
Tetraselmis sp. CTP4 using an Algem® photobioreactor simulating the conditions of growth in Spring and
Autumn seasons on the West coast of Portugal.

Discussion

The trend of microalgal biotechnology towards a medium sized market requires studies about the optimization
of industrial scale cultivation systems and novel strains to widen the current portfolio for maximal production
efficiency'”. The present study demonstrated the successful scale-up of the novel isolate Tetraselmis sp. CTP4 from
an agar plate to a 100-m? industrial tubular PBR within eight weeks. Tetraselmis sp. CTP4 is thus a promising can-
didate for mass production of bulk products due to high growth performance among various culturing systems
and environmental conditions.

The pH of the culture medium is an essential parameter not only to obtain optimal growth, but it also deter-
mines the maximal amount of CO, dissolved in the medium (carbon balance). Tetraselmis sp. CTP4 performed
best at a slight alkaline pH of 8.0, a result similar to that reported by Khatoon et al.'® for microalgae of the
same genus. However, as the response to pH fluctuations is species-dependent, optimal growth of Tetraselmis
suecica was achieved by Moheimani' at pH 7.0 and 7.5. The culture velocities tested were all suitable for growing
Tetraselmis sp. CTP4 in tubular PBRs. This might be explained by the low radiation observed on site during this
time period, since it has been observed that under low light conditions the mixing rates are less important for
the final productivity®. The opposite is expected in the spring-summer season during which the importance of
velocity might increase due to its effect on the overall light availability to cells when grown under higher radi-
ation. In addition, the optimization of velocity suitable to the microalgal culture inside the production tubes is
important to avoid biomass deposition while cells travel through the photic section of the PBR and increase CO,
availability*"?2. Lower velocities can be used to reduce the energy costs in the production pipeline; however, this
can lead to the formation of biofilm in the tubes, promoting light attenuation in the system (not observed in the
present work). On the other hand, the use of higher culture velocities without lysing microalgal cells of interest
can be important to manage and contain specific contaminations. This is particularly true for contaminants sen-
sitive to the added turbulence and shear stress generated by faster velocities in the PBR?’. An important factor for
the successful implementation of a microalgal-based production pipeline is the proper management of predators
and competing microalgae. Similarly, the euryhaline properties of Tetraselmis sp. CTP4 can be used to eliminate
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Figure 6. Different environmental contaminants detected in the course of the present work throughout the
growth in industrial scale production systems. (a) Amoeba radiosa. (b) Unidentified ciliate. (c) Vorticella sp.
Scale bar =10 um.

potential contaminants from large-scale production facilities by means of abrupt salinity shifts', in particular
if the contaminant does not have a cell wall or has reduced halotolerance. It is worth noting that during the
scale-up procedure and all experimental trials, cultures of Tetraselmis sp. CTP4 remained monoalgal, i.e., no other
microalgal species were detected. Although some common non-photosynthetic contaminants were observed they
did not had a severe impact on productivity and did not take over the cultures (Fig. 6). In fact, all reactors were
grown without any culture collapse in spite of the changing conditions of temperature and radiation. This is an
important result, as some commonly used microalgal species (e.g. Chlorella vulgaris and Haematococcus pluvialis)
are more susceptible to predators/parasites under industrial settings (e.g. Chytridium sp., Amoeboaphelidium pro-
tococcarum and Vampirovibrio chlorellavorus), which have a significant impact on culture viability and biomass
productivity?-2>.

Accordingly, semi-continuous growth of Tetraselmis sp. CTP4 at industrial scale was successfully achieved
in both 35- and 100-m? PBR for a 60-day period. As expected, the growth of cultures was higher in the first two
growth periods (late October - early November), which resulted in higher biomass productivities. These results
are in accordance with the data obtained from the statistical correlations obtained for both industrial PBR as
well as in the Algem® PBR, which strongly suggests that low temperatures (<15°C) and radiation decreased
the biomass productivities of this strain. However, Tetraselmis sp. CTP4 responded differently in the 35-m? and
100-m? PBRs, within the same time period. Interestingly, it was in the largest industrial PBR tested that higher
productivities were consistently obtained. Volumetric biomass productivities in the industrial scale PBRs (35- and
100-m?) were lower than compared to the pilot-scale PBRs (2.5-m?), while the reverse trend was apparent for
areal productivities. The reason for such difference relies on the high stocking density of the horizontal tubes in
the industrial reactors. Although the lower light penetration into the industrial PBRs tubes at lower layers reduces
the volumetric production and the final biomass concentration in the system, the considerably higher culture
volume in the same area results in higher areal productivities.

The areal productivity registered in the first growth period (17 - 30" October) is similar to the productivity
previously reported for other microalgal strains (e.g. Phaeodactylum tricornutum and Nannochloropsis sp.)*. In
addition, the PEs of 3.35 £+ 0.19% (100-m®) were high despite the shifting temperature and light regimes during
the time period tested.

The average mitigation efficiency of 65% of the CO, in the 100-m? PBR was notable, considering the indus-
trial size of system. This efficiency is considerably higher than previous reports that addressed CO, mitigation
using other microalgal strains and cultivation systems?’—*°. However, the values here reported are similar to those
reported by Keffer & Kleinheinz*! using Chlorella vulgaris (74% carbon mitigation efficiency) fed with an elevated
CO, stream. Higher effective CO, removal (82.5-99%) has been reported when C. vulgaris is grown using a
laboratory-scale sequential PBR array*.

The biomass to carbon ratio of 1.80 obtained in this work is typical for non-stressed microalgae®!2 This ratio
can be increased by higher amounts of lipids in biomass that display higher carbon content per unit mass (76-
77%) than proteins (53%) or carbohydrates (40-44%)?. The values of the lipid content found in this work are in
accordance with the data previously reported for Tetraselmis sp. CTP4 grown under nutrient repletion, about
10% of DW. Under optimal growth conditions, cells shift the carbon flux towards the synthesis of carbohydrates
rather than the accumulation of lipids. The latter are predominantly synthesized and accumulated under adverse
environmental conditions, such as nutrient depletion. In this context, a two-stage growth system would be able
to increase lipid productivities, and thus higher CO, fixation rates'>!*. In a first stage, cultures could be grown
under optimal conditions to reach a high cell concentration, whereas at a later stage lipid induction is achieved
via environmental stress (e.g. nutrient depletion, high light, salinity, temperature)'>34*.

However, the key strategy to enhance carbon mitigation is the optimization of culture growth. In subtrop-
ical or temperate climate zones, seasonal variations of solar irradiance and temperature often lead to impaired
microalgal growth during winter***°. Similarly to previous studies*®*, the season comparison assay under labo-
ratory conditions (Algem® PBR) revealed that Spring conditions with higher temperatures and light intensities
clearly enhance the growth rate and metabolism of Tetraselmis sp. CTP4 cultures. An additional enhancement
of biomass and lipid productivities and consequently CO, sequestration requires optimization of growth media
as well as effective light and CO, delivery into the cultures (the bottleneck of any PBR). In the present work,
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Figure 7. Schematic representation of the scale-up procedure used in the present work. Cultures were transferred
every week (WK) to a different production system; the corresponding culture volumes are represented for each
system used.

cultures were grown photoautotrophically, where growth depends on light and inorganic nutrients. However, a
mixotrophic growth system that does not rely exclusively on CO, as a carbon source and use organic compounds
such as acetic acid or glycerol could improve biomass production as reported for other species**2,

Conclusions

In conclusion, monoalgal cultures of Tetraselmis sp. CTP4 were successfully scaled up to industrial PBR and
grown semi-continuously for 60 days without any culture collapse or contamination by a competing microalga.
The growth data obtained in the autumn-winter season, demonstrate the robustness of this strain for large-scale
production, as well as the interesting biomass productivities that can be obtained under non-optimal environ-
mental conditions. However, as previously discussed, the productivities here presented do not represent the
maximum that can be achieved with this microalgal strain. Large-scale production in spring-summer seasons
will most probably lead to improved biomass productivity and carbon mitigation, due to the higher microalgal
metabolism promoted by increased temperatures and solar radiation.

Methods

Microalgae strain and culture medium preparation. All experiments described in the present work
were performed at the facilities of CMP (Secil Group, Portugal), between 15" of August and 15" of December
2016. The microalgal strain selected for industrial growth, Tetraselmis sp. CTP4, was previously isolated, by the
authors, near a wastewater stream in Ria Formosa, in the south of Portugal. The growth characterization under
laboratory conditions was published elsewhere!*!*. All experiments and scale-up were performed with artificial
seawater (salinity of 20 gL™!) prepared with commercial sodium chloride. Although Tetraselmis sp. CTP4 is a
euryhaline strain that can withstand wide salt concentrations, the experiments carried out in the present work
were performed in at 20 gL~ based on the higher growth performance of cultures previously demonstrated in
the laboratory. Guillard’s F2 culture medium adapted to the local water was used in all experiments; cultures were
supplemented with the concentrated culture medium to reach a 5-mM concentration of nitrate (70mgN L™').

Scale-up of CTP4 cultures.  The scale-up procedure (Fig. 7) started with an agar plate (prepared according
to Pereira et al.'*) and reached after eight single steps the industrial scale (100 m® PBR). Each scale-up step lasted
7 days as follows: (i) cells were transferred to liquid medium by scrapping algal colonies from the agar plates
directly to 100 mL Erlenmeyer flasks that were placed in an orbital shaker under low light intensity (50 umol
photons s™! m~2); (ii) and (iii) the 100 mL cultures were inoculated in a vertical 1-L airlift with a 1 L capacity that
was subsequently transferred to two 5L airlifts; (iv) and (v) the cultures obtained in the two 5-L airlifts were used
to inoculate a 125-L Flat Panel (FP), which was then used to seed a 1-m? FP (Fig. 1a); (vi) the culture grown in the
1-m? FP was used to inoculate two 2.5-m? pilot-scale tubular PBR (Fig. 1b); (vii) the two pilot-scale PBRs were
later used to inoculate an industrial-scale 35-m? tubular PBR; (viii) from this, approximately 30 m* were trans-
ferred from the PBR to inoculate the 100-m? tubular PBR (Fig. 1c), while the remaining culture was regrown in
the 35-m?® PBR upon addition of culture medium.

Optimization of biomass production. Experiments for the optimization of culture velocity and pH set
point for CO, injection were performed in 2.5-m? tubular PBR in duplicates under batch conditions. Fixed cul-
ture parameters were chosen according to the results obtained by the previous trials (see Results section for
details). Culture velocities of 0.65, 1.01 and 1.35ms ™! were tested at a fixed pH of 8.0, while three distinct pH set
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points (7.0, 7.5 and 8.0) were tested at a culture velocity of 1.01 ms™!. The culture velocity was measured using a
Dynasonics DXN (Portable Ultrasonic Measurement System). The pH was adjusted by an automatic CO, injec-
tion system (Yokogawa). The local temperature and radiation were registered using a RM Young meteorological
station and an Apogee Logan UT SP-110 pyranometer, respectively.

Industrial production of biomass. The industrial production of microalgae biomass was carried out in
35- and 100-m? horizontal tubular PBR, with an area of implementation of 133 and 405 m?, respectively. The
photic section of the production system was composed of polymethyl methacrylate (PMMA) tubes (&, =56 mm),
having a total length and width of 48.2 x 2.5m and 96.0 x 4.0 m for the 35- and 100-m? PBRs, respectively. The
growth trial lasted for 60 days between 17 October and 15" December under a semi-continuous operation.
Every 13-14 days, depending on available operational resources, approximately 70% of the total culture volume
was harvested while the remaining culture was renewed with fresh growth medium. Both reactors were cul-
tured at a salinity of 20gL~!, with a culture velocity of 1.01ms~! and a pH set point for CO, injection of 8.0. An
in-house system registered the turbidity, pH and temperature inside the PBR in real-time.

Microscopy. The differential interference contrast (DIC) microscopic images were acquired with the
63 x lenses using a Nikon Eclipse Ni-U and a Zeiss Axioimager Scope Al. Fluorescence microscopy was per-
formed with the Zeiss microscope with the 63 x lenses, using an Axiocam 503 color and Zeiss 64 and 65 HE
filter sets. All images were treated with Zen v.2.3 (blue edition) software. Microalgae samples were stained with
BODIPY 505/515 as described in Cooper et al.** to evaluate the lipid content of the cells.

The presence of contaminants was evaluated by daily microscopic observations of three independent samples
in ten microscopic fields. In addition, some samples were analysed by means of flow cytometry corroborating the
microscopic results, as described in Schulze et al.>.

Growth assessment. Microalgal biomass growth was assessed by means of optical density (OD) and dry
weight (DW). The OD of cultures was determined using a Thermo Scientific Genesis 10 S UV-Vis spectropho-
tometer at a wavelength of 600 and 740 nm. DW was determined by filtering a known volume of culture through
0.45-um fibreglass filters (VWR). The filter was sequentially washed with the same volume of ammonium formate
(35gL7!) and of distilled water. The filters were dried and weighed in AnD MS-70 and Kern DBS 60-3 moisture
analysers (120 °C). Ash content was determined by burning 1 g of biomass at 550 °C for 8 hours in a furnace (J.
P. Selecta, Sel horn R9-L). A correlation between OD 600 and 740 and AFDW was used to establish the growth
curves (previously determined).

Lipid determination. The total content of lipids in the microalgal biomass was determined using a modified
Bligh & Dyer** method previously described in Pereira et al.*>. Briefly, the microalgal pellet was extracted with a
mixture of chloroform, methanol and water (2:2:1) using an Ultra-Turrax (IKA) disperser for 2 minutes. Phase
separation was achieved by centrifugation for 10 minutes at 3500 g; the chloroform phase containing the lipids
was removed using a Pasteur pipette and transferred to new vials. A known volume of the lipid extract was then
evaporated and the content of lipids was gravimetrically determined.

CO, sequestration. In order to quantify the CO, mass balances, two rotameters were installed in the 100-m?
industrial tubular PBR in the injection valve of the CO, supplying system and in the compressed air valve of the
degassing system. To register the outputs of CO, from the PBR (every 5 minutes), a gas analyser (Madur, GA-21
plus) was coupled to the gas exhaust section of the PBR for 30 days (17" Oct - 17" Nov). The CO, mitigation
balance was calculated by the sum of CO, supplied by the automatic CO, injection system and the atmospheric
CO, introduced from the degasser (compressed air), from which the CO, exhausted from the PBR, as quantified
by the gas analyser, was subtracted.

Elemental analysis and photosynthetic efficiency. Elemental analysis of C, H and N in produced
biomass was performed using a Vario el III (Vario EL, Elementar Analyser system, GmbH, Hanau, Germany)
according to the procedure provided by the manufacturer.

The higher heating value (HHV; KJ g™!) of the biomass produced was calculated according to Callejon-Ferre
et al.* using the following equation:

HHV = — 3.393 + 0.507[%C] — 0.341[%H] + 0.067[%N]

where %C, %H and %N represent the carbon, hydrogen and nitrogen content in AFDW, respectively.
PE was calculated by dividing the obtained HHV by the supplied irradiance during a given cultivation interval.

Algem® photobioreactors season comparison. A season comparison assay was carried out using
an Algem® PBR (Algenuity, Bedfordshire, UK), in order to assess whether the results obtained outdoors rep-
resent the maximum growth that can be obtained with this strain, since the microalga was cultivated in the
autumn-winter season. Using the software provided with the equipment, the environmental conditions of Spring
and Autumn seasons at the location of AlgaFarm production plant (39.652936 N, —8.988986 W) were simulated.
Cultures were mixed at 120 rpm, under constant aeration. CO, was injected automatically using a pH set point of
8.0. The PBR was set to register the optical density at 740 nm every hour.

Statistical treatment. One-way ANOVA followed by Tukey’s post-hoc test and Analysis of Covariance
(ANCOVA) were performed to detect statistical differences between continuous environmental variables (tem-
perature and radiation) and the response variables (volumetric and areal biomass productivities, photosynthetic
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efficiency and lipid content) using Addinsoft XLSTAT (Version 2016.02.28451). Linear relationships were
assessed via a two-tailored Pearson’s test (r). Significance of correlations were tested for using Sigmaplot (Vers. 13,
Systat Software Inc.). Significance level for all test was a=10.05.

References

1.
2.

3.

v

el

10.

11

13.

14.

15.
16.

17

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

Chisti, Y. Constraints to commercialization of algal fuels. J. Biotechnol. 167,201-214 (2013).

Enzing, C., Ploeg, M., Barbosa, M. & Sijtsma, L. Microalgae Based Products for the Food and Feed Sector: An Outlook forEurope
(ed. Vigani, M., Parisi, C. & Rodriguez Cerezo, E.). JRC Scientific and Policy Reports, EU publications (2014).

Jorquera, O., Kiperstok, A., Sales, E. A., Embirugu, M. & Ghirardi, M. L. Comparative energy life-cycle analyses of microalgal
biomass production in open ponds and photobioreactors. Bioresour. Technol. 101, 1406-1413 (2010).

. Quadrelli, E. A, Centi, G., Duplan, J. L. & Perathoner, S. Carbon dioxide recycling: emerging large-scale technologies with industrial

potential. ChemSusChem. 4, 1194-1215 (2011).

. Borowitzka, M. A. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313-21 (1999).
. Molina Grima, E., Acién Ferndndez, F. G., Garcia Camacho, F. & Chisti, Y. Photobioreactors: light regime, mass transfer, and scale

up. J. Biotechnol. 70, 231-247 (1999).

. Pulz, O. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57,287-293 (2001).
. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25,294-306 (2007).
. Benavides, A. M. S., Torzillo, G., Kopecky, J. & Masojidek, J. Productivity and biochemical composition of Phaeodactylum

tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy. 54,
115-122 (2013).

Richmond, A., Boussiba, S., Vonshak, A. & Kopel, R. A new tubular reactor for mass production of microalgae outdoors. J. Appl.
Phycol. 5,327-332 (1993).

. Ugwu, C. U, Aoyagi, H. & Uchiyama, H. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99, 4021-8 (2008).
12.

Rodolfi, L. et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost
photobioreactor. Biotechnol. Bioeng. 102, 100-112 (2009).

Rawat, I, Ranjith Kumar, R., Mutanda, T. & Bux, F. Biodiesel from microalgae: a critical evaluation from laboratory to large scale
production. Appl. Energy. 103, 444-467 (2013).

Pereira, H. et al. Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci.
Rep. 6, 35663—final page (2016).

Schulze, P. S. et al. Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta). Bioresour. Technol. 223, 175-183 (2017).
Matos, C., Santos, M., Nobre, B. & Gouveia, L. Nannochloropsis sp. biomass recovery by electro-coagulation for biodiesel and
pigment production. Bioresour. Technol. 134, 219-226 (2013).

. Ruiz, J. et al. Towards industrial products from microalgae. Energy. Environ. Sci. 9, 3036-3043 (2016).
18.

Khatoon, H. et al. Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and
Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. Int. Biodeterior. Biodegrad. 95, 11-18
(2014).

Moheimani, N. R. Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp.
(Chlorophyta) grown outdoors in bag photobioreactors. J. Appl. Phycol. 25, 387-398 (2013).

Brindley, C., Jiménez-Ruiz, N., Ancien, E G. & Fernandez-Sevilla, J. M. Light regime optimization in photobioreactors using a
dynamic photosynthesis model. Algal Res. 16, 399-408 (2016).

Zhu, J., Rong, . & Zong, B. Factors in mass cultivation of microalgae for biodiesel. Chin. J. Catal. 34, 80-100 (2013).

Huang, Q, Jiang, F, Wang, L. & Yang, C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering
3,318-329 (2017).

Letcher, P. M. et al. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the Cryptomycota isolated from
an outdoor algal pond used for the production of biofuel. PLoS One. 8, €56232 (2013).

McBride, R. C. et al. Contamination management in low cost open algae ponds for biofuels production. Ind. Biotechnol. 10, 221-227
(2014).

Ganuza, E., Sellers, C. E., Bennett, B. W,, Lyons, E. M. & Carney, L. T. A novel treatment protects Chlorella at commercial scale from
the predatory bacterium. Vampirovibrio chlorellavorus. Front. Microbiol. 7, 848 (2016).

Griffiths, J. M. & Harrison, T. L. S. Lipid productivity as a key for choosing algal species for biodiesel production. J. Appl. Phycol. 21,
493-507 (2009).

Chiu, S. Y. et al. Microalgal biomassproductionandon-site bioremediationof carbondioxide, nitrogen oxide and sulfur dioxide from
flue gas using Chlorella sp. cultures. Bioresour. Technol. 102, 9135-9142 (2011).

Li, E F et al. Microalgae capture of CO, from actual flue gas discharged from a combustion chamber. Ind. Eng. Chem. Res. 50,
6496-6502 (2011).

Kurzbaum, E. et al. Aspects of carbon dioxide mitigation in a closed microalgae photo-bioreactor supplied with flue gas. Int. J.
Environ. Pollut. 62, 1-16 (2017).

Nithiya, E. M., Tamilmani, J., Vasumathi, K. K. & Premalatha, M. Improved CO, fixation with Oscillatoria sp. in response to various
supply frequencies of CO, supply. . CO2 Util. 18, 198-205 (2017).

Keffer, J. E. & Kleinheinz, G. T. Use of Chlorella vulgaris for CO, mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol. 29,
275-280 (2002).

Lam, M. K. & Lee, K. T. Effect of carbon source towards the growth of Chlorella vulgaris for CO, biomitigation and biodiesel
production. Int. J. Greenh. Gas Con. 14, 169-176 (2013).

Klass, D. L. Biomass for Renewable Energy andFuels. (ed. Cleveland C. J.) Encyclopedia of energy, Vol. 1. Amsterdam: Elsevier Inc.,
193-212 (2004).

Gouveia, L., Marques, A, Silva, T. L. & Reis, A. Neochloris oleabundans UTEX # 1185: a suitable renewable lipid source for biofuel
production. J. Ind. Microbiol. Biotechnol. 36, 821-826 (2009).

Campenni, L. et al. Carotenoids and lipids production of autotrophic microalga Chlorella protothecoides under nutritional, salinity
and luminosity stress conditions. Appl. Microbiol. Biotechnol. 97, 1383-1393 (2013).

Jiménez, C., Cossi, B. R. & Niell, F. X. Relationship between physicochemical variables and productivity in open ponds for the
production of Spirulina: a predictive model of algal yield. Aquaculture 221, 331-345 (2003).

Gronlund, E., Johansson, E., HanZus, J. & Falk, S. Seasonal microalgae variation in a subarctic wastewater stabilization pond using
chemical precipitation. Vatten 60, 239-249 (2004).

Hulatt, C. J. & Thomas, D. N. Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour.
Technol. 102, 6687-6695 (2011).

Hindersin, S., Leupold, M., Kerner, M. & Hanelt, D. Key parameters for outdoor biomass production of Scenedesmus obliquus in
solar tracked photobioreactors. J. Appl. Phycol. 26,2315-2325 (2014).

Sutherland, D. L., Howard-Williams, C., Turnbull, H. M., Broady, A. P. & Craggs, J. R. Seasonal variation in light utilisation, biomass
production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond. J. Appl. Phycol. 26, 1317-1329
(2014).

SCIENTIFICREPORTS| (2018) 8:5112 | DOI:10.1038/s41598-018-23340-3 10



www.nature.com/scientificreports/

41. Liang, Y., Sarkany, N. & Cui, Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and
mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049 (2009).

42. Paranjape, K., Leite, G. B. & Hallenbeck, P. C. Strain variation in microalgal lipid production during mixotrophic growth with
glycerol. Bioresour. Technol. 204, 80-88 (2016).

43. Cooper, M. S., Hardin, W. R, Petersen, T. W. & Cattolico, R. A. Visualizing “green oil” in live algal cells. J. Biosci. Bioeng. 109,
198-201 (2010).

44. Bligh, E. G. & Dyer, W. . A rapid method for the total lipid extraction and purification. Can. J. Biochem. Physiol. 37,911-917 (1959).

45. Pereira, H. et al. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol.
Biofuels 4, 61-final page (2011).

46. Callejon-Ferre, A., Velazquez-Marti, B., Lopez-Martinez, ]. & Manzano-Agugliaro, F. Greenhouse crop residues: energy potential
and models for the prediction of their higher heating value. Renew. Sust. Energ. Rev. 15, 948-955 (2011).

Acknowledgements

The authors would like to acknowledge all members of CMP for the kind support and help throughout this work.
The present work was funded by the Portuguese national budget and the CCMAR/Multi/04326/2013 grant of the
Foundation for Science and Technology (FCT), the 0055 ALGARED + 5 E - INTERREG V-A Espafia-Portugal
project, and the COST Action 1408 - European Network for Bio-products. H.P. (SFRH/BD/105541/2014) and PS.
were funded by PhD grants from FCT and the Nord University, respectively.

Author Contributions

H.P. conceived, designed and performed the experiments; prepared the figures/tables and wrote the manuscript.
J.P, A M., A.B. and D.M. performed the experiments, biochemical analysis, microscopic pictures and drafted the
manuscript. T.S., P.S. and R.B. performed the CO, and photosynthetic efficiency assays, prepared figures/tables
and drafted the manuscript. J.S., L.G., L.B. and J.V. conceived and designed the experiments, wrote the paper and
contributed to the funding.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-23340-3.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

T ] icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS | (2018) 8:5112 | DOI:10.1038/s41598-018-23340-3 11


http://dx.doi.org/10.1038/s41598-018-23340-3
http://creativecommons.org/licenses/by/4.0/

	Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3  ...
	Results

	Optimization of culture velocity and pH set point. 
	Growth in industrial scale photobioreactors. 
	CO2 sequestration. 
	Season comparison using an Algem® photobioreactor. 

	Discussion

	Conclusions

	Methods

	Microalgae strain and culture medium preparation. 
	Scale-up of CTP4 cultures. 
	Optimization of biomass production. 
	Industrial production of biomass. 
	Microscopy. 
	Growth assessment. 
	Lipid determination. 
	CO2 sequestration. 
	Elemental analysis and photosynthetic efficiency. 
	Algem® photobioreactors season comparison. 
	Statistical treatment. 

	Acknowledgements

	Figure 1 Different large-scale systems currently used for the industrial production of microalgal biomass: (a) 1-m3 Flat panel photobioreactor.
	Figure 2 Optimization of tubular photobioreactor operation in pilot-scale production systems.
	Figure 3 Mean and maximum temperature and radiation registered during the growth of Tetraselmis sp.
	Figure 4 Lipid content and fluorescence microscopy of Tetraselmis sp.
	Figure 5 Season comparison assay of Tetraselmis sp.
	Figure 6 Different environmental contaminants detected in the course of the present work throughout the growth in industrial scale production systems.
	Figure 7 Schematic representation of the scale-up procedure used in the present work.
	Table 1 Volumetric and areal biomass productivities presented in ash free dry weight of batch cultures grown in 2.
	Table 2 Volumetric and areal biomass productivities of Tetraselmis sp.




